Statement:
stringlengths 7
24.3k
|
---|
lemma next_preserves_inv_implications_nonneg:
assumes "next s"
and "holds inv_implications_nonneg s"
and "holds inv_imp_plus_work_nonneg s"
shows "nxt (holds inv_implications_nonneg) s" |
lemma card_Int_conv: "
\<lbrakk> finite A; finite B \<rbrakk> \<Longrightarrow>
card (A \<inter> B) = card A + card B - card (A \<union> B)" |
lemma prv_imp_neg_imp_cnjL:
assumes "\<phi> \<in> fmla" "\<phi>1 \<in> fmla" "\<phi>2 \<in> fmla"
and "prv (imp \<phi> (neg \<phi>1))"
shows "prv (imp \<phi> (neg (cnj \<phi>1 \<phi>2)))" |
lemma sig_red_zeroE:
assumes "sig_red_zero sing_reg F r"
obtains s where "(sig_red sing_reg (\<preceq>) F)\<^sup>*\<^sup>* r s" and "rep_list s = 0" |
lemma load_word_mem_10_low_equal:
assumes a1: "low_equal s1 s2"
shows "load_word_mem s1 address 10 = load_word_mem s2 address 10" |
lemma selector_pushout:
assumes "valid_selector Rs selector" "selector G'' = Some (R,f)"
defines "G \<equiv> graph_of G''"
assumes "graph G"
defines "g \<equiv> extend (fst G'') R f"
defines "G' \<equiv> LG (on_triple g `` edges (snd R) \<union> (snd G'')) {0..<max (fst G'') (nextMax (Range g))}"
shows "pushout_step (t:: 'x itself) R G G'" |
lemma path_connectedin_absolute [simp]:
"path_connectedin (subtopology X S) S \<longleftrightarrow> path_connectedin X S" |
lemma check_poly_eq: fixes p :: "('v :: linorder,'a :: poly_carrier)poly"
assumes chk: "check_poly_eq p q"
shows "p =p q" |
lemma Arg2pi_times_of_real2 [simp]: "0 < r \<Longrightarrow> Arg2pi (z * of_real r) = Arg2pi z" |
lemma states_closed:
assumes "s \<in> states"
assumes "(s, t) \<in> acc_on (- {error, ok})"
shows "t \<in> states" |
lemma gsfw_join_valid: "gsfw_valid f1 \<Longrightarrow> gsfw_valid f2 \<Longrightarrow> gsfw_valid (generalized_fw_join f1 f2)" |
theorem fw_shortest_path_up_to:
"D m i j k = fw m n k i j" if "cyc_free_subs n {0..k} m" "i \<le> n" "j \<le> n" "k \<le> n" |
lemma sound_opr_alt:
"sound_opr opr f =
((\<forall>s. s \<Turnstile>\<^sub>= (precondition opr) \<longrightarrow>
(\<exists>s'. f s = (Some s')
\<and> (\<forall>atm. is_predAtom atm \<and> atm \<notin> set(dels (effect opr)) \<and> s \<Turnstile>\<^sub>= atm \<longrightarrow> s' \<Turnstile>\<^sub>= atm)
\<and> (\<forall>atm. is_predAtom atm \<and> atm \<notin> set (adds (effect opr)) \<and> s \<Turnstile>\<^sub>= Not atm \<longrightarrow> s' \<Turnstile>\<^sub>= Not atm)
\<and> (\<forall>atm. atm \<in> set(adds (effect opr)) \<longrightarrow> s' \<Turnstile>\<^sub>= atm)
\<and> (\<forall>fmla. fmla \<in> set (dels (effect opr)) \<and> fmla \<notin> set(adds (effect opr)) \<longrightarrow> s' \<Turnstile>\<^sub>= (Not fmla))
\<and> (\<forall>a b. s \<Turnstile>\<^sub>= Atom (Eq a b) \<longrightarrow> s' \<Turnstile>\<^sub>= Atom (Eq a b))
\<and> (\<forall>a b. s \<Turnstile>\<^sub>= Not (Atom (Eq a b)) \<longrightarrow> s' \<Turnstile>\<^sub>= Not (Atom (Eq a b)))
))
\<and> (\<forall>fmla\<in>set(adds (effect opr)). is_predAtom fmla))" |
lemma subtree_rank_ge_if_mdeg_le1:
"\<lbrakk>is_subtree (Node r {|(t1,e1)|}) t; max_deg (Node r {|(t1,e1)|}) \<le> 1; v \<noteq> r;
v \<in> dverts t; \<exists>y \<in> set v. \<not>(\<exists>x'\<in>set (Dtree.root t1). x' \<rightarrow>\<^sup>+\<^bsub>T\<^esub> y) \<and> (\<exists>x\<in>set r. x \<rightarrow>\<^sup>+\<^bsub>T\<^esub> y)\<rbrakk>
\<Longrightarrow> rank (rev (Dtree.root t1)) \<le> rank (rev v)" |
lemma subst_liftn:
"i \<le> n + k \<and> k \<le> i \<Longrightarrow> (liftn (Suc n) s k)[t/i] = liftn n s k" |
lemma coeff_mult_degree_sum:
"coeff (p * q) (degree p + degree q) = coeff p (degree p) * coeff q (degree q)" |
lemma
fixes s :: complex
assumes s: "Re s > 1"
shows abs_summable_Dirichlet_L: "summable (\<lambda>n. norm (\<chi> n * of_nat n powr -s))"
and summable_Dirichlet_L: "summable (\<lambda>n. \<chi> n * of_nat n powr -s)"
and sums_Dirichlet_L: "(\<lambda>n. \<chi> n * n powr -s) sums Dirichlet_L n \<chi> s"
and Dirichlet_L_conv_eval_fds_weak: "Dirichlet_L n \<chi> s = eval_fds (fds \<chi>) s" |
lemma mult_div_mono_left:
fixes c::real
assumes nnc: "0 \<le> c" and nzc: "c \<noteq> 0"
and inv: "a \<le> inverse c * b"
shows "c * a \<le> b" |
lemma if_Red1_mthr_imp_if_Red1_mthr':
assumes lok: "if_lock_oks1 (locks s) (thr s)"
and elo: "ts_ok (init_fin_lift (\<lambda>t exexs h. el_loc_ok1 exexs)) (thr s) (shr s)"
and Red: "Red1_mthr.if.redT uf P s tta s'"
shows "Red1_mthr.if.redT (\<not> uf) P s tta s'" |
lemma positive_rat: "positive (Fract a b) \<longleftrightarrow> 0 < a * b" |
lemma st_vec_nonneg[simp]: "st_vec x $ i \<ge> 0" |
lemma change_respecting_doesnt_modify:
assumes cr: "change_respecting (cms, mem) (cms', mem') X g"
assumes eval: "(cms, mem) \<leadsto> (cms', mem')"
assumes domf: "dom f = X"
assumes x_in_dom: "x \<in> dom (g f)"
assumes noread: "doesnt_read (fst cms) x"
shows "mem x = mem' x" |
lemma COND_terms_hf:
assumes "hf_valid ainfo uinfo hf nxt" "terms_hf hf \<subseteq> analz ik"
"no_oracle ainfo uinfo"
shows "\<exists>hfs. hf \<in> set hfs \<and> (\<exists>uinfo' . (ainfo, hfs) \<in> (auth_seg2 uinfo'))" |
lemma round_unique: "of_int y > x - 1/2 \<Longrightarrow> of_int y \<le> x + 1/2 \<Longrightarrow> round x = y" |
lemma (in jozsa) jozsa_algo_result [simp]:
shows "jozsa_algo = \<psi>\<^sub>3" |
lemma qfa_enq_correct: "list (enq x (qfa l)) = (list (qfa l)) @ [x]" |
lemma monad_state_prob_stateT [locale_witness]:
"monad_state_prob return_state bind_state get_state put_state sample_state" |
lemma not_diff_distrib:
\<open>NOT (a - b) = NOT a + b\<close> |
theorem SF1:
assumes h1: "|~ P \<and> [N]_v \<longrightarrow> \<circle>P \<or> \<circle>Q"
and h2: "|~ P \<and> \<langle>N \<and> A\<rangle>_v \<longrightarrow> \<circle>Q"
and h3: "\<turnstile> \<box>P \<and> \<box>[N]_v \<and> \<box>F \<longrightarrow> \<diamond>Enabled \<langle>A\<rangle>_v"
and h4: "|~ P \<and> Unchanged v \<longrightarrow> \<circle>P"
shows "\<turnstile> \<box>[N]_v \<and> SF(A)_v \<and> \<box>F \<longrightarrow> (P \<leadsto> Q)" |
lemma emb_step_equiv': "emb_step t s \<longleftrightarrow> (\<exists>p. p \<noteq> [] \<and> emb_step_at' p t = s) \<and> t \<noteq> s" |
lemma hcomplex_of_hypreal_pow: "\<And>x. hcomplex_of_hypreal (x ^ n) = hcomplex_of_hypreal x ^ n" |
lemma compact_trapC:
shows "compact trapC" |
lemma nabla_sum_expand [simp]: "|x\<rangle> \<nabla> (x + y) + |y\<rangle> \<nabla> (x + y) = \<nabla> (x + y)" |
lemma f_join_singleton_if: "
xs \<Join>\<^sub>f {n} = (if n < length xs then [xs ! n] else [])" |
lemma mem_card1_singleton: "\<lbrakk> u \<in> U; card U = 1 \<rbrakk> \<Longrightarrow> U = {u}" |
lemma costBIT_1y:
assumes "x\<noteq>y" "x : {x0,y0}" "y\<in>{x0,y0}"
shows
"E (type1 [x0, y0] x y \<bind>
(\<lambda>s. BIT_step s y \<bind>
(\<lambda>(a, is'). return_pmf (real (t\<^sub>p (fst s) y a))))) = 3/4" |
lemma effect_apply_eqvt' [eqvt]: "p \<bullet> \<langle>f\<rangle>P = \<langle>p \<bullet> f\<rangle>(p \<bullet> P)" |
lemma HEndPhase0_blocksRead:
assumes act: "HEndPhase0 s s' p"
shows "\<exists>d. blocksRead s p d \<noteq> {}" |
lemma mset_le_single_iff[iff]: "{#x#} \<le> {#y#} \<longleftrightarrow> x \<le> y" for x y :: "'a::order" |
lemma consistent_imp_nonneg_constant:
assumes "consistent x t T B p incr"
assumes "t < T"
shows "B \<ge> 0" |
lemma p_inf_pp_pp [simp]:
"-(--x \<sqinter> --y) = -(x \<sqinter> y)" |
lemma iso_Euclidean_complements_lemma1:
assumes S: "closedin (Euclidean_space m) S" and cmf: "continuous_map(subtopology (Euclidean_space m) S) (Euclidean_space n) f"
obtains g where "continuous_map (Euclidean_space m) (Euclidean_space n) g"
"\<And>x. x \<in> S \<Longrightarrow> g x = f x" |
lemma fall2_imp_alw_index:
assumes 0: "\<And> \<pi> \<pi>'. wfp AP' \<pi> \<and> wfp AP' \<pi>' \<longrightarrow>
\<phi> [] [\<pi>,\<pi>'] = f (stateOf \<pi>) (stateOf \<pi>') \<and>
\<psi> [] [\<pi>,\<pi>'] = g (stateOf \<pi>) (stateOf \<pi>')"
shows
"fall2 (\<lambda> \<pi>' \<pi> \<pi>l. imp (alw (\<phi> \<pi>l)) (alw (\<psi> \<pi>l)) (\<pi>l @ [\<pi>,\<pi>'])) []
\<longleftrightarrow>
(\<forall> \<pi> \<pi>'. wfp AP' \<pi> \<and> wfp AP' \<pi>' \<and> stateOf \<pi> = s0 \<and> stateOf \<pi>' = s0
\<longrightarrow>
(\<forall> i. (\<forall> j \<le> i. f (fst (\<pi> !! j)) (fst (\<pi>' !! j))) \<longrightarrow> g (fst (\<pi> !! i)) (fst (\<pi>' !! i)))
)"
(is "?L \<longleftrightarrow> ?R") |
lemma fetch_wcode_adjust_tm[simp]:
"fetch wcode_adjust_tm (Suc 0) Bk = (WO, 1)"
"fetch wcode_adjust_tm (Suc 0) Oc = (R, 2)"
"fetch wcode_adjust_tm (Suc (Suc 0)) Oc = (R, 3)"
"fetch wcode_adjust_tm (Suc (Suc (Suc 0))) Oc = (R, 4)"
"fetch wcode_adjust_tm (Suc (Suc (Suc 0))) Bk = (R, 3)"
"fetch wcode_adjust_tm 4 Bk = (L, 8)"
"fetch wcode_adjust_tm 4 Oc = (L, 5)"
"fetch wcode_adjust_tm 5 Oc = (WB, 5)"
"fetch wcode_adjust_tm 5 Bk = (L, 6)"
"fetch wcode_adjust_tm 6 Oc = (R, 7)"
"fetch wcode_adjust_tm 6 Bk = (L, 6)"
"fetch wcode_adjust_tm 7 Bk = (WO, 2)"
"fetch wcode_adjust_tm 8 Bk = (L, 9)"
"fetch wcode_adjust_tm 8 Oc = (WB, 8)"
"fetch wcode_adjust_tm 9 Oc = (L, 10)"
"fetch wcode_adjust_tm 9 Bk = (L, 9)"
"fetch wcode_adjust_tm 10 Bk = (L, 11)"
"fetch wcode_adjust_tm 10 Oc = (L, 10)"
"fetch wcode_adjust_tm 11 Oc = (L, 11)"
"fetch wcode_adjust_tm 11 Bk = (R, 0)" |
theorem Completeness: "I \<noteq> {} \<Longrightarrow> finite I \<Longrightarrow>
Kripke {s :: ('s :: state). \<exists> i \<in> I. (i \<rightarrow>\<^sub>i* s)} (I :: ('s :: state)set) \<turnstile> EF s
\<Longrightarrow> \<exists> (A :: ('s :: state) attree). \<turnstile> A \<and> attack A = (I,s)" |
lemma inorder_baliR:
"inorder(baliR l a r) = inorder l @ a # inorder r" |
lemma diagonalize_is_idempotent:
shows "D o D = D" |
lemma has_field_derivative_inverse_strong_x:
fixes f :: "'a::{euclidean_space,real_normed_field} \<Rightarrow> 'a"
shows "\<lbrakk>DERIV f (g y) :> f'; f' \<noteq> 0; open S; continuous_on S f; g y \<in> S; f(g y) = y;
\<And>z. z \<in> S \<Longrightarrow> g (f z) = z\<rbrakk>
\<Longrightarrow> DERIV g y :> inverse (f')" |
lemma nxtIN[intro]:
fixes c::'id
and t::"nat \<Rightarrow> cnf"
and t'::"nat \<Rightarrow> 'cmp"
and n::nat
assumes "\<not>(\<exists>i\<ge>n. \<parallel>c\<parallel>\<^bsub>t i\<^esub>)"
and "eval c t t' (Suc n) \<gamma>"
shows "eval c t t' n (\<circle>\<^sub>b(\<gamma>))" |
lemma prod_lens_sublens_cong:
"\<lbrakk> X\<^sub>1 \<subseteq>\<^sub>L X\<^sub>2; Y\<^sub>1 \<subseteq>\<^sub>L Y\<^sub>2 \<rbrakk> \<Longrightarrow> (X\<^sub>1 \<times>\<^sub>L Y\<^sub>1) \<subseteq>\<^sub>L (X\<^sub>2 \<times>\<^sub>L Y\<^sub>2)" |
lemma Equiv_Exec_output_eqI: "
\<lbrakk> equiv_states (localState1 c1) (localState2 c2);
Equiv_Exec
m equiv_states
localState1 localState2 input_fun1 input_fun2 output_fun1 output_fun2
trans_fun1 trans_fun2 k1 k2 c1 c2 \<rbrakk> \<Longrightarrow>
last_message (map output_fun1 (
f_Exec_Comp_Stream trans_fun1 (input_fun1 m # \<NoMsg>\<^bsup>k1 - Suc 0\<^esup>) c1)) =
last_message (map output_fun2 (
f_Exec_Comp_Stream trans_fun2 (input_fun2 m # \<NoMsg>\<^bsup>k2 - Suc 0\<^esup>) c2))" |
lemma fset_finite_supp:
fixes S::"('a::fs) fset"
shows "finite (supp S)" |
lemma Invariants_measurable_func:
assumes "f \<in> measurable Invariants N"
shows "f \<in> measurable M N" |
lemma red_diff_rtrancl':
assumes "(red F)\<^sup>*\<^sup>* (p - q) r"
obtains p' q' where "(red F)\<^sup>*\<^sup>* p p'" and "(red F)\<^sup>*\<^sup>* q q'" and "r = p' - q'" |
theorem lucas_lehmer_sufficient:
assumes "prime p" "odd p"
assumes "(2 ^ p - 1) dvd gen_lucas_lehmer_sequence 4 (p - 2)"
shows "prime (2 ^ p - 1 :: nat)" |
lemma take_from_set_correct:
assumes "s \<noteq> {}"
shows "take_from_set s \<le> SPEC (\<lambda> (x, s'). x \<in> s \<and> s' = s - {x})" |
lemma hmac_trans_1_4_skr_extr_fake:
"hmac X K \<in> parts (extr (bad s') (ik s') (chan s')) \<Longrightarrow>
K \<notin> synth (analz (extr (bad s) (ik s) (chan s))) \<Longrightarrow> \<comment> \<open>necessary for the \<open>dy_fake_msg\<close> case\<close>
s \<in> l2_inv2 \<Longrightarrow> \<comment> \<open>necessary for the \<open>skr\<close> case\<close>
(s, s') \<in> l2_step1 Ra A B \<union> l2_step4 Rb A B Ni gnx \<union> l2_skr R KK \<union>
l2_dy_fake_msg M \<union> l2_dy_fake_chan MM \<Longrightarrow>
hmac X K \<in> parts (extr (bad s) (ik s) (chan s))" |
lemma replacement_monotonic :
shows "\<And> t s. ((subst v \<sigma>), (subst u \<sigma>)) \<in> trm_ord
\<Longrightarrow> subterm t p u \<Longrightarrow> replace_subterm t p v s
\<Longrightarrow> ((subst s \<sigma>), (subst t \<sigma>)) \<in> trm_ord" |
lemma NS_staticSecret_parts_Spy:
"\<lbrakk>m \<in> parts (knows Spy evs); m \<in> staticSecret A;
evs \<in> ns_public\<rbrakk> \<Longrightarrow> A \<in> bad" |
lemma valid_sops_stmt_invariant:
assumes step: "\<theta>\<turnstile> (s,t) \<rightarrow>\<^sub>s ((s',t'),is)"
shows "valid_sops_stmt t s \<Longrightarrow> valid_sops_stmt t' s'" |
lemma (in poly_mod_prime_type) finite_field_factorization_modulo_ring:
assumes g: "(g :: 'a mod_ring poly) = of_int_poly f"
and sf: "square_free_m f"
and fact: "finite_field_factorization g = (d,gs)"
and c: "c = to_int_mod_ring d"
and fs: "fs = map to_int_poly gs"
shows "unique_factorization_m f (c, mset fs)" |
lemma VPow_top: "A \<in>\<^sub>\<circ> VPow A" |
lemma rel_frext_miracle [frame]:
"a:[false]\<^sup>+ = false" |
lemma RPDs_ok: "ok m mr \<Longrightarrow> ms \<in> RPDs mr \<Longrightarrow> ok m ms" |
lemma sat_plan_to_dimacs_works:
"valid_state_var sv \<Longrightarrow>
dimacs_to_var (var_to_dimacs sv) = sv" |
lemma rearrange: "(j::nat) * (p * j) = k * k \<Longrightarrow> k * k = p * (j * j)" |
lemma mset_subset_eq_exists_conv: "(A::'a multiset) \<subseteq># B \<longleftrightarrow> (\<exists>C. B = A + C)" |
lemma orthogonal_split: assumes "(embP Q \<and>* $ n) = (embP P \<and>* $ m)"
shows "(Q = P \<and> n = m) \<or> Q = (\<lambda>s. False) \<and> P = (\<lambda>s. False)" |
lemma pos_meas_self:
assumes "pos_meas_set E"
shows "0 \<le> \<mu> E" |
lemma subprob_algebra_cong: "sets M = sets N \<Longrightarrow> subprob_algebra M = subprob_algebra N" |
lemma vifintersection_vintersection:
assumes "I \<noteq> 0" and "J \<noteq> 0"
shows "(\<Inter>\<^sub>\<circ>i\<in>\<^sub>\<circ>I. f i) \<inter>\<^sub>\<circ> (\<Inter>\<^sub>\<circ>i\<in>\<^sub>\<circ>J. f i) = (\<Inter>\<^sub>\<circ>i\<in>\<^sub>\<circ>I \<union>\<^sub>\<circ> J. f i)" |
lemma mor_unfold:
"mor UNIV UNIV s1 s2 UNIV UNIV dtor1 dtor2 (unfold1 s1 s2) (unfold2 s1 s2)" |
lemma check_mult_alt_def:
\<open>check_mult A \<V> p q i r \<ge>
do {
b \<leftarrow> SPEC(\<lambda>b. b \<longrightarrow> p \<in># dom_m A \<and> i \<notin># dom_m A \<and> vars q \<subseteq> \<V> \<and> vars r \<subseteq> \<V>);
if \<not>b
then RETURN False
else do {
ASSERT (p \<in># dom_m A);
let p = the (fmlookup A p);
pq \<leftarrow> mult_poly_spec p q;
p \<leftarrow> weak_equality pq r;
RETURN p
}
}\<close> |
lemma hypext_sin_e12 [simp]:
"(*h* sin) (x * e12) = e12 * x" |
lemma defect_less:
assumes b: "\<And>t. t0 < t \<Longrightarrow> t \<le> t1 \<Longrightarrow> v' t - f t (v t) < w' t - f t (w t)"
notes [continuous_intros] =
vderiv_on_continuous_on[OF v', THEN continuous_on_subset]
vderiv_on_continuous_on[OF w', THEN continuous_on_subset]
shows "\<forall>t \<in> {t0 <.. t1}. v t < w t" |
lemma (in group) trivial_group: "trivial_group G \<longleftrightarrow> (\<exists>a. carrier G = {a})" |
lemma defines "prec \<equiv> ((\<lambda>f g. (pr_strict' f g, pr_weak' f g)))"
and "prl \<equiv> (\<lambda>(f, n). n = 0 \<and> least f)"
shows
kbo_encoding_is_valid_wpo: "wpo_with_assms weight_S weight_NS prec prl full_status False (\<lambda>f. False)"
and
kbo_as_wpo: "bounded_arity n (funas_term t) \<Longrightarrow> kbo s t = wpo.wpo n weight_S weight_NS prec prl full_status (\<lambda>_. Lex) False (\<lambda>f. False) s t" |
lemma ntadj_sub_diff_assign:"\<And>e \<sigma> x. (\<Union>y\<in>{y. Inl y \<in> SIGT e}. FVT (\<sigma> y)) \<subseteq> (\<Union>y\<in>{y. Inl (Inl y) \<in> SIGP (DiffAssign x e)}. FVT (\<sigma> y))" |
lemma sortedByWeight_Cons_imp_forall_weight_ge:
"sortedByWeight (t # ts) \<Longrightarrow> \<forall>u \<in> set ts. weight u \<ge> weight t" |
lemma symmetric_mpoly_mult [intro]:
"symmetric_mpoly A p \<Longrightarrow> symmetric_mpoly A q \<Longrightarrow> symmetric_mpoly A (p * q)" |
lemma estimate'_bounds:
"prob {\<omega>. of_rat \<delta> * real_of_rat (F 0 as) < \<bar>estimate' (sketch_rv' \<omega>) - of_rat (F 0 as)\<bar>} \<le> 1/3" |
lemma (in comm_monoid) multlist_perm_cong:
assumes prm: "as <~~> bs"
and ascarr: "set as \<subseteq> carrier G"
shows "foldr (\<otimes>) as \<one> = foldr (\<otimes>) bs \<one>" |
lemma minus_one_sdiv_word_eq [simp]:
\<open>- 1 sdiv w = - (1 sdiv w)\<close> for w :: \<open>'a::len word\<close> |
lemma Lyndon_rec_all: assumes "Lyndon_rec (a # w) (\<^bold>|w\<^bold>|)"
shows "n < \<^bold>|a#w\<^bold>| \<Longrightarrow> 0 < n \<Longrightarrow> Lyndon_rec (a#w) n" |
lemma dickson_less_pD2:
assumes "dickson_less_p d m p q"
shows "q \<in> dgrad_p_set d m" |
lemma qbs_morphism_Pair1:
assumes "x \<in> qbs_space X"
shows "Pair x \<in> Y \<rightarrow>\<^sub>Q X \<Otimes>\<^sub>Q Y" |
lemma M_neg_imp_z_non_zero:
assumes "v \<bullet> (M *v v) < 0"
shows "v$3 \<noteq> 0" |
lemma homeomorphism_image2: "homeomorphism S T f g \<Longrightarrow> g ` T = S" |
lemma hext_typeof_mono:
"\<lbrakk> h \<unlhd> h'; typeof\<^bsub>h\<^esub> v = Some T \<rbrakk> \<Longrightarrow> typeof\<^bsub>h'\<^esub> v = Some T" |
lemma compact_sums':
fixes S :: "'a::real_normed_vector set"
assumes "compact S" and "compact T"
shows "compact (\<Union>x\<in> S. \<Union>y \<in> T. {x + y})" |
lemma has_disc_negated_alist_and': "has_disc_negated disc neg (alist_and' as) \<longleftrightarrow> (\<exists> a \<in> set as. has_disc_negated disc neg (negation_type_to_match_expr a))" |
lemma map_pair_fst_helper :
"map fst (map (\<lambda> (x1,x2) . ((x1,x2), f x1 x2)) xs) = xs" |
lemma const_poly_nonzero_coeff :
assumes "degree p = 0" "p \<noteq> 0"
shows "coeff p 0 \<noteq> 0" |
lemma restore_new_paras:
"ffp \<ge> length gs
\<Longrightarrow> \<lbrace>\<lambda>nl. nl = 0 \<up> max (Suc (length xs)) (Max (insert ffp ((\<lambda>(aprog, p, n). n) ` rec_ci ` set gs))) @ map (\<lambda>i. rec_exec i xs) gs @ 0 # xs @ anything\<rbrace>
mv_boxes (max (Suc (length xs)) (Max (insert ffp ((\<lambda>(aprog, p, n). n) ` rec_ci ` set gs)))) 0 (length gs)
\<lbrace>\<lambda>nl. nl = map (\<lambda>i. rec_exec i xs) gs @ 0 \<up> max (Suc (length xs)) (Max (insert ffp ((\<lambda>(aprog, p, n). n) ` rec_ci ` set gs))) @ 0 # xs @ anything\<rbrace>" |
lemma set_pmf_of_set_lessThan_length [simp]:
"xs \<noteq> [] \<Longrightarrow> set_pmf (pmf_of_set {..<length xs}) = {..<length xs}" |
lemma less_eq_mctxt_MVarE1:
assumes "MVar v \<le> D"
obtains (MVar) "D = MVar v" |
lemma neg_length_pos:
assumes i0: "bv_to_int w < -1"
shows "0 < length w" |
lemma Program_code [code]:
"Program = program \<circ> tabulate_program" |
lemma tensor_extensionality3':
fixes F G :: \<open>(('a::finite\<times>'b::finite)\<times>'c::finite) update \<Rightarrow> 'd::finite update\<close>
assumes [simp]: \<open>register F\<close> \<open>register G\<close>
assumes "\<And>f g h. F ((f \<otimes>\<^sub>u g) \<otimes>\<^sub>u h) = G ((f \<otimes>\<^sub>u g) \<otimes>\<^sub>u h)"
shows "F = G" |
lemma r_leap_total: "eval r_leap [t, i, x] \<down>" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.