Statement:
stringlengths 7
24.3k
|
---|
lemma verts_ge_Suc0 : "\<not> [0..<length (g_V G)] = [0]" |
lemma [code]:
"Array.swap i x a = do {
y \<leftarrow> Array.nth a i;
Array.upd i x a;
return y
}" |
lemma fps_shift_rev_shift:
"m \<le> n \<Longrightarrow> fps_shift n (Abs_fps (\<lambda>k. if k<m then 0 else f $ (k-m))) = fps_shift (n-m) f"
"m > n \<Longrightarrow> fps_shift n (Abs_fps (\<lambda>k. if k<m then 0 else f $ (k-m))) =
Abs_fps (\<lambda>k. if k<m-n then 0 else f $ (k-(m-n)))" |
lemma ds_approx_empty[simp]: "[] \<lessapprox> []" |
lemma wf_eq_check_append''[intro]: "wf\<^sub>s\<^sub>t V S \<Longrightarrow> wf\<^sub>s\<^sub>t V (S@[Equality Check t t'])" |
lemma mem_read_reg_write:
shows "mem_read (\<sigma> with ((r :=\<^sub>r w)#updates)) a si = mem_read (\<sigma> with updates) a si" |
lemma sets_P[measurable_cong]: "x \<in> space (PiM {0..<n} M) \<Longrightarrow> sets (P n x) = sets (M n)" |
lemma permute_flip_at:
fixes a b c::"'a::at"
shows "(a \<leftrightarrow> b) \<bullet> c = (if c = a then b else if c = b then a else c)" |
lemma [def_pat_rules]: "hmstruct.hm_prio_of_op$prio \<equiv> PR_CONST hm_prio_of_op" |
lemma \<nu>\<upsilon>_surj[meta_aux]: "surj \<nu>\<upsilon>" |
lemma GF_advice_sync_lesseq:
assumes "\<And>i. i \<le> n \<Longrightarrow> \<exists>j. suffix (i + j) w \<Turnstile>\<^sub>n af \<phi> (w [i \<rightarrow> j + i])[X]\<^sub>\<nu>"
assumes "\<exists>j. suffix (n + j) w \<Turnstile>\<^sub>n af \<psi> (w [n \<rightarrow> j + n])[X]\<^sub>\<nu>"
shows "\<exists>k \<ge> n. (\<forall>j \<le> n. suffix k w \<Turnstile>\<^sub>n af \<phi> (w [j \<rightarrow> k])[X]\<^sub>\<nu>) \<and> suffix k w \<Turnstile>\<^sub>n af \<psi> (w [n \<rightarrow> k])[X]\<^sub>\<nu>" |
lemma payload_PairI: "x \<in> payload \<Longrightarrow> y \<in> payload \<Longrightarrow> Pair x y \<in> payload" |
lemma Exp_Exp_Gen_inj:
"Exp (Exp Gen X) X' = Z \<Longrightarrow>
(\<exists> Y Y'. Z = Exp (Exp Gen Y) Y' \<and> ((X = Y \<and> X' = Y') \<or> (X = Y' \<and> X' = Y)))" |
lemma line_convex_combination2: "(1 - u) *\<^sub>R a + u *\<^sub>R line a b i = line a b (i*u)" |
lemma [simp]: "`!p \<cdot> !p = !p`" |
lemma remove_cycles_cnt_id:
"x \<noteq> y \<Longrightarrow> cnt y (remove_cycles xs x ys) \<le> cnt y ys + cnt y xs" |
lemma iteration_star [simp]: "(x\<^sup>\<infinity>)\<^sup>\<star> = x\<^sup>\<infinity>" |
lemma list_ex_simps [simp, code]:
"list_ex P (x # xs) \<longleftrightarrow> P x \<or> list_ex P xs"
"list_ex P [] \<longleftrightarrow> False" |
lemma SKIPp: "\<down>\<^sub>t(SKIP,s) = Suc 0" |
lemma sup_absorb: "x \<squnion> x \<sqinter> y = x" |
lemma path_image_subpath_gen:
fixes g :: "_ \<Rightarrow> 'a::real_normed_vector"
shows "path_image(subpath u v g) = g ` (closed_segment u v)" |
lemma at_within_ball_bot_iff:
fixes x y :: "'a::{real_normed_vector,perfect_space}"
shows "at x within ball y r = bot \<longleftrightarrow> (r=0 \<or> x \<notin> cball y r)" |
lemma compute_\<ff>s_inner_bounds:
assumes "I_out_cb s (\<ff>s,ix,j)"
assumes "j < length \<ff>s"
assumes "I_in_cb s j i"
shows "i-1 < length s" "j-1 < length s" |
lemma (in domain) pirreducibleI:
assumes "subring K R" "p \<in> carrier (K[X])" "p \<noteq> []" "p \<notin> Units (K[X])"
and "\<And>q r. \<lbrakk> q \<in> carrier (K[X]); r \<in> carrier (K[X])\<rbrakk> \<Longrightarrow>
p = q \<otimes>\<^bsub>K[X]\<^esub> r \<Longrightarrow> q \<in> Units (K[X]) \<or> r \<in> Units (K[X])"
shows "pirreducible K p" |
lemma "real_of_dec (m, e) = int_of_integer m * 10 powr (int_of_integer e)" |
lemma MSF_eq: "s.MSF E' = minimum_spanning_forest (ind E') (ind E)" |
lemma well_base_bound:
assumes
"well_base M" and
"\<forall>m \<in># M. m < n"
shows "(\<Sum>m \<in># M. base ^ m) < base ^ n" |
lemma inf_commutative:
"-x \<sqinter> -y = -y \<sqinter> -x" |
lemma finite_arg_max_eq_Max:
assumes "finite (X :: 'c set)" "X \<noteq> {}"
shows "(f :: 'c \<Rightarrow> real) (arg_max_on f X) = Max (f ` X)" |
lemma inter_sorted_cons: "sorted (rev (x # xs)) \<Longrightarrow> inter_sorted_rev (x # xs) xs = xs" |
lemma inverse_arrows_assoc:
assumes "ide a" and "ide b" and "ide c"
shows "inverse_arrows \<a>[a, b, c] \<a>\<^sup>-\<^sup>1[a, b, c]" |
lemma ik\<^sub>s\<^sub>s\<^sub>t_trms\<^sub>s\<^sub>s\<^sub>t_subset: "ik\<^sub>s\<^sub>s\<^sub>t A \<subseteq> trms\<^sub>s\<^sub>s\<^sub>t A" |
lemma length_dupST [simp]: "length (mt_of (dupST sttp)) = 1" |
lemma remove_unis_sentence:
assumes inf_params: \<open>infinite (- params p)\<close>
and \<open>closed 0 (put_unis m p)\<close> \<open>[] \<turnstile> put_unis m p\<close>
shows \<open>[] \<turnstile> p\<close> |
lemma Fix_lsl_left_slsided: "Fix \<nu> = {(x::'a::unital_quantale). lsd x}" |
lemma coplanar_3: "coplanar {a,b,c}" |
lemma inEIE_lessN[simp]: "e\<in>E \<or> e\<in>E\<inverse> \<Longrightarrow> case e of (u,v) \<Rightarrow> u<N \<and> v<N" |
lemma Nonce_supply: "Nonce (SOME N. Nonce N \<notin> used evs) \<notin> used evs" |
lemma ln_2_40_decimals:
"\<bar>ln 2 - 0.6931471805599453094172321214581765680755\<bar>
\<le> inverse (10^40 :: real)" |
lemma prepend_domain: "a \<le> b \<Longrightarrow> x--a \<le> x--b" |
lemma difibs:"(d\<inverse> \<union> f\<inverse> \<union> ov \<union> e \<union> f \<union> m \<union> b \<union> s\<inverse> \<union> s) O (b \<union> s \<union> m) \<subseteq> (b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse> \<union> d \<union> e \<union> s \<union> s\<inverse>)" |
lemma is_sublist_eq: "distinct vs \<Longrightarrow> c \<noteq> y \<Longrightarrow>
(nextElem vs c x = y) = is_sublist [x,y] vs" |
lemma rank_senior_senior:
"x \<le> n \<Longrightarrow> rank (senior x n) n = rank x n" |
lemma n_star_import:
assumes "n(y) * x \<le> x * n(y)"
shows "n(y) * x\<^sup>\<star> = n(y) * (n(y) * x)\<^sup>\<star>" |
lemma correctCompositionKS_subcomp2:
assumes "correctCompositionKS C"
and h1:"x \<in> subcomponents C"
and "xa \<in> specSecrets C"
shows "\<exists> y \<in> subcomponents C. xa \<in> specSecrets y" |
lemma Gr_univalent[intro]:
shows "univalent (BNF_Def.Gr A f)" |
lemma inv_ik_dyn_add_chan2[elim!]:
"\<lbrakk>dp2_add_chan2 s s' a1 i1 m; inv_ik_dyn s; terms_pkt m \<subseteq> synth (analz ik)\<rbrakk>
\<Longrightarrow> inv_ik_dyn s'" |
lemma AF_lfp: "\<^bold>A\<^bold>F p = lfp (\<lambda>s. p \<union> \<^bold>A\<^bold>X s)" |
lemma conv_abscissa_1 [simp]:
"conv_abscissa (1 :: 'a :: dirichlet_series fds) = -\<infinity>" |
lemma dirichlet_prod_inverse':
assumes "f 1 * i = 1"
shows "dirichlet_prod (dirichlet_inverse f i) f = (\<lambda>n. if n = 1 then 1 else 0)" |
lemma "\<^bold>E_residual_network": "\<^bold>E\<^bsub>residual_network f\<^esub> = \<^bold>E \<union> {(x, y). (y, x) \<in> \<^bold>E \<and> y \<noteq> source \<Delta>}" |
lemma incrIndexList_help2[simp]: "incrIndexList ls m nmax \<Longrightarrow> hd ls = 0" |
lemma "(1359::int) * -2468 = -3354012" |
lemma ordD: "[| ord p inff; \<not> inff R R'; R \<in> p; R' \<in> p |] ==> inff R' R" |
lemma Agent_Pair: "Agent X \<noteq> Pair X' Y'" |
lemma equals_minim_Under:
"\<lbrakk>B \<le> Field r; a \<in> B; a \<in> Under B\<rbrakk>
\<Longrightarrow> a = minim B" |
theorem finite_lderivs: "finite {\<guillemotleft>lderivs xs r\<guillemotright> | xs . True}" |
lemma mono_ctble_discont:
fixes f :: "real \<Rightarrow> real"
assumes "mono f"
shows "countable {a. \<not> isCont f a}" |
lemma distinct_lroft_s3: "\<lbrakk>distinct (map fst amr); distinct ifs\<rbrakk> \<Longrightarrow> distinct (lr_of_tran_s3 ifs amr)" |
lemma lprodr_parametric [transfer_rule]: includes lifting_syntax shows
"(rel_prod A (rel_prod B C) ===> rel_prod (rel_prod A B) C) lprodr lprodr" |
lemma list_sub_implies_member:
shows "\<forall> a x . set (a#x) \<subseteq> Z \<longrightarrow> a \<in> Z" |
lemma rtb_rbl_ariths:
"rev (to_bl w) = ys \<Longrightarrow> rev (to_bl (word_succ w)) = rbl_succ ys"
"rev (to_bl w) = ys \<Longrightarrow> rev (to_bl (word_pred w)) = rbl_pred ys"
"rev (to_bl v) = ys \<Longrightarrow> rev (to_bl w) = xs \<Longrightarrow> rev (to_bl (v * w)) = rbl_mult ys xs"
"rev (to_bl v) = ys \<Longrightarrow> rev (to_bl w) = xs \<Longrightarrow> rev (to_bl (v + w)) = rbl_add ys xs" |
lemma fps_shift_times_fps_X_power:
"n \<le> subdegree f \<Longrightarrow> fps_shift n f * fps_X ^ n = f" |
lemma lsu_lax: "\<nu>\<^sup>\<natural> (x::'a::unital_quantale) \<cdot> \<nu>\<^sup>\<natural> y \<le> \<nu>\<^sup>\<natural> (x \<cdot> y)" |
lemma eq_class_to_rel:
assumes "(r, s) \<in> carrier R \<times> S" and "(r', s') \<in> carrier R \<times> S" and "(r |\<^bsub>rel\<^esub> s) = (r' |\<^bsub>rel\<^esub> s')"
shows "(r, s) .=\<^bsub>rel\<^esub> (r', s')" |
lemma lasso_run_rel_sv[relator_props]:
"single_valued R \<Longrightarrow> single_valued (\<langle>R\<rangle>lasso_run_rel)" |
lemma server_view1: "j \<in> J \<Longrightarrow> \<P>(\<omega> in \<PP>. visit H {j} \<omega>) = p_j" |
lemma neq_Base_Object [simp]: "Base\<noteq>Object" |
lemma "root 3 4 > sqrt (root 4 3) + \<lfloor>1/10 * root 3 7\<rfloor>" |
lemma lesspoll_imp_lepoll: "A \<prec> B ==> A \<lesssim> B" |
lemma in_snd_sym_preproc_addnewE:
assumes "p \<in> set (snd (sym_preproc_addnew gs vs fs v))"
assumes 1: "p \<in> set fs \<Longrightarrow> thesis"
assumes 2: "\<And>g s. g \<in> set gs \<Longrightarrow> p = monom_mult 1 s g \<Longrightarrow> thesis"
shows thesis |
lemma measure_cases[cases type: measure]:
obtains (measure) \<Omega> A \<mu> where "x = Abs_measure (\<Omega>, A, \<mu>)" "\<forall>a\<in>-A. \<mu> a = 0" "measure_space \<Omega> A \<mu>" |
lemma tmap_id_id [id_simps]:
"tmap id id = id" |
lemma prime_nat_iff':
"prime (p :: nat) \<longleftrightarrow> p > 1 \<and> (\<forall>n \<in> {2..<p}. \<not> n dvd p)" |
lemma setv_col_subset_mat_elems:
assumes "v \<in> set (cols M)"
shows "set\<^sub>v v \<subseteq> elements_mat M" |
lemma i_take_take_eq2: "n \<le> m \<Longrightarrow> (f \<Down> n) \<down> m = f \<Down> n" |
lemma length_y_ty_list_vs[rule_format]:
"\<forall>vs. lift_opts (map (\<lambda>(y, ty). L y) y_ty_list) = Some vs \<longrightarrow> length y_ty_list = length vs" |
lemma 1: "2 < length a \<Longrightarrow> (\<exists>l l' l'' ls. a = l#l'#l''#ls)" |
lemma aux4_lm0241_prod_one:
fixes f::"(nat \<Rightarrow> nat)"
assumes "(\<forall>x. (1 \<ge> f x))"
shows "(\<Prod>k \<le> n. (f k)) = 1 \<longrightarrow> (\<forall>k. k \<le> n \<longrightarrow> f k = 1)" (is "?P \<longrightarrow> ?Q") |
lemma subst_clause'_nil[simp]:
"subst_clause' [] m = {[]}" |
lemma prove_nonneg_empty[simp]: "prove_nonneg prnt (Suc i) p slp []" |
theorem gs1: "\<lbrakk> Pref P\<^sub>a P\<^sub>b; n = length P\<^sub>a \<rbrakk> \<Longrightarrow>
\<exists>A. Gale_Shapley1 P\<^sub>a P\<^sub>b = Some A
\<and> Pref.matching P\<^sub>a (list A) {<n} \<and> Pref.stable P\<^sub>a P\<^sub>b (list A) {<n} \<and> Pref.opti\<^sub>a P\<^sub>a P\<^sub>b (list A)" |
lemma strict_mono_sets_subset:
assumes "strict_mono_sets B f" "A \<subseteq> B"
shows "strict_mono_sets A f" |
lemma dtail_notelem_eq_def:
assumes "e \<notin> darcs t"
shows "dtail t def e = def e" |
lemma vrat_identity_law_multiplication:
assumes "x \<in>\<^sub>\<circ> \<rat>\<^sub>\<circ>"
shows "x *\<^sub>\<rat> 1\<^sub>\<rat> = x" |
lemma sd_exists:
assumes has3A: "has 3 A"
and finiteIs: "finite Is"
and twoIs: "has 2 Is"
and iia: "iia swf A Is"
and swf: "SWF swf A Is universal_domain"
and wp: "weak_pareto swf A Is universal_domain"
shows "\<exists>j u v. hasw [u,v] A \<and> semidecisive swf A Is {j} u v" |
lemma has_field_derivative_stirling_sum'_real [derivative_intros]:
assumes "j > 0" "x > (0::real)"
shows "(stirling_sum' j m has_field_derivative stirling_sum' (Suc j) m x) (at x)" |
lemma lrange_sorted_split:
assumes "Laligned (Node ts t) u"
and "sorted_less (leaves (Node ts t))"
and "split ts x = (ls, rs)"
shows "lrange_filter x (leaves (Node ts t)) = lrange_filter x (leaves_list rs @ leaves t)" |
lemma SBWriteNonVolatile':
"\<lbrakk> sb'= sb@ [Write\<^sub>s\<^sub>b False a (D,f) (f \<theta>) A L R W]\<rbrakk>
\<Longrightarrow>
(Write False a (D,f) A L R W#is,\<theta>, sb, m, ghst) \<rightarrow>\<^sub>s\<^sub>b
(is, \<theta>, sb', m, ghst)" |
lemma of_bool_nth:
"of_bool (bit x v) = (x >> v) AND 1"
for x :: \<open>'a::len word\<close> |
lemma octo_mult_cnj_conv_norm: "x * cnj x = octo_of_real (norm x) ^ 2" |
lemma (in discrete) carrier:
"carrier = X" |
lemma drop_bit_negative_int_iff [simp]:
\<open>drop_bit n k < 0 \<longleftrightarrow> k < 0\<close> for k :: int |
lemma extreme_bound_mono:
assumes XY: "X \<subseteq> Y"
and sX: "extreme_bound X sX"
and sY: "extreme_bound Y sY"
shows "sX \<sqsubseteq> sY" |
lemma aext_not [alpha]: "(\<not> P) \<oplus>\<^sub>p x = (\<not> (P \<oplus>\<^sub>p x))" |
lemma move_matrix_le_move_matrix_iff[simp]: "0 <= j \<Longrightarrow> 0 <= i \<Longrightarrow> (move_matrix A j i <= move_matrix B j i) = (A <= (B::('a::{order,zero}) matrix))" |
lemma desargues_config_3D_coplanar_5 :
assumes "desargues_config_3D A B C A' B' C' P \<alpha> \<beta> \<gamma>"
shows "rk {A, B, C, \<alpha>, \<beta>} = 3" and "rk {A', B', C', \<alpha>, \<beta>} = 3" |
lemma has_field_derivative_Lambert_W [derivative_intros]:
assumes x: "x > -exp (-1)"
shows "(Lambert_W has_real_derivative inverse (x + exp (Lambert_W x))) (at x within A)" |
lemma(in padic_integers) ord_Zp_p:
"ord_Zp \<p> = (1::int)" |
lemma path_splitting_2:
"path_splitting_invariant p x y p0 \<and> y \<noteq> p[[y]] \<Longrightarrow> path_splitting_invariant (p[y\<longmapsto>p[[p[[y]]]]]) x (p[[y]]) p0 \<and> ((p[y\<longmapsto>p[[p[[y]]]]])\<^sup>T\<^sup>\<star> * (p[[y]]))\<down> < (p\<^sup>T\<^sup>\<star> * y)\<down>" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.