Statement:
stringlengths 7
24.3k
|
---|
lemma finite_set_decode [simp]: "finite (set_decode n)" |
lemma iT_Div_mod_partition_card:"
card (I \<inter> [n * d\<dots>,d - Suc 0] \<oslash> d) =
(if I \<inter> [n * d\<dots>,d - Suc 0] = {} then 0 else Suc 0)" |
lemma (in \<Z>) arr_Rel_converse_Rel_id_Rel:
assumes "c \<in>\<^sub>\<circ> Vset \<alpha>"
shows "arr_Rel \<alpha> ((id_Rel c)\<inverse>\<^sub>R\<^sub>e\<^sub>l)" |
lemma valid_put_unis: \<open>\<forall>(e :: nat \<Rightarrow> 'a) f g. eval e f g p \<Longrightarrow>
eval (e :: nat \<Rightarrow> 'a) f g (put_unis m p)\<close> |
lemma(in Order_Rule) Bet_swap_lemma_5 :
assumes
"Bet_Point (Se A C) B"
"Bet_Point (Se B D) C"
"Bet_Point (Se C F) E"
"\<not> Line_on (Li A D) F"
"\<not> Line_on (Li A C) F"
shows "Bet_Point (Se A D) C" |
lemma rootI: "r\<^sup>@k \<in> r*" |
lemma pred_stream_iff: "pred_stream P s \<longleftrightarrow> Ball (sset s) P" |
theorem bose_inequality_alternate: "\<b> \<ge> \<v> + \<r> - 1 \<longleftrightarrow> \<r> \<ge> \<k> + \<Lambda>" |
lemma H_is_gate [simp]:
"gate 1 H" |
lemma dprod_subset_Sigma2:
"(dprod (Sigma A B) (Sigma C D)) <= Sigma (uprod A C) (Split (%x y. uprod (B x) (D y)))" |
lemma semilattice_order_transfer[transfer_rule]:
assumes [transfer_rule]: "bi_unique A" "right_total A"
shows
"(
(A ===> A ===> A) ===>
(A ===> A ===> (=)) ===>
(A ===> A ===> (=)) ===>
(=)
) (semilattice_order_ow (Collect (Domainp A))) semilattice_order" |
lemma pos_empty [simp]: "pos [] = False" |
lemma (in bin_cpx) Z_I_XpZ_trace:
assumes "lhv M Z_I I_XpZ R Vz Vp"
and "R\<in> fc_mats"
shows "LINT w|M. (qt_expect Z_I Vz w) * (qt_expect I_XpZ Vp w) =
Re (Complex_Matrix.trace (R * Z_XpZ))" |
lemma Rf_mono_on_iia_on:
shows "mono_on (Pow A) (Rf f) \<longleftrightarrow> iia_on A f" |
lemma memo_rbt_trancl:
"rs.\<alpha> (memo_rbt_trancl r a) = {b. (a, b) \<in> (set r)\<^sup>+}" (is "?l = ?r") |
lemma FGModuleHom_restrict0_GSubspace :
assumes "GSubspace U"
shows "FGModuleHom G smult U smult' (T \<down> U)" |
lemma snd3_simp[simp]: "snd3 (a,b,c) = b" |
lemma seqSubstRes[simp]:
fixes x :: name
and P :: pi
and \<sigma> :: "(name \<times> name) list"
assumes "x \<sharp> \<sigma>"
shows "(<\<nu>x>P)[<\<sigma>>] = <\<nu>x>(P[<\<sigma>>])" |
lemma irreducibleE[elim]:
assumes "irreducible p"
and "p \<noteq> 0 \<Longrightarrow> \<not> p dvd 1 \<Longrightarrow> (\<And>a b. p = a * b \<Longrightarrow> a dvd 1 \<or> b dvd 1) \<Longrightarrow> thesis"
shows thesis |
lemma i_Exec_Stream_Init_nth_Plus1_calc: "
i_Exec_Comp_Stream_Init trans_fun input c (n + 1) =
trans_fun (input n) (i_Exec_Comp_Stream_Init trans_fun input c n)" |
theorem ca:
assumes nb: "evalDdb e\<cdot>env_empty_db \<noteq> \<bottom>"
assumes "closed e"
shows "\<exists>V. e \<Down> V" |
lemma S_K2_empty: "S \<inter> K2 = {}" |
lemma subset_dual1: "(X \<subseteq> Y) \<longleftrightarrow> (\<partial> ` X \<subseteq> \<partial> ` Y)" |
lemma blinding_hash_eq: "bo x y \<Longrightarrow> h x = h y" |
lemma relation_of_CSP2: "(relation_of x) is CSP2 healthy" |
lemma phull_closed_mult_scalar: "p \<in> phull B \<Longrightarrow> monomial c 0 \<odot> p \<in> phull B" |
theorem hurwitz_zeta_functional_equation:
fixes h k :: nat and s :: complex
assumes hk: "k > 0" "h \<in> {0<..k}" and s: "s \<notin> {0, 1}"
defines "a \<equiv> real h / real k"
shows "rGamma s * hurwitz_zeta a (1 - s) =
2 * (2 * pi * k) powr -s *
(\<Sum>n=1..k. cos (s*pi/2 - 2*pi*n*h/k) * hurwitz_zeta (n / k) s)" |
lemma effect_to_assignments_i:
assumes "as = effect_to_assignments op"
shows "as = (map (\<lambda>v. (v, True)) (add_effects_of op)
@ map (\<lambda>v. (v, False)) (delete_effects_of op))" |
lemma subcls_into_widen1_rtrancl:
"P \<turnstile> C \<preceq>\<^sup>* D \<Longrightarrow> P \<turnstile> Class C <\<^sup>* Class D" |
lemma store_bound_under:
assumes "tag c = True"
and "perm_store c = True"
and "\<And> cv. \<lbrakk> v = Cap_v cv; tag cv \<rbrakk> \<Longrightarrow> perm_cap_store c \<and> (perm_cap_store_local c \<or> perm_global cv)"
and "offset c + |memval_type v|\<^sub>\<tau> \<le> base c + len c"
and "offset c < base c"
shows "store h c v = Error (C2Err LengthViolation)" |
lemma os_empty_impl: "imp_list_empty os_list os_empty" |
lemma ball_empty: "e \<le> 0 \<Longrightarrow> ball x e = {}" |
lemma "0 = dist x y \<Longrightarrow> x = y" |
lemma csmall_nstep_Suc_nend: "o' \<in> csmall_nstep P \<sigma> (Suc n1) \<Longrightarrow> \<sigma> \<notin> endset" |
lemma
differentiable_bound_segment:
fixes f::"'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
assumes "\<And>t. t \<in> {0..1} \<Longrightarrow> x0 + t *\<^sub>R a \<in> G"
assumes f': "\<And>x. x \<in> G \<Longrightarrow> (f has_derivative f' x) (at x within G)"
assumes B: "\<And>x. x \<in> {0..1} \<Longrightarrow> onorm (f' (x0 + x *\<^sub>R a)) \<le> B"
shows "norm (f (x0 + a) - f x0) \<le> norm a * B" |
lemma weakPsiCongOutputPushRes:
fixes x :: name
and \<Psi> :: 'b
and M :: 'a
and N :: 'a
and P :: "('a, 'b, 'c) psi"
assumes "x \<sharp> \<Psi>"
and "x \<sharp> M"
and "x \<sharp> N"
shows "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(M\<langle>N\<rangle>.P) \<doteq> M\<langle>N\<rangle>.\<lparr>\<nu>x\<rparr>P" |
lemma squarefree_decomposition_unique:
assumes "square_part m = square_part n"
assumes "squarefree_part m = squarefree_part n"
shows "m = n" |
lemma "\<turnstile> \<lbrace>\<acute>N = 5\<rbrace> \<acute>N := 2 * \<acute>N \<lbrace>\<acute>N = 10\<rbrace>" |
theorem integral_times:
assumes int: "integrable f M"
shows "integrable (\<lambda>t. a*f t) M" and "\<integral> (\<lambda>t. a*f t) \<partial>M = a*\<integral> f \<partial>M" |
lemma mat_of_col_last_nth[simp]:
"\<lbrakk> i < n; i < dim_col A \<rbrakk> \<Longrightarrow> col (mat_col_last A n) i = col A (dim_col A - n + i)" |
lemma red_in_Hom [intro]:
assumes "Ide t"
shows "t\<^bold>\<down> \<in> HHom (Src t) (Trg t)" and "t\<^bold>\<down> \<in> VHom t \<^bold>\<lfloor>t\<^bold>\<rfloor>" |
lemma splits_at_append_prefix:
"splits_at v i \<alpha> N \<beta> \<Longrightarrow> splits_at (u@v) (i + length u) (u@\<alpha>) N \<beta>" |
lemma line_convex_combination1: "(1 - u) *\<^sub>R line a b i + u *\<^sub>R b = line a b (i + u - i * u)" |
lemma fold_const_fa[simp]: "interpret_floatarith (fold_const_fa fa) xs = interpret_floatarith fa xs" |
lemma dilating_fun_image_left:
assumes \<open>dilating_fun f r\<close>
shows \<open>{k. f m \<le> k \<and> k < f n \<and> hamlet ((Rep_run r) k c)}
= image f {k. m \<le> k \<and> k < n \<and> hamlet ((Rep_run r) (f k) c)}\<close>
(is \<open>?IMG = image f ?SET\<close>) |
lemma beta_lc[simp]:
fixes t t'
assumes "t \<rightarrow>\<^sub>\<beta> t'"
shows "lc t \<and> lc t'" |
lemma delete_text0[simp]: "get_pos b=0 \<Longrightarrow> get_text (delete b) = get_text b" |
lemma bv_int_bv [simp]: "bv_to_int (int_to_bv i) = i" |
lemma eqd_pref2: "x \<cdot> y = u \<cdot> v \<Longrightarrow> \<^bold>|x\<^bold>| \<le> \<^bold>|u\<^bold>| \<Longrightarrow> (x\<inverse>\<^sup>>u) \<cdot> v = y" |
lemma seqr_or_distr:
"(P ;; (Q \<or> R)) = ((P ;; Q) \<or> (P ;; R))" |
lemma refl_on_program_order:
"refl_onP (actions E) (program_order E)" |
lemma merge_upd [simp]: "map_of (merge m (update k v n)) = map_of (update k v (merge m n))" |
lemma nn_transfer_operator_cong:
assumes "AE x in M. f x = g x"
and [measurable]: "f \<in> borel_measurable M" "g \<in> borel_measurable M"
shows "AE x in M. nn_transfer_operator f x = nn_transfer_operator g x" |
lemma (in Corps) convergenceTr:"\<lbrakk>valuation K v; x \<in> carrier K; b \<in> carrier K;
b \<in> (vp K v)\<^bsup>(Vr K v) n\<^esup>; (Abs (n_val K v x)) \<le> n\<rbrakk> \<Longrightarrow>
x \<cdot>\<^sub>r b \<in> (vp K v)\<^bsup>(Vr K v) (n + (n_val K v x))\<^esup>" |
lemma convex_translation_subtract:
"convex ((\<lambda>b. b - a) ` S)" if "convex S" |
lemma Cl_F: "Int_1a \<I> \<Longrightarrow> Int_2 \<I> \<Longrightarrow> Int_4 \<I> \<Longrightarrow> \<forall>A. Cl(\<F> A)" |
lemma keysFor_synth [simp]:
"keysFor (synth H) = keysFor H \<union> invKey`{K. Key K \<in> H}" |
lemma sum_infsum:
fixes f :: "'a \<Rightarrow> 'b::{topological_comm_monoid_add, t2_space}"
assumes finite: \<open>finite A\<close>
assumes conv: \<open>\<And>a. a \<in> A \<Longrightarrow> f summable_on (B a)\<close>
assumes disj: \<open>\<And>a a'. a\<in>A \<Longrightarrow> a'\<in>A \<Longrightarrow> a\<noteq>a' \<Longrightarrow> B a \<inter> B a' = {}\<close>
shows \<open>sum (\<lambda>a. infsum f (B a)) A = infsum f (\<Union>a\<in>A. B a)\<close> |
lemma map_of_append:
"map_of ((rev xs) @ ys) = (map_of ys) ((map fst xs) [\<mapsto>] (map snd xs))" |
lemma test_bit_conj_lt:
"(bit x m \<and> m < LENGTH('a)) = bit x m" for x :: "'a :: len word" |
lemma deg_comp_pos:
assumes "cmp u v = Lt" and "fst (rep_nat_term u) = fst (rep_nat_term v)"
shows "deg_comp cmp u v = Lt" |
lemma ring_chain: "R \<in> C \<Longrightarrow> ring R" |
lemma l1:
"-top = bot" |
lemma int_cancel_factors:
fixes n :: int
assumes "1 < r"
shows "n = 0 \<or> (\<exists>k i. n = k * r ^ i \<and> \<not> r dvd k)" |
lemma GS_iter_max_code [code]: "GS_iter_max v s = (MAX a \<in> A s. GS_iter a v s)" |
lemma keys_map_values [simp]: "keys (map_values f m) = keys m" |
theorem condensation_test:
assumes mono: "\<And>m. 0 < m \<Longrightarrow> f (Suc m) \<le> f m"
assumes nonneg: "\<And>n. f n \<ge> 0"
shows "summable f \<longleftrightarrow> summable (\<lambda>n. 2^n * f (2^n))" |
theorem pr_gr_value: "c_assoc_value (pr_gr (loc_upb n x)) (c_pair n x) = univ_for_pr (c_pair n x)" |
lemma global_reg_mod_privilege: "s' = global_reg_mod w1 n w2 s \<and>
(((get_S (cpu_reg_val PSR s)))::word1) = 0 \<Longrightarrow>
(((get_S (cpu_reg_val PSR s')))::word1) = 0" |
theorem liftT_substT' [simp]:
"k' < k \<Longrightarrow>
\<up>\<^sub>\<tau> n k (T[k' \<mapsto>\<^sub>\<tau> U]\<^sub>\<tau>) = \<up>\<^sub>\<tau> n (k + 1) T[k' \<mapsto>\<^sub>\<tau> \<up>\<^sub>\<tau> n (k - k') U]\<^sub>\<tau>"
"k' < k \<Longrightarrow>
\<up>\<^sub>r\<^sub>\<tau> n k (rT[k' \<mapsto>\<^sub>\<tau> U]\<^sub>r\<^sub>\<tau>) = \<up>\<^sub>r\<^sub>\<tau> n (k + 1) rT[k' \<mapsto>\<^sub>\<tau> \<up>\<^sub>\<tau> n (k - k') U]\<^sub>r\<^sub>\<tau>"
"k' < k \<Longrightarrow>
\<up>\<^sub>f\<^sub>\<tau> n k (fT[k' \<mapsto>\<^sub>\<tau> U]\<^sub>f\<^sub>\<tau>) = \<up>\<^sub>f\<^sub>\<tau> n (k + 1) fT[k' \<mapsto>\<^sub>\<tau> \<up>\<^sub>\<tau> n (k - k') U]\<^sub>f\<^sub>\<tau>" |
lemma prod_assn_precise[constraint_rules]:
"precise P1 \<Longrightarrow> precise P2 \<Longrightarrow> precise (prod_assn P1 P2)" |
lemma eqvtI[eqvt]:
fixes P :: pi
and Q :: pi
and perm :: "name prm"
assumes "P \<approx> Q"
shows "(perm \<bullet> P) \<approx> (perm \<bullet> Q)" |
lemma mk_linear_orders_decisive_on_set_r:
assumes "r \<in> mk_linear_orders C B"
assumes "decisive_on A f"
assumes "B \<subseteq> A"
shows "set r = B" |
lemma Gromov_extension_onto':
fixes f::"'a::Gromov_hyperbolic_space_geodesic \<Rightarrow> 'b::Gromov_hyperbolic_space_geodesic"
assumes "lambda C-quasi_isometry_between UNIV UNIV f"
shows "(Gromov_extension f)`Gromov_boundary = Gromov_boundary" |
lemma llist_of_lprefix_llist_of [simp]:
"lprefix (llist_of xs) (llist_of ys) \<longleftrightarrow> xs \<le> ys" |
lemma infinite_contains_2_elems:
assumes "infinite A"
shows "\<exists> x y. x \<noteq> y \<and> x \<in> A \<and> y \<in> A" |
lemma heapmap_nres_rel_prodI:
assumes "hmx \<le> \<Down>(UNIV \<times>\<^sub>r hmr_rel) h'x"
assumes "h'x \<le> SPEC (\<lambda>(_,h'). h.heap_invar h')"
assumes "hmx \<le>\<^sub>n SPEC (\<lambda>(r,hm'). RETURN (r,heapmap_\<alpha> hm') \<le> \<Down>(R\<times>\<^sub>rId) hx)"
shows "hmx \<le> \<Down>(R\<times>\<^sub>rheapmap_rel) hx" |
lemma decide_step:
assumes run: "HORun UV_M rho HOs"
and decide: "decide (rho (Suc r) p) \<noteq> decide (rho r p)"
shows "step r = 1" |
lemma rell_FGf_mono_strong:
assumes "rell_FGf L1 L2 x y"
and "\<And>a b. a \<in> set1_FGf x \<Longrightarrow> b \<in> set1_FGf y \<Longrightarrow> L1 a b \<Longrightarrow> L1' a b"
and "\<And>a b. a \<in> set2_FGf x \<Longrightarrow> b \<in> set2_FGf y \<Longrightarrow> L2 a b \<Longrightarrow> L2' a b"
shows "rell_FGf L1' L2' x y" |
theorem dist_induces_open:
"open U \<longleftrightarrow> (\<forall>x\<in>U. \<exists>e>0. \<forall>y. dist x y < e \<longrightarrow> y \<in> U)" |
lemma id_eq_prop_prop_7_b[PLM]:
"[(p::\<o>) \<^bold>= p in v]" |
lemma not_negligible_1: "\<not> negligible (\<lambda>_. 1 :: real)" |
lemma varFIXvar: "(PhiWhile b \<Phi> (s,t,\<beta>)) = ((b,\<Phi>,\<beta>,s,t):var)" |
lemma C_Red_term_ML:
"v \<Rightarrow> v' \<Longrightarrow> C_normal\<^sub>M\<^sub>L v \<Longrightarrow> dterm\<^sub>M\<^sub>L v = C nm \<bullet>\<bullet> ts
\<Longrightarrow> dterm\<^sub>M\<^sub>L v' = C nm \<bullet>\<bullet> map dterm (C\<^sub>U_args(term v')) \<and>
C\<^sub>U_args(term v) [\<Rightarrow>*] C\<^sub>U_args(term v') \<and>
ts = map dterm (C\<^sub>U_args(term v))" and
"(vs:: ml list) \<Rightarrow> vs' \<Longrightarrow> i < length vs \<Longrightarrow> vs ! i \<Rightarrow>* vs' ! i" |
lemma AbstrLevels_A8_A82:
assumes "sA8 \<in> AbstrLevel i"
shows "sA82 \<notin> AbstrLevel i" |
lemma cut_le_inext_nth_card_eq2: "
\<lbrakk> finite I; card I \<le> Suc n \<rbrakk> \<Longrightarrow> card (I \<down>\<le> (I \<rightarrow> n)) = card I" |
lemma relprime:
fixes q::"real poly"
assumes "coprime p q"
assumes "p \<noteq> 0"
assumes "q \<noteq> 0"
shows "changes_R_smods p (pderiv p) = card {x. poly p x = 0 \<and> poly q x > 0} + card {x. poly p x = 0 \<and> poly q x < 0}" |
lemma "(\<forall>x y. \<exists>z. \<forall>w. (P(x)\<and>Q(y)\<longrightarrow>R(z)\<and>S(w)))
\<longrightarrow> (\<exists>x y. P(x) \<and> Q(y)) \<longrightarrow> (\<exists>z. R(z))" |
lemma max_input_Times:
"max_input (Times a1 a2) = max (max_input a1) (max_input a2)" |
lemma iso_view\<^sub>m: "type_definition from_view\<^sub>m to_view\<^sub>m UNIV" |
lemma blinding_blinds [simp]:
"is_blinded (blind_source_tree h t)" |
lemma inv_state: "inv(state f n)" |
lemma elements_four_block_mat_id:
assumes c: "A \<in> carrier_mat nr1 nc1" "B \<in> carrier_mat nr1 nc2"
"C \<in> carrier_mat nr2 nc1" "D \<in> carrier_mat nr2 nc2"
shows
"elements_mat (four_block_mat A B C D) =
elements_mat A \<union> elements_mat B \<union> elements_mat C \<union> elements_mat D"
(is "elements_mat ?four = ?X") |
lemma (in cring) ideal_prod_commute:
assumes "ideal I R" "ideal J R"
shows "I \<cdot> J = J \<cdot> I" |
lemma list_comb_cond_inj:
assumes "list_comb f xs = list_comb g ys" "left_nesting f = left_nesting g"
shows "xs = ys" "f = g" |
lemma shiftr_less_t2n3:
"\<lbrakk> (2 :: 'a word) ^ (n + m) = 0; m < LENGTH('a) \<rbrakk>
\<Longrightarrow> (x :: 'a :: len word) >> n < 2 ^ m" |
lemma plus_cont: "f \<in> bcontfun \<Longrightarrow> g \<in> bcontfun \<Longrightarrow> (\<lambda>x. f x + g x) \<in> bcontfun" for f g::"'a \<Rightarrow> 'b" |
lemma start_clinit_wt_method:
assumes "P \<turnstile> C sees M, Static : []\<rightarrow>Void = m in D" and "M \<noteq> clinit" and "\<not> is_class P Start"
shows "wt_method (start_prog P C M) Start Static [] Void 1 0 [Push Unit,Return] [] start_\<phi>\<^sub>m"
(is "wt_method ?P ?C ?b ?Ts ?T\<^sub>r ?mxs ?mxl\<^sub>0 ?is ?xt ?\<tau>s") |
lemma ex_opt_blinfun: "\<exists>d. \<forall>s. is_arg_max (\<lambda>d. ((inv\<^sub>L (Q_GS d)) (r_det\<^sub>b d + (R_GS d) v)) s) is_dec_det d" |
lemma rl_thm':
assumes lp: "iszlfm p (real_of_int (i::int)#bs)"
and R: "(\<lambda>(b,k). (Inum (a#bs) b,k)) ` R = (\<lambda>(b,k). (Inum (a#bs) b,k)) ` set (\<rho> p)"
shows "(\<exists> (x::int). Ifm (real_of_int x#bs) p) = ((\<exists> j\<in> {1 .. \<delta> p}. Ifm (real_of_int j#bs) (minusinf p)) \<or> (\<exists> (e,c) \<in> R. \<exists> j\<in> {1.. c*(\<delta> p)}. Ifm (a#bs) (\<sigma> p c (Add e (C j)))))" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.