Statement:
stringlengths 7
24.3k
|
---|
lemma updates_append_drop [simp]:
"size xs = size ys \<Longrightarrow> updates (xs @ zs) ys al = updates xs ys al" |
lemma h_method_via_pair_framework_2_completeness_and_finiteness :
assumes "observable M"
and "observable I"
and "minimal M"
and "size I \<le> m"
and "m \<ge> size_r M"
and "inputs I = inputs M"
and "outputs I = outputs M"
shows "(L M = L I) \<longleftrightarrow> (L M \<inter> set (h_method_via_pair_framework_2 M m c) = L I \<inter> set (h_method_via_pair_framework_2 M m c))"
and "finite_tree (h_method_via_pair_framework_2 M m c)" |
lemma link_tree_invar:
"\<lbrakk>tree_invar t1; tree_invar t2; rank t1 = rank t2\<rbrakk> \<Longrightarrow> tree_invar (link t1 t2)" |
lemma wand_ent_self: "P \<Longrightarrow>\<^sub>A Q -* (Q * P)" |
lemma Spy_see_shrK [simp]:
"evs \<in> kerbV \<Longrightarrow> (Key (shrK A) \<in> parts (spies evs)) = (A \<in> bad)" |
lemma g_sng_impl: "set_sng \<alpha> invar g_sng" |
lemma new_tv_Cons[simp]:
"new_tv n (x#l) = (new_tv n x \<and> new_tv n l)" |
lemma TensorDiag_in_Hom:
assumes "Diag t" and "Diag u"
shows "t \<^bold>\<lfloor>\<^bold>\<otimes>\<^bold>\<rfloor> u \<in> Hom (Dom t \<^bold>\<lfloor>\<^bold>\<otimes>\<^bold>\<rfloor> Dom u) (Cod t \<^bold>\<lfloor>\<^bold>\<otimes>\<^bold>\<rfloor> Cod u)" |
lemma Lxy_rev: "rev (Lxy qs S) = Lxy (rev qs) S" |
lemma all_in_list: "all_in_list (policy2list Policy) (Nets_List Policy)" |
lemma finTrace_imp_MtransT:
"finTrace tr \<Longrightarrow> iconfig tr \<rightarrow>*t fstate tr" |
lemma goGS_rel_sv[relator_props,intro!,simp]: "single_valued goGS_rel" |
lemma modal_neq:
fixes A :: "('a,'b) form" and ps :: "('a,'b) form list"
shows "A \<noteq> Modal M [A]" and "ps \<noteq> [Modal M ps]" |
lemma synth_parts_trans:
assumes "A \<subseteq> synth (parts B)" and "B \<subseteq> synth (parts C)"
shows "A \<subseteq> synth (parts C)" |
lemma dim_row_take_cols[simp]:
shows "dim_row (take_cols A ls) = dim_row A" |
lemma (in encoding) enc_reflects_pred_iff_source_target_rel_preserves_pred:
fixes Pred :: "('procS, 'procT) Proc \<Rightarrow> bool"
shows "enc_reflects_pred Pred
= (\<exists>Rel. (\<forall>S. (TargetTerm (\<lbrakk>S\<rbrakk>), SourceTerm S) \<in> Rel) \<and> rel_preserves_pred Rel Pred)" |
lemma fds_divisor_count: "fds divisor_count = fds_zeta ^ 2" |
lemma fic_ImpR_elim:
assumes a: "fic (ImpR (x).<a>.M b) c"
shows "b=c \<and> b\<sharp>[a].M" |
lemma tan_periodic [simp]: "tan (x + 2 * pi) = tan x" |
lemma circline_intersection_at_most_2_points:
assumes "H1 \<noteq> H2"
shows "finite (circline_intersection H1 H2) \<and> card (circline_intersection H1 H2) \<le> 2" |
lemma (in jozsa) jozsa_transform_times_\<psi>\<^sub>1_is_\<psi>\<^sub>2:
shows "U\<^sub>f * (\<psi>\<^sub>1 n) = \<psi>\<^sub>2" |
lemma correctness_applicative:
assumes distinct: "\<And>n. pure (assert distinct) \<diamondop> symbols n = symbols n"
shows "State_Monad.return dlabels \<diamondop> label_tree t = symbols (leaves t)" |
lemma fps_inverse_minus [simp]: "inverse (-f) = -inverse (f :: 'a :: division_ring fps)" |
lemma closure_of_eq_empty_gen: "X closure_of S = {} \<longleftrightarrow> disjnt (topspace X) S" |
lemma emeasure_lborel_Ico[simp]:
assumes [simp]: "l \<le> u"
shows "emeasure lborel {l ..< u} = ennreal (u - l)" |
lemma set_comprehension_list_comprehension:
"set [f i . i <- [x..<a]] = {f i |i. i \<in> {x..<a}}" |
lemma iso_bij_betwn_block_sets_inv: "bij_betw ((`) (inv_into \<V> \<pi>)) (set_mset \<B>') (set_mset \<B>)" |
lemma convex_halfspace_Im_lt: "convex {x. Im x < b}" |
lemma proj_poly_syz_lift_poly_syz:
assumes "i < n"
shows "proj_poly_syz n (lift_poly_syz n p i) = p" |
lemma lfinite_lconst[simp]: "\<not> lfinite (lconst a)" |
lemma cond_spmf_spmf_of_set:
"cond_spmf (spmf_of_set A) B = spmf_of_set (A \<inter> B)" if "finite A" |
lemma bc_mt_corresp_Dup: "
bc_mt_corresp [Dup] dupST (T # ST, LT) cG rT mxr (Suc 0)" |
lemma vintersection_vunion_left: "(A \<union>\<^sub>\<circ> B) \<inter>\<^sub>\<circ> C = (A \<inter>\<^sub>\<circ> C) \<union>\<^sub>\<circ> (B \<inter>\<^sub>\<circ> C)" |
lemma heap_copy_loc_progress:
assumes hconf: "hconf h"
and alconfa: "P,h \<turnstile> a@al : T"
and alconfa': "P,h \<turnstile> a'@al : T"
shows "\<exists>v h'. heap_copy_loc a a' al h ([ReadMem a al v, WriteMem a' al v]) h' \<and> P,h \<turnstile> v :\<le> T \<and> hconf h'" |
lemma isometryD[simp]: "isometry U \<Longrightarrow> U* o\<^sub>C\<^sub>L U = id_cblinfun" |
lemma G_ctor_o_fold: "ctor_fold_G s o ctor_G = s o map_pre_G id (ctor_fold_G s)" |
lemma LUNIT_simps [simp]:
assumes "B.ide f"
shows "B.arr (LUNIT f)"
and "src\<^sub>B (LUNIT f) = src\<^sub>B f" and "trg\<^sub>B (LUNIT f) = trg\<^sub>B f"
and "B.dom (LUNIT f) = TRG f \<star>\<^sub>B f"
and "B.cod (LUNIT f) = f" |
lemma enforce_spmf_top [simp]: "enforce_spmf \<top> = id" |
lemma wf_list_graph_iff_wf_graph: "wf_graph (list_graph_to_graph G) \<longleftrightarrow> wf_list_graph_axioms G" |
lemma homeomorphic_maps_nsphere_euclidean_sphere:
fixes B :: "'n::euclidean_space set"
assumes B: "independent B" and orth: "pairwise orthogonal B" and n: "card B = n" and "n \<noteq> 0"
and 1: "\<And>u. u \<in> B \<Longrightarrow> norm u = 1"
obtains f :: "(nat \<Rightarrow> real) \<Rightarrow> 'n::euclidean_space" and g
where "homeomorphic_maps (nsphere(n - 1)) (top_of_set (sphere 0 1 \<inter> span B)) f g" |
lemma (in encoding) trans_source_target_relation_impl_fully_abstract:
fixes Rel :: "(('procS, 'procT) Proc \<times> ('procS, 'procT) Proc) set"
and SRel :: "('procS \<times> 'procS) set"
and TRel :: "('procT \<times> 'procT) set"
assumes enc: "\<forall>S. (SourceTerm S, TargetTerm (\<lbrakk>S\<rbrakk>)) \<in> Rel
\<and> (TargetTerm (\<lbrakk>S\<rbrakk>), SourceTerm S) \<in> Rel"
and srel: "SRel = {(S1, S2). (SourceTerm S1, SourceTerm S2) \<in> Rel}"
and trel: "TRel = {(T1, T2). (TargetTerm T1, TargetTerm T2) \<in> Rel}"
and trans: "trans Rel"
shows "fully_abstract SRel TRel" |
lemma prime_elem_MP_Rel [transfer_rule]: "(MP_Rel ===> (=)) prime_elem_m prime_elem" |
lemma
\<open>drop_bit 3 (1 :: int) = 0\<close> |
lemma shadow_root_ptr_casts_commute [simp]:
"cast\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>s\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>_\<^sub>r\<^sub>o\<^sub>o\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r ptr = Some shadow_root_ptr \<longleftrightarrow> cast\<^sub>s\<^sub>h\<^sub>a\<^sub>d\<^sub>o\<^sub>w\<^sub>_\<^sub>r\<^sub>o\<^sub>o\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r\<^sub>2\<^sub>o\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t\<^sub>_\<^sub>p\<^sub>t\<^sub>r shadow_root_ptr = ptr" |
lemma harry_meas_False_end [simp]: "harry_meas (xs @ [False]) = harry_meas xs" |
lemma tm_weak_copy_correct_pre:
assumes "0 < x"
shows "\<lbrace>inv_begin1 x\<rbrace> tm_weak_copy \<lbrace>inv_end0 x\<rbrace>" |
lemma While_sound_aux [rule_format]:
"\<lbrakk> pre \<inter> - b \<subseteq> post; \<Turnstile> P sat [pre \<inter> b, rely, guar, pre]; \<forall>s. (s, s) \<in> guar;
stable pre rely; stable post rely; x \<in> cptn_mod \<rbrakk>
\<Longrightarrow> \<forall>s xs. x=(Some(While b P),s)#xs \<longrightarrow> x\<in>assum(pre, rely) \<longrightarrow> x \<in> comm (guar, post)" |
lemma hnfSummandsRemove:
fixes P :: pi
and Q :: pi
assumes "P \<in> summands Q"
and "uhnf Q"
shows "(summands Q) - {P' | P'. P' \<in> summands Q \<and> P' \<equiv>\<^sub>e P} = (summands Q) - {P}" |
lemma bot_pres_multr: "bot_pres (\<lambda>(z::'a::proto_near_quantale). z \<cdot> y)" |
lemma gval_fold_cons:
"gval (fold gAnd (g # gs) (Bc True)) s = gval g s \<and>? gval (fold gAnd gs (Bc True)) s" |
lemma \<nu>_improving_iff: "\<nu>_improving v d \<longleftrightarrow> d \<in> D\<^sub>R \<and> (\<forall>d' \<in> D\<^sub>R. \<forall>s. L d' v s \<le> L d v s)" |
lemma uGraph_from_list_invar_subset:
"uGraph_from_list_invar L \<Longrightarrow> set L'\<subseteq> set L \<Longrightarrow> distinct L' \<Longrightarrow> uGraph_from_list_invar L'" |
lemma prm_compose_push:
shows "\<pi> \<diamondop> [a \<leftrightarrow> b] = [\<pi> $ a \<leftrightarrow> \<pi> $ b] \<diamondop> \<pi>" |
lemma gmctxtex_onp_rel_mono:
"\<L> \<subseteq> \<R> \<Longrightarrow> gmctxtex_onp P \<L> \<subseteq> gmctxtex_onp P \<R>" |
lemma density_unique_real:
fixes f f'::"_ \<Rightarrow> real"
assumes M[measurable]: "integrable M f" "integrable M f'"
assumes density_eq: "\<And>A. A \<in> sets M \<Longrightarrow> (\<integral>x \<in> A. f x \<partial>M) = (\<integral>x \<in> A. f' x \<partial>M)"
shows "AE x in M. f x = f' x" |
lemma exists_bezout_extended:
assumes S: "finite S" and ne: "S \<noteq> {}"
shows "\<exists>f d. (\<Sum>a\<in>S. f a * a) = d \<and> (\<forall>a\<in>S. d dvd a) \<and> (\<forall>d'. (\<forall>a\<in>S. d' dvd a) \<longrightarrow> d' dvd d)" |
lemma unfold_ind:
fixes P :: "('s \<rightarrow> 'a LList) \<Rightarrow> bool"
assumes "adm P" and "P \<bottom>" and "\<And>u. P u \<Longrightarrow> P (unfoldF\<cdot>h\<cdot>u)"
shows "P (unfold\<cdot>h)" |
lemma seq_nhop_quality_increases':
shows "opaodv i \<Turnstile> (otherwith ((=)) {i}
(orecvmsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)),
other quality_increases {i} \<rightarrow>)
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<sigma>, _). \<forall>dip. let nhip = the (nhop (rt (\<sigma> i)) dip)
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip))
\<and> nhip \<noteq> dip
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
(is "_ \<Turnstile> (?S i, _ \<rightarrow>) _") |
lemma pigeonhole:
assumes "finite T" "S \<subseteq> \<Union>T" "card T < card S"
shows "\<exists>x \<in> S. \<exists>y \<in> S. \<exists>X \<in> T. x \<noteq> y \<and> x \<in> X \<and> y \<in> X" |
lemma prime_odd_int: "prime p \<Longrightarrow> p > (2::int) \<Longrightarrow> odd p" |
lemma Pi_pmf_return_pmf' [simp]:
assumes "finite A"
shows "Pi_pmf A dflt (\<lambda>_. return_pmf dflt) = return_pmf (\<lambda>_. dflt)" |
lemma Phi_conv_map:
assumes "is_direct_product w x"
and "is_direct_product y z"
shows "is_map ((\<Phi> w x y z)\<^sup>\<smile>)" |
lemma limit_mat_denote_while_n:
assumes wc: "well_com (While M S)" and dr: "\<rho> \<in> carrier_mat d d" and pdor: "partial_density_operator \<rho>"
shows "limit_mat (matrix_sum d (\<lambda>k. denote_while_n (M 0) (M 1) (denote S) k \<rho>)) (denote (While M S) \<rho>) d" |
lemma normalize1_dverts_app_bfr_cntr_rnks':
assumes "v \<in> dverts (normalize1 t)" and "v \<notin> dverts t"
shows "\<exists>U\<in>dverts t. \<exists>V\<in>dverts t. U @ V = v \<and> before U V \<and> rank (rev V) \<le> rank (rev U)
\<and> (\<forall>xs \<in> dverts t. (\<exists>y\<in>set xs. \<not> (\<exists>x'\<in>set V. x' \<rightarrow>\<^sup>+\<^bsub>T\<^esub> y) \<and> (\<exists>x\<in>set U. x \<rightarrow>\<^sup>+\<^bsub>T\<^esub> y) \<and> xs \<noteq> U)
\<longrightarrow> rank (rev V) \<le> rank (rev xs))" |
lemma is_runs2sigs_upd_resp_none [simp]:
"\<lbrakk> Rb \<notin> dom runz \<rbrakk>
\<Longrightarrow> is_runs2sigs (runz(Rb \<mapsto> (Resp, [A, B], []))) = is_runs2sigs runz" |
lemma frameImpClosed:
fixes F :: "'b frame"
and \<Phi> :: 'c
and p :: "name prm"
assumes "F \<turnstile>\<^sub>F \<Phi>"
shows "(p \<bullet> F) \<turnstile>\<^sub>F (p \<bullet> \<Phi>)" |
lemma map:
"\<not> free_in x p \<Longrightarrow> semantics e f g p \<longleftrightarrow> semantics (e(x := v)) f g p" |
theorem "\<not>(turing_computable_partial (chi_fun K1))" |
lemma eq_\<I>_converterD_WT:
assumes "\<I>,\<I>' \<turnstile>\<^sub>C conv1 \<sim> conv2"
shows "\<I>,\<I>' \<turnstile>\<^sub>C conv1 \<surd> \<longleftrightarrow> \<I>,\<I>' \<turnstile>\<^sub>C conv2 \<surd>" |
lemma
assumes "Even n"
shows "P1 n" and "P2 n" |
lemma pcompose_diff: "pcompose (p - q) r = pcompose p r - pcompose q r"
for p q r :: "'a::comm_ring poly" |
lemma add_prop:
assumes "PROP (T)"
shows "A ==> PROP (T)" |
lemma pullback_arr_cod:
assumes "arr f"
shows "inverse_arrows \<p>\<^sub>1[f, cod f] \<langle>dom f \<lbrakk>f, cod f\<rbrakk> f\<rangle>"
and "inverse_arrows \<p>\<^sub>0[cod f, f] \<langle>f \<lbrakk>cod f, f\<rbrakk> dom f\<rangle>" |
lemma "\<not> evasive 4 proj_2_n3" |
lemma fls_base_factor_of_int [simp]:
"fls_base_factor (of_int i :: 'a::ring_1 fls) = (of_int i :: 'a fls)" |
lemma cf_comp_ArrMap_vrange:
assumes "\<GG> : \<BB> \<mapsto>\<mapsto>\<^sub>C\<^bsub>\<alpha>\<^esub> \<CC>" and "\<FF> : \<AA> \<mapsto>\<mapsto>\<^sub>C\<^bsub>\<alpha>\<^esub> \<BB>"
shows "\<R>\<^sub>\<circ> ((\<GG> \<circ>\<^sub>C\<^sub>F \<FF>)\<lparr>ArrMap\<rparr>) \<subseteq>\<^sub>\<circ> \<CC>\<lparr>Arr\<rparr>" |
lemma after_fun1: "|~ f<x>` = f<x`>" |
lemma semiring_transfer[transfer_rule]:
assumes[transfer_rule]: "bi_unique A" "right_total A"
shows
"((A ===> A ===> A) ===> (A ===> A ===> A) ===> (=))
(semiring_ow (Collect (Domainp A))) class.semiring" |
lemma A4b: "cod(x\<cdot>y) \<cong> cod(x\<cdot>(cod y))" |
lemma read_actions_not_write_actions:
"\<lbrakk> a \<in> read_actions E; a \<in> write_actions E \<rbrakk> \<Longrightarrow> False" |
lemma Exit_in_obs_slice_node:"(_Exit_) \<in> obs n' (PDG_BS S) \<Longrightarrow> (_Exit_) \<in> S" |
theorem soundnessForUNSAT:
fixes F0 :: Formula and decisionVars :: "Variable set" and state0 :: State and state :: State
assumes
"isInitialState state0 F0" and
"(state0, state) \<in> transitionRelation F0 decisionVars"
"getConflictFlag state = True" and
"getC state = []"
shows "\<not> satisfiable F0" |
lemma [code]:
"Gcd (Set t) = (Gcd\<^sub>f\<^sub>i\<^sub>n (Set t) :: nat)" |
lemma "\<bar> ln 2 - 544531980202654583340825686620847 / 785593587443817081832229725798400 \<bar> < (inverse (2^51) :: real)" |
lemma support_on_nonneg_sum_subset:
"support_on X (\<lambda>x. \<Sum>i\<in>S. f i x) \<subseteq> (\<Union>i\<in>S. support_on X (f i))"
for f::"_\<Rightarrow>_\<Rightarrow>_::ordered_comm_monoid_add" |
lemma prm_unit_commutes:
fixes a b :: 'a
shows "[a \<leftrightarrow> b] = [b \<leftrightarrow> a]" |
lemma subset_smaller_list:
shows "\<forall> a x . set (a#x) \<subseteq> Z \<longrightarrow> set x \<subseteq> Z" |
lemma rel_fun_conversep: includes lifting_syntax shows
"(A^--1 ===> B^--1) = (A ===> B)^--1" |
lemma "steps0 (1, [], [Oc, Oc]) tm_semi_id_eq0 2 = (1, [], [Oc, Oc])" |
lemma sin_cos_squared_add2 [simp]: "(cos x)\<^sup>2 + (sin x)\<^sup>2 = 1"
for x :: "'a::{real_normed_field,banach}" |
lemma Inter_FullL[simp]: "Inter Full r = r" |
lemma next_fun4: "|~ \<circle>f<x,y,z,zz> = f<\<circle>x,\<circle>y,\<circle>z,\<circle>zz>" |
lemma (in graph) init_loop_1_a[simp]: "\<Turnstile> Init {| Q1_a |} Loop" |
lemma keys_uminus: "keys (- p) = keys p" |
lemma height_0 :
assumes "height t = 0"
shows "t = empty" |
lemma bbw_oa_dist: "(x AND y) OR z = (x OR z) AND (y OR z)"
for x y z :: int |
lemma (in srules) seval_wellformed:
assumes "rs, \<Gamma> \<turnstile>\<^sub>s t \<down> u" "wellformed t" "wellformed_env \<Gamma>"
shows "wellformed u" |
lemma [code]:
"ExcessTable g =
List.map_filter (\<lambda>v. let e = ExcessAt g v in if 0 < e then Some (v, e) else None)" |
lemma pp_prod_iff:
"w \<in> X\<cdot>Y \<longleftrightarrow> (\<exists>u v. w = pp_fusion u v \<and> u \<in> X \<and> v \<in> Y \<and> pp_last u = pp_first v)" |
lemma to_mregex_progress: "safe_regex m g r \<Longrightarrow> to_mregex r = (mr, \<phi>s) \<Longrightarrow>
progress_regex \<sigma> P r j = (if \<phi>s = [] then j else (MIN \<phi>\<in>set \<phi>s. progress \<sigma> P \<phi> j))" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.