Statement:
stringlengths 7
24.3k
|
---|
lemma fincomp_mono_neutral_cong:
assumes [simp]: "finite B" "finite A"
and *: "\<And>i. i \<in> B - A \<Longrightarrow> h i = \<one>" "\<And>i. i \<in> A - B \<Longrightarrow> g i = \<one>"
and gh: "\<And>x. x \<in> A \<inter> B \<Longrightarrow> g x = h x"
and g: "g \<in> A \<rightarrow> M"
and h: "h \<in> B \<rightarrow> M"
shows "fincomp g A = fincomp h B" |
lemma ground_term_of_gterm [simp]:
"ground (term_of_gterm s)" |
lemma pres_exec:
assumes "(q,\<tau>) \<in> set (step p (ss!p))"
and "\<forall>n \<in> set (ss!p). p > n"
and "ss!p \<in> A"
and "p < n"
shows "\<tau> \<in> A " |
lemma DC_refines_AC:
"(a \<Sqinter> b) \<sqsubseteq> (a \<Squnion> b)" |
lemma mult_scalar_zero_right [simp]: "p \<odot> 0 = 0" |
lemma dense_lattice_char_2:
"(\<forall>x y . x \<sqinter> y = bot \<longrightarrow> x = bot \<or> y = bot) \<longleftrightarrow> (\<forall>x . regular x \<longrightarrow> x = bot \<or> x = top)" |
lemma sublinear_wp_Bind:
"\<lbrakk> \<And>s. sublinear (wp (a (f s))) \<rbrakk> \<Longrightarrow> sublinear (wp (Bind f a))" |
lemma perzeta_conv_hurwitz_zeta_multiplication:
fixes k :: nat and a :: int and s :: complex
assumes "k > 0" "s \<noteq> 1"
shows "k powr s * perzeta (a / k) s =
(\<Sum>n=1..k. exp (2 * pi * n * a / k * \<i>) * hurwitz_zeta (n / k) s)"
(is "?lhs s = ?rhs s") |
lemma paths_withoutI:
assumes "xs \<in> paths t"
assumes "x \<notin> set xs"
shows "xs \<in> paths (without x t)" |
lemma Stop_Sim: "Stop \<preceq>S Stop" |
theorem i_Exec_Stream_causal: "
input1 \<Down> n = input2 \<Down> n \<Longrightarrow>
(i_Exec_Comp_Stream trans_fun input1 c) \<Down> n = (i_Exec_Comp_Stream trans_fun input2 c) \<Down> n" |
lemma adds_antisym:
assumes "s adds t" "t adds s"
shows "s = t" |
lemma less_eq_mask_iff_take_bit_eq_self:
\<open>w \<le> mask n \<longleftrightarrow> take_bit n w = w\<close>
for w :: \<open>'a::len word\<close> |
lemma is_poincare_line_mk_circline:
assumes "(A, B, C, D) \<in> hermitean_nonzero"
shows "is_poincare_line (mk_circline A B C D) \<longleftrightarrow> (cmod B)\<^sup>2 > (cmod A)\<^sup>2 \<and> A = D" |
lemma Si_neg:
assumes "T \<ge> 0" shows "Si (- T) = - Si T" |
lemma (in information_space)
fixes X :: "'a \<Rightarrow> 'b"
assumes X[measurable]: "distributed M MX X f" and nn: "\<And>x. x \<in> space MX \<Longrightarrow> 0 \<le> f x"
shows entropy_distr: "entropy b MX X = - (\<integral>x. f x * log b (f x) \<partial>MX)" (is ?eq) |
lemma run_argsD:
"run \<A> s t \<Longrightarrow> length (gargs s) = length (gargs t) \<and> (\<forall> i < length (gargs t). run \<A> (gargs s ! i) (gargs t ! i))" |
lemma
shows integrable_I0i_1_div_plus_square:
"interval_lebesgue_integrable lborel 0 \<infinity> (\<lambda>x. 1 / (1 + x^2))"
and LBINT_I0i_1_div_plus_square:
"LBINT x=0..\<infinity>. 1 / (1 + x^2) = pi / 2" |
lemma opp_add:
assumes p\<^sub>1: "on_curve a b p\<^sub>1"
and p\<^sub>2: "on_curve a b p\<^sub>2"
shows "opp (add a p\<^sub>1 p\<^sub>2) = add a (opp p\<^sub>1) (opp p\<^sub>2)" |
lemma T_ins_tree_simple_bound: "T_ins_tree t ts \<le> length ts + 1" |
lemma card_suc_ordLess_imp_ordLeq:
assumes ORD: "Card_order r" "Card_order r'" "card_order r'"
and LESS: "r <o card_suc r'"
shows "r \<le>o r'" |
lemma graph_homomorphism_composes[intro]:
assumes "graph_homomorphism a b x"
"graph_homomorphism b c y"
shows "graph_homomorphism a c (x O y)" |
lemma tree_edges_finite[simp, intro!]: "finite (tree_edges s)" |
lemma expl_cond_expect_prop_sets2:
assumes "disc_fct Y"
and "point_measurable (fct_gen_subalgebra M N Y) (space N) Y"
and "D = {w\<in> space M. Y w \<in> space N \<and> (P (expl_cond_expect M Y X w))}"
shows "D\<in> sets (fct_gen_subalgebra M N Y)" |
lemma
\<open>push_bit (Suc (Suc (Suc 0))) (Suc 0) = 8\<close> |
lemma typ_of1_imp_has_typ1: "typ_of1 Ts t = Some ty \<Longrightarrow> has_typ1 Ts t ty" |
lemma singelton_trancl [simp]: "{a}\<^sup>+ = {a}" |
lemma pminus_Nil: "-- [] = []" |
lemma some_gcd_ff_list_smult: "a \<noteq> 0 \<Longrightarrow> some_gcd_ff_list (map ((*) a) xs) =dff a * some_gcd_ff_list xs" |
lemma ofail_NF_wp [wp]:
"ovalidNF (\<lambda>_. False) ofail Q" |
lemma transpose_add: "A \<in> carrier_mat nr nc \<Longrightarrow> B \<in> carrier_mat nr nc
\<Longrightarrow> transpose_mat (A + B) = transpose_mat A + transpose_mat B" |
lemma eq_option_refine[sepref_fr_rules]:
assumes "CONSTRAINT is_pure A"
shows "(uncurry eq,uncurry (RETURN oo dflt_option_eq))
\<in> (dflt_option_assn dflt A)\<^sup>k *\<^sub>a (dflt_option_assn dflt A)\<^sup>k \<rightarrow>\<^sub>a bool_assn" |
lemma dflt_cmp_2inv[simp]:
"dflt_cmp (comp2le cmp) (comp2lt cmp) = cmp" |
lemma (in nf_invar) C_ne_max_dist:
assumes "C\<noteq>{}"
shows "d \<le> max_dist src" |
lemma NEG_\<G>: "NEG \<subseteq> \<G>" |
lemma sccs_finished:
"\<Union>(sccs s) \<subseteq> dom (finished s)" |
lemma lift_profile_add_mset [simp]:
"lift_profile (add_mset X A) = add_mset (lift_applist X) (lift_profile A)" |
lemma(in UP_domain) pow_sum:
assumes "p \<in> carrier P"
assumes "q \<in> carrier P"
assumes "degree q < degree p"
shows "degree ((p \<oplus>\<^bsub>P\<^esub> q )[^]\<^bsub>P\<^esub>n) = (degree p)*n" |
lemma iso3 [simp]: "d (d x \<cdot> U) = d x " |
lemma inference_closed_sets_are_saturated:
assumes "inference_closed S"
assumes "\<forall>x \<in> S. (finite (cl_ecl x))"
shows "clause_saturated S" |
lemma meval_sched_snocI:
"(cms\<^sub>1, mem\<^sub>1) \<rightarrow>\<^bsub>ns\<^esub> (cms\<^sub>1'', mem\<^sub>1'') \<and> (cms\<^sub>1'', mem\<^sub>1'') \<leadsto>\<^bsub>n\<^esub> (cms\<^sub>1', mem\<^sub>1') \<Longrightarrow>
(cms\<^sub>1, mem\<^sub>1) \<rightarrow>\<^bsub>ns@[n]\<^esub> (cms\<^sub>1', mem\<^sub>1')" |
lemma vertical_chop_assoc2:
"(v=v1--v2) \<and> (v1=v3--v4) \<longrightarrow> (\<exists>v'. (v=v3--v') \<and> (v'=v4--v2))" |
lemma INF_eq_minf: "(INF i\<in>I. f i::ereal) \<noteq> -\<infinity> \<longleftrightarrow> (\<exists>b>-\<infinity>. \<forall>i\<in>I. b \<le> f i)" |
lemma meet_iso: "x \<le> y \<Longrightarrow> x \<cdot> z \<le> y \<cdot> z" |
lemma list_gcd_greatest: "(\<And> x. x \<in> set xs \<Longrightarrow> y dvd x) \<Longrightarrow> y dvd (list_gcd xs)" |
lemma matrix_le_norm_mono:
assumes "0 \<le> (blinfun_to_matrix C)"
and "(blinfun_to_matrix C) \<le> (blinfun_to_matrix D)"
shows "norm C \<le> norm D" |
lemma Show_nat_not_empty: \<open>(Show\<^sub>n\<^sub>a\<^sub>t n) \<noteq> []\<close> |
lemma ce_rel_lm_25: "r \<in> ce_rels \<Longrightarrow> r^-1 \<in> ce_rels" |
lemma multpw_map:
assumes "\<And>x y. x \<in># X \<Longrightarrow> y \<in># Y \<Longrightarrow> (x, y) \<in> ns \<Longrightarrow> (f x, g y) \<in> ns'"
and "(X, Y) \<in> multpw ns"
shows "(image_mset f X, image_mset g Y) \<in> multpw ns'" |
lemma single_valued_inter2: "single_valued R \<Longrightarrow> single_valued (S\<inter>R)" |
lemma remove_child_children_subset:
assumes "h \<turnstile> remove_child parent child \<rightarrow>\<^sub>h h'"
and "h \<turnstile> get_child_nodes ptr \<rightarrow>\<^sub>r children"
and "h' \<turnstile> get_child_nodes ptr \<rightarrow>\<^sub>r children'"
and known_ptrs: "known_ptrs h"
and type_wf: "type_wf h"
shows "set children' \<subseteq> set children" |
lemma finite_subint1: "finite (subint1 G)" |
lemma
assumes "bv2int 0 = 0"
and "bv2int 1 = 1"
and "bv2int 2 = 2"
and "bv2int 3 = 3"
and "\<forall>x::2 word. bv2int x > 0"
shows "\<forall>i::int. i < 0 \<longrightarrow> (\<forall>x::2 word. bv2int x > i)" |
lemma case_prod_preserve [quot_preserve]:
assumes q1: "Quotient3 R1 Abs1 Rep1"
and q2: "Quotient3 R2 Abs2 Rep2"
and q3: "Quotient3 R3 Abs3 Rep3"
shows "((Abs1 ---> Abs2 ---> Rep3) ---> map_prod Rep1 Rep2 ---> Abs3) case_prod = case_prod" |
lemma unity_root_eq_1_iff_int:
fixes k :: nat and n :: int
assumes "k > 0"
shows "unity_root k n = 1 \<longleftrightarrow> k dvd n" |
lemma decr_grading_p_monomial: "decr_grading_p d n (monomial c v) = monomial c (decr_grading_term d n v)" |
lemma smcf_comp_is_ff_semifunctor[smcf_cs_intros]:
assumes "\<GG> : \<BB> \<mapsto>\<mapsto>\<^sub>S\<^sub>M\<^sub>C\<^sub>.\<^sub>f\<^sub>f\<^bsub>\<alpha>\<^esub> \<CC>" and "\<FF> : \<AA> \<mapsto>\<mapsto>\<^sub>S\<^sub>M\<^sub>C\<^sub>.\<^sub>f\<^sub>f\<^bsub>\<alpha>\<^esub> \<BB>"
shows "\<GG> \<circ>\<^sub>S\<^sub>M\<^sub>C\<^sub>F \<FF> : \<AA> \<mapsto>\<mapsto>\<^sub>S\<^sub>M\<^sub>C\<^sub>.\<^sub>f\<^sub>f\<^bsub>\<alpha>\<^esub> \<CC>" |
lemma iex_disj_distrib: "
(\<diamond> t I. P t \<or> Q t) = ((\<diamond> t I. P t) \<or> (\<diamond> t I. Q t))" |
lemma wt[simp]: "M.wt T \<Longrightarrow> wt T" |
lemma iMin_Un[rule_format]: "
\<lbrakk> A \<noteq> {}; B \<noteq> {} \<rbrakk> \<Longrightarrow>
iMin (A \<union> B) = min (iMin A) (iMin B)" |
lemma tauActTauChain:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and P' :: "('a, 'b, 'c) psi"
assumes "\<Psi> \<rhd> P \<longmapsto>\<tau> \<prec> P'"
shows "\<Psi> \<rhd> P \<Longrightarrow>\<^sup>^\<^sub>\<tau> P'" |
lemma or_foldl_sem:"List.member \<Gamma> \<phi> \<Longrightarrow> \<nu> \<in> fml_sem I \<phi> \<Longrightarrow> \<nu> \<in> fml_sem I (foldr Or \<Gamma> FF)" |
lemma acyclic_on_empty[simp]: "acyclic_on {} r" |
lemma end_smult_distrib_right :
assumes "range T \<subseteq> V"
shows "(a+b) \<cdot>\<cdot> T = a \<cdot>\<cdot> T + b \<cdot>\<cdot> T" |
lemma foldseq_assoc : "associative f \<Longrightarrow> foldseq f = foldseq_transposed f" |
lemma cong_gen_cong: "cong (gen_cong R)" |
lemma fst_K0[simp]: "map_pmf fst (K0 p S0) = S0" |
lemma matrix_equation_main_step:
fixes p:: "real poly"
fixes qs:: "real poly list"
fixes I:: "nat list"
fixes signs:: "rat list list"
assumes nonzero: "p\<noteq>0"
assumes distinct_signs: "distinct signs"
assumes all_info: "set (characterize_consistent_signs_at_roots_copr p qs) \<subseteq> set(signs)"
assumes welldefined: "list_constr I (length qs)"
assumes pairwise_rel_prime_1: "\<forall>q. ((List.member qs q) \<longrightarrow> (coprime p q))"
shows "(vec_of_list (mtx_row signs I) \<bullet> (construct_lhs_vector p qs signs)) =
construct_NofI p (retrieve_polys qs I)" |
lemma FullInit: "\<turnstile> FullInit \<longrightarrow> BInit inp qc out" |
lemma lemma_3_5_i_4: "(d4 a b = 1) = (a = b)" |
lemma nths_Cons:
"nths (x # l) A = (if 0 \<in> A then [x] else []) @ nths l {j. Suc j \<in> A}" |
lemma timpl_closure_no_Abs_eq:
assumes "t \<in> timpl_closure s TI"
and "\<forall>f \<in> funs_term t. \<not>is_Abs f"
shows "t = s" |
lemma e_app_intro[intro]: "\<lbrakk> VFun f \<in> E e1 \<rho>; v2 \<in> E e2 \<rho>; (v2',v3') \<in> fset f; v2' \<sqsubseteq> v2; v3 \<sqsubseteq> v3'\<rbrakk>
\<Longrightarrow> v3 \<in> E (EApp e1 e2) \<rho>" |
lemma map_bset_permute: "p \<bullet> B = map_bset (permute p) B" |
lemma lookup_map2_val_neutr:
assumes "\<And>k x. f k x 0 = x" and "\<And>k x. f k 0 x = x"
shows "lookup (map2_val_neutr f xs ys) k = f k (lookup xs k) (lookup ys k)" |
lemma induced_automorphism_chamber_map: "chamber C \<Longrightarrow> chamber (\<s>`C)" |
lemma strictly_precedes_alt_def2:
\<open>{ \<rho>. \<forall>n::nat. (run_tick_count \<rho> K\<^sub>2 n) \<le> (run_tick_count_strictly \<rho> K\<^sub>1 n) }
= { \<rho>. (\<not>hamlet ((Rep_run \<rho>) 0 K\<^sub>2))
\<and> (\<forall>n::nat. (run_tick_count \<rho> K\<^sub>2 (Suc n)) \<le> (run_tick_count \<rho> K\<^sub>1 n)) }\<close>
(is \<open>?P = ?P'\<close>) |
lemma count_nodes_eq_0_iff [simp]: "count_nodes t = 0 \<longleftrightarrow> t = Leaf" |
lemma arcs_fset_id: "fset (Abs_fset (arcs T)) = arcs T" |
lemma group_law_group: "group_law inverse neutral mult" |
lemma gcd_0_right [simp]: "gcd a 0 = normalize a" |
lemma (in imap) concurrent_create_delete_independent_technical:
assumes "i \<in> is"
and "xs prefix of j"
and "(i, Create i e) \<in> set (node_deliver_messages xs)"
and "(ir, Delete is e) \<in> set (node_deliver_messages xs)"
shows "hb (i, Create i e) (ir, Delete is e)" |
lemma fold_delta_a_init_a_mrexps[simp]: "fold delta_a w (init_a s) \<in> UNIV \<times> mrexps s" |
lemma eval_fds_integral_has_field_derivative:
fixes s :: "'a :: dirichlet_series"
assumes "ereal (s \<bullet> 1) > abs_conv_abscissa f"
assumes "fds_nth f 1 = 0"
shows "(eval_fds (fds_integral c f) has_field_derivative eval_fds f s) (at s)" |
lemma LIMSEQ_cong:
assumes "f \<longlonglongrightarrow> x" "\<forall>\<^sup>\<infinity>n. f n = g n"
shows "g \<longlonglongrightarrow> x" |
lemma gpv_stop_map' [simp]:
"gpv_stop (map_gpv' f g h gpv) = map_gpv' (map_option f) g (map_option h) (gpv_stop gpv)" |
lemma dia_lowerB: "\<lbrakk> u \<in> verts G; v \<in> verts G \<rbrakk>
\<Longrightarrow> diameter w \<ge> \<mu> w u v" |
lemma fls_nth_compose_power:
assumes "d > 0"
shows "fls_nth (fls_compose_power f d) n = (if int d dvd n then fls_nth f (n div int d) else 0)" |
lemma pos_neg_kauff_mat:
"kauff_mat ((basic [over]) \<circ> (basic [under]))
= kauff_mat ((basic [vert,vert]) \<circ> (basic [vert,vert])) " |
lemma subst_fmla_commute [simp]:
"atom j \<sharp> A \<Longrightarrow> (A(i::=t))(j::=u) = A(i ::= subst j u t)" |
lemma le_inf_eq_inf_transp[intro, trans]:
assumes "w\<^sub>1 \<preceq>\<^sub>I w\<^sub>2" "w\<^sub>2 =\<^sub>I w\<^sub>3"
shows "w\<^sub>1 \<preceq>\<^sub>I w\<^sub>3" |
lemma GroupH : "Group H" |
lemma get_object_ptr_simp1 [simp]: "get\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr (put\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t object_ptr object h) = Some object" |
lemma differentiable_cmult_left_iff [simp]:
fixes c::"'a::real_normed_field"
shows "(\<lambda>t. c * q t) differentiable at t \<longleftrightarrow> c = 0 \<or> (\<lambda>t. q t) differentiable at t" (is "?lhs = ?rhs") |
lemma norm_power_diff:
fixes z w :: "'a::{real_normed_algebra_1, comm_monoid_mult}"
assumes "norm z \<le> 1" "norm w \<le> 1"
shows "norm (z^m - w^m) \<le> m * norm (z - w)" |
lemma fA_rel_inv[intro]:
notes fun_upd_apply[simp]
shows
"\<lbrace> LSTP (fA_rel_inv \<^bold>\<and> tso_store_inv) \<rbrace> sys \<lbrace> LSTP fA_rel_inv \<rbrace>" |
lemma r_not_updated_stays_the_same:
"r \<notin> fst ` set U \<Longrightarrow> apply_updates U c d $ r = d $ r" |
lemma correctCompositionDiffLevelsS11opt: "correctCompositionDiffLevels sS11opt" |
lemma prv_ldsj_imp_remdups:
assumes "set \<phi>s \<subseteq> fmla"
shows "prv (imp (ldsj \<phi>s) (ldsj (remdups \<phi>s)))" |
lemma bifunctor_proj_fst_ObjMap_app[cat_cs_simps]:
assumes "[a, b]\<^sub>\<circ> \<in>\<^sub>\<circ> (\<AA> \<times>\<^sub>C \<BB>)\<lparr>Obj\<rparr>"
shows "(\<SS>\<^bsub>\<AA>,\<BB>\<^esub>(-,b)\<^sub>C\<^sub>F)\<lparr>ObjMap\<rparr>\<lparr>a\<rparr> = \<SS>\<lparr>ObjMap\<rparr>\<lparr>a, b\<rparr>\<^sub>\<bullet>" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.