Statement:
stringlengths 7
24.3k
|
---|
lemma "\<CC> \<C> \<Longrightarrow> \<forall>A. Fr(\<F> A)" |
lemma E_inf_Skip: "step.E_inf (Skip, s) (r f) = f s" |
lemma norm_ge_zero [simp]: "0 \<le> norm x" |
lemma LI_preproc_sem_eq:
"\<lbrakk>M; S\<rbrakk>\<^sub>c \<I> \<longleftrightarrow> \<lbrakk>M; LI_preproc S\<rbrakk>\<^sub>c \<I>" (is "?A \<longleftrightarrow> ?B") |
lemma minimize_wrt_eq:
assumes "distinct xs" and "\<And>x y. x \<in> set xs \<Longrightarrow> y \<in> set xs \<Longrightarrow> P x y \<longleftrightarrow> Q x y \<or> x = y"
shows "minimize_wrt P xs = minimize_wrt Q xs" |
lemma divideC_field_splits_simps_1 [field_split_simps]: (* In Real_Vector_Spaces, these lemmas are unnamed *)
"a = b /\<^sub>C c \<longleftrightarrow> (if c = 0 then a = 0 else c *\<^sub>C a = b)"
"b /\<^sub>C c = a \<longleftrightarrow> (if c = 0 then a = 0 else b = c *\<^sub>C a)"
"a + b /\<^sub>C c = (if c = 0 then a else (c *\<^sub>C a + b) /\<^sub>C c)"
"a /\<^sub>C c + b = (if c = 0 then b else (a + c *\<^sub>C b) /\<^sub>C c)"
"a - b /\<^sub>C c = (if c = 0 then a else (c *\<^sub>C a - b) /\<^sub>C c)"
"a /\<^sub>C c - b = (if c = 0 then - b else (a - c *\<^sub>C b) /\<^sub>C c)"
"- (a /\<^sub>C c) + b = (if c = 0 then b else (- a + c *\<^sub>C b) /\<^sub>C c)"
"- (a /\<^sub>C c) - b = (if c = 0 then - b else (- a - c *\<^sub>C b) /\<^sub>C c)"
for a b :: "'a :: complex_vector" |
lemma "(P :: nat \<Rightarrow> bool) (The P)" |
lemma compact_AR:
fixes S :: "'a::euclidean_space set"
shows "compact S \<and> AR S \<longleftrightarrow> compact S \<and> S retract_of UNIV" |
lemma unrest_uop [unrest]: "x \<sharp> e \<Longrightarrow> x \<sharp> uop f e" |
lemma valid_regions_distinct:
"valid_region X k I r \<Longrightarrow> valid_region X k I' r' \<Longrightarrow> v \<in> region X I r \<Longrightarrow> v \<in> region X I' r'
\<Longrightarrow> region X I r = region X I' r'" |
lemma CompDiag_Diag_Ide [simp]:
assumes "Diag t" and "Ide a" and "Dom t = Cod a"
shows "t \<^bold>\<lfloor>\<^bold>\<cdot>\<^bold>\<rfloor> a = t" |
lemma path_valid_edges:"n -as\<rightarrow>* n' \<Longrightarrow> \<forall>a \<in> set as. valid_edge a" |
lemma map_entries_parametric:
"((A ===> B) ===> (A ===> C ===> rel_option D) ===> (B ===> rel_option C) ===> A ===> rel_option D)
(\<lambda>f g m x. case (m \<circ> f) x of None \<Rightarrow> None | Some y \<Rightarrow> g x y) (\<lambda>f g m x. case (m \<circ> f) x of None \<Rightarrow> None | Some y \<Rightarrow> g x y)" |
lemma downsetI[intro]:
assumes "\<And> xs. xs \<in> xss \<Longrightarrow> xs \<noteq> [] \<Longrightarrow> butlast xs \<in> xss"
shows "downset xss" |
lemma Figure_4:
assumes "foldl1 f1 (map (h1 k i) js) = One"
and "js \<noteq> []"
shows "i \<in> set js" |
lemma map_of_subst:
"map_of (\<Gamma>[x::h=y]) k = map_option (\<lambda> e . e[x::=y]) (map_of \<Gamma> k)" |
lemma tfun_pre_expression:
"x \<in> While_program \<Longrightarrow> p \<in> Pre_expression \<Longrightarrow> q \<in> Pre_expression \<Longrightarrow> r \<in> Pre_expression \<Longrightarrow> tfun p x q r \<in> Pre_expression" |
lemma i_hcomplex_of_hypreal [simp]: "\<And>r. iii * hcomplex_of_hypreal r = HComplex 0 r" |
lemma bisim_inv: "bisim_inv" |
lemma (in anon_papp) is_pref_profile_replace:
assumes "is_pref_profile A" and "X \<in># A" and "Y \<noteq> {}" and "Y \<subseteq> parties"
shows "is_pref_profile (A - {#X#} + {#Y#})" |
lemma fr_Send2:
assumes h1:"\<forall>i<n. FlexRayController (nReturn i) recv (nC i) (nStore i) (nSend i) (nGet i)"
and h2:"DisjointSchedules n nC"
and h3:"IdenticCycleLength n nC"
and h4:"t mod cycleLength (nC k) mem schedule (nC k)"
and h5:"k < n"
shows "nSend k t = nReturn k t" |
lemma seq_tm_next:
assumes a_ht: "steps0 (1, tap) A n = (0, tap')"
and a_composable: "composable_tm (A, 0)"
obtains n' where "steps0 (1, tap) (A |+| B) n' = (Suc (length A div 2), tap')" |
lemma Var_injD: "Var x = Var y \<Longrightarrow> x \<in> var \<Longrightarrow> y \<in> var \<Longrightarrow> x = y" |
lemma generaliseConj:
assumes i1: "PROP Pure.prop (PROP Pure.prop (Trueprop P) \<Longrightarrow> PROP Pure.prop (Trueprop Q))"
assumes i2: "PROP Pure.prop (PROP Pure.prop (Trueprop P') \<Longrightarrow> PROP Pure.prop (Trueprop Q'))"
shows "PROP Pure.prop (PROP Pure.prop (Trueprop (P \<and> P')) \<Longrightarrow> (PROP Pure.prop (Trueprop (Q \<and> Q'))))" |
lemma eff_children:
assumes \<open>\<not> branchDone z\<close> \<open>eff r (A, z) ss\<close>
shows \<open>\<forall>z' \<in> set (children (remdups (A @ subtermFms z)) r z). \<exists>B. (B, z') |\<in>| ss\<close> |
lemma blinfun_scaleR_transfer[transfer_rule]:
"rel_fun (pcr_blinfun (=) (=)) (rel_fun (=) (pcr_blinfun (=) (=)))
(\<lambda>a b c. a c *\<^sub>R b) blinfun_scaleR" |
lemma fold_Option_bind_eq_Some_start_not_None:
"fold (\<lambda>new option . Option.bind option (f new)) list start = Some res
\<Longrightarrow> start \<noteq> None" |
lemma rem_effectless_works_5_i:
shows "subseq (rem_effectless_act as) as" |
lemma Quotient_lmap_Abs_Rep:
"Quotient3 R Abs Rep \<Longrightarrow> lmap Abs (lmap Rep a) = a" |
lemma nth_is_and_neq_0:
"bit (x::'a::len word) n = (x AND 2 ^ n \<noteq> 0)" |
lemma apps_append[simp]: "apps s (ss @ ts) = apps (apps s ss) ts" |
lemma preregister_mult_left: \<open>preregister (\<lambda>a. z \<circ>\<^sub>m a)\<close> |
lemma valid_slide:
assumes "0 < fst w" "fst w \<le> snd w" "valid t" "l t \<le> fst w" "r t \<le> snd w" "snd w \<le> length as"
shows "valid (slide t w) \<and> l (slide t w) = fst w \<and> r (slide t w) = snd w" |
lemma CompDiag_Ide_Diag [simp]:
assumes "Diag t" and "Ide a" and "Dom a = Cod t"
shows "a \<^bold>\<lfloor>\<^bold>\<cdot>\<^bold>\<rfloor> t = t" |
lemma scale_flow:
assumes f: "flow \<Delta> f"
and c: "c \<le> 1"
shows "flow \<Delta> (\<lambda>e. c * f e)" |
lemma H_eq: "P \<subseteq> Id \<Longrightarrow> Q \<subseteq> Id \<Longrightarrow> rel_kat.H P X Q = rel_antidomain_kleene_algebra.H P X Q" |
lemma Interleaves_all_nil_1 [rule_format]:
"xs \<cong> {xs, [], P} \<longrightarrow> (\<forall>n < length xs. P (xs ! n) (drop (Suc n) xs))" |
lemma relax_outgoing''_refine:
assumes "set l = {(d,v). w (u,v) = enat d}"
shows "relax_outgoing'' l du V Q = relax_outgoing' u du V Q" |
lemma ipassmt_sanity_nowildcards_match_iface:
"ipassmt_sanity_nowildcards ipassmt \<Longrightarrow>
ipassmt (Iface ifce2) = None \<Longrightarrow>
ipassmt ifce = Some a \<Longrightarrow>
\<not> match_iface ifce ifce2" |
lemma (in PolynRg) add_cf_len:"\<lbrakk>pol_coeff S c; pol_coeff S d\<rbrakk>
\<Longrightarrow> fst (add_cf S c d) = (max (fst c) (fst d))" |
lemma poly_prime_factorization_exists_content_1:
fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide,semiring_gcd_mult_normalize} poly"
assumes "p \<noteq> 0" "content p = 1"
shows "\<exists>A. (\<forall>p. p \<in># A \<longrightarrow> prime_elem p) \<and> prod_mset A = normalize p" |
lemma successive_stepI:
"successive P xs \<Longrightarrow> \<not> P x \<Longrightarrow> successive P (x # xs)" |
lemma rb_Nil_sp :
assumes "RedBlack prb"
shows "subpath (red prb) rv1 [] rv2 (subs prb) =
(rv1 \<in> red_vertices prb \<and> (rv1 = rv2 \<or> (rv1,rv2) \<in> (subs prb)))" |
lemma composite_of_arr_ide:
assumes "ide b"
shows "composite_of t b t \<longleftrightarrow> t \\ t \<frown> b" |
lemma gfp_dual: "(\<partial>::'a::complete_lattice_with_dual \<Rightarrow> 'a) \<circ> gfp = lfp \<circ> \<partial>\<^sub>F" |
lemma single_step:
"x1 \<turnstile> \<langle>x2, x3\<rangle> \<rightarrow> \<langle>x4,x5\<rangle> \<Longrightarrow> x1 \<turnstile> \<langle>x2, x3\<rangle> \<rightarrow>* \<langle>x4,x5\<rangle>" |
lemma latin_rect_iff:
"m\<le>n \<and> partial_latin_square s n \<and> card s = n*m \<and> (\<forall>e\<in>s. e Row < m) \<longleftrightarrow> latin_rect s m n" |
lemma pairs_substI'[intro]:
"subst_domain \<theta> \<inter> fv\<^sub>p\<^sub>a\<^sub>i\<^sub>r\<^sub>s F = {} \<Longrightarrow> F \<cdot>\<^sub>p\<^sub>a\<^sub>i\<^sub>r\<^sub>s \<theta> = F" |
theorem list_dtree_comb: "list_dtree (combine x y t)" |
lemma gen_eq_gen_ML: "gen A t = gen_ML A t" |
lemma exec_move_Cond2:
assumes pc: "pc < length (compE2 e1)"
shows "exec_move ci P t (if (e) e1 else e2) h (stk, loc, (Suc (length (compE2 e) + pc)), xcp) ta h' (stk', loc', (Suc (length (compE2 e) + pc')), xcp') = exec_move ci P t e1 h (stk, loc, pc, xcp) ta h' (stk', loc', pc', xcp')"
(is "?lhs = ?rhs") |
lemma main_step_aux2:
fixes qs:: "rat poly list"
assumes lenh: "length (fst(factorize_polys qs)) > 0"
shows "set (find_consistent_signs qs) = consistent_sign_vectors qs UNIV" |
lemma ntsmcf_vcomp_NTMap_vsv[dg_shared_cs_intros, smc_cs_intros]:
"vsv ((\<MM> \<bullet>\<^sub>N\<^sub>T\<^sub>S\<^sub>M\<^sub>C\<^sub>F \<NN>)\<lparr>NTMap\<rparr>)" |
lemma spmf_geometric_nonpos: "p \<le> 0 \<Longrightarrow> geometric_spmf p = return_pmf None" |
lemma open_map_id: "open_map X X id" |
lemma \<Phi>2_X\<Phi>: \<open>\<Phi>2 a = X\<Phi> (id_cblinfun \<otimes>\<^sub>o (id_cblinfun \<otimes>\<^sub>o a))\<close> |
lemma OUTfromVCorrect1_data15: "OUTfromVCorrect1 data15" |
lemma strictly_subsumes_subsumes_list[code_unfold]:
"strictly_subsumes (mset Ls) (mset Ks) =
(subsumes_list Ls Ks Map.empty \<and> \<not> subsumes_list Ks Ls Map.empty)" |
lemma PROB_DOM_PROJ_DIFF:
fixes P vs
shows "prob_dom (prob_proj PROB (prob_dom PROB - vs)) = (prob_dom PROB) - vs" |
lemma fun_typ_eq_body_unique:
fixes v::v and x1::x and x2::x and s1'::s and s2'::s
assumes "(AF_fun_typ x1 b1 c1 \<tau>1' s1') = (AF_fun_typ x2 b2 c2 \<tau>2' s2')"
shows "s1'[x1::=v]\<^sub>s\<^sub>v = s2'[x2::=v]\<^sub>s\<^sub>v" |
lemma seg_start_indep[simp]: "GS.seg_start (S',B,I',P') = seg_start" |
lemma distinct_clearjunk_id [simp]: "distinct (map fst al) \<Longrightarrow> clearjunk al = al" |
lemma continuous_openin_preimage_eq:
"continuous_on S f \<longleftrightarrow> (\<forall>T. open T \<longrightarrow> openin (top_of_set S) (S \<inter> f -` T))" |
lemma jmm_JVM_heap_conf:
"JVM_heap_conf addr2thread_id thread_id2addr jmm_empty jmm_allocate (jmm_typeof_addr P) jmm_heap_write jmm_hconf P" |
lemma wt_instrs_ext:
"\<lbrakk> \<turnstile> is\<^sub>1,xt\<^sub>1 [::] \<tau>s\<^sub>1@\<tau>s\<^sub>2; \<turnstile> is\<^sub>2,xt\<^sub>2 [::] \<tau>s\<^sub>2; size \<tau>s\<^sub>1 = size is\<^sub>1 \<rbrakk>
\<Longrightarrow> \<turnstile> is\<^sub>1@is\<^sub>2, xt\<^sub>1 @ shift (size is\<^sub>1) xt\<^sub>2 [::] \<tau>s\<^sub>1@\<tau>s\<^sub>2" |
lemma ereal_of_enat_simps[simp]:
"ereal_of_enat (enat n) = ereal n"
"ereal_of_enat \<infinity> = \<infinity>" |
lemma query_prog[named_ss vcg_bb]: "(\<pi>(k\<mapsto>v)) k' = (if k'=k then Some v else \<pi> k')" for \<pi> :: program |
lemma infdist_Un_min:
assumes "A \<noteq> {}" "B \<noteq> {}"
shows "infdist x (A \<union> B) = min (infdist x A) (infdist x B)" |
lemma unzip_3_tailrec [code]: "unzip_3 l = unzip_3_tailrec l" |
lemma gu_condition_imply_secure_2 [rule_format]:
assumes
RUC: "ref_union_closed P" and
VP: "view_partition P D R" and
WFC: "weakly_future_consistent P I D R" and
WSC: "weakly_step_consistent P D R" and
LR: "locally_respects P I D R" and
Y: "xs @ [y] \<in> traces P"
shows "(xs @ zs, Z) \<in> failures P \<longrightarrow>
(xs @ y # ipurge_tr I D (D y) zs, ipurge_ref I D (D y) zs Z) \<in> failures P" |
lemma lead_monom_numeral [simp]: "lead_monom (numeral n) = 0" |
lemma basis_reduction_mod_add_row: assumes
Linv: "LLL_invariant_mod_weak fs mfs dmu p first b"
and res: "basis_reduction_mod_add_row p mfs dmu i j = (mfs', dmu')"
and i: "i < m"
and j: "j < i"
and igtz: "i \<noteq> 0"
shows "(\<exists>fs'. LLL_invariant_mod_weak fs' mfs' dmu' p first b \<and>
LLL_measure i fs' = LLL_measure i fs \<and>
(\<mu>_small_row i fs (Suc j) \<longrightarrow> \<mu>_small_row i fs' j) \<and>
\<bar>\<mu> fs' i j\<bar> \<le> 1 / 2 \<and>
(\<forall>i' j'. i' < i \<longrightarrow> j' \<le> i' \<longrightarrow> \<mu> fs' i' j' = \<mu> fs i' j') \<and>
(LLL_invariant_mod fs mfs dmu p first b i \<longrightarrow> LLL_invariant_mod fs' mfs' dmu' p first b i) \<and>
(\<forall>ii \<le> m. d fs' ii = d fs ii))" |
lemma [autoref_rules]: "(bs_inter,(\<inter>))\<in>\<langle>nat_rel\<rangle>bs_set_rel \<rightarrow> \<langle>nat_rel\<rangle>bs_set_rel \<rightarrow> \<langle>nat_rel\<rangle>bs_set_rel" |
lemma substT_atrm[simp]:
assumes "r \<in> atrm" and "x \<in> var" and "t \<in> atrm"
shows "substT r t x \<in> atrm" |
lemma dec_interp_enc_Inr:
"\<lbrakk>dec_interp n FO (enc (w, I)) ! i = Inr P'; I ! i = Inr P; i \<notin> FO; i < n; length I = n; \<forall>p \<in> P. p < length w\<rbrakk> \<Longrightarrow>
P = P'" |
lemma gt_comm:
assumes "A B Gt C D"
shows "B A Gt D C" |
lemma lsl_Inf_closed: "Inf_closed_set (Fix (\<nu>::'a::unital_quantale \<Rightarrow> 'a))" |
lemma lift_Pareto_SD_iff:
assumes "p \<in> lotteries_on alts" "q \<in> lotteries_on alts"
shows "p \<preceq>[Pareto(SD \<circ> R')] q \<longleftrightarrow> p \<preceq>[Pareto(SD \<circ> R)] q" |
lemma connected_ball [iff]:
fixes x :: "'a::real_normed_vector"
shows "connected (ball x e)" |
lemma representation_neg:
"independent basis \<Longrightarrow> v \<in> span basis \<Longrightarrow> representation basis (- v) = (\<lambda>b. - representation basis v b)" |
lemma [code abstract]:
"integer_of_nat (m mod n) = of_nat m mod of_nat n" |
lemma uniformly_continuous_on_cmul_left[continuous_intros]:
fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
assumes "uniformly_continuous_on s f"
shows "uniformly_continuous_on s (\<lambda>x. c * f x)" |
theorem weak_decoupling:
assumes leadsTo: "F \<in> A leadsTo B"
and stable: "F\<squnion>G \<in> stable B"
and dec: "decoupled F (F\<squnion>G)"
shows "F\<squnion>G \<in> A leadsTo B" |
lemma meyer_1: "x\<^sup>\<star> = (1 + x) \<cdot> (x \<cdot> x)\<^sup>\<star>" |
lemma conj_assoc:"(((P::'\<alpha> upred) \<and> Q) \<and> S) = (P \<and> (Q \<and> S))" |
lemma spectrum_non_empty: assumes A: "(A :: complex mat) \<in> carrier_mat n n"
and n: "n > 0"
shows "spectrum A \<noteq> {}" |
lemma continuous_map_cases_alt:
assumes f: "continuous_map (subtopology X (X closure_of {x \<in> topspace X. P x})) Y f"
and g: "continuous_map (subtopology X (X closure_of {x \<in> topspace X. ~P x})) Y g"
and fg: "\<And>x. x \<in> X frontier_of {x \<in> topspace X. P x} \<Longrightarrow> f x = g x"
shows "continuous_map X Y (\<lambda>x. if P x then f x else g x)" |
lemma fA_rel_inv[intro]:
notes fun_upd_apply[simp]
shows
"\<lbrace> LSTP fA_rel_inv \<rbrace> mutator m" |
lemma heap_copies_known_addrs_WriteMem:
assumes "heap_copies a a' als h obs h'"
and "obs ! n = WriteMem ad al (Addr a'')" "n < length obs"
shows "a'' \<in> new_obs_addrs (take n obs)" |
lemma statImpEnt:
fixes \<Psi> :: 'b
and \<Psi>' :: 'b
and \<Phi> :: 'c
assumes "\<Psi> \<hookrightarrow> \<Psi>'"
and "\<Psi> \<turnstile> \<Phi>"
shows "\<Psi>' \<turnstile> \<Phi>" |
lemma ex_x_axis_poincare_distance_positive:
assumes "d \<ge> 0"
shows "\<exists> z. is_real z \<and> Re z \<ge> 0 \<and> Re z < 1 \<and>
of_complex z \<in> unit_disc \<and> of_complex z \<in> circline_set x_axis \<and>
poincare_distance 0\<^sub>h (of_complex z) = d" (is "\<exists> z. is_real z \<and> Re z \<ge> 0 \<and> Re z < 1 \<and> ?P z") |
lemma enn2real_positive_iff: "0 < enn2real x \<longleftrightarrow> (0 < x \<and> x < top)" |
lemma (in encoding) indRelTEQ_impl_TRel_is_weak_reduction_coupled_simulation:
fixes TRel :: "('procT \<times> 'procT) set"
assumes couSim: "weak_reduction_coupled_simulation (indRelTEQ TRel) (STCal Source Target)"
shows "weak_reduction_coupled_simulation (TRel\<^sup>*) Target" |
lemma eqExcPID2_imp2:
assumes "eqExcPID2 s s1" and "pid \<noteq> PID \<or> PID \<noteq> pid"
shows "getReviewersReviews s cid pid = getReviewersReviews s1 cid pid" |
lemma jvm_make_test_prog_sees_Test_main:
assumes P: "P \<in> jvm_progs" and t: "t \<in> jvm_tests"
shows "\<exists>m. jvm_make_test_prog P t \<turnstile> Test sees main, Static : []\<rightarrow>Void = m in Test" |
lemma i_set_Div_not_closed: "Suc 0 < k \<Longrightarrow> \<exists>I\<in>i_set. I \<oslash> k \<notin> i_set" |
lemma MGT_implies_complete:
"{} \<turnstile>\<^sub>t MGT\<^sub>t c \<Longrightarrow> {} \<Turnstile>\<^sub>t {P}c{Q} \<Longrightarrow> {} \<turnstile>\<^sub>t {P}c{Q::state assn}" |
lemma cnt_distinct_intro: "\<forall> x \<in> set xs. cnt x xs \<le> 1 \<Longrightarrow> distinct xs" |
lemma ls_delete_distinct: "distinct (map fst l) \<Longrightarrow> distinct (map fst (fst (ls_delete k l)))" |
lemma n_n_L:
"n(n(x) * L) = n(x)" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.