kor_sent
stringlengths
1
5.4k
βŒ€
eng_sent
stringlengths
1
17.5k
βŒ€
source
stringclasses
4 values
similarity
float64
0.12
1
βŒ€
from
stringclasses
5 values
__index_level_0__
float64
0
1.78M
βŒ€
μ–΄λ–»κ²Œ 이해해야 ν• κΉŒμš”?
How do I make sense out of it?
IWSLT2017
null
null
null
μ—¬λŸ¬λΆ„μ΄ μŠ€μ›¨λ΄μ‚° 가ꡬλ₯Ό μ–Όλ§ˆλ‚˜ 잘 μ‘°λ¦½ν•˜λŠ”μ§€μ™€ 상관없이 이것은 일생을 바쳐도 ν’€ 수 없을 κ²λ‹ˆλ‹€.
Well, for however good you can be at assembling Swedish furniture, this instruction manual is nothing you can crack in your life.
IWSLT2017
null
null
null
κ·Έλž˜μ„œ 2014λ…„ 유λͺ…ν•œ TED κ°•μ—°μžμ΄μ‹  ν”Όν„° λ‹€μ΄μ•„λ§¨λ””μŠ€μ™€ 크레이그 λ²€ν„°λŠ” νšŒμ‚¬λ₯Ό μ„€λ¦½ν•˜κΈ°λ‘œ ν–ˆμŠ΅λ‹ˆλ‹€.
And so, in 2014, two famous TEDsters, Peter Diamandis and Craig Venter himself, decided to assemble a new company.
IWSLT2017
null
null
null
β€˜Human Longevityβ€™λŠ” ν•œ λͺ©μ  λ§Œμ„ μœ„ν•΄ μƒκ²ΌμŠ΅λ‹ˆλ‹€. ν•„μš”ν•œ λͺ¨λ“  μˆ˜λ‹¨μ„ μ΄μš©ν•˜μ—¬ 이 μ±…μ—μ„œ κ°€λŠ₯ν•œ ν•œ λͺ¨λ“  것을 λ°°μš°λŠ” κ²ƒμž…λ‹ˆλ‹€. λ§žμΆ€ν˜• μ˜μ•½μ˜ ν˜„μ‹€ν™”λž€ ν•œ λͺ©μ μ„ μœ„ν•΄μ„œμš”. 이λ₯Ό μœ„ν•΄ 인λ₯˜μ˜ 건강을 μœ„ν•œ 과제λ₯Ό μ°Ύκ³  책에 μˆ¨κ²¨μ§„ 비밀을 μ°ΎλŠ” κ²ƒμž…λ‹ˆλ‹€.
Human Longevity was born, with one mission: trying everything we can try and learning everything we can learn from these books, with one target -- making real the dream of personalized medicine, understanding what things should be done to have better health and what are the secrets in these books.
IWSLT2017
null
null
null
저희 νŒ€μ€ 40λͺ…μ˜ 데이터 κ³Όν•™μžμ™€ 더 λ§Žμ€ μ‚¬λžŒμœΌλ‘œ μ΄λ£¨μ–΄μ‘ŒμŠ΅λ‹ˆλ‹€. λͺ¨λ‘ 쑴경슀러운 뢄듀이죠.
An amazing team, 40 data scientists and many, many more people, a pleasure to work with.
IWSLT2017
null
null
null
μ €ν¬μ˜ 접근법은 사싀 ꡉμž₯히 κ°„λ‹¨ν•©λ‹ˆλ‹€.
The concept is actually very simple.
IWSLT2017
null
null
null
μ €ν¬λŠ” 기계 ν•™μŠ΅μ΄λΌλŠ” κΈ°μˆ μ„ μ‚¬μš©ν•©λ‹ˆλ‹€.
We're going to use a technology called machine learning.
IWSLT2017
null
null
null
λ¨Όμ € μœ μ „μžλ₯Ό 수천 개 μ±„μ·¨ν•˜κ³ 
On one side, we have genomes -- thousands of them.
IWSLT2017
null
null
null
λ™μ‹œμ— 인간에 κ΄€ν•œ λͺ¨λ“  정보λ₯Ό μ‘°μ‚¬ν•©λ‹ˆλ‹€. ν‘œν˜„ν˜•, 3D μŠ€μΊ”, NMR을 ν¬ν•¨ν•œ λͺ¨λ“  κ²ƒμ„μš”.
On the other side, we collected the biggest database of human beings: phenotypes, 3D scan, NMR -- everything you can think of.
IWSLT2017
null
null
null
이 두 개 사이에 μœ μ „μžλ₯Ό 읽기 μœ„ν•œ 비밀이 있겠죠.
Inside there, on these two opposite sides, there is the secret of translation.
IWSLT2017
null
null
null
그리고 이 λ‹¨κ³„μ—μ„œ 기계가 μ‚¬μš©λ©λ‹ˆλ‹€.
And in the middle, we build a machine.
IWSLT2017
null
null
null
기계λ₯Ό λ§Œλ“€κ³ , ν›ˆλ ¨ν•©λ‹ˆλ‹€. ν•œ κ°œκ°€ μ•„λ‹Œ μ—„μ²­λ‚œ 수의 기계듀을 μœ μ „μžμ˜ λ‚΄μš©μœΌλ‘œλΆ€ν„° ν‘œν˜„ν˜•μ„ 찾도둝 ν›ˆλ ¨ν•©λ‹ˆλ‹€.
We build a machine and we train a machine -- well, not exactly one machine, many, many machines -- to try to understand and translate the genome in a phenotype.
IWSLT2017
null
null
null
각 DNA μ•ŒνŒŒλ²³μ€ 무엇이고 μ–΄λ–€ 역할을 ν•˜λŠ”μ§€ μ‘°μ‚¬ν•˜λ„λ‘ 말이죠.
What are those letters, and what do they do?
IWSLT2017
null
null
null
기계 ν•™μŠ΅μ€ λͺ¨λ“  λΆ„μ•Όμ—μ„œ μ‚¬μš©λ˜μ§€λ§Œ, μœ μ „μ²΄ν•™μ—μ„œ μ‚¬μš©ν•˜λŠ” 것은 특히 μ–΄λ ΅μŠ΅λ‹ˆλ‹€.
It's an approach that can be used for everything, but using it in genomics is particularly complicated.
IWSLT2017
null
null
null
μ‘°κΈˆμ”© μ„±κ³Όλ₯Ό λ‚΄λ©΄μ„œ μ €ν¬λŠ” κ³Όμ œλ“€μ„ ν™•μž₯ν•΄κ°”μŠ΅λ‹ˆλ‹€.
Little by little we grew and we wanted to build different challenges.
IWSLT2017
null
null
null
λ¨Όμ € μΈκ°„μ˜ 일반적 νŠΉμ§•λΆ€ν„° ν•΄λ…ν–ˆμŠ΅λ‹ˆλ‹€.
We started from the beginning, from common traits.
IWSLT2017
null
null
null
일반적 νŠΉμ§•μ€ λͺ¨λ‘κ°€ κ°€μ§„ νŠΉμ§•μ΄μ–΄μ„œ 닀루기 νŽΈν•΄μ„œμ΄μ£ .
Common traits are comfortable because they are common, everyone has them.
IWSLT2017
null
null
null
κ³Όμ œλ“€μ€ λ‹€μŒκ³Ό κ°™μ•˜μŠ΅λ‹ˆλ‹€. ν‚€λ₯Ό μ˜ˆμΈ‘ν•  수 μžˆμ„κΉŒ?
So we started to ask our questions: Can we predict height?
IWSLT2017
null
null
null
이 μ±…μ—μ„œ μ‚¬λžŒμ˜ ν‚€λ₯Ό μ•Œ 수 μžˆμ„κΉŒ?
Can we read the books and predict your height?
IWSLT2017
null
null
null
정말 κ°€λŠ₯ν•œ μΌμ΄λ”κ΅°μš”. 5cm μ˜€μ°¨λ‘œμš”.
Well, we actually can, with five centimeters of precision.
IWSLT2017
null
null
null
μ²΄μ§ˆλŸ‰μ§€μˆ˜λŠ” μƒν™œμŠ΅κ΄€μ— μ’Œμš°λ©λ‹ˆλ‹€λ§Œ μ—¬μ „νžˆ 8kg 였차둜 μ–ΌμΆ” λ§žλ”κ΅°μš”.
BMI is fairly connected to your lifestyle, but we still can, we get in the ballpark, eight kilograms of precision.
IWSLT2017
null
null
null
눈 색깔도 μ•ŒκΉŒμš”?
Can we predict eye color?
IWSLT2017
null
null
null
κ°€λŠ₯ν•©λ‹ˆλ‹€. 80%λ‘œμš”.
Eighty percent accuracy.
IWSLT2017
null
null
null
ν”ΌλΆ€ μƒ‰κΉ”μ€μš”?
Can we predict skin color?
IWSLT2017
null
null
null
μ—­μ‹œ 80%둜 κ°€λŠ₯ν•©λ‹ˆλ‹€.
Yeah we can, 80 percent accuracy.
IWSLT2017
null
null
null
λ‚˜μ΄λ„ λ κΉŒμš”?
Can we predict age?
IWSLT2017
null
null
null
κ·ΈλŸΌμš”. 세월이 μ§€λ‚˜λ©΄μ„œ μ•”ν˜Έκ°€ λ°”λ€Œκ±°λ“ μš”.
We can, because apparently, the code changes during your life.
IWSLT2017
null
null
null
μ§§μ•„μ§€κ³ , λ‚΄μš©μ΄ λΉ μ§€κ³ , 듀어가기도 ν•˜μ§€μš”.
It gets shorter, you lose pieces, it gets insertions.
IWSLT2017
null
null
null
이런 μ§•ν›„λ₯Ό μ°Ύμ•„μ„œ λͺ¨λΈν™”ν•˜λ©΄ κ°€λŠ₯ν•©λ‹ˆλ‹€.
We read the signals, and we make a model.
IWSLT2017
null
null
null
이제 μž¬λ°ŒλŠ” λ‚΄μš©μ΄ λ‚˜μ˜΅λ‹ˆλ‹€. μ‚¬λžŒμ˜ 얼꡴을 μ•Œ 수 μžˆμ„κΉŒμš”?
Now, an interesting challenge: Can we predict a human face?
IWSLT2017
null
null
null
이 κ³Όμ œκ°€ μ–΄λ €μš΄ μ΄μœ λŠ” 얼꡴을 μ΄λ£¨λŠ” 뢀뢄이 μ±… 곳곳에 퍼져있기 λ•Œλ¬Έμž…λ‹ˆλ‹€.
It's a little complicated, because a human face is scattered among millions of these letters.
IWSLT2017
null
null
null
μ–Όκ΅΄μ΄λž€ κ°œλ… μžμ²΄κ°€ λͺ…ν™•ν•˜μ§€ μ•ŠκΈ°λ„ ν•˜κ³ μš”.
And a human face is not a very well-defined object.
IWSLT2017
null
null
null
κ·Έλž˜μ„œ λ¨Όμ € 얼꡴을 μ •μ˜ν•΄μ„œ 기계에 κ°€λ₯΄μΉ˜κ³  μ½”λ”©, μ••μΆ•ν•˜λŠ” 일을 λͺ¨λ‘ ν•΄μ•Ό ν–ˆμŠ΅λ‹ˆλ‹€.
So, we had to build an entire tier of it to learn and teach a machine what a face is, and embed and compress it.
IWSLT2017
null
null
null
기계 ν•™μŠ΅μ„ 잘 μ•„μ‹œλŠ” λΆ„μ΄μ‹œλ©΄ 이 과정이 μ–Όλ§ˆλ‚˜ νž˜λ“€μ§€ μ•„μ‹€ κ²λ‹ˆλ‹€.
And if you're comfortable with machine learning, you understand what the challenge is here.
IWSLT2017
null
null
null
그리고 인λ₯˜κ°€ DNA 배열을 μ•Œμ•„λ‚Έ μ§€ 15년이 μ§€λ‚˜μ„œ μ˜¬ν•΄ 10μ›”λΆ€ν„° μ‹€λ§ˆλ¦¬κ°€ 보이기 μ‹œμž‘ν–ˆμŠ΅λ‹ˆλ‹€.
Now, after 15 years -- 15 years after we read the first sequence -- this October, we started to see some signals.
IWSLT2017
null
null
null
μ•„μ£Ό 감동적인 μˆœκ°„μ΄μ—ˆμŠ΅λ‹ˆλ‹€.
And it was a very emotional moment.
IWSLT2017
null
null
null
이 얼꡴은 우리 연ꡬ원 ν•œ λͺ…μ˜ μ–Όκ΅΄μž…λ‹ˆλ‹€.
What you see here is a subject coming in our lab.
IWSLT2017
null
null
null
κΈ°κ³„λ‘œ μ˜ˆμΈ‘ν•΄μ•Ό ν•  얼꡴이죠.
This is a face for us.
IWSLT2017
null
null
null
μ‹€μ œ 사진을 찍고 λ‹¨μˆœν™” 과정을 쑰금 κ±°μ³€μŠ΅λ‹ˆλ‹€. 얼꡴에 μžˆλŠ” λ§Žμ€ νŠΉμ§•, 흠, λΉ„λŒ€μΉ­ ꡬ쑰가 생후에 생긴 것이기 λ•Œλ¬Έμ΄μ£ .
So we take the real face of a subject, we reduce the complexity, because not everything is in your face -- lots of features and defects and asymmetries come from your life.
IWSLT2017
null
null
null
얼꡴을 λŒ€μΉ­ ꡬ쑰둜 νŽΈμ§‘ν•œ ν›„ μ•Œκ³ λ¦¬μ¦˜μ„ μ‹€ν–‰ν•©λ‹ˆλ‹€.
We symmetrize the face, and we run our algorithm.
IWSLT2017
null
null
null
μ§€κΈˆ λ³΄μ—¬λ“œλ¦¬λŠ” μ΄λ―Έμ§€λŠ” ν˜ˆμ•‘μ—μ„œ 얼꡴을 μ˜ˆμƒν•œ κ²°κ³Όμž…λ‹ˆλ‹€.
The results that I show you right now, this is the prediction we have from the blood.
IWSLT2017
null
null
null
μž μ‹œλ§Œμš”.
Wait a second.
IWSLT2017
null
null
null
μ—¬λŸ¬λΆ„λ“€μ€ μ§€κΈˆ 두 이미지λ₯Ό 쒌우둜 λ²ˆκ°ˆμ•„ λ³΄λ©΄μ„œ
and your brain wants those pictures to be identical.
IWSLT2017
null
null
null
μ†μœΌλ‘œ 두 사진이 λ‹Ήμ—°νžˆ 같을 것이라 μ—¬κΈΈ 수 μžˆμŠ΅λ‹ˆλ‹€.
So I ask you to do another exercise, to be honest.
IWSLT2017
null
null
null
μ €λŠ” μ—¬λŸ¬λΆ„μ΄ μ •μ§ν•˜κ²Œ λ³΄μ‹œκΈΈ λ°”λžλ‹ˆλ‹€. 차이점듀을 μ°Ύμ•„λ³΄μ‹œκΈ° λ°”λžλ‹ˆλ‹€.
Please search for the differences, which are many.
IWSLT2017
null
null
null
λΉ„μŠ·ν•œμ§€λ₯Ό νŒλ‹¨ν•˜λŠ” 기쀀은 성별, λ‚˜μ΄, μ²΄μ§ˆλŸ‰μ§€μˆ˜, λ―Όμ‘±μ„±μœΌλ‘œ 크게 λ‚˜λ‰˜κ² μ£ .
The biggest amount of signal comes from gender, then there is age, BMI, the ethnicity component of a human.
IWSLT2017
null
null
null
κ·Έ μ‚¬μ΄μ—μ„œ μ€‘μš”λ„λ₯Ό λ”°μ§€λŠ” 것은 더 λ³΅μž‘ν•  κ²ƒμž…λ‹ˆλ‹€. ν•˜μ§€λ§Œ 차이듀을 생각해도 κ²°κ³Όλ₯Ό λ³΄μ‹œλ©΄ 저희가 λͺ©ν‘œλ‘œ μ œλŒ€λ‘œ κ°€κ³  있고
And scaling up over that signal is much more complicated. But what you see here, even in the differences, lets you understand that we are in the right ballpark, that we are getting closer.
IWSLT2017
null
null
null
근접해감을 μ•„μ‹€ κ²λ‹ˆλ‹€.
And it's already giving you some emotions.
IWSLT2017
null
null
null
감동을 ν•˜μ‹  뢄도 계싀 κ²ƒμž…λ‹ˆλ‹€. λ‹€λ₯Έ μ‹€ν—˜λŒ€μƒμ˜ 사진과 μ˜ˆμƒκ²°κ³Όμž…λ‹ˆλ‹€.
This is another subject that comes in place, and this is a prediction.
IWSLT2017
null
null
null
얼꡴이 μ’€ μž‘κ²Œ λ‚˜μ™”κ³  두상이 μ™„μ „ν•˜μ§€λŠ” μ•Šμ§€λ§Œ μ—¬μ „νžˆ λŒ€μ²΄λ‘œ κ°™μŠ΅λ‹ˆλ‹€.
A little smaller face, we didn't get the complete cranial structure, but still, it's in the ballpark.
IWSLT2017
null
null
null
λ‹€λ₯Έ μ—°κ΅¬μ›μ˜ 사진과 μ˜ˆμƒκ²°κ³Όμž…λ‹ˆλ‹€.
and this is the prediction.
IWSLT2017
null
null
null
μ €ν¬λŠ” 기계λ₯Ό ν›ˆλ ¨ν•˜λ©΄μ„œ 이 얼꡴듀을 보여주지 μ•Šμ•˜μŠ΅λ‹ˆλ‹€.
So these people have never been seen in the training of the machine.
IWSLT2017
null
null
null
μ΄λ ‡κ²Œ ν…ŒμŠ€νŠΈμ™€ ν›ˆλ ¨μ΄ λΆ„λ¦¬λœ 것을 β€œν—¬λ“œ 아웃”이라 ν•©λ‹ˆλ‹€.
These are the so-called "held-out" set.
IWSLT2017
null
null
null
ν•˜μ§€λ§Œ λͺ¨λ₯΄λŠ” μ‚¬λžŒλ“€μ˜ μ–Όκ΅΄λ§Œ λ΄μ„œλŠ” 믿음이 μ•ˆ κ°€μ‹œκ² μ£ .
But these are people that you will probably never believe.
IWSLT2017
null
null
null
μ €ν¬λŠ” 저널에 관련정보λ₯Ό λͺ¨λ‘ κΈ°κ³ ν•˜κ³  μžˆμœΌλ‹ˆ 읽어보싀 수 μžˆμŠ΅λ‹ˆλ‹€.
We're publishing everything in a scientific publication, you can read it.
IWSLT2017
null
null
null
κ·Έλž˜μ„œ ν¬λ¦¬μŠ€κ°€ 제게 μ œμ•ˆμ„ ν•˜λ”κ΅°μš”.
But since we are onstage, Chris challenged me.
IWSLT2017
null
null
null
κ°•μ—°μ—μ„œ μ—¬λŸ¬λΆ„μ΄ μ•„λŠ” μ‚¬λžŒμ˜ 뢄석 κ²°κ³Όλ₯Ό λΉ„κ΅ν•΄λ³΄λΌκ³ μš”.
I probably exposed myself and tried to predict someone that you might recognize.
IWSLT2017
null
null
null
자, μ—¬κΈ° ν˜ˆμ•‘ ν•œ 병이 있고 μ§€κΈˆ μ—¬λŸ¬λΆ„μ€ 이게 λˆ„κ΅¬ 것인지 μ „ν˜€ λͺ¨λ₯΄μ‹­λ‹ˆλ‹€. 이 ν•œ λ³‘μ—λŠ” 저희가 μœ μ „μž 뢄석을 μ™„λ²½ν•˜κ²Œ ν•  수 μžˆλŠ” μ–‘μ˜ 생물학적 정보가 μžˆμŠ΅λ‹ˆλ‹€.
So, in this vial of blood -- and believe me, you have no idea what we had to do to have this blood now, here -- in this vial of blood is the amount of biological information that we need to do a full genome sequence.
IWSLT2017
null
null
null
이 양이면 μΆ©λΆ„ν•©λ‹ˆλ‹€.
We just need this amount.
IWSLT2017
null
null
null
뢄석 κ²°κ³Όλ₯Ό μ—¬λŸ¬λΆ„κ»˜ λ³΄μ—¬λ“œλ¦¬κ² μŠ΅λ‹ˆλ‹€.
We ran this sequence, and I'm going to do it with you.
IWSLT2017
null
null
null
결과듀을 ν•˜λ‚˜μ”© μ‚΄νŽ΄λ΄…μ‹œλ‹€.
And we start to layer up all the understanding we have.
IWSLT2017
null
null
null
ν˜ˆμ•‘μ—μ„œ λŒ€μƒμ΄ 남성일 것이라 μ˜ˆμƒν–ˆμŠ΅λ‹ˆλ‹€.
In the vial of blood, we predicted he's a male.
IWSLT2017
null
null
null
λ§žμ•„μš”. 남성이죠.
And the subject is a male.
IWSLT2017
null
null
null
ν‚€λ₯Ό 1m 76cm라 μ˜ˆμƒν–ˆλ„€μš”.
We predict that he's a meter and 76 cm.
IWSLT2017
null
null
null
μ‹€μ œ λŒ€μƒμ€ 1m 77cmμ—μš”.
The subject is a meter and 77 cm.
IWSLT2017
null
null
null
μ˜ˆμƒμ€ 76kgμ΄μ—ˆκ³  μ‹€μ œλŠ” 82kgμ—μš”.
So, we predicted that he's 76; the subject is 82.
IWSLT2017
null
null
null
λ‚˜μ΄λŠ” 38μ„Έλ‘œ λ‚˜μ™”κ΅°μš”.
We predict his age, 38.
IWSLT2017
null
null
null
사싀은 35μ„Έμ£ .
The subject is 35.
IWSLT2017
null
null
null
눈의 색깔 μ˜ˆμƒ κ²°κ³Όμž…λ‹ˆλ‹€.
We predict his eye color.
IWSLT2017
null
null
null
μ’€ μ–΄λ‘‘λ„€μš”.
Too dark.
IWSLT2017
null
null
null
μ˜ˆμƒν•œ ν”ΌλΆ€μƒ‰μž…λ‹ˆλ‹€.
We predict his skin color.
IWSLT2017
null
null
null
거의 κ·Όμ ‘ν–ˆλ„€μš”.
We are almost there.
IWSLT2017
null
null
null
μ˜ˆμƒν•œ μ–Όκ΅΄μž…λ‹ˆλ‹€.
That's his face.
IWSLT2017
null
null
null
이제 정닡을 κ³΅κ°œν•©λ‹ˆλ‹€. λŒ€μƒμ€ 이 μ‚¬λžŒμ΄μ—ˆμŠ΅λ‹ˆλ‹€.
Now, the reveal moment: the subject is this person.
IWSLT2017
null
null
null
μ €λ₯Ό νƒν•œ 건 μ˜λ„μ μ΄μ—ˆμŠ΅λ‹ˆλ‹€.
And I did it intentionally.
IWSLT2017
null
null
null
λ¨Όμ € μ €λŠ” 맀우 νŠΉλ³„ν•œ 민쑱에 μ†ν•΄μžˆμŠ΅λ‹ˆλ‹€.
I am a very particular and peculiar ethnicity.
IWSLT2017
null
null
null
λ‚¨μœ λŸ½, μ΄νƒˆλ¦¬μ•„μΈμ€ λͺ¨λΈμ— 잘 λ§žμ§€ μ•ŠμŠ΅λ‹ˆλ‹€.
Southern European, Italians -- they never fit in models.
IWSLT2017
null
null
null
λ‚¨μœ λŸ½μΈμ€ 저희 λͺ¨λΈμ˜ λ‚œμ  쀑 ν•˜λ‚˜μž…λ‹ˆλ‹€.
And it's particular -- that ethnicity is a complex corner case for our model.
IWSLT2017
null
null
null
λ‹€λ₯Έ μ΄μœ λ„ μžˆμŠ΅λ‹ˆλ‹€.
But there is another point.
IWSLT2017
null
null
null
사싀 저희가 μ‚¬λžŒμ„ μ•Œμ•„λ³Ό λ•ŒλŠ” μœ μ „μžμ˜ 배열을 κ³ λ €ν•˜μ§„ μ•Šμ£ .
So, one of the things that we use a lot to recognize people will never be written in the genome.
IWSLT2017
null
null
null
λ°”λ‘œ λ³΄μ΄λŠ” κ·ΈλŒ€λ‘œ νŒλ‹¨ν•˜μ£ .
It's our free will, it's how I look.
IWSLT2017
null
null
null
제 κ²½μš°μ—” 제 νŠΉμ΄ν•œ μˆ˜μ—Όμ— μ§‘μ€‘ν•˜κ²Œ 되죠.
Not my haircut in this case, but my beard cut.
IWSLT2017
null
null
null
κ·Έλž˜μ„œ 쑰금 이미지λ₯Ό νŽΈμ§‘ν•΄μ„œ λ³΄μ—¬λ“œλ¦¬κ² μŠ΅λ‹ˆλ‹€. 별건 μ•„λ‹ˆκ³  ν¬ν† μƒ΅μœΌλ‘œ μž‘μ—…ν•΄μ„œ μˆ˜μ—Όμ„ ν•©μ„±ν•œ κ²λ‹ˆλ‹€.
So I'm going to show you, I'm going to, in this case, transfer it -- and this is nothing more than Photoshop, no modeling -- the beard on the subject.
IWSLT2017
null
null
null
ν•œμˆœκ°„μ— 훨씬 더 λΉ„μŠ·ν•˜κ²Œ λ³€ν–ˆμ£ .
And immediately, we get much, much better in the feeling.
IWSLT2017
null
null
null
μ €ν¬λŠ” μ™œ 이런 일을 ν• κΉŒμš”?
So, why do we do this?
IWSLT2017
null
null
null
ν˜ˆμ•‘μœΌλ‘œλΆ€ν„° ν‚€λ₯Ό μ˜ˆμΈ‘ν•˜κ±°λ‚˜ λ†€λΌμš΄ 사진을 λ§Œλ“€κΈ° μœ„ν•΄μ„  μ•„λ‹™λ‹ˆλ‹€.
We certainly don't do it for predicting height or taking a beautiful picture out of your blood.
IWSLT2017
null
null
null
κ·Έ μ΄μœ λŠ” 이 κ³Όμ •κ³Ό 같은 기술과 접근법을 κ°€μ§€κ³  같은 기계 ν•™μŠ΅ μ½”λ“œλ‘œ μ–΄λ–»κ²Œ μš°λ¦¬κ°€ μž‘λ™ν•˜λŠ”μ§€ μ–΄λ–»κ²Œ λͺΈμ΄ μž‘λ™ν•˜κ³  μ–΄λ–»κ²Œ λ‚˜μ΄κ°€ λ“€κ³  μ–΄λ–»κ²Œ 병이 λ“€κ³  μ–΄λ–»κ²Œ 암이 퍼지고 약이 μ–΄λ–»κ²Œ λͺΈμ— μž‘μš©ν•˜λŠ”μ§€ μ•Œ 수 있기 λ•Œλ¬Έμž…λ‹ˆλ‹€.
We do it because the same technology and the same approach, the machine learning of this code, is helping us to understand how we work, how your body works, how your body ages, how disease generates in your body, how your cancer grows and develops, how drugs work and if they work on your body.
IWSLT2017
null
null
null
이건 λͺΉμ‹œ μ–΄λ €μš΄ κ³Όμ œμž…λ‹ˆλ‹€.
This is a huge challenge.
IWSLT2017
null
null
null
이 κ³Όμ œλŠ” 세계 μ „μ—­μ—μ„œ 수천 λͺ…이 ν•¨κ»˜ 닡을 μ°Ύκ³  μžˆμŠ΅λ‹ˆλ‹€.
This is a challenge that we share with thousands of other researchers around the world.
IWSLT2017
null
null
null
λ§žμΆ€ν˜• μ˜μ•½μ΄λΌλŠ” κ³Όμ œμž…λ‹ˆλ‹€.
It's called personalized medicine.
IWSLT2017
null
null
null
이것은 μ˜μ•½μ˜ 톡계적인 μ ‘κ·Όμ—μ„œ, λ§ν•˜μžλ©΄ μ—¬λŸ¬λΆ„ 각각은 μž‘μ€ 의미뿐인 λ°©λ²•μ—μ„œ κ°œκ°œμΈμ— 맞좘 μ ‘κ·ΌμœΌλ‘œ 이 책에 쓰인 λ‚΄μš©μ„ ν† λŒ€λ‘œ μš°λ¦¬κ°€ μ •ν™•νžˆ μ—¬λŸ¬λΆ„μ˜ μƒνƒœλ₯Ό μ΄ν•΄ν•˜λŠ” λŠ₯λ ₯인 κ²ƒμž…λ‹ˆλ‹€.
It's the ability to move from a statistical approach where you're a dot in the ocean, to a personalized approach, where we read all these books and we get an understanding of exactly how you are.
IWSLT2017
null
null
null
이 과정은 맀우 λ³΅μž‘ν•©λ‹ˆλ‹€. μ‹€μ œλ‘œ λͺ¨λ“  μ±…μ—μ„œ μ˜€λŠ˜κΉŒμ§€ μš°λ¦¬κ°€ μ΄ν•΄ν•˜λŠ” 뢀뢄은 2%에 λΆˆκ³Όν•©λ‹ˆλ‹€. 175ꢌ 쀑 4ꢌ λΆ„λŸ‰μ΄μ£ .
But it is a particularly complicated challenge, because of all these books, as of today, we just know probably two percent: four books of more than 175.
IWSLT2017
null
null
null
μ΄λŠ” μ œκ°€ ν•˜κ³ μ‹Άμ€ μ΄μ•ΌκΈ°λŠ” μ•„λ‹ˆμ§€λ§Œ μ•žμœΌλ‘œ μ—°κ΅¬ν•˜λ©΄μ„œ 더 μ•Œκ²Œ 될 κ²ƒμž…λ‹ˆλ‹€.
And this is not the topic of my talk, because we will learn more.
IWSLT2017
null
null
null
세계 졜고의 석학듀이 μ—°κ΅¬ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€.
There are the best minds in the world on this topic.
IWSLT2017
null
null
null
μ˜ˆμƒμ€ 더 잘 맞고 λͺ¨λΈμ€ 더 μ •ν™•ν•΄μ§ˆ κ²ƒμž…λ‹ˆλ‹€.
The prediction will get better, the model will get more precise.
IWSLT2017
null
null
null
더 λ‹€μ–‘ν•œ 지식을 μŒ“μ„μˆ˜λ‘ 인λ₯˜λŠ” μ΄μ „κΉŒμ§€λŠ” 선택할 수 μ—†μ—ˆλ˜ μ‚Ά, 죽음, μœ‘μ•„μ— κ΄€ν•œ 선택을 ν•  수 있게 될 κ²ƒμž…λ‹ˆλ‹€.
And the more we learn, the more we will be confronted with decisions that we never had to face before about life, about death, about parenting.
IWSLT2017
null
null
null
μ €ν¬λŠ” 삢이 μž‘λ™ν•˜λŠ” μ›λ¦¬μ˜ 핡심에 λ‹€κ°€κ°€κ³  μžˆμŠ΅λ‹ˆλ‹€.
So, we are touching the very inner detail on how life works.
IWSLT2017
null
null
null
μ΄λ ‡κ²Œ 큰 혁λͺ…을 μΌμœΌν‚¬ λ°œκ²¬μ„ κ³Όν•™κΈ°μˆ μ˜ μ˜μ—­μ—λ§Œ 가두어선 μ•ˆ λ©λ‹ˆλ‹€.
And it's a revolution that cannot be confined in the domain of science or technology.
IWSLT2017
null
null
null
μ „ μ˜μ—­μ˜ μ†Œν†΅μ΄ ν•„μš”ν•©λ‹ˆλ‹€.
This must be a global conversation.
IWSLT2017
null
null
null
μ €ν¬λŠ” ν•œ 인λ₯˜λ‘œμ„œ ν•¨κ»˜ λ§Œλ“€μ–΄κ°ˆ 미래λ₯Ό 생각해야 ν•©λ‹ˆλ‹€.
We must start to think of the future we're building as a humanity.
IWSLT2017
null
null
null