Statement:
stringlengths 7
24.3k
|
---|
lemma wf_imethdsD:
"\<lbrakk>im \<in> imethds G I sig;wf_prog G; is_iface G I\<rbrakk>
\<Longrightarrow> \<not>is_static im \<and> accmodi im = Public" |
lemma llrg_linear_sys:
"llrg \<R> \<Longrightarrow> linear_sys \<R>" |
lemma space_mapmeasure[simp]: "space (mapmeasure M N) = space (PiF (Collect finite) N)" |
lemma final_lemma6:
"(\<Inter>v \<in> V. \<Inter>w \<in> V.
(reachable v <==> {s. (root,v) \<in> REACHABLE}) \<inter> nmsg_eq 0 (v,w))
\<subseteq> final" |
lemma height_0_rel: "height t = 0 \<Longrightarrow> \<exists>r. t = Relation r" |
lemma "(Abs_perm id :: nat perm) \<bullet> Suc 0 = Suc 0" |
lemma connected_card_eq_iff_nontrivial:
fixes S :: "'a::metric_space set"
shows "connected S \<Longrightarrow> uncountable S \<longleftrightarrow> \<not>(\<exists>a. S \<subseteq> {a})" |
lemma rel_envT_eq [relator_eq]: "rel_envT (=) (=) = (=)" |
lemma sublist_equal_lengths:
fixes l1 l2
assumes "subseq l1 l2" "(length l1 = length l2)"
shows "(l1 = l2)" |
lemma ht_hash_distinct:
"ht_hash l
\<Longrightarrow> \<forall>i j . i\<noteq>j \<and> i < length l \<and> j < length l
\<longrightarrow> set (l!i) \<inter> set (l!j) = {}" |
lemma sup_pres_multl: "sup_pres (\<lambda>(z::'a::proto_quantale). x \<cdot> z)" |
lemma update_arg_wf_tuples' [elim]:
"\<And>n hops nhip pre. Suc 0 \<le> n \<Longrightarrow> update_arg_wf (n, kno, val, hops, nhip, pre)" |
lemma div_op_SOME: "is_div_op (\<lambda>a b. (SOME k. k * b = a))" |
lemma tau_at_0: "\<tau> i 0 \<down>= i" |
lemma Cond':
"\<lbrakk>P \<subseteq> {s. (b \<subseteq> P1) \<and> (- b \<subseteq> P2)};\<Gamma>,\<Theta>\<turnstile>\<^bsub>/F\<^esub> P1 c1 Q,A; \<Gamma>,\<Theta>\<turnstile>\<^bsub>/F\<^esub> P2 c2 Q,A\<rbrakk>
\<Longrightarrow>
\<Gamma>,\<Theta>\<turnstile>\<^bsub>/F\<^esub> P (Cond b c1 c2) Q,A" |
lemma (in is_functor) is_functor_ntcf_id_components:
shows "ntcf_id \<FF>\<lparr>NTMap\<rparr> = \<BB>\<lparr>CId\<rparr> \<circ>\<^sub>\<circ> \<FF>\<lparr>ObjMap\<rparr>"
and "ntcf_id \<FF>\<lparr>NTDom\<rparr> = \<FF>"
and "ntcf_id \<FF>\<lparr>NTCod\<rparr> = \<FF>"
and "ntcf_id \<FF>\<lparr>NTDGDom\<rparr> = \<AA>"
and "ntcf_id \<FF>\<lparr>NTDGCod\<rparr> = \<BB>" |
lemma "((((sep_true imp p0) imp ((p0 ** p0) \<longrightarrow>* ((sep_true imp p0) ** (p0 ** p0)))) imp
(p1 \<longrightarrow>* (((sep_true imp p0) imp ((p0 ** p0) \<longrightarrow>* (((sep_true imp p0) ** p0) ** p0))) ** p1))))
(h::'a::heap_sep_algebra)" |
lemma vconverse_inject[simp]:
assumes "vbrelation r" and "vbrelation s"
shows "r\<inverse>\<^sub>\<circ> = s\<inverse>\<^sub>\<circ> \<longleftrightarrow> r = s" |
lemma gbinomial_int_mono:
assumes "0 \<le> x" and "x \<le> (y::int)"
shows "x gchoose k \<le> y gchoose k" |
lemma solution_upd1:
"c \<noteq> 0 \<Longrightarrow> solution (A(p:=(\<lambda>j. A p j / c))) n x = solution A n x" |
lemma correctly_synchronized_compP [simp]:
"correctly_synchronized (compP f P) = correctly_synchronized P" |
lemma max_mix_is_density:
assumes "0 < n"
shows "density_operator (max_mix_density n)" |
lemma interaction_bounded_by_case_prod [interaction_bound]:
"(\<And>a b. x = (a, b) \<Longrightarrow> interaction_bounded_by consider (f a b) (n a b))
\<Longrightarrow> interaction_bounded_by consider (case_prod f x) (case_prod n x)" |
lemma dbm_int_guard_abstr:
assumes "valid_abstraction A X k" "A \<turnstile> l \<longrightarrow>\<^bsup>g,a,r\<^esup> l'"
shows "dbm_int (abstr g (\<lambda>i j. \<infinity>) v) n" |
lemma eventually_going_to_at_bot_linorder:
fixes f :: "'a \<Rightarrow> 'b :: linorder"
shows "eventually P (f going_to at_bot within A) \<longleftrightarrow> (\<exists>C. \<forall>x\<in>A. f x \<le> C \<longrightarrow> P x)" |
lemma iso_fSup:
fixes F :: "('a::order \<Rightarrow> 'b::complete_lattice) set"
shows "(\<forall>f \<in> F. mono f) \<Longrightarrow> mono (\<Squnion>F)" |
lemma isTrue_neg_neg:
assumes "\<phi> \<in> fmla" "Fvars \<phi> = {}"
and "isTrue (neg (neg \<phi>))"
shows "isTrue \<phi>" |
lemma thinish: "ThinishChamberComplex X" |
lemma E_thm01: "Lift \<in> (stopped \<inter> atFloor n) LeadsTo (opened \<inter> atFloor n)" |
lemma trimmed_pos_real_iff [simp]: "trimmed_pos (x :: real) \<longleftrightarrow> x > 0" |
lemma one_dim_iso_adjoint[simp]: \<open>one_dim_iso (A*) = (one_dim_iso A)*\<close> |
lemma incls_coherent:
assumes "par f f'" and "incl f" and "incl f'"
shows "f = f'" |
lemma real_le_affinity: "0 < m \<Longrightarrow> y \<le> m * x + c \<longleftrightarrow> inverse m * y + - (c / m) \<le> x"
for m :: "'a::linordered_field" |
lemma run_put_writerT [simp]: "run_writer (put s m) = put s (run_writer m)" |
lemma
\<open>(1705 :: nat) << 3 = 13640\<close> |
lemma fresh_asTerm_qFresh:
assumes "qGood qX"
shows "fresh xs x (asTerm qX) = qFresh xs x qX" |
lemma nxt_alw: "nxt (alw P) s \<Longrightarrow> alw (nxt P) s" |
lemma split_vars_ground_vars:
assumes "ground_mctxt C" and "num_holes C = length xs"
shows "split_vars (fill_holes C (map Var xs)) = (C, xs)" |
lemma diff_add_assoc: "b \<le> c \<Longrightarrow> c - (c - b) = c - c + (b::nat)" |
lemma shiftD: "x \<^bold>\<in> shift f delta \<Longrightarrow> \<exists>u. u \<^bold>\<in> f \<and> x = \<langle>delta @+ hfst u, hsnd u\<rangle>" |
lemma Ch_range_disjoint:
assumes "h \<noteq> h'"
shows "Ch h A \<inter> Ch h' A = {}" |
lemma variance_prod_pmf_slice:
fixes f :: "'a \<Rightarrow> real"
assumes "i \<in> I" "finite I"
assumes "integrable (measure_pmf (M i)) (\<lambda>\<omega>. f \<omega>^2)"
shows "prob_space.variance (Pi_pmf I d M) (\<lambda>\<omega>. f (\<omega> i)) = prob_space.variance (M i) f" |
lemma length_concat_ge:
assumes "as \<in> lists (- {[]})"
shows "length (concat as) \<ge> length as" |
lemma parabolic_isometry_inv:
assumes "parabolic_isometry f"
shows "parabolic_isometry (inv f)" |
lemma scount_eq_0D: "scount P \<omega> = 0 \<Longrightarrow> alw (not P) \<omega>" |
lemma older_seniors_finite:
"finite (older_seniors x n)" |
lemma bezout_coefficients:
assumes "bezout_coefficients a b = (x, y)"
shows "x * a + y * b = gcd a b" |
lemma obtain_t_subset_points:
obtains T where "T \<subseteq> \<V>" "card T = \<t>" "finite T" |
lemma RM_subset : "RM M2 M1 \<Omega> V m i \<subseteq> C M2 M1 \<Omega> V m i" |
lemma KRP_fresh_iff [simp]: "a \<sharp> KRP v x x' \<longleftrightarrow> a \<sharp> v \<and> a \<sharp> x \<and> a \<sharp> x'" |
theorem Lp_Lq_duality:
fixes p q::ennreal
assumes "f \<in> space\<^sub>N (\<LL> p M)"
"1/p + 1/q = 1"
"p = \<infinity> \<Longrightarrow> sigma_finite_measure M"
shows "bdd_above ((\<lambda>g. (\<integral>x. f x * g x \<partial>M))`{g \<in> space\<^sub>N (\<LL> q M). Norm (\<LL> q M) g \<le> 1})"
"Norm (\<LL> p M) f = (SUP g\<in>{g \<in> space\<^sub>N (\<LL> q M). Norm (\<LL> q M) g \<le> 1}. (\<integral>x. f x * g x \<partial>M))" |
lemma sc_threshold_2_3_tfff:
"boolfunc_from_sc 4 sc_threshold_2_3 (a(0:=True,1:=False,2:=False,3:=False)) = False" |
lemma rebase_id[simp]: "@(@(x::'b mod_ring) :: 'a mod_ring) = x" |
lemma all_leq_Max:
assumes "x \<le>\<^sub>v y"
and "x \<noteq> []"
shows "\<forall>xi \<in> set x. xi \<le> Max (set y)" |
lemma simpneq_nb[simp]:
assumes "SORT_CONSTRAINT('a::field_char_0)"
shows "tmbound0 t \<Longrightarrow> bound0 (simpneq t)" |
lemma (in Category) MapsToId: assumes "X \<in> obj" shows "id X \<approx>> id X" |
lemma [autoref_rules]: "(bs_insert,insert)\<in>nat_rel \<rightarrow> \<langle>nat_rel\<rangle>bs_set_rel \<rightarrow> \<langle>nat_rel\<rangle>bs_set_rel" |
lemma "a \<in> set ls \<Longrightarrow> b \<in> set (List_replace1 a b ls)" |
lemma fold_fun_chain:
"g x = (g ^^ 1) x" "(g ^^ m) ((g ^^ n) x) = (g ^^ (m+n)) x" |
lemma len_sub_int:"len v ts c \<le> ext v" |
lemma (in ceuclidean_space) SOME_CBasis: "(SOME i. i \<in> CBasis) \<in> CBasis" |
lemma processed_alt:
"processed (a, b) xs ps \<longleftrightarrow> ((a \<in> set xs) \<and> (b \<in> set xs) \<and> (a, b) \<notin>\<^sub>p set ps)" |
lemma staticSecret_parts_agent:
"\<lbrakk>m \<in> parts (knows C evs); m \<in> staticSecret A\<rbrakk> \<Longrightarrow>
A=C \<or>
(\<exists>D E X. Says D E X \<in> set evs \<and> m \<in> parts{X}) \<or>
(\<exists>Y. Notes C Y \<in> set evs \<and> m \<in> parts{Y})" |
lemma valid_and_I : "\<tau> \<Turnstile> \<upsilon> (x) \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> (y) \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> (x and y)" |
lemma precedes_append_left_iff:
assumes "x \<notin> set ys"
shows "x \<preceq> y in (ys @ xs) \<longleftrightarrow> x \<preceq> y in xs" (is "?lhs = ?rhs") |
lemma ctxt_comp_n_funas [simp]:
"(f, v) \<in> funas_ctxt (C^n) \<Longrightarrow> (f, v) \<in> funas_ctxt C" |
lemma bounded_antilinear_from_conjugate_space[simp]: \<open>bounded_antilinear from_conjugate_space\<close> |
lemma nAct_active[simp]:
fixes n::nat
and n'::nat
and t::"(cnf llist)"
and c::'id
assumes "enat i < llength t"
and "\<parallel>c\<parallel>\<^bsub>lnth t i\<^esub>"
shows "\<langle>c #\<^bsub>Suc i\<^esub> t\<rangle> = eSuc (\<langle>c #\<^bsub>i\<^esub> t\<rangle>)" |
lemma (in t2_space) LIMSEQ_Uniq: "\<exists>\<^sub>\<le>\<^sub>1l. X \<longlonglongrightarrow> l" |
lemma glist_delete_id_impl:
"(glist_delete (=), \<lambda>x s. s-{x})
\<in> Id\<rightarrow>br set distinct \<rightarrow> br set distinct" |
lemma closest_pair_rec_dist:
assumes "1 < length xs" "distinct xs" "sorted_fst xs" "(ys, c\<^sub>0, c\<^sub>1) = closest_pair_rec xs"
shows "sparse (dist c\<^sub>0 c\<^sub>1) (set xs)" |
lemma position_Left_only_subst:
assumes "list_all (\<lambda>x. x = Left) p"
and "position_of (subst \<rho> w) (p @ [d])"
and "num_args (subst \<rho> w) = num_args w"
shows "position_of w (p @ [d])" |
lemma "eq\<cdot>Nothing\<cdot>x = isNothing\<cdot>x" |
lemma mult_two_impl1[elim]:
assumes "a * 2 = 2 * b"
shows "(a::enat) = b" |
lemma float_mult_r0: "x * float (0, e) = float (0, 0)" |
lemma mod_subset_add:
"\<lbrakk>(c1,c2) \<in> mod_subset p X; (d1,d2) \<in> mod_subset p X\<rbrakk> \<Longrightarrow> (c1+d1, c2+d2) \<in> mod_subset p X" |
lemma std_apart_apart':
assumes "x \<in> vars\<^sub>l (l \<cdot>\<^sub>l (\<lambda>x. Var (y@x)))"
shows "\<exists>x'. x = y@x'" |
lemma Conjs_pull_out: "Conjs Q (xys @ (x, y) # xys') \<triangleq> Conjs (Conj Q (x \<approx> y)) (xys @ xys')" |
lemma mcont_fun_lub_Sup:
"\<lbrakk> Complete_Partial_Order.chain (fun_ord (\<le>)) M;
\<forall>f\<in>M. mcont lub ord Sup (\<le>) f \<rbrakk>
\<Longrightarrow> mcont lub (\<sqsubseteq>) Sup (\<le>) (fun_lub Sup M)" |
lemma vars\<^sub>s\<^sub>s\<^sub>t_Nil[simp]: "vars\<^sub>s\<^sub>s\<^sub>t [] = {}" |
lemma "\<exists>x. \<forall>y::'a::linordered_field. y < 2 \<longrightarrow> 2 * (y - x) \<le> 0" |
lemma maximal_Seq_term:
fixes r::"'s prog" and s::"'s prog"
assumes mr: "maximal (wp r)"
and ws: "well_def s"
and ts: "(\<lambda>s. 1) \<tturnstile> wp s (\<lambda>s. 1)"
shows "(\<lambda>s. 1) \<tturnstile> wp (r ;; s) (\<lambda>s. 1)" |
lemma image_mset_subset_mono: "M \<subset># N \<Longrightarrow> image_mset f M \<subset># image_mset f N" |
lemma graphE [elim?]:
assumes "(x, y) \<in> graph F f"
obtains "x \<in> F" and "y = f x" |
lemma SeqCTerm_imp_wf_dbtm:
assumes "SeqCTerm vf s k x"
shows "\<exists>t::dbtm. wf_dbtm t \<and> x = \<lbrakk>quot_dbtm t\<rbrakk>e" |
lemma mod_mat_one: "mat_mod (1\<^sub>m n) = (1\<^sub>m n)" |
lemma test_suite_to_input_sequences_pass :
fixes T :: "('b::linorder \<times> 'c::linorder) prefix_tree"
assumes "finite_tree T"
and "(L M = L M') \<longleftrightarrow> (L M \<inter> set T = L M' \<inter> set T)"
shows "(L M = L M') \<longleftrightarrow> ({io \<in> L M . (\<exists> xs \<in> list.set (test_suite_to_input_sequences T) . \<exists> xs' \<in> list.set (prefixes xs) . input_portion io = xs')}
= {io \<in> L M' . (\<exists> xs \<in> list.set (test_suite_to_input_sequences T) . \<exists> xs' \<in> list.set (prefixes xs) . input_portion io = xs')})" |
lemma preal_add_le_cancel_left [simp]: "(t + (r::preal) \<le> t + s) = (r \<le> s)" |
lemma word_leI:
"(\<And>n. \<lbrakk>n < size (u::'a::len word); bit u n \<rbrakk> \<Longrightarrow> bit (v::'a::len word) n) \<Longrightarrow> u <= v" |
lemma casts_casts_eq_result:
fixes s :: state
assumes casts:"P \<turnstile> T casts v to v'" and casts':"P \<turnstile> T casts v to w'"
and type:"is_type P T" and wte:"P,E \<turnstile> e :: T'" and leq:"P \<turnstile> T' \<le> T"
and eval:"P,E \<turnstile> \<langle>e,s\<rangle> \<Rightarrow> \<langle>Val v,(h,l)\<rangle>" and sconf:"P,E \<turnstile> s \<surd>"
and wf:"wf_C_prog P"
shows "v' = w'" |
lemma listrel_reflcl_if_listrel1:
"(xs,ys) \<in> listrel1 r \<Longrightarrow> (xs,ys) \<in> listrel(r\<^sup>*)" |
lemma [code]: "toy_instance_single.truncate = toy_instance_single_rec (co3 K toy_instance_single.make)" |
lemma asymmetric_conv_closed:
"asymmetric x \<Longrightarrow> asymmetric (x\<^sup>T)" |
lemma adj_0[simp]: \<open>0* = 0\<close> |
lemma "(3::nat) * x + t < 0 \<and> (2 * x + y \<noteq> 17)" |
lemma LIMSEQ_neg_powr:
assumes s: "s < 0"
shows "(%x. (real x) powr s) \<longlonglongrightarrow> 0" |
lemma \<Delta>\<Phi>_pass2: "hs \<noteq> Leaf \<Longrightarrow> \<Phi> (pass\<^sub>2 hs) - \<Phi> hs \<le> log 2 (size hs)" |
lemma le_Integer_bottom_iff [simp]:
fixes x y :: Integer shows "le\<cdot>x\<cdot>y = \<bottom> \<longleftrightarrow> x = \<bottom> \<or> y = \<bottom>" |
lemma Graph4:
"\<lbrakk>T \<in> Reach E; Roots\<subseteq>Blacks M; I\<le>length E; T<length M; R<length E;
\<forall>i<I. \<not>BtoW(E!i,M); R<I; M!fst(E!R)=Black; M!T\<noteq>Black\<rbrakk> \<Longrightarrow>
(\<exists>r. I\<le>r \<and> r<length E \<and> BtoW(E[R:=(fst(E!R),T)]!r,M))" |
lemma trans_ile_iadd1: "i \<le> (j::enat) \<Longrightarrow> i \<le> j + m" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.