code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def quantile_loss(self, a, b): """Returns quantile loss for specified quantiles. Args: a: Targets b: Predictions """ quantiles_used = set(self.quantiles) loss = 0.0 for i, quantile in enumerate(valid_quantiles): if quantile in quantiles_used: loss += utils.tensorflow_quantile_loss( a[Ellipsis, output_size * i : output_size * (i + 1)], b[Ellipsis, output_size * i : output_size * (i + 1)], quantile, ) return loss
Returns quantile loss for specified quantiles. Args: a: Targets b: Predictions
quantile_loss
python
microsoft/qlib
examples/benchmarks/TFT/libs/tft_model.py
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
MIT
def fit(self, train_df=None, valid_df=None): """Fits deep neural network for given training and validation data. Args: train_df: DataFrame for training data valid_df: DataFrame for validation data """ print("*** Fitting {} ***".format(self.name)) # Add relevant callbacks callbacks = [ tf.keras.callbacks.EarlyStopping(monitor="val_loss", patience=self.early_stopping_patience, min_delta=1e-4), tf.keras.callbacks.ModelCheckpoint( filepath=self.get_keras_saved_path(self._temp_folder), monitor="val_loss", save_best_only=True, save_weights_only=True, ), tf.keras.callbacks.TerminateOnNaN(), ] print("Getting batched_data") if train_df is None: print("Using cached training data") train_data = TFTDataCache.get("train") else: train_data = self._batch_data(train_df) if valid_df is None: print("Using cached validation data") valid_data = TFTDataCache.get("valid") else: valid_data = self._batch_data(valid_df) print("Using keras standard fit") def _unpack(data): return data["inputs"], data["outputs"], self._get_active_locations(data["active_entries"]) # Unpack without sample weights data, labels, active_flags = _unpack(train_data) val_data, val_labels, val_flags = _unpack(valid_data) all_callbacks = callbacks self.model.fit( x=data, y=np.concatenate([labels, labels, labels], axis=-1), sample_weight=active_flags, epochs=self.num_epochs, batch_size=self.minibatch_size, validation_data=(val_data, np.concatenate([val_labels, val_labels, val_labels], axis=-1), val_flags), callbacks=all_callbacks, shuffle=True, use_multiprocessing=True, workers=self.n_multiprocessing_workers, ) # Load best checkpoint again tmp_checkpont = self.get_keras_saved_path(self._temp_folder) if os.path.exists(tmp_checkpont): self.load(self._temp_folder, use_keras_loadings=True) else: print("Cannot load from {}, skipping ...".format(self._temp_folder))
Fits deep neural network for given training and validation data. Args: train_df: DataFrame for training data valid_df: DataFrame for validation data
fit
python
microsoft/qlib
examples/benchmarks/TFT/libs/tft_model.py
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
MIT
def evaluate(self, data=None, eval_metric="loss"): """Applies evaluation metric to the training data. Args: data: Dataframe for evaluation eval_metric: Evaluation metic to return, based on model definition. Returns: Computed evaluation loss. """ if data is None: print("Using cached validation data") raw_data = TFTDataCache.get("valid") else: raw_data = self._batch_data(data) inputs = raw_data["inputs"] outputs = raw_data["outputs"] active_entries = self._get_active_locations(raw_data["active_entries"]) metric_values = self.model.evaluate( x=inputs, y=np.concatenate([outputs, outputs, outputs], axis=-1), sample_weight=active_entries, workers=16, use_multiprocessing=True, ) metrics = pd.Series(metric_values, self.model.metrics_names) return metrics[eval_metric]
Applies evaluation metric to the training data. Args: data: Dataframe for evaluation eval_metric: Evaluation metic to return, based on model definition. Returns: Computed evaluation loss.
evaluate
python
microsoft/qlib
examples/benchmarks/TFT/libs/tft_model.py
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
MIT
def predict(self, df, return_targets=False): """Computes predictions for a given input dataset. Args: df: Input dataframe return_targets: Whether to also return outputs aligned with predictions to facilitate evaluation Returns: Input dataframe or tuple of (input dataframe, aligned output dataframe). """ data = self._batch_data(df) inputs = data["inputs"] time = data["time"] identifier = data["identifier"] outputs = data["outputs"] combined = self.model.predict(inputs, workers=16, use_multiprocessing=True, batch_size=self.minibatch_size) # Format output_csv if self.output_size != 1: raise NotImplementedError("Current version only supports 1D targets!") def format_outputs(prediction): """Returns formatted dataframes for prediction.""" flat_prediction = pd.DataFrame( prediction[:, :, 0], columns=["t+{}".format(i) for i in range(self.time_steps - self.num_encoder_steps)] ) cols = list(flat_prediction.columns) flat_prediction["forecast_time"] = time[:, self.num_encoder_steps - 1, 0] flat_prediction["identifier"] = identifier[:, 0, 0] # Arrange in order return flat_prediction[["forecast_time", "identifier"] + cols] # Extract predictions for each quantile into different entries process_map = { "p{}".format(int(q * 100)): combined[Ellipsis, i * self.output_size : (i + 1) * self.output_size] for i, q in enumerate(self.quantiles) } if return_targets: # Add targets if relevant process_map["targets"] = outputs return {k: format_outputs(process_map[k]) for k in process_map}
Computes predictions for a given input dataset. Args: df: Input dataframe return_targets: Whether to also return outputs aligned with predictions to facilitate evaluation Returns: Input dataframe or tuple of (input dataframe, aligned output dataframe).
predict
python
microsoft/qlib
examples/benchmarks/TFT/libs/tft_model.py
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
MIT
def get_attention(self, df): """Computes TFT attention weights for a given dataset. Args: df: Input dataframe Returns: Dictionary of numpy arrays for temporal attention weights and variable selection weights, along with their identifiers and time indices """ data = self._batch_data(df) inputs = data["inputs"] identifiers = data["identifier"] time = data["time"] def get_batch_attention_weights(input_batch): """Returns weights for a given minibatch of data.""" input_placeholder = self._input_placeholder attention_weights = {} for k in self._attention_components: attention_weight = tf.keras.backend.get_session().run( self._attention_components[k], {input_placeholder: input_batch.astype(np.float32)} ) attention_weights[k] = attention_weight return attention_weights # Compute number of batches batch_size = self.minibatch_size n = inputs.shape[0] num_batches = n // batch_size if n - (num_batches * batch_size) > 0: num_batches += 1 # Split up inputs into batches batched_inputs = [inputs[i * batch_size : (i + 1) * batch_size, Ellipsis] for i in range(num_batches)] # Get attention weights, while avoiding large memory increases attention_by_batch = [get_batch_attention_weights(batch) for batch in batched_inputs] attention_weights = {} for k in self._attention_components: attention_weights[k] = [] for batch_weights in attention_by_batch: attention_weights[k].append(batch_weights[k]) if len(attention_weights[k][0].shape) == 4: tmp = np.concatenate(attention_weights[k], axis=1) else: tmp = np.concatenate(attention_weights[k], axis=0) del attention_weights[k] gc.collect() attention_weights[k] = tmp attention_weights["identifiers"] = identifiers[:, 0, 0] attention_weights["time"] = time[:, :, 0] return attention_weights
Computes TFT attention weights for a given dataset. Args: df: Input dataframe Returns: Dictionary of numpy arrays for temporal attention weights and variable selection weights, along with their identifiers and time indices
get_attention
python
microsoft/qlib
examples/benchmarks/TFT/libs/tft_model.py
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
MIT
def get_batch_attention_weights(input_batch): """Returns weights for a given minibatch of data.""" input_placeholder = self._input_placeholder attention_weights = {} for k in self._attention_components: attention_weight = tf.keras.backend.get_session().run( self._attention_components[k], {input_placeholder: input_batch.astype(np.float32)} ) attention_weights[k] = attention_weight return attention_weights
Returns weights for a given minibatch of data.
get_batch_attention_weights
python
microsoft/qlib
examples/benchmarks/TFT/libs/tft_model.py
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
MIT
def reset_temp_folder(self): """Deletes and recreates folder with temporary Keras training outputs.""" print("Resetting temp folder...") utils.create_folder_if_not_exist(self._temp_folder) shutil.rmtree(self._temp_folder) os.makedirs(self._temp_folder)
Deletes and recreates folder with temporary Keras training outputs.
reset_temp_folder
python
microsoft/qlib
examples/benchmarks/TFT/libs/tft_model.py
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
MIT
def save(self, model_folder): """Saves optimal TFT weights. Args: model_folder: Location to serialze model. """ # Allows for direct serialisation of tensorflow variables to avoid spurious # issue with Keras that leads to different performance evaluation results # when model is reloaded (https://github.com/keras-team/keras/issues/4875). utils.save(tf.keras.backend.get_session(), model_folder, cp_name=self.name, scope=self.name)
Saves optimal TFT weights. Args: model_folder: Location to serialze model.
save
python
microsoft/qlib
examples/benchmarks/TFT/libs/tft_model.py
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
MIT
def load(self, model_folder, use_keras_loadings=False): """Loads TFT weights. Args: model_folder: Folder containing serialized models. use_keras_loadings: Whether to load from Keras checkpoint. Returns: """ if use_keras_loadings: # Loads temporary Keras model saved during training. serialisation_path = self.get_keras_saved_path(model_folder) print("Loading model from {}".format(serialisation_path)) self.model.load_weights(serialisation_path) else: # Loads tensorflow graph for optimal models. utils.load(tf.keras.backend.get_session(), model_folder, cp_name=self.name, scope=self.name)
Loads TFT weights. Args: model_folder: Folder containing serialized models. use_keras_loadings: Whether to load from Keras checkpoint. Returns:
load
python
microsoft/qlib
examples/benchmarks/TFT/libs/tft_model.py
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
MIT
def get_hyperparm_choices(cls): """Returns hyperparameter ranges for random search.""" return { "dropout_rate": [0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9], "hidden_layer_size": [10, 20, 40, 80, 160, 240, 320], "minibatch_size": [64, 128, 256], "learning_rate": [1e-4, 1e-3, 1e-2], "max_gradient_norm": [0.01, 1.0, 100.0], "num_heads": [1, 4], "stack_size": [1], }
Returns hyperparameter ranges for random search.
get_hyperparm_choices
python
microsoft/qlib
examples/benchmarks/TFT/libs/tft_model.py
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
MIT
def get_single_col_by_input_type(input_type, column_definition): """Returns name of single column. Args: input_type: Input type of column to extract column_definition: Column definition list for experiment """ l = [tup[0] for tup in column_definition if tup[2] == input_type] if len(l) != 1: raise ValueError("Invalid number of columns for {}".format(input_type)) return l[0]
Returns name of single column. Args: input_type: Input type of column to extract column_definition: Column definition list for experiment
get_single_col_by_input_type
python
microsoft/qlib
examples/benchmarks/TFT/libs/utils.py
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/utils.py
MIT
def tensorflow_quantile_loss(y, y_pred, quantile): """Computes quantile loss for tensorflow. Standard quantile loss as defined in the "Training Procedure" section of the main TFT paper Args: y: Targets y_pred: Predictions quantile: Quantile to use for loss calculations (between 0 & 1) Returns: Tensor for quantile loss. """ # Checks quantile if quantile < 0 or quantile > 1: raise ValueError("Illegal quantile value={}! Values should be between 0 and 1.".format(quantile)) prediction_underflow = y - y_pred q_loss = quantile * tf.maximum(prediction_underflow, 0.0) + (1.0 - quantile) * tf.maximum( -prediction_underflow, 0.0 ) return tf.reduce_sum(q_loss, axis=-1)
Computes quantile loss for tensorflow. Standard quantile loss as defined in the "Training Procedure" section of the main TFT paper Args: y: Targets y_pred: Predictions quantile: Quantile to use for loss calculations (between 0 & 1) Returns: Tensor for quantile loss.
tensorflow_quantile_loss
python
microsoft/qlib
examples/benchmarks/TFT/libs/utils.py
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/utils.py
MIT
def numpy_normalised_quantile_loss(y, y_pred, quantile): """Computes normalised quantile loss for numpy arrays. Uses the q-Risk metric as defined in the "Training Procedure" section of the main TFT paper. Args: y: Targets y_pred: Predictions quantile: Quantile to use for loss calculations (between 0 & 1) Returns: Float for normalised quantile loss. """ prediction_underflow = y - y_pred weighted_errors = quantile * np.maximum(prediction_underflow, 0.0) + (1.0 - quantile) * np.maximum( -prediction_underflow, 0.0 ) quantile_loss = weighted_errors.mean() normaliser = y.abs().mean() return 2 * quantile_loss / normaliser
Computes normalised quantile loss for numpy arrays. Uses the q-Risk metric as defined in the "Training Procedure" section of the main TFT paper. Args: y: Targets y_pred: Predictions quantile: Quantile to use for loss calculations (between 0 & 1) Returns: Float for normalised quantile loss.
numpy_normalised_quantile_loss
python
microsoft/qlib
examples/benchmarks/TFT/libs/utils.py
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/utils.py
MIT
def get_default_tensorflow_config(tf_device="gpu", gpu_id=0): """Creates tensorflow config for graphs to run on CPU or GPU. Specifies whether to run graph on gpu or cpu and which GPU ID to use for multi GPU machines. Args: tf_device: 'cpu' or 'gpu' gpu_id: GPU ID to use if relevant Returns: Tensorflow config. """ if tf_device == "cpu": os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # for training on cpu tf_config = tf.ConfigProto(log_device_placement=False, device_count={"GPU": 0}) else: os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id) print("Selecting GPU ID={}".format(gpu_id)) tf_config = tf.ConfigProto(log_device_placement=False) tf_config.gpu_options.allow_growth = True return tf_config
Creates tensorflow config for graphs to run on CPU or GPU. Specifies whether to run graph on gpu or cpu and which GPU ID to use for multi GPU machines. Args: tf_device: 'cpu' or 'gpu' gpu_id: GPU ID to use if relevant Returns: Tensorflow config.
get_default_tensorflow_config
python
microsoft/qlib
examples/benchmarks/TFT/libs/utils.py
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/utils.py
MIT
def save(tf_session, model_folder, cp_name, scope=None): """Saves Tensorflow graph to checkpoint. Saves all trainiable variables under a given variable scope to checkpoint. Args: tf_session: Session containing graph model_folder: Folder to save models cp_name: Name of Tensorflow checkpoint scope: Variable scope containing variables to save """ # Save model if scope is None: saver = tf.train.Saver() else: var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope) saver = tf.train.Saver(var_list=var_list, max_to_keep=100000) save_path = saver.save(tf_session, os.path.join(model_folder, "{0}.ckpt".format(cp_name))) print("Model saved to: {0}".format(save_path))
Saves Tensorflow graph to checkpoint. Saves all trainiable variables under a given variable scope to checkpoint. Args: tf_session: Session containing graph model_folder: Folder to save models cp_name: Name of Tensorflow checkpoint scope: Variable scope containing variables to save
save
python
microsoft/qlib
examples/benchmarks/TFT/libs/utils.py
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/utils.py
MIT
def load(tf_session, model_folder, cp_name, scope=None, verbose=False): """Loads Tensorflow graph from checkpoint. Args: tf_session: Session to load graph into model_folder: Folder containing serialised model cp_name: Name of Tensorflow checkpoint scope: Variable scope to use. verbose: Whether to print additional debugging information. """ # Load model proper load_path = os.path.join(model_folder, "{0}.ckpt".format(cp_name)) print("Loading model from {0}".format(load_path)) print_weights_in_checkpoint(model_folder, cp_name) initial_vars = set([v.name for v in tf.get_default_graph().as_graph_def().node]) # Saver if scope is None: saver = tf.train.Saver() else: var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=scope) saver = tf.train.Saver(var_list=var_list, max_to_keep=100000) # Load saver.restore(tf_session, load_path) all_vars = set([v.name for v in tf.get_default_graph().as_graph_def().node]) if verbose: print("Restored {0}".format(",".join(initial_vars.difference(all_vars)))) print("Existing {0}".format(",".join(all_vars.difference(initial_vars)))) print("All {0}".format(",".join(all_vars))) print("Done.")
Loads Tensorflow graph from checkpoint. Args: tf_session: Session to load graph into model_folder: Folder containing serialised model cp_name: Name of Tensorflow checkpoint scope: Variable scope to use. verbose: Whether to print additional debugging information.
load
python
microsoft/qlib
examples/benchmarks/TFT/libs/utils.py
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/utils.py
MIT
def print_weights_in_checkpoint(model_folder, cp_name): """Prints all weights in Tensorflow checkpoint. Args: model_folder: Folder containing checkpoint cp_name: Name of checkpoint Returns: """ load_path = os.path.join(model_folder, "{0}.ckpt".format(cp_name)) print_tensors_in_checkpoint_file(file_name=load_path, tensor_name="", all_tensors=True, all_tensor_names=True)
Prints all weights in Tensorflow checkpoint. Args: model_folder: Folder containing checkpoint cp_name: Name of checkpoint Returns:
print_weights_in_checkpoint
python
microsoft/qlib
examples/benchmarks/TFT/libs/utils.py
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/utils.py
MIT
def _create_ts_slices(index, seq_len): """ create time series slices from pandas index Args: index (pd.MultiIndex): pandas multiindex with <instrument, datetime> order seq_len (int): sequence length """ assert index.is_lexsorted(), "index should be sorted" # number of dates for each code sample_count_by_codes = pd.Series(0, index=index).groupby(level=0, group_keys=False).size().values # start_index for each code start_index_of_codes = np.roll(np.cumsum(sample_count_by_codes), 1) start_index_of_codes[0] = 0 # all the [start, stop) indices of features # features btw [start, stop) are used to predict the `stop - 1` label slices = [] for cur_loc, cur_cnt in zip(start_index_of_codes, sample_count_by_codes): for stop in range(1, cur_cnt + 1): end = cur_loc + stop start = max(end - seq_len, 0) slices.append(slice(start, end)) slices = np.array(slices) return slices
create time series slices from pandas index Args: index (pd.MultiIndex): pandas multiindex with <instrument, datetime> order seq_len (int): sequence length
_create_ts_slices
python
microsoft/qlib
examples/benchmarks/TRA/src/dataset.py
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TRA/src/dataset.py
MIT
def _get_date_parse_fn(target): """get date parse function This method is used to parse date arguments as target type. Example: get_date_parse_fn('20120101')('2017-01-01') => '20170101' get_date_parse_fn(20120101)('2017-01-01') => 20170101 """ if isinstance(target, pd.Timestamp): _fn = lambda x: pd.Timestamp(x) # Timestamp('2020-01-01') elif isinstance(target, str) and len(target) == 8: _fn = lambda x: str(x).replace("-", "")[:8] # '20200201' elif isinstance(target, int): _fn = lambda x: int(str(x).replace("-", "")[:8]) # 20200201 else: _fn = lambda x: x return _fn
get date parse function This method is used to parse date arguments as target type. Example: get_date_parse_fn('20120101')('2017-01-01') => '20170101' get_date_parse_fn(20120101)('2017-01-01') => 20170101
_get_date_parse_fn
python
microsoft/qlib
examples/benchmarks/TRA/src/dataset.py
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TRA/src/dataset.py
MIT
def shoot_infs(inp_tensor): """Replaces inf by maximum of tensor""" mask_inf = torch.isinf(inp_tensor) ind_inf = torch.nonzero(mask_inf, as_tuple=False) if len(ind_inf) > 0: for ind in ind_inf: if len(ind) == 2: inp_tensor[ind[0], ind[1]] = 0 elif len(ind) == 1: inp_tensor[ind[0]] = 0 m = torch.max(inp_tensor) for ind in ind_inf: if len(ind) == 2: inp_tensor[ind[0], ind[1]] = m elif len(ind) == 1: inp_tensor[ind[0]] = m return inp_tensor
Replaces inf by maximum of tensor
shoot_infs
python
microsoft/qlib
examples/benchmarks/TRA/src/model.py
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TRA/src/model.py
MIT
def get_data(self): """use dataset to get highreq data""" self._init_qlib() self._prepare_calender_cache() dataset = init_instance_by_config(self.task["dataset"]) xtrain, xtest = dataset.prepare(["train", "test"]) print(xtrain, xtest) dataset_backtest = init_instance_by_config(self.task["dataset_backtest"]) backtest_train, backtest_test = dataset_backtest.prepare(["train", "test"]) print(backtest_train, backtest_test) return
use dataset to get highreq data
get_data
python
microsoft/qlib
examples/highfreq/workflow.py
https://github.com/microsoft/qlib/blob/master/examples/highfreq/workflow.py
MIT
def dump_and_load_dataset(self): """dump and load dataset state on disk""" self._init_qlib() self._prepare_calender_cache() dataset = init_instance_by_config(self.task["dataset"]) dataset_backtest = init_instance_by_config(self.task["dataset_backtest"]) ##=============dump dataset============= dataset.to_pickle(path="dataset.pkl") dataset_backtest.to_pickle(path="dataset_backtest.pkl") del dataset, dataset_backtest ##=============reload dataset============= with open("dataset.pkl", "rb") as file_dataset: dataset = pickle.load(file_dataset) with open("dataset_backtest.pkl", "rb") as file_dataset_backtest: dataset_backtest = pickle.load(file_dataset_backtest) self._prepare_calender_cache() ##=============reinit dataset============= dataset.config( handler_kwargs={ "start_time": "2021-01-19 00:00:00", "end_time": "2021-01-25 16:00:00", }, segments={ "test": ( "2021-01-19 00:00:00", "2021-01-25 16:00:00", ), }, ) dataset.setup_data( handler_kwargs={ "init_type": DataHandlerLP.IT_LS, }, ) dataset_backtest.config( handler_kwargs={ "start_time": "2021-01-19 00:00:00", "end_time": "2021-01-25 16:00:00", }, segments={ "test": ( "2021-01-19 00:00:00", "2021-01-25 16:00:00", ), }, ) dataset_backtest.setup_data(handler_kwargs={}) ##=============get data============= xtest = dataset.prepare("test") backtest_test = dataset_backtest.prepare("test") print(xtest, backtest_test) return
dump and load dataset state on disk
dump_and_load_dataset
python
microsoft/qlib
examples/highfreq/workflow.py
https://github.com/microsoft/qlib/blob/master/examples/highfreq/workflow.py
MIT
def backtest_only_daily(self): """ This backtest is used for comparing the nested execution and single layer execution Due to the low quality daily-level and miniute-level data, they are hardly comparable. So it is used for detecting serious bugs which make the results different greatly. .. code-block:: shell [1724971:MainThread](2021-12-07 16:24:31,156) INFO - qlib.workflow - [record_temp.py:441] - Portfolio analysis record 'port_analysis_1day.pkl' has been saved as the artifact of the Experiment 2 'The following are analysis results of benchmark return(1day).' risk mean 0.000651 std 0.012472 annualized_return 0.154967 information_ratio 0.805422 max_drawdown -0.160445 'The following are analysis results of the excess return without cost(1day).' risk mean 0.001375 std 0.006103 annualized_return 0.327204 information_ratio 3.475016 max_drawdown -0.024927 'The following are analysis results of the excess return with cost(1day).' risk mean 0.001184 std 0.006091 annualized_return 0.281801 information_ratio 2.998749 max_drawdown -0.029568 [1724971:MainThread](2021-12-07 16:24:31,170) INFO - qlib.workflow - [record_temp.py:466] - Indicator analysis record 'indicator_analysis_1day. pkl' has been saved as the artifact of the Experiment 2 'The following are analysis results of indicators(1day).' value ffr 1.0 pa 0.0 pos 0.0 [1724971:MainThread](2021-12-07 16:24:31,188) INFO - qlib.timer - [log.py:113] - Time cost: 0.007s | waiting `async_log` Done """ self._init_qlib() model = init_instance_by_config(self.task["model"]) dataset = init_instance_by_config(self.task["dataset"]) self._train_model(model, dataset) strategy_config = { "class": "TopkDropoutStrategy", "module_path": "qlib.contrib.strategy.signal_strategy", "kwargs": { "signal": (model, dataset), "topk": 50, "n_drop": 5, }, } pa_conf = deepcopy(self.port_analysis_config) pa_conf["strategy"] = strategy_config pa_conf["executor"] = { "class": "SimulatorExecutor", "module_path": "qlib.backtest.executor", "kwargs": { "time_per_step": "day", "generate_portfolio_metrics": True, "verbose": True, }, } pa_conf["backtest"]["benchmark"] = self.benchmark with R.start(experiment_name=self.exp_name, resume=True): recorder = R.get_recorder() par = PortAnaRecord(recorder, pa_conf) par.generate()
This backtest is used for comparing the nested execution and single layer execution Due to the low quality daily-level and miniute-level data, they are hardly comparable. So it is used for detecting serious bugs which make the results different greatly. .. code-block:: shell [1724971:MainThread](2021-12-07 16:24:31,156) INFO - qlib.workflow - [record_temp.py:441] - Portfolio analysis record 'port_analysis_1day.pkl' has been saved as the artifact of the Experiment 2 'The following are analysis results of benchmark return(1day).' risk mean 0.000651 std 0.012472 annualized_return 0.154967 information_ratio 0.805422 max_drawdown -0.160445 'The following are analysis results of the excess return without cost(1day).' risk mean 0.001375 std 0.006103 annualized_return 0.327204 information_ratio 3.475016 max_drawdown -0.024927 'The following are analysis results of the excess return with cost(1day).' risk mean 0.001184 std 0.006091 annualized_return 0.281801 information_ratio 2.998749 max_drawdown -0.029568 [1724971:MainThread](2021-12-07 16:24:31,170) INFO - qlib.workflow - [record_temp.py:466] - Indicator analysis record 'indicator_analysis_1day. pkl' has been saved as the artifact of the Experiment 2 'The following are analysis results of indicators(1day).' value ffr 1.0 pa 0.0 pos 0.0 [1724971:MainThread](2021-12-07 16:24:31,188) INFO - qlib.timer - [log.py:113] - Time cost: 0.007s | waiting `async_log` Done
backtest_only_daily
python
microsoft/qlib
examples/nested_decision_execution/workflow.py
https://github.com/microsoft/qlib/blob/master/examples/nested_decision_execution/workflow.py
MIT
def __init__( self, provider_uri="~/.qlib/qlib_data/cn_data", region="cn", exp_name="rolling_exp", task_url="mongodb://10.0.0.4:27017/", # not necessary when using TrainerR or DelayTrainerR task_db_name="rolling_db", # not necessary when using TrainerR or DelayTrainerR task_pool="rolling_task", rolling_step=80, start_time="2018-09-10", end_time="2018-10-31", tasks=None, trainer="TrainerR", ): """ Init OnlineManagerExample. Args: provider_uri (str, optional): the provider uri. Defaults to "~/.qlib/qlib_data/cn_data". region (str, optional): the stock region. Defaults to "cn". exp_name (str, optional): the experiment name. Defaults to "rolling_exp". task_url (str, optional): your MongoDB url. Defaults to "mongodb://10.0.0.4:27017/". task_db_name (str, optional): database name. Defaults to "rolling_db". task_pool (str, optional): the task pool name (a task pool is a collection in MongoDB). Defaults to "rolling_task". rolling_step (int, optional): the step for rolling. Defaults to 80. start_time (str, optional): the start time of simulating. Defaults to "2018-09-10". end_time (str, optional): the end time of simulating. Defaults to "2018-10-31". tasks (dict or list[dict]): a set of the task config waiting for rolling and training """ if tasks is None: tasks = [CSI100_RECORD_XGBOOST_TASK_CONFIG_ONLINE, CSI100_RECORD_LGB_TASK_CONFIG_ONLINE] self.exp_name = exp_name self.task_pool = task_pool self.start_time = start_time self.end_time = end_time mongo_conf = { "task_url": task_url, "task_db_name": task_db_name, } qlib.init(provider_uri=provider_uri, region=region, mongo=mongo_conf) self.rolling_gen = RollingGen( step=rolling_step, rtype=RollingGen.ROLL_SD, ds_extra_mod_func=None ) # The rolling tasks generator, ds_extra_mod_func is None because we just need to simulate to 2018-10-31 and needn't change the handler end time. if trainer == "TrainerRM": self.trainer = TrainerRM(self.exp_name, self.task_pool) elif trainer == "TrainerR": self.trainer = TrainerR(self.exp_name) else: # TODO: support all the trainers: TrainerR, TrainerRM, DelayTrainerR raise NotImplementedError(f"This type of input is not supported") self.rolling_online_manager = OnlineManager( RollingStrategy(exp_name, task_template=tasks, rolling_gen=self.rolling_gen), trainer=self.trainer, begin_time=self.start_time, ) self.tasks = tasks
Init OnlineManagerExample. Args: provider_uri (str, optional): the provider uri. Defaults to "~/.qlib/qlib_data/cn_data". region (str, optional): the stock region. Defaults to "cn". exp_name (str, optional): the experiment name. Defaults to "rolling_exp". task_url (str, optional): your MongoDB url. Defaults to "mongodb://10.0.0.4:27017/". task_db_name (str, optional): database name. Defaults to "rolling_db". task_pool (str, optional): the task pool name (a task pool is a collection in MongoDB). Defaults to "rolling_task". rolling_step (int, optional): the step for rolling. Defaults to 80. start_time (str, optional): the start time of simulating. Defaults to "2018-09-10". end_time (str, optional): the end time of simulating. Defaults to "2018-10-31". tasks (dict or list[dict]): a set of the task config waiting for rolling and training
__init__
python
microsoft/qlib
examples/online_srv/online_management_simulate.py
https://github.com/microsoft/qlib/blob/master/examples/online_srv/online_management_simulate.py
MIT
def add_one_stock_daily_data(filepath, type, exchange_place, arc, date): """ exchange_place: "SZ" OR "SH" type: "tick", "orderbook", ... filepath: the path of csv arc: arclink created by a process """ code = os.path.split(filepath)[-1].split(".csv")[0] if exchange_place == "SH" and code[0] != "6": return if exchange_place == "SZ" and code[0] != "0" and code[:2] != "30": return df = pd.read_csv(filepath, encoding="gbk", dtype={"code": str}) code = os.path.split(filepath)[-1].split(".csv")[0] def format_time(day, hms): day = str(day) hms = str(hms) if hms[0] == "1": # >=10, return ( "-".join([day[0:4], day[4:6], day[6:8]]) + " " + ":".join([hms[:2], hms[2:4], hms[4:6] + "." + hms[6:]]) ) else: return ( "-".join([day[0:4], day[4:6], day[6:8]]) + " " + ":".join([hms[:1], hms[1:3], hms[3:5] + "." + hms[5:]]) ) ## Discard the entire row if wrong data timestamp encoutered. timestamp = list(zip(list(df["date"]), list(df["time"]))) error_index_list = [] for index, t in enumerate(timestamp): try: pd.Timestamp(format_time(t[0], t[1])) except Exception: error_index_list.append(index) ## The row number of the error line # to-do: writting to logs if len(error_index_list) > 0: print("error: {}, {}".format(filepath, len(error_index_list))) df = df.drop(error_index_list) timestamp = list(zip(list(df["date"]), list(df["time"]))) ## The cleaned timestamp # generate timestamp pd_timestamp = pd.DatetimeIndex( [pd.Timestamp(format_time(timestamp[i][0], timestamp[i][1])) for i in range(len(df["date"]))] ) df = df.drop(columns=["date", "time", "name", "code", "wind_code"]) # df = pd.DataFrame(data=df.to_dict("list"), index=pd_timestamp) df["date"] = pd.to_datetime(pd_timestamp) df.set_index("date", inplace=True) if str.lower(type) == "orderqueue": ## extract ab1~ab50 df["ab"] = [ ",".join([str(int(row["ab" + str(i + 1)])) for i in range(0, row["ab_items"])]) for timestamp, row in df.iterrows() ] df = df.drop(columns=["ab" + str(i) for i in range(1, 51)]) type = get_library_name(type) # arc.initialize_library(type, lib_type=CHUNK_STORE) lib = arc[type] symbol = "".join([exchange_place, code]) if symbol in lib.list_symbols(): print("update {0}, date={1}".format(symbol, date)) if df.empty == True: return error_index_list lib.update(symbol, df, chunk_size="D") else: print("write {0}, date={1}".format(symbol, date)) lib.write(symbol, df, chunk_size="D") return error_index_list
exchange_place: "SZ" OR "SH" type: "tick", "orderbook", ... filepath: the path of csv arc: arclink created by a process
add_one_stock_daily_data
python
microsoft/qlib
examples/orderbook_data/create_dataset.py
https://github.com/microsoft/qlib/blob/master/examples/orderbook_data/create_dataset.py
MIT
def __init__(self, provider_uri: Union[str, Path, dict], mount_path: Union[str, Path, dict]): """ The relation of `provider_uri` and `mount_path` - `mount_path` is used only if provider_uri is an NFS path - otherwise, provider_uri will be used for accessing data """ self.provider_uri = provider_uri self.mount_path = mount_path
The relation of `provider_uri` and `mount_path` - `mount_path` is used only if provider_uri is an NFS path - otherwise, provider_uri will be used for accessing data
__init__
python
microsoft/qlib
qlib/config.py
https://github.com/microsoft/qlib/blob/master/qlib/config.py
MIT
def get_data_uri(self, freq: Optional[Union[str, Freq]] = None) -> Path: """ please refer DataPathManager's __init__ and class doc """ if freq is not None: freq = str(freq) # converting Freq to string if freq is None or freq not in self.provider_uri: freq = QlibConfig.DEFAULT_FREQ _provider_uri = self.provider_uri[freq] if self.get_uri_type(_provider_uri) == QlibConfig.LOCAL_URI: return Path(_provider_uri) elif self.get_uri_type(_provider_uri) == QlibConfig.NFS_URI: if "win" in platform.system().lower(): # windows, mount_path is the drive _path = str(self.mount_path[freq]) return Path(f"{_path}:\\") if ":" not in _path else Path(_path) return Path(self.mount_path[freq]) else: raise NotImplementedError(f"This type of uri is not supported")
please refer DataPathManager's __init__ and class doc
get_data_uri
python
microsoft/qlib
qlib/config.py
https://github.com/microsoft/qlib/blob/master/qlib/config.py
MIT
def set(self, default_conf: str = "client", **kwargs): """ configure qlib based on the input parameters The configuration will act like a dictionary. Normally, it literally is replaced the value according to the keys. However, sometimes it is hard for users to set the config when the configuration is nested and complicated So this API provides some special parameters for users to set the keys in a more convenient way. - region: REG_CN, REG_US - several region-related config will be changed Parameters ---------- default_conf : str the default config template chosen by user: "server", "client" """ from .utils import set_log_with_config, get_module_logger, can_use_cache # pylint: disable=C0415 self.reset() _logging_config = kwargs.get("logging_config", self.logging_config) # set global config if _logging_config: set_log_with_config(_logging_config) logger = get_module_logger("Initialization", kwargs.get("logging_level", self.logging_level)) logger.info(f"default_conf: {default_conf}.") self.set_mode(default_conf) self.set_region(kwargs.get("region", self["region"] if "region" in self else REG_CN)) for k, v in kwargs.items(): if k not in self: logger.warning("Unrecognized config %s" % k) self[k] = v self.resolve_path() if not (self["expression_cache"] is None and self["dataset_cache"] is None): # check redis if not can_use_cache(): log_str = "" # check expression cache if self.is_depend_redis(self["expression_cache"]): log_str += self["expression_cache"] self["expression_cache"] = None # check dataset cache if self.is_depend_redis(self["dataset_cache"]): log_str += f" and {self['dataset_cache']}" if log_str else self["dataset_cache"] self["dataset_cache"] = None if log_str: logger.warning( f"redis connection failed(host={self['redis_host']} port={self['redis_port']}), " f"{log_str} will not be used!" )
configure qlib based on the input parameters The configuration will act like a dictionary. Normally, it literally is replaced the value according to the keys. However, sometimes it is hard for users to set the config when the configuration is nested and complicated So this API provides some special parameters for users to set the keys in a more convenient way. - region: REG_CN, REG_US - several region-related config will be changed Parameters ---------- default_conf : str the default config template chosen by user: "server", "client"
set
python
microsoft/qlib
qlib/config.py
https://github.com/microsoft/qlib/blob/master/qlib/config.py
MIT
def get_kernels(self, freq: str): """get number of processors given frequency""" if isinstance(self["kernels"], Callable): return self["kernels"](freq) return self["kernels"]
get number of processors given frequency
get_kernels
python
microsoft/qlib
qlib/config.py
https://github.com/microsoft/qlib/blob/master/qlib/config.py
MIT
def __call__(self, module_name, level: Optional[int] = None) -> QlibLogger: """ Get a logger for a specific module. :param module_name: str Logic module name. :param level: int :return: Logger Logger object. """ if level is None: level = C.logging_level if not module_name.startswith("qlib."): # Add a prefix of qlib. when the requested ``module_name`` doesn't start with ``qlib.``. # If the module_name is already qlib.xxx, we do not format here. Otherwise, it will become qlib.qlib.xxx. module_name = "qlib.{}".format(module_name) # Get logger. module_logger = self._loggers.setdefault(module_name, QlibLogger(module_name)) module_logger.setLevel(level) return module_logger
Get a logger for a specific module. :param module_name: str Logic module name. :param level: int :return: Logger Logger object.
__call__
python
microsoft/qlib
qlib/log.py
https://github.com/microsoft/qlib/blob/master/qlib/log.py
MIT
def set_time_mark(cls): """ Set a time mark with current time, and this time mark will push into a stack. :return: float A timestamp for current time. """ _time = time() cls.time_marks.append(_time) return _time
Set a time mark with current time, and this time mark will push into a stack. :return: float A timestamp for current time.
set_time_mark
python
microsoft/qlib
qlib/log.py
https://github.com/microsoft/qlib/blob/master/qlib/log.py
MIT
def log_cost_time(cls, info="Done"): """ Get last time mark from stack, calculate time diff with current time, and log time diff and info. :param info: str Info that will be logged into stdout. """ cost_time = time() - cls.time_marks.pop() cls.timer_logger.info("Time cost: {0:.3f}s | {1}".format(cost_time, info))
Get last time mark from stack, calculate time diff with current time, and log time diff and info. :param info: str Info that will be logged into stdout.
log_cost_time
python
microsoft/qlib
qlib/log.py
https://github.com/microsoft/qlib/blob/master/qlib/log.py
MIT
def logt(cls, name="", show_start=False): """logt. Log the time of the inside code Parameters ---------- name : name show_start : show_start """ if show_start: cls.timer_logger.info(f"{name} Begin") cls.set_time_mark() try: yield None finally: pass cls.log_cost_time(info=f"{name} Done")
logt. Log the time of the inside code Parameters ---------- name : name show_start : show_start
logt
python
microsoft/qlib
qlib/log.py
https://github.com/microsoft/qlib/blob/master/qlib/log.py
MIT
def set_global_logger_level(level: int, return_orig_handler_level: bool = False): """set qlib.xxx logger handlers level Parameters ---------- level: int logger level return_orig_handler_level: bool return origin handler level map Examples --------- .. code-block:: python import qlib import logging from qlib.log import get_module_logger, set_global_logger_level qlib.init() tmp_logger_01 = get_module_logger("tmp_logger_01", level=logging.INFO) tmp_logger_01.info("1. tmp_logger_01 info show") global_level = logging.WARNING + 1 set_global_logger_level(global_level) tmp_logger_02 = get_module_logger("tmp_logger_02", level=logging.INFO) tmp_logger_02.log(msg="2. tmp_logger_02 log show", level=global_level) tmp_logger_01.info("3. tmp_logger_01 info do not show") """ _handler_level_map = {} qlib_logger = logging.root.manager.loggerDict.get("qlib", None) # pylint: disable=E1101 if qlib_logger is not None: for _handler in qlib_logger.handlers: _handler_level_map[_handler] = _handler.level _handler.level = level return _handler_level_map if return_orig_handler_level else None
set qlib.xxx logger handlers level Parameters ---------- level: int logger level return_orig_handler_level: bool return origin handler level map Examples --------- .. code-block:: python import qlib import logging from qlib.log import get_module_logger, set_global_logger_level qlib.init() tmp_logger_01 = get_module_logger("tmp_logger_01", level=logging.INFO) tmp_logger_01.info("1. tmp_logger_01 info show") global_level = logging.WARNING + 1 set_global_logger_level(global_level) tmp_logger_02 = get_module_logger("tmp_logger_02", level=logging.INFO) tmp_logger_02.log(msg="2. tmp_logger_02 log show", level=global_level) tmp_logger_01.info("3. tmp_logger_01 info do not show")
set_global_logger_level
python
microsoft/qlib
qlib/log.py
https://github.com/microsoft/qlib/blob/master/qlib/log.py
MIT
def set_global_logger_level_cm(level: int): """set qlib.xxx logger handlers level to use contextmanager Parameters ---------- level: int logger level Examples --------- .. code-block:: python import qlib import logging from qlib.log import get_module_logger, set_global_logger_level_cm qlib.init() tmp_logger_01 = get_module_logger("tmp_logger_01", level=logging.INFO) tmp_logger_01.info("1. tmp_logger_01 info show") global_level = logging.WARNING + 1 with set_global_logger_level_cm(global_level): tmp_logger_02 = get_module_logger("tmp_logger_02", level=logging.INFO) tmp_logger_02.log(msg="2. tmp_logger_02 log show", level=global_level) tmp_logger_01.info("3. tmp_logger_01 info do not show") tmp_logger_01.info("4. tmp_logger_01 info show") """ _handler_level_map = set_global_logger_level(level, return_orig_handler_level=True) try: yield finally: for _handler, _level in _handler_level_map.items(): _handler.level = _level
set qlib.xxx logger handlers level to use contextmanager Parameters ---------- level: int logger level Examples --------- .. code-block:: python import qlib import logging from qlib.log import get_module_logger, set_global_logger_level_cm qlib.init() tmp_logger_01 = get_module_logger("tmp_logger_01", level=logging.INFO) tmp_logger_01.info("1. tmp_logger_01 info show") global_level = logging.WARNING + 1 with set_global_logger_level_cm(global_level): tmp_logger_02 = get_module_logger("tmp_logger_02", level=logging.INFO) tmp_logger_02.log(msg="2. tmp_logger_02 log show", level=global_level) tmp_logger_01.info("3. tmp_logger_01 info do not show") tmp_logger_01.info("4. tmp_logger_01 info show")
set_global_logger_level_cm
python
microsoft/qlib
qlib/log.py
https://github.com/microsoft/qlib/blob/master/qlib/log.py
MIT
def init(default_conf="client", **kwargs): """ Parameters ---------- default_conf: str the default value is client. Accepted values: client/server. **kwargs : clear_mem_cache: str the default value is True; Will the memory cache be clear. It is often used to improve performance when init will be called for multiple times skip_if_reg: bool: str the default value is True; When using the recorder, skip_if_reg can set to True to avoid loss of recorder. """ from .config import C # pylint: disable=C0415 from .data.cache import H # pylint: disable=C0415 logger = get_module_logger("Initialization") skip_if_reg = kwargs.pop("skip_if_reg", False) if skip_if_reg and C.registered: # if we reinitialize Qlib during running an experiment `R.start`. # it will result in loss of the recorder logger.warning("Skip initialization because `skip_if_reg is True`") return clear_mem_cache = kwargs.pop("clear_mem_cache", True) if clear_mem_cache: H.clear() C.set(default_conf, **kwargs) get_module_logger.setLevel(C.logging_level) # mount nfs for _freq, provider_uri in C.provider_uri.items(): mount_path = C["mount_path"][_freq] # check path if server/local uri_type = C.dpm.get_uri_type(provider_uri) if uri_type == C.LOCAL_URI: if not Path(provider_uri).exists(): if C["auto_mount"]: logger.error( f"Invalid provider uri: {provider_uri}, please check if a valid provider uri has been set. This path does not exist." ) else: logger.warning(f"auto_path is False, please make sure {mount_path} is mounted") elif uri_type == C.NFS_URI: _mount_nfs_uri(provider_uri, C.dpm.get_data_uri(_freq), C["auto_mount"]) else: raise NotImplementedError(f"This type of URI is not supported") C.register() if "flask_server" in C: logger.info(f"flask_server={C['flask_server']}, flask_port={C['flask_port']}") logger.info("qlib successfully initialized based on %s settings." % default_conf) data_path = {_freq: C.dpm.get_data_uri(_freq) for _freq in C.dpm.provider_uri.keys()} logger.info(f"data_path={data_path}")
Parameters ---------- default_conf: str the default value is client. Accepted values: client/server. **kwargs : clear_mem_cache: str the default value is True; Will the memory cache be clear. It is often used to improve performance when init will be called for multiple times skip_if_reg: bool: str the default value is True; When using the recorder, skip_if_reg can set to True to avoid loss of recorder.
init
python
microsoft/qlib
qlib/__init__.py
https://github.com/microsoft/qlib/blob/master/qlib/__init__.py
MIT
def init_from_yaml_conf(conf_path, **kwargs): """init_from_yaml_conf :param conf_path: A path to the qlib config in yml format """ if conf_path is None: config = {} else: with open(conf_path) as f: yaml = YAML(typ="safe", pure=True) config = yaml.load(f) config.update(kwargs) default_conf = config.pop("default_conf", "client") init(default_conf, **config)
init_from_yaml_conf :param conf_path: A path to the qlib config in yml format
init_from_yaml_conf
python
microsoft/qlib
qlib/__init__.py
https://github.com/microsoft/qlib/blob/master/qlib/__init__.py
MIT
def get_project_path(config_name="config.yaml", cur_path: Union[Path, str, None] = None) -> Path: """ If users are building a project follow the following pattern. - Qlib is a sub folder in project path - There is a file named `config.yaml` in qlib. For example: If your project file system structure follows such a pattern <project_path>/ - config.yaml - ...some folders... - qlib/ This folder will return <project_path> NOTE: link is not supported here. This method is often used when - user want to use a relative config path instead of hard-coding qlib config path in code Raises ------ FileNotFoundError: If project path is not found """ if cur_path is None: cur_path = Path(__file__).absolute().resolve() cur_path = Path(cur_path) while True: if (cur_path / config_name).exists(): return cur_path if cur_path == cur_path.parent: raise FileNotFoundError("We can't find the project path") cur_path = cur_path.parent
If users are building a project follow the following pattern. - Qlib is a sub folder in project path - There is a file named `config.yaml` in qlib. For example: If your project file system structure follows such a pattern <project_path>/ - config.yaml - ...some folders... - qlib/ This folder will return <project_path> NOTE: link is not supported here. This method is often used when - user want to use a relative config path instead of hard-coding qlib config path in code Raises ------ FileNotFoundError: If project path is not found
get_project_path
python
microsoft/qlib
qlib/__init__.py
https://github.com/microsoft/qlib/blob/master/qlib/__init__.py
MIT
def auto_init(**kwargs): """ This function will init qlib automatically with following priority - Find the project configuration and init qlib - The parsing process will be affected by the `conf_type` of the configuration file - Init qlib with default config - Skip initialization if already initialized :**kwargs: it may contain following parameters cur_path: the start path to find the project path Here are two examples of the configuration Example 1) If you want to create a new project-specific config based on a shared configure, you can use `conf_type: ref` .. code-block:: yaml conf_type: ref qlib_cfg: '<shared_yaml_config_path>' # this could be null reference no config from other files # following configs in `qlib_cfg_update` is project=specific qlib_cfg_update: exp_manager: class: "MLflowExpManager" module_path: "qlib.workflow.expm" kwargs: uri: "file://<your mlflow experiment path>" default_exp_name: "Experiment" Example 2) If you want to create simple a standalone config, you can use following config(a.k.a. `conf_type: origin`) .. code-block:: python exp_manager: class: "MLflowExpManager" module_path: "qlib.workflow.expm" kwargs: uri: "file://<your mlflow experiment path>" default_exp_name: "Experiment" """ kwargs["skip_if_reg"] = kwargs.get("skip_if_reg", True) try: pp = get_project_path(cur_path=kwargs.pop("cur_path", None)) except FileNotFoundError: init(**kwargs) else: logger = get_module_logger("Initialization") conf_pp = pp / "config.yaml" with conf_pp.open() as f: yaml = YAML(typ="safe", pure=True) conf = yaml.load(f) conf_type = conf.get("conf_type", "origin") if conf_type == "origin": # The type of config is just like original qlib config init_from_yaml_conf(conf_pp, **kwargs) elif conf_type == "ref": # This config type will be more convenient in following scenario # - There is a shared configure file, and you don't want to edit it inplace. # - The shared configure may be updated later, and you don't want to copy it. # - You have some customized config. qlib_conf_path = conf.get("qlib_cfg", None) # merge the arguments qlib_conf_update = conf.get("qlib_cfg_update", {}) for k, v in kwargs.items(): if k in qlib_conf_update: logger.warning(f"`qlib_conf_update` from conf_pp is override by `kwargs` on key '{k}'") qlib_conf_update.update(kwargs) init_from_yaml_conf(qlib_conf_path, **qlib_conf_update) logger.info(f"Auto load project config: {conf_pp}")
This function will init qlib automatically with following priority - Find the project configuration and init qlib - The parsing process will be affected by the `conf_type` of the configuration file - Init qlib with default config - Skip initialization if already initialized :**kwargs: it may contain following parameters cur_path: the start path to find the project path Here are two examples of the configuration Example 1) If you want to create a new project-specific config based on a shared configure, you can use `conf_type: ref` .. code-block:: yaml conf_type: ref qlib_cfg: '<shared_yaml_config_path>' # this could be null reference no config from other files # following configs in `qlib_cfg_update` is project=specific qlib_cfg_update: exp_manager: class: "MLflowExpManager" module_path: "qlib.workflow.expm" kwargs: uri: "file://<your mlflow experiment path>" default_exp_name: "Experiment" Example 2) If you want to create simple a standalone config, you can use following config(a.k.a. `conf_type: origin`) .. code-block:: python exp_manager: class: "MLflowExpManager" module_path: "qlib.workflow.expm" kwargs: uri: "file://<your mlflow experiment path>" default_exp_name: "Experiment"
auto_init
python
microsoft/qlib
qlib/__init__.py
https://github.com/microsoft/qlib/blob/master/qlib/__init__.py
MIT
def __init__( self, init_cash: float = 1e9, position_dict: dict = {}, freq: str = "day", benchmark_config: dict = {}, pos_type: str = "Position", port_metr_enabled: bool = True, ) -> None: """the trade account of backtest. Parameters ---------- init_cash : float, optional initial cash, by default 1e9 position_dict : Dict[ stock_id, Union[ int, # it is equal to {"amount": int} {"amount": int, "price"(optional): float}, ] ] initial stocks with parameters amount and price, if there is no price key in the dict of stocks, it will be filled by _fill_stock_value. by default {}. """ self._pos_type = pos_type self._port_metr_enabled = port_metr_enabled self.benchmark_config: dict = {} # avoid no attribute error self.init_vars(init_cash, position_dict, freq, benchmark_config)
the trade account of backtest. Parameters ---------- init_cash : float, optional initial cash, by default 1e9 position_dict : Dict[ stock_id, Union[ int, # it is equal to {"amount": int} {"amount": int, "price"(optional): float}, ] ] initial stocks with parameters amount and price, if there is no price key in the dict of stocks, it will be filled by _fill_stock_value. by default {}.
__init__
python
microsoft/qlib
qlib/backtest/account.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/account.py
MIT
def reset( self, freq: str | None = None, benchmark_config: dict | None = None, port_metr_enabled: bool | None = None ) -> None: """reset freq and report of account Parameters ---------- freq : str, optional frequency of account & report, by default None benchmark_config : {}, optional benchmark config of report, by default None port_metr_enabled: bool """ if freq is not None: self.freq = freq if benchmark_config is not None: self.benchmark_config = benchmark_config if port_metr_enabled is not None: self._port_metr_enabled = port_metr_enabled self.reset_report(self.freq, self.benchmark_config)
reset freq and report of account Parameters ---------- freq : str, optional frequency of account & report, by default None benchmark_config : {}, optional benchmark config of report, by default None port_metr_enabled: bool
reset
python
microsoft/qlib
qlib/backtest/account.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/account.py
MIT
def update_current_position( self, trade_start_time: pd.Timestamp, trade_end_time: pd.Timestamp, trade_exchange: Exchange, ) -> None: """ Update current to make rtn consistent with earning at the end of bar, and update holding bar count of stock """ # update price for stock in the position and the profit from changed_price # NOTE: updating position does not only serve portfolio metrics, it also serve the strategy assert self.current_position is not None if not self.current_position.skip_update(): stock_list = self.current_position.get_stock_list() for code in stock_list: # if suspended, no new price to be updated, profit is 0 if trade_exchange.check_stock_suspended(code, trade_start_time, trade_end_time): continue bar_close = cast(float, trade_exchange.get_close(code, trade_start_time, trade_end_time)) self.current_position.update_stock_price(stock_id=code, price=bar_close) # update holding day count # NOTE: updating bar_count does not only serve portfolio metrics, it also serve the strategy self.current_position.add_count_all(bar=self.freq)
Update current to make rtn consistent with earning at the end of bar, and update holding bar count of stock
update_current_position
python
microsoft/qlib
qlib/backtest/account.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/account.py
MIT
def update_indicator( self, trade_start_time: pd.Timestamp, trade_exchange: Exchange, atomic: bool, outer_trade_decision: BaseTradeDecision, trade_info: list = [], inner_order_indicators: List[BaseOrderIndicator] = [], decision_list: List[Tuple[BaseTradeDecision, pd.Timestamp, pd.Timestamp]] = [], indicator_config: dict = {}, ) -> None: """update trade indicators and order indicators in each bar end""" # TODO: will skip empty decisions make it faster? `outer_trade_decision.empty():` # indicator is trading (e.g. high-frequency order execution) related analysis self.indicator.reset() # aggregate the information for each order if atomic: self.indicator.update_order_indicators(trade_info) else: self.indicator.agg_order_indicators( inner_order_indicators, decision_list=decision_list, outer_trade_decision=outer_trade_decision, trade_exchange=trade_exchange, indicator_config=indicator_config, ) # aggregate all the order metrics a single step self.indicator.cal_trade_indicators(trade_start_time, self.freq, indicator_config) # record the metrics self.indicator.record(trade_start_time)
update trade indicators and order indicators in each bar end
update_indicator
python
microsoft/qlib
qlib/backtest/account.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/account.py
MIT
def update_bar_end( self, trade_start_time: pd.Timestamp, trade_end_time: pd.Timestamp, trade_exchange: Exchange, atomic: bool, outer_trade_decision: BaseTradeDecision, trade_info: list = [], inner_order_indicators: List[BaseOrderIndicator] = [], decision_list: List[Tuple[BaseTradeDecision, pd.Timestamp, pd.Timestamp]] = [], indicator_config: dict = {}, ) -> None: """update account at each trading bar step Parameters ---------- trade_start_time : pd.Timestamp closed start time of step trade_end_time : pd.Timestamp closed end time of step trade_exchange : Exchange trading exchange, used to update current atomic : bool whether the trading executor is atomic, which means there is no higher-frequency trading executor inside it - if atomic is True, calculate the indicators with trade_info - else, aggregate indicators with inner indicators outer_trade_decision: BaseTradeDecision external trade decision trade_info : List[(Order, float, float, float)], optional trading information, by default None - necessary if atomic is True - list of tuple(order, trade_val, trade_cost, trade_price) inner_order_indicators : Indicator, optional indicators of inner executor, by default None - necessary if atomic is False - used to aggregate outer indicators decision_list: List[Tuple[BaseTradeDecision, pd.Timestamp, pd.Timestamp]] = None, The decision list of the inner level: List[Tuple[<decision>, <start_time>, <end_time>]] The inner level indicator_config : dict, optional config of calculating indicators, by default {} """ if atomic is True and trade_info is None: raise ValueError("trade_info is necessary in atomic executor") elif atomic is False and inner_order_indicators is None: raise ValueError("inner_order_indicators is necessary in un-atomic executor") # update current position and hold bar count in each bar end self.update_current_position(trade_start_time, trade_end_time, trade_exchange) if self.is_port_metr_enabled(): # portfolio_metrics is portfolio related analysis self.update_portfolio_metrics(trade_start_time, trade_end_time) self.update_hist_positions(trade_start_time) # update indicator in each bar end self.update_indicator( trade_start_time=trade_start_time, trade_exchange=trade_exchange, atomic=atomic, outer_trade_decision=outer_trade_decision, trade_info=trade_info, inner_order_indicators=inner_order_indicators, decision_list=decision_list, indicator_config=indicator_config, )
update account at each trading bar step Parameters ---------- trade_start_time : pd.Timestamp closed start time of step trade_end_time : pd.Timestamp closed end time of step trade_exchange : Exchange trading exchange, used to update current atomic : bool whether the trading executor is atomic, which means there is no higher-frequency trading executor inside it - if atomic is True, calculate the indicators with trade_info - else, aggregate indicators with inner indicators outer_trade_decision: BaseTradeDecision external trade decision trade_info : List[(Order, float, float, float)], optional trading information, by default None - necessary if atomic is True - list of tuple(order, trade_val, trade_cost, trade_price) inner_order_indicators : Indicator, optional indicators of inner executor, by default None - necessary if atomic is False - used to aggregate outer indicators decision_list: List[Tuple[BaseTradeDecision, pd.Timestamp, pd.Timestamp]] = None, The decision list of the inner level: List[Tuple[<decision>, <start_time>, <end_time>]] The inner level indicator_config : dict, optional config of calculating indicators, by default {}
update_bar_end
python
microsoft/qlib
qlib/backtest/account.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/account.py
MIT
def get_portfolio_metrics(self) -> Tuple[pd.DataFrame, dict]: """get the history portfolio_metrics and positions instance""" if self.is_port_metr_enabled(): assert self.portfolio_metrics is not None _portfolio_metrics = self.portfolio_metrics.generate_portfolio_metrics_dataframe() _positions = self.get_hist_positions() return _portfolio_metrics, _positions else: raise ValueError("generate_portfolio_metrics should be True if you want to generate portfolio_metrics")
get the history portfolio_metrics and positions instance
get_portfolio_metrics
python
microsoft/qlib
qlib/backtest/account.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/account.py
MIT
def backtest_loop( start_time: Union[pd.Timestamp, str], end_time: Union[pd.Timestamp, str], trade_strategy: BaseStrategy, trade_executor: BaseExecutor, ) -> Tuple[PORT_METRIC, INDICATOR_METRIC]: """backtest function for the interaction of the outermost strategy and executor in the nested decision execution please refer to the docs of `collect_data_loop` Returns ------- portfolio_dict: PORT_METRIC it records the trading portfolio_metrics information indicator_dict: INDICATOR_METRIC it computes the trading indicator """ return_value: dict = {} for _decision in collect_data_loop(start_time, end_time, trade_strategy, trade_executor, return_value): pass portfolio_dict = cast(PORT_METRIC, return_value.get("portfolio_dict")) indicator_dict = cast(INDICATOR_METRIC, return_value.get("indicator_dict")) return portfolio_dict, indicator_dict
backtest function for the interaction of the outermost strategy and executor in the nested decision execution please refer to the docs of `collect_data_loop` Returns ------- portfolio_dict: PORT_METRIC it records the trading portfolio_metrics information indicator_dict: INDICATOR_METRIC it computes the trading indicator
backtest_loop
python
microsoft/qlib
qlib/backtest/backtest.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/backtest.py
MIT
def collect_data_loop( start_time: Union[pd.Timestamp, str], end_time: Union[pd.Timestamp, str], trade_strategy: BaseStrategy, trade_executor: BaseExecutor, return_value: dict | None = None, ) -> Generator[BaseTradeDecision, Optional[BaseTradeDecision], None]: """Generator for collecting the trade decision data for rl training Parameters ---------- start_time : Union[pd.Timestamp, str] closed start time for backtest **NOTE**: This will be applied to the outmost executor's calendar. end_time : Union[pd.Timestamp, str] closed end time for backtest **NOTE**: This will be applied to the outmost executor's calendar. E.g. Executor[day](Executor[1min]), setting `end_time == 20XX0301` will include all the minutes on 20XX0301 trade_strategy : BaseStrategy the outermost portfolio strategy trade_executor : BaseExecutor the outermost executor return_value : dict used for backtest_loop Yields ------- object trade decision """ trade_executor.reset(start_time=start_time, end_time=end_time) trade_strategy.reset(level_infra=trade_executor.get_level_infra()) with tqdm(total=trade_executor.trade_calendar.get_trade_len(), desc="backtest loop") as bar: _execute_result = None while not trade_executor.finished(): _trade_decision: BaseTradeDecision = trade_strategy.generate_trade_decision(_execute_result) _execute_result = yield from trade_executor.collect_data(_trade_decision, level=0) trade_strategy.post_exe_step(_execute_result) bar.update(1) trade_strategy.post_upper_level_exe_step() if return_value is not None: all_executors = trade_executor.get_all_executors() portfolio_dict: PORT_METRIC = {} indicator_dict: INDICATOR_METRIC = {} for executor in all_executors: key = "{}{}".format(*Freq.parse(executor.time_per_step)) if executor.trade_account.is_port_metr_enabled(): portfolio_dict[key] = executor.trade_account.get_portfolio_metrics() indicator_df = executor.trade_account.get_trade_indicator().generate_trade_indicators_dataframe() indicator_obj = executor.trade_account.get_trade_indicator() indicator_dict[key] = (indicator_df, indicator_obj) return_value.update({"portfolio_dict": portfolio_dict, "indicator_dict": indicator_dict})
Generator for collecting the trade decision data for rl training Parameters ---------- start_time : Union[pd.Timestamp, str] closed start time for backtest **NOTE**: This will be applied to the outmost executor's calendar. end_time : Union[pd.Timestamp, str] closed end time for backtest **NOTE**: This will be applied to the outmost executor's calendar. E.g. Executor[day](Executor[1min]), setting `end_time == 20XX0301` will include all the minutes on 20XX0301 trade_strategy : BaseStrategy the outermost portfolio strategy trade_executor : BaseExecutor the outermost executor return_value : dict used for backtest_loop Yields ------- object trade decision
collect_data_loop
python
microsoft/qlib
qlib/backtest/backtest.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/backtest.py
MIT
def create( code: str, amount: float, direction: OrderDir, start_time: Union[str, pd.Timestamp] = None, end_time: Union[str, pd.Timestamp] = None, ) -> Order: """ help to create a order # TODO: create order for unadjusted amount order Parameters ---------- code : str the id of the instrument amount : float **adjusted trading amount** direction : OrderDir trading direction start_time : Union[str, pd.Timestamp] (optional) The interval of the order which belongs to end_time : Union[str, pd.Timestamp] (optional) The interval of the order which belongs to Returns ------- Order: The created order """ # NOTE: factor is a value belongs to the results section. User don't have to care about it when creating orders return Order( stock_id=code, amount=amount, start_time=None if start_time is None else pd.Timestamp(start_time), end_time=None if end_time is None else pd.Timestamp(end_time), direction=direction, )
help to create a order # TODO: create order for unadjusted amount order Parameters ---------- code : str the id of the instrument amount : float **adjusted trading amount** direction : OrderDir trading direction start_time : Union[str, pd.Timestamp] (optional) The interval of the order which belongs to end_time : Union[str, pd.Timestamp] (optional) The interval of the order which belongs to Returns ------- Order: The created order
create
python
microsoft/qlib
qlib/backtest/decision.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/decision.py
MIT
def __init__(self, start_time: str | time, end_time: str | time) -> None: """ This is a callable class. **NOTE**: - It is designed for minute-bar for intra-day trading!!!!! - Both start_time and end_time are **closed** in the range Parameters ---------- start_time : str | time e.g. "9:30" end_time : str | time e.g. "14:30" """ self.start_time = pd.Timestamp(start_time).time() if isinstance(start_time, str) else start_time self.end_time = pd.Timestamp(end_time).time() if isinstance(end_time, str) else end_time assert self.start_time < self.end_time
This is a callable class. **NOTE**: - It is designed for minute-bar for intra-day trading!!!!! - Both start_time and end_time are **closed** in the range Parameters ---------- start_time : str | time e.g. "9:30" end_time : str | time e.g. "14:30"
__init__
python
microsoft/qlib
qlib/backtest/decision.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/decision.py
MIT
def __init__(self, strategy: BaseStrategy, trade_range: Union[Tuple[int, int], TradeRange, None] = None) -> None: """ Parameters ---------- strategy : BaseStrategy The strategy who make the decision trade_range: Union[Tuple[int, int], Callable] (optional) The index range for underlying strategy. Here are two examples of trade_range for each type 1) Tuple[int, int] start_index and end_index of the underlying strategy(both sides are closed) 2) TradeRange """ self.strategy = strategy self.start_time, self.end_time = strategy.trade_calendar.get_step_time() # upper strategy has no knowledge about the sub executor before `_init_sub_trading` self.total_step: Optional[int] = None if isinstance(trade_range, tuple): # for Tuple[int, int] trade_range = IdxTradeRange(*trade_range) self.trade_range: Optional[TradeRange] = trade_range
Parameters ---------- strategy : BaseStrategy The strategy who make the decision trade_range: Union[Tuple[int, int], Callable] (optional) The index range for underlying strategy. Here are two examples of trade_range for each type 1) Tuple[int, int] start_index and end_index of the underlying strategy(both sides are closed) 2) TradeRange
__init__
python
microsoft/qlib
qlib/backtest/decision.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/decision.py
MIT
def update(self, trade_calendar: TradeCalendarManager) -> Optional[BaseTradeDecision]: """ Be called at the **start** of each step. This function is design for following purpose 1) Leave a hook for the strategy who make `self` decision to update the decision itself 2) Update some information from the inner executor calendar Parameters ---------- trade_calendar : TradeCalendarManager The calendar of the **inner strategy**!!!!! Returns ------- BaseTradeDecision: New update, use new decision. If no updates, return None (use previous decision (or unavailable)) """ # purpose 1) self.total_step = trade_calendar.get_trade_len() # purpose 2) return self.strategy.update_trade_decision(self, trade_calendar)
Be called at the **start** of each step. This function is design for following purpose 1) Leave a hook for the strategy who make `self` decision to update the decision itself 2) Update some information from the inner executor calendar Parameters ---------- trade_calendar : TradeCalendarManager The calendar of the **inner strategy**!!!!! Returns ------- BaseTradeDecision: New update, use new decision. If no updates, return None (use previous decision (or unavailable))
update
python
microsoft/qlib
qlib/backtest/decision.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/decision.py
MIT
def mod_inner_decision(self, inner_trade_decision: BaseTradeDecision) -> None: """ This method will be called on the inner_trade_decision after it is generated. `inner_trade_decision` will be changed **inplace**. Motivation of the `mod_inner_decision` - Leave a hook for outer decision to affect the decision generated by the inner strategy - e.g. the outmost strategy generate a time range for trading. But the upper layer can only affect the nearest layer in the original design. With `mod_inner_decision`, the decision can passed through multiple layers Parameters ---------- inner_trade_decision : BaseTradeDecision """ # base class provide a default behaviour to modify inner_trade_decision # trade_range should be propagated when inner trade_range is not set if inner_trade_decision.trade_range is None: inner_trade_decision.trade_range = self.trade_range
This method will be called on the inner_trade_decision after it is generated. `inner_trade_decision` will be changed **inplace**. Motivation of the `mod_inner_decision` - Leave a hook for outer decision to affect the decision generated by the inner strategy - e.g. the outmost strategy generate a time range for trading. But the upper layer can only affect the nearest layer in the original design. With `mod_inner_decision`, the decision can passed through multiple layers Parameters ---------- inner_trade_decision : BaseTradeDecision
mod_inner_decision
python
microsoft/qlib
qlib/backtest/decision.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/decision.py
MIT
def check_stock_suspended( self, stock_id: str, start_time: pd.Timestamp, end_time: pd.Timestamp, ) -> bool: """if stock is suspended(hence not tradable), True will be returned""" # is suspended if stock_id in self.quote.get_all_stock(): # suspended stocks are represented by None $close stock # The $close may contain NaN, close = self.quote.get_data(stock_id, start_time, end_time, "$close") if close is None: # if no close record exists return True elif isinstance(close, IndexData): # **any** non-NaN $close represents trading opportunity may exist # if all returned is nan, then the stock is suspended return cast(bool, cast(IndexData, close).isna().all()) else: # it is single value, make sure is not None return np.isnan(close) else: # if the stock is not in the stock list, then it is not tradable and regarded as suspended return True
if stock is suspended(hence not tradable), True will be returned
check_stock_suspended
python
microsoft/qlib
qlib/backtest/exchange.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/exchange.py
MIT
def deal_order( self, order: Order, trade_account: Account | None = None, position: BasePosition | None = None, dealt_order_amount: Dict[str, float] = defaultdict(float), ) -> Tuple[float, float, float]: """ Deal order when the actual transaction the results section in `Order` will be changed. :param order: Deal the order. :param trade_account: Trade account to be updated after dealing the order. :param position: position to be updated after dealing the order. :param dealt_order_amount: the dealt order amount dict with the format of {stock_id: float} :return: trade_val, trade_cost, trade_price """ # check order first. if not self.check_order(order): order.deal_amount = 0.0 # using np.nan instead of None to make it more convenient to show the value in format string self.logger.debug(f"Order failed due to trading limitation: {order}") return 0.0, 0.0, np.nan if trade_account is not None and position is not None: raise ValueError("trade_account and position can only choose one") # NOTE: order will be changed in this function trade_price, trade_val, trade_cost = self._calc_trade_info_by_order( order, trade_account.current_position if trade_account else position, dealt_order_amount, ) if trade_val > 1e-5: # If the order can only be deal 0 value. Nothing to be updated # Otherwise, it will result in # 1) some stock with 0 value in the position # 2) `trade_unit` of trade_cost will be lost in user account if trade_account: trade_account.update_order(order=order, trade_val=trade_val, cost=trade_cost, trade_price=trade_price) elif position: position.update_order(order=order, trade_val=trade_val, cost=trade_cost, trade_price=trade_price) return trade_val, trade_cost, trade_price
Deal order when the actual transaction the results section in `Order` will be changed. :param order: Deal the order. :param trade_account: Trade account to be updated after dealing the order. :param position: position to be updated after dealing the order. :param dealt_order_amount: the dealt order amount dict with the format of {stock_id: float} :return: trade_val, trade_cost, trade_price
deal_order
python
microsoft/qlib
qlib/backtest/exchange.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/exchange.py
MIT
def get_volume( self, stock_id: str, start_time: pd.Timestamp, end_time: pd.Timestamp, method: Optional[str] = "sum", ) -> Union[None, int, float, bool, IndexData]: """get the total deal volume of stock with `stock_id` between the time interval [start_time, end_time)""" return self.quote.get_data(stock_id, start_time, end_time, field="$volume", method=method)
get the total deal volume of stock with `stock_id` between the time interval [start_time, end_time)
get_volume
python
microsoft/qlib
qlib/backtest/exchange.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/exchange.py
MIT
def get_factor( self, stock_id: str, start_time: pd.Timestamp, end_time: pd.Timestamp, ) -> Optional[float]: """ Returns ------- Optional[float]: `None`: if the stock is suspended `None` may be returned `float`: return factor if the factor exists """ assert start_time is not None and end_time is not None, "the time range must be given" if stock_id not in self.quote.get_all_stock(): return None return self.quote.get_data(stock_id, start_time, end_time, field="$factor", method="ts_data_last")
Returns ------- Optional[float]: `None`: if the stock is suspended `None` may be returned `float`: return factor if the factor exists
get_factor
python
microsoft/qlib
qlib/backtest/exchange.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/exchange.py
MIT
def generate_amount_position_from_weight_position( self, weight_position: dict, cash: float, start_time: pd.Timestamp, end_time: pd.Timestamp, direction: OrderDir = OrderDir.BUY, ) -> dict: """ Generates the target position according to the weight and the cash. NOTE: All the cash will be assigned to the tradable stock. Parameter: weight_position : dict {stock_id : weight}; allocate cash by weight_position among then, weight must be in this range: 0 < weight < 1 cash : cash start_time : the start time point of the step end_time : the end time point of the step direction : the direction of the deal price for estimating the amount # NOTE: this function is used for calculating target position. So the default direction is buy """ # calculate the total weight of tradable value tradable_weight = 0.0 for stock_id, wp in weight_position.items(): if self.is_stock_tradable(stock_id=stock_id, start_time=start_time, end_time=end_time): # weight_position must be greater than 0 and less than 1 if wp < 0 or wp > 1: raise ValueError( "weight_position is {}, " "weight_position is not in the range of (0, 1).".format(wp), ) tradable_weight += wp if tradable_weight - 1.0 >= 1e-5: raise ValueError("tradable_weight is {}, can not greater than 1.".format(tradable_weight)) amount_dict = {} for stock_id in weight_position: if weight_position[stock_id] > 0.0 and self.is_stock_tradable( stock_id=stock_id, start_time=start_time, end_time=end_time, ): amount_dict[stock_id] = ( cash * weight_position[stock_id] / tradable_weight // self.get_deal_price( stock_id=stock_id, start_time=start_time, end_time=end_time, direction=direction, ) ) return amount_dict
Generates the target position according to the weight and the cash. NOTE: All the cash will be assigned to the tradable stock. Parameter: weight_position : dict {stock_id : weight}; allocate cash by weight_position among then, weight must be in this range: 0 < weight < 1 cash : cash start_time : the start time point of the step end_time : the end time point of the step direction : the direction of the deal price for estimating the amount # NOTE: this function is used for calculating target position. So the default direction is buy
generate_amount_position_from_weight_position
python
microsoft/qlib
qlib/backtest/exchange.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/exchange.py
MIT
def get_real_deal_amount(self, current_amount: float, target_amount: float, factor: float | None = None) -> float: """ Calculate the real adjust deal amount when considering the trading unit :param current_amount: :param target_amount: :param factor: :return real_deal_amount; Positive deal_amount indicates buying more stock. """ if current_amount == target_amount: return 0 elif current_amount < target_amount: deal_amount = target_amount - current_amount deal_amount = self.round_amount_by_trade_unit(deal_amount, factor) return deal_amount else: if target_amount == 0: return -current_amount else: deal_amount = current_amount - target_amount deal_amount = self.round_amount_by_trade_unit(deal_amount, factor) return -deal_amount
Calculate the real adjust deal amount when considering the trading unit :param current_amount: :param target_amount: :param factor: :return real_deal_amount; Positive deal_amount indicates buying more stock.
get_real_deal_amount
python
microsoft/qlib
qlib/backtest/exchange.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/exchange.py
MIT
def generate_order_for_target_amount_position( self, target_position: dict, current_position: dict, start_time: pd.Timestamp, end_time: pd.Timestamp, ) -> List[Order]: """ Note: some future information is used in this function Parameter: target_position : dict { stock_id : amount } current_position : dict { stock_id : amount} trade_unit : trade_unit down sample : for amount 321 and trade_unit 100, deal_amount is 300 deal order on trade_date """ # split buy and sell for further use buy_order_list = [] sell_order_list = [] # three parts: kept stock_id, dropped stock_id, new stock_id # handle kept stock_id # because the order of the set is not fixed, the trading order of the stock is different, so that the backtest # results of the same parameter are different; # so here we sort stock_id, and then randomly shuffle the order of stock_id # because the same random seed is used, the final stock_id order is fixed sorted_ids = sorted(set(list(current_position.keys()) + list(target_position.keys()))) random.seed(0) random.shuffle(sorted_ids) for stock_id in sorted_ids: # Do not generate order for the non-tradable stocks if not self.is_stock_tradable(stock_id=stock_id, start_time=start_time, end_time=end_time): continue target_amount = target_position.get(stock_id, 0) current_amount = current_position.get(stock_id, 0) factor = self.get_factor(stock_id, start_time=start_time, end_time=end_time) deal_amount = self.get_real_deal_amount(current_amount, target_amount, factor) if deal_amount == 0: continue if deal_amount > 0: # buy stock buy_order_list.append( Order( stock_id=stock_id, amount=deal_amount, direction=Order.BUY, start_time=start_time, end_time=end_time, factor=factor, ), ) else: # sell stock sell_order_list.append( Order( stock_id=stock_id, amount=abs(deal_amount), direction=Order.SELL, start_time=start_time, end_time=end_time, factor=factor, ), ) # return order_list : buy + sell return sell_order_list + buy_order_list
Note: some future information is used in this function Parameter: target_position : dict { stock_id : amount } current_position : dict { stock_id : amount} trade_unit : trade_unit down sample : for amount 321 and trade_unit 100, deal_amount is 300 deal order on trade_date
generate_order_for_target_amount_position
python
microsoft/qlib
qlib/backtest/exchange.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/exchange.py
MIT
def calculate_amount_position_value( self, amount_dict: dict, start_time: pd.Timestamp, end_time: pd.Timestamp, only_tradable: bool = False, direction: OrderDir = OrderDir.SELL, ) -> float: """Parameter position : Position() amount_dict : {stock_id : amount} direction : the direction of the deal price for estimating the amount # NOTE: This function is used for calculating current position value. So the default direction is sell. """ value = 0 for stock_id in amount_dict: if not only_tradable or ( not self.check_stock_suspended(stock_id=stock_id, start_time=start_time, end_time=end_time) and not self.check_stock_limit(stock_id=stock_id, start_time=start_time, end_time=end_time) ): value += ( self.get_deal_price( stock_id=stock_id, start_time=start_time, end_time=end_time, direction=direction, ) * amount_dict[stock_id] ) return value
Parameter position : Position() amount_dict : {stock_id : amount} direction : the direction of the deal price for estimating the amount # NOTE: This function is used for calculating current position value. So the default direction is sell.
calculate_amount_position_value
python
microsoft/qlib
qlib/backtest/exchange.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/exchange.py
MIT
def _get_factor_or_raise_error( self, factor: float | None = None, stock_id: str | None = None, start_time: pd.Timestamp = None, end_time: pd.Timestamp = None, ) -> float: """Please refer to the docs of get_amount_of_trade_unit""" if factor is None: if stock_id is not None and start_time is not None and end_time is not None: factor = self.get_factor(stock_id=stock_id, start_time=start_time, end_time=end_time) else: raise ValueError(f"`factor` and (`stock_id`, `start_time`, `end_time`) can't both be None") assert factor is not None return factor
Please refer to the docs of get_amount_of_trade_unit
_get_factor_or_raise_error
python
microsoft/qlib
qlib/backtest/exchange.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/exchange.py
MIT
def get_amount_of_trade_unit( self, factor: float | None = None, stock_id: str | None = None, start_time: pd.Timestamp = None, end_time: pd.Timestamp = None, ) -> Optional[float]: """ get the trade unit of amount based on **factor** the factor can be given directly or calculated in given time range and stock id. `factor` has higher priority than `stock_id`, `start_time` and `end_time` Parameters ---------- factor : float the adjusted factor stock_id : str the id of the stock start_time : the start time of trading range end_time : the end time of trading range """ if not self.trade_w_adj_price and self.trade_unit is not None: factor = self._get_factor_or_raise_error( factor=factor, stock_id=stock_id, start_time=start_time, end_time=end_time, ) return self.trade_unit / factor else: return None
get the trade unit of amount based on **factor** the factor can be given directly or calculated in given time range and stock id. `factor` has higher priority than `stock_id`, `start_time` and `end_time` Parameters ---------- factor : float the adjusted factor stock_id : str the id of the stock start_time : the start time of trading range end_time : the end time of trading range
get_amount_of_trade_unit
python
microsoft/qlib
qlib/backtest/exchange.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/exchange.py
MIT
def round_amount_by_trade_unit( self, deal_amount: float, factor: float | None = None, stock_id: str | None = None, start_time: pd.Timestamp = None, end_time: pd.Timestamp = None, ) -> float: """Parameter Please refer to the docs of get_amount_of_trade_unit deal_amount : float, adjusted amount factor : float, adjusted factor return : float, real amount """ if not self.trade_w_adj_price and self.trade_unit is not None: # the minimal amount is 1. Add 0.1 for solving precision problem. factor = self._get_factor_or_raise_error( factor=factor, stock_id=stock_id, start_time=start_time, end_time=end_time, ) return (deal_amount * factor + 0.1) // self.trade_unit * self.trade_unit / factor return deal_amount
Parameter Please refer to the docs of get_amount_of_trade_unit deal_amount : float, adjusted amount factor : float, adjusted factor return : float, real amount
round_amount_by_trade_unit
python
microsoft/qlib
qlib/backtest/exchange.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/exchange.py
MIT
def _calc_trade_info_by_order( self, order: Order, position: Optional[BasePosition], dealt_order_amount: dict, ) -> Tuple[float, float, float]: """ Calculation of trade info **NOTE**: Order will be changed in this function :param order: :param position: Position :param dealt_order_amount: the dealt order amount dict with the format of {stock_id: float} :return: trade_price, trade_val, trade_cost """ trade_price = cast( float, self.get_deal_price(order.stock_id, order.start_time, order.end_time, direction=order.direction), ) total_trade_val = cast(float, self.get_volume(order.stock_id, order.start_time, order.end_time)) * trade_price order.factor = self.get_factor(order.stock_id, order.start_time, order.end_time) order.deal_amount = order.amount # set to full amount and clip it step by step # Clipping amount first # - It simulates that the order is rejected directly by the exchange due to large order # Another choice is placing it after rounding the order # - It simulates that the large order is submitted, but partial is dealt regardless of rounding by trading unit. self._clip_amount_by_volume(order, dealt_order_amount) # TODO: the adjusted cost ratio can be overestimated as deal_amount will be clipped in the next steps trade_val = order.deal_amount * trade_price if not total_trade_val or np.isnan(total_trade_val): # TODO: assert trade_val == 0, f"trade_val != 0, total_trade_val: {total_trade_val}; order info: {order}" adj_cost_ratio = self.impact_cost else: adj_cost_ratio = self.impact_cost * (trade_val / total_trade_val) ** 2 if order.direction == Order.SELL: cost_ratio = self.close_cost + adj_cost_ratio # sell # if we don't know current position, we choose to sell all # Otherwise, we clip the amount based on current position if position is not None: current_amount = ( position.get_stock_amount(order.stock_id) if position.check_stock(order.stock_id) else 0 ) if not np.isclose(order.deal_amount, current_amount): # when not selling last stock. rounding is necessary order.deal_amount = self.round_amount_by_trade_unit( min(current_amount, order.deal_amount), order.factor, ) # in case of negative value of cash if position.get_cash() + order.deal_amount * trade_price < max( order.deal_amount * trade_price * cost_ratio, self.min_cost, ): order.deal_amount = 0 self.logger.debug(f"Order clipped due to cash limitation: {order}") elif order.direction == Order.BUY: cost_ratio = self.open_cost + adj_cost_ratio # buy if position is not None: cash = position.get_cash() trade_val = order.deal_amount * trade_price if cash < max(trade_val * cost_ratio, self.min_cost): # cash cannot cover cost order.deal_amount = 0 self.logger.debug(f"Order clipped due to cost higher than cash: {order}") elif cash < trade_val + max(trade_val * cost_ratio, self.min_cost): # The money is not enough max_buy_amount = self._get_buy_amount_by_cash_limit(trade_price, cash, cost_ratio) order.deal_amount = self.round_amount_by_trade_unit( min(max_buy_amount, order.deal_amount), order.factor, ) self.logger.debug(f"Order clipped due to cash limitation: {order}") else: # The money is enough order.deal_amount = self.round_amount_by_trade_unit(order.deal_amount, order.factor) else: # Unknown amount of money. Just round the amount order.deal_amount = self.round_amount_by_trade_unit(order.deal_amount, order.factor) else: raise NotImplementedError("order direction {} error".format(order.direction)) trade_val = order.deal_amount * trade_price trade_cost = max(trade_val * cost_ratio, self.min_cost) if trade_val <= 1e-5: # if dealing is not successful, the trade_cost should be zero. trade_cost = 0 return trade_price, trade_val, trade_cost
Calculation of trade info **NOTE**: Order will be changed in this function :param order: :param position: Position :param dealt_order_amount: the dealt order amount dict with the format of {stock_id: float} :return: trade_price, trade_val, trade_cost
_calc_trade_info_by_order
python
microsoft/qlib
qlib/backtest/exchange.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/exchange.py
MIT
def __init__( self, time_per_step: str, start_time: Union[str, pd.Timestamp] = None, end_time: Union[str, pd.Timestamp] = None, indicator_config: dict = {}, generate_portfolio_metrics: bool = False, verbose: bool = False, track_data: bool = False, trade_exchange: Exchange | None = None, common_infra: CommonInfrastructure | None = None, settle_type: str = BasePosition.ST_NO, **kwargs: Any, ) -> None: """ Parameters ---------- time_per_step : str trade time per trading step, used for generate the trade calendar show_indicator: bool, optional whether to show indicators, : - 'pa', the price advantage - 'pos', the positive rate - 'ffr', the fulfill rate indicator_config: dict, optional config for calculating trade indicator, including the following fields: - 'show_indicator': whether to show indicators, optional, default by False. The indicators includes - 'pa', the price advantage - 'pos', the positive rate - 'ffr', the fulfill rate - 'pa_config': config for calculating price advantage(pa), optional - 'base_price': the based price than which the trading price is advanced, Optional, default by 'twap' - If 'base_price' is 'twap', the based price is the time weighted average price - If 'base_price' is 'vwap', the based price is the volume weighted average price - 'weight_method': weighted method when calculating total trading pa by different orders' pa in each step, optional, default by 'mean' - If 'weight_method' is 'mean', calculating mean value of different orders' pa - If 'weight_method' is 'amount_weighted', calculating amount weighted average value of different orders' pa - If 'weight_method' is 'value_weighted', calculating value weighted average value of different orders' pa - 'ffr_config': config for calculating fulfill rate(ffr), optional - 'weight_method': weighted method when calculating total trading ffr by different orders' ffr in each step, optional, default by 'mean' - If 'weight_method' is 'mean', calculating mean value of different orders' ffr - If 'weight_method' is 'amount_weighted', calculating amount weighted average value of different orders' ffr - If 'weight_method' is 'value_weighted', calculating value weighted average value of different orders' ffr Example: { 'show_indicator': True, 'pa_config': { "agg": "twap", # "vwap" "price": "$close", # default to use deal price of the exchange }, 'ffr_config':{ 'weight_method': 'value_weighted', } } generate_portfolio_metrics : bool, optional whether to generate portfolio_metrics, by default False verbose : bool, optional whether to print trading info, by default False track_data : bool, optional whether to generate trade_decision, will be used when training rl agent - If `self.track_data` is true, when making data for training, the input `trade_decision` of `execute` will be generated by `collect_data` - Else, `trade_decision` will not be generated trade_exchange : Exchange exchange that provides market info, used to generate portfolio_metrics - If generate_portfolio_metrics is None, trade_exchange will be ignored - Else If `trade_exchange` is None, self.trade_exchange will be set with common_infra common_infra : CommonInfrastructure, optional: common infrastructure for backtesting, may including: - trade_account : Account, optional trade account for trading - trade_exchange : Exchange, optional exchange that provides market info settle_type : str Please refer to the docs of BasePosition.settle_start """ self.time_per_step = time_per_step self.indicator_config = indicator_config self.generate_portfolio_metrics = generate_portfolio_metrics self.verbose = verbose self.track_data = track_data self._trade_exchange = trade_exchange self.level_infra = LevelInfrastructure() self.level_infra.reset_infra(common_infra=common_infra, executor=self) self._settle_type = settle_type self.reset(start_time=start_time, end_time=end_time, common_infra=common_infra) if common_infra is None: get_module_logger("BaseExecutor").warning(f"`common_infra` is not set for {self}") # record deal order amount in one day self.dealt_order_amount: Dict[str, float] = defaultdict(float) self.deal_day = None
Parameters ---------- time_per_step : str trade time per trading step, used for generate the trade calendar show_indicator: bool, optional whether to show indicators, : - 'pa', the price advantage - 'pos', the positive rate - 'ffr', the fulfill rate indicator_config: dict, optional config for calculating trade indicator, including the following fields: - 'show_indicator': whether to show indicators, optional, default by False. The indicators includes - 'pa', the price advantage - 'pos', the positive rate - 'ffr', the fulfill rate - 'pa_config': config for calculating price advantage(pa), optional - 'base_price': the based price than which the trading price is advanced, Optional, default by 'twap' - If 'base_price' is 'twap', the based price is the time weighted average price - If 'base_price' is 'vwap', the based price is the volume weighted average price - 'weight_method': weighted method when calculating total trading pa by different orders' pa in each step, optional, default by 'mean' - If 'weight_method' is 'mean', calculating mean value of different orders' pa - If 'weight_method' is 'amount_weighted', calculating amount weighted average value of different orders' pa - If 'weight_method' is 'value_weighted', calculating value weighted average value of different orders' pa - 'ffr_config': config for calculating fulfill rate(ffr), optional - 'weight_method': weighted method when calculating total trading ffr by different orders' ffr in each step, optional, default by 'mean' - If 'weight_method' is 'mean', calculating mean value of different orders' ffr - If 'weight_method' is 'amount_weighted', calculating amount weighted average value of different orders' ffr - If 'weight_method' is 'value_weighted', calculating value weighted average value of different orders' ffr Example: { 'show_indicator': True, 'pa_config': { "agg": "twap", # "vwap" "price": "$close", # default to use deal price of the exchange }, 'ffr_config':{ 'weight_method': 'value_weighted', } } generate_portfolio_metrics : bool, optional whether to generate portfolio_metrics, by default False verbose : bool, optional whether to print trading info, by default False track_data : bool, optional whether to generate trade_decision, will be used when training rl agent - If `self.track_data` is true, when making data for training, the input `trade_decision` of `execute` will be generated by `collect_data` - Else, `trade_decision` will not be generated trade_exchange : Exchange exchange that provides market info, used to generate portfolio_metrics - If generate_portfolio_metrics is None, trade_exchange will be ignored - Else If `trade_exchange` is None, self.trade_exchange will be set with common_infra common_infra : CommonInfrastructure, optional: common infrastructure for backtesting, may including: - trade_account : Account, optional trade account for trading - trade_exchange : Exchange, optional exchange that provides market info settle_type : str Please refer to the docs of BasePosition.settle_start
__init__
python
microsoft/qlib
qlib/backtest/executor.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/executor.py
MIT
def reset(self, common_infra: CommonInfrastructure | None = None, **kwargs: Any) -> None: """ - reset `start_time` and `end_time`, used in trade calendar - reset `common_infra`, used to reset `trade_account`, `trade_exchange`, .etc """ if "start_time" in kwargs or "end_time" in kwargs: start_time = kwargs.get("start_time") end_time = kwargs.get("end_time") self.level_infra.reset_cal(freq=self.time_per_step, start_time=start_time, end_time=end_time) if common_infra is not None: self.reset_common_infra(common_infra)
- reset `start_time` and `end_time`, used in trade calendar - reset `common_infra`, used to reset `trade_account`, `trade_exchange`, .etc
reset
python
microsoft/qlib
qlib/backtest/executor.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/executor.py
MIT
def execute(self, trade_decision: BaseTradeDecision, level: int = 0) -> List[object]: """execute the trade decision and return the executed result NOTE: this function is never used directly in the framework. Should we delete it? Parameters ---------- trade_decision : BaseTradeDecision level : int the level of current executor Returns ---------- execute_result : List[object] the executed result for trade decision """ return_value: dict = {} for _decision in self.collect_data(trade_decision, return_value=return_value, level=level): pass return cast(list, return_value.get("execute_result"))
execute the trade decision and return the executed result NOTE: this function is never used directly in the framework. Should we delete it? Parameters ---------- trade_decision : BaseTradeDecision level : int the level of current executor Returns ---------- execute_result : List[object] the executed result for trade decision
execute
python
microsoft/qlib
qlib/backtest/executor.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/executor.py
MIT
def _collect_data( self, trade_decision: BaseTradeDecision, level: int = 0, ) -> Union[Generator[Any, Any, Tuple[List[object], dict]], Tuple[List[object], dict]]: """ Please refer to the doc of collect_data The only difference between `_collect_data` and `collect_data` is that some common steps are moved into collect_data Parameters ---------- Please refer to the doc of collect_data Returns ------- Tuple[List[object], dict]: (<the executed result for trade decision>, <the extra kwargs for `self.trade_account.update_bar_end`>) """
Please refer to the doc of collect_data The only difference between `_collect_data` and `collect_data` is that some common steps are moved into collect_data Parameters ---------- Please refer to the doc of collect_data Returns ------- Tuple[List[object], dict]: (<the executed result for trade decision>, <the extra kwargs for `self.trade_account.update_bar_end`>)
_collect_data
python
microsoft/qlib
qlib/backtest/executor.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/executor.py
MIT
def collect_data( self, trade_decision: BaseTradeDecision, return_value: dict | None = None, level: int = 0, ) -> Generator[Any, Any, List[object]]: """Generator for collecting the trade decision data for rl training his function will make a step forward Parameters ---------- trade_decision : BaseTradeDecision level : int the level of current executor. 0 indicates the top level return_value : dict the mem address to return the value e.g. {"return_value": <the executed result>} Returns ---------- execute_result : List[object] the executed result for trade decision. ** NOTE!!!! **: 1) This is necessary, The return value of generator will be used in NestedExecutor 2) Please note the executed results are not merged. Yields ------- object trade decision """ if self.track_data: yield trade_decision atomic = not issubclass(self.__class__, NestedExecutor) # issubclass(A, A) is True if atomic and trade_decision.get_range_limit(default_value=None) is not None: raise ValueError("atomic executor doesn't support specify `range_limit`") if self._settle_type != BasePosition.ST_NO: self.trade_account.current_position.settle_start(self._settle_type) obj = self._collect_data(trade_decision=trade_decision, level=level) if isinstance(obj, GeneratorType): yield_res = yield from obj assert isinstance(yield_res, tuple) and len(yield_res) == 2 res, kwargs = yield_res else: # Some concrete executor don't have inner decisions res, kwargs = obj trade_start_time, trade_end_time = self.trade_calendar.get_step_time() # Account will not be changed in this function self.trade_account.update_bar_end( trade_start_time, trade_end_time, self.trade_exchange, atomic=atomic, outer_trade_decision=trade_decision, indicator_config=self.indicator_config, **kwargs, ) self.trade_calendar.step() if self._settle_type != BasePosition.ST_NO: self.trade_account.current_position.settle_commit() if return_value is not None: return_value.update({"execute_result": res}) return res
Generator for collecting the trade decision data for rl training his function will make a step forward Parameters ---------- trade_decision : BaseTradeDecision level : int the level of current executor. 0 indicates the top level return_value : dict the mem address to return the value e.g. {"return_value": <the executed result>} Returns ---------- execute_result : List[object] the executed result for trade decision. ** NOTE!!!! **: 1) This is necessary, The return value of generator will be used in NestedExecutor 2) Please note the executed results are not merged. Yields ------- object trade decision
collect_data
python
microsoft/qlib
qlib/backtest/executor.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/executor.py
MIT
def reset_common_infra(self, common_infra: CommonInfrastructure, copy_trade_account: bool = False) -> None: """ reset infrastructure for trading - reset inner_strategy and inner_executor common infra """ # NOTE: please refer to the docs of BaseExecutor.reset_common_infra for the meaning of `copy_trade_account` # The first level follow the `copy_trade_account` from the upper level super(NestedExecutor, self).reset_common_infra(common_infra, copy_trade_account=copy_trade_account) # The lower level have to copy the trade_account self.inner_executor.reset_common_infra(common_infra, copy_trade_account=True) self.inner_strategy.reset_common_infra(common_infra)
reset infrastructure for trading - reset inner_strategy and inner_executor common infra
reset_common_infra
python
microsoft/qlib
qlib/backtest/executor.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/executor.py
MIT
def __init__( self, time_per_step: str, start_time: Union[str, pd.Timestamp] = None, end_time: Union[str, pd.Timestamp] = None, indicator_config: dict = {}, generate_portfolio_metrics: bool = False, verbose: bool = False, track_data: bool = False, common_infra: CommonInfrastructure | None = None, trade_type: str = TT_SERIAL, **kwargs: Any, ) -> None: """ Parameters ---------- trade_type: str please refer to the doc of `TT_SERIAL` & `TT_PARAL` """ super(SimulatorExecutor, self).__init__( time_per_step=time_per_step, start_time=start_time, end_time=end_time, indicator_config=indicator_config, generate_portfolio_metrics=generate_portfolio_metrics, verbose=verbose, track_data=track_data, common_infra=common_infra, **kwargs, ) self.trade_type = trade_type
Parameters ---------- trade_type: str please refer to the doc of `TT_SERIAL` & `TT_PARAL`
__init__
python
microsoft/qlib
qlib/backtest/executor.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/executor.py
MIT
def _get_order_iterator(self, trade_decision: BaseTradeDecision) -> List[Order]: """ Parameters ---------- trade_decision : BaseTradeDecision the trade decision given by the strategy Returns ------- List[Order]: get a list orders according to `self.trade_type` """ orders = _retrieve_orders_from_decision(trade_decision) if self.trade_type == self.TT_SERIAL: # Orders will be traded in a parallel way order_it = orders elif self.trade_type == self.TT_PARAL: # NOTE: !!!!!!! # Assumption: there will not be orders in different trading direction in a single step of a strategy !!!! # The parallel trading failure will be caused only by the conflicts of money # Therefore, make the buying go first will make sure the conflicts happen. # It equals to parallel trading after sorting the order by direction order_it = sorted(orders, key=lambda order: -order.direction) else: raise NotImplementedError(f"This type of input is not supported") return order_it
Parameters ---------- trade_decision : BaseTradeDecision the trade decision given by the strategy Returns ------- List[Order]: get a list orders according to `self.trade_type`
_get_order_iterator
python
microsoft/qlib
qlib/backtest/executor.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/executor.py
MIT
def get_data( self, stock_id: str, start_time: Union[pd.Timestamp, str], end_time: Union[pd.Timestamp, str], field: Union[str], method: Optional[str] = None, ) -> Union[None, int, float, bool, IndexData]: """get the specific field of stock data during start time and end_time, and apply method to the data. Example: .. code-block:: $close $volume instrument datetime SH600000 2010-01-04 86.778313 16162960.0 2010-01-05 87.433578 28117442.0 2010-01-06 85.713585 23632884.0 2010-01-07 83.788803 20813402.0 2010-01-08 84.730675 16044853.0 SH600655 2010-01-04 2699.567383 158193.328125 2010-01-08 2612.359619 77501.406250 2010-01-11 2712.982422 160852.390625 2010-01-12 2788.688232 164587.937500 2010-01-13 2790.604004 145460.453125 this function is used for three case: 1. method is not None. It returns int/float/bool/None. - It will return None in one case, the method return None print(get_data(stock_id="SH600000", start_time="2010-01-04", end_time="2010-01-06", field="$close", method="last")) 85.713585 2. method is None. It returns IndexData. print(get_data(stock_id="SH600000", start_time="2010-01-04", end_time="2010-01-06", field="$close", method=None)) IndexData([86.778313, 87.433578, 85.713585], [2010-01-04, 2010-01-05, 2010-01-06]) Parameters ---------- stock_id: str start_time : Union[pd.Timestamp, str] closed start time for backtest end_time : Union[pd.Timestamp, str] closed end time for backtest field : str the columns of data to fetch method : Union[str, None] the method apply to data. e.g [None, "last", "all", "sum", "mean", "ts_data_last"] Return ---------- Union[None, int, float, bool, IndexData] it will return None in following cases - There is no stock data which meet the query criterion from data source. - The `method` returns None """ raise NotImplementedError(f"Please implement the `get_data` method")
get the specific field of stock data during start time and end_time, and apply method to the data. Example: .. code-block:: $close $volume instrument datetime SH600000 2010-01-04 86.778313 16162960.0 2010-01-05 87.433578 28117442.0 2010-01-06 85.713585 23632884.0 2010-01-07 83.788803 20813402.0 2010-01-08 84.730675 16044853.0 SH600655 2010-01-04 2699.567383 158193.328125 2010-01-08 2612.359619 77501.406250 2010-01-11 2712.982422 160852.390625 2010-01-12 2788.688232 164587.937500 2010-01-13 2790.604004 145460.453125 this function is used for three case: 1. method is not None. It returns int/float/bool/None. - It will return None in one case, the method return None print(get_data(stock_id="SH600000", start_time="2010-01-04", end_time="2010-01-06", field="$close", method="last")) 85.713585 2. method is None. It returns IndexData. print(get_data(stock_id="SH600000", start_time="2010-01-04", end_time="2010-01-06", field="$close", method=None)) IndexData([86.778313, 87.433578, 85.713585], [2010-01-04, 2010-01-05, 2010-01-06]) Parameters ---------- stock_id: str start_time : Union[pd.Timestamp, str] closed start time for backtest end_time : Union[pd.Timestamp, str] closed end time for backtest field : str the columns of data to fetch method : Union[str, None] the method apply to data. e.g [None, "last", "all", "sum", "mean", "ts_data_last"] Return ---------- Union[None, int, float, bool, IndexData] it will return None in following cases - There is no stock data which meet the query criterion from data source. - The `method` returns None
get_data
python
microsoft/qlib
qlib/backtest/high_performance_ds.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/high_performance_ds.py
MIT
def __init__(self, quote_df: pd.DataFrame, freq: str, region: str = "cn") -> None: """NumpyQuote Parameters ---------- quote_df : pd.DataFrame the init dataframe from qlib. self.data : Dict(stock_id, IndexData.DataFrame) """ super().__init__(quote_df=quote_df, freq=freq) quote_dict = {} for stock_id, stock_val in quote_df.groupby(level="instrument", group_keys=False): quote_dict[stock_id] = idd.MultiData(stock_val.droplevel(level="instrument")) quote_dict[stock_id].sort_index() # To support more flexible slicing, we must sort data first self.data = quote_dict n, unit = Freq.parse(freq) if unit in Freq.SUPPORT_CAL_LIST: self.freq = Freq.get_timedelta(1, unit) else: raise ValueError(f"{freq} is not supported in NumpyQuote") self.region = region
NumpyQuote Parameters ---------- quote_df : pd.DataFrame the init dataframe from qlib. self.data : Dict(stock_id, IndexData.DataFrame)
__init__
python
microsoft/qlib
qlib/backtest/high_performance_ds.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/high_performance_ds.py
MIT
def transfer(self, func: Callable, new_col: str = None) -> Optional[BaseSingleMetric]: """compute new metric with existing metrics. Parameters ---------- func : Callable the func of computing new metric. the kwargs of func will be replaced with metric data by name in this function. e.g. def func(pa): return (pa > 0).sum() / pa.count() new_col : str, optional New metric will be assigned in the data if new_col is not None, by default None. Return ---------- BaseSingleMetric new metric. """ func_sig = inspect.signature(func).parameters.keys() func_kwargs = {sig: self.data[sig] for sig in func_sig} tmp_metric = func(**func_kwargs) if new_col is not None: self.data[new_col] = tmp_metric return None else: return tmp_metric
compute new metric with existing metrics. Parameters ---------- func : Callable the func of computing new metric. the kwargs of func will be replaced with metric data by name in this function. e.g. def func(pa): return (pa > 0).sum() / pa.count() new_col : str, optional New metric will be assigned in the data if new_col is not None, by default None. Return ---------- BaseSingleMetric new metric.
transfer
python
microsoft/qlib
qlib/backtest/high_performance_ds.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/high_performance_ds.py
MIT
def sum_all_indicators( order_indicator: BaseOrderIndicator, indicators: List[BaseOrderIndicator], metrics: Union[str, List[str]], fill_value: float = 0, ) -> None: """sum indicators with the same metrics. and assign to the order_indicator(BaseOrderIndicator). NOTE: indicators could be a empty list when orders in lower level all fail. Parameters ---------- order_indicator : BaseOrderIndicator the order indicator to assign. indicators : List[BaseOrderIndicator] the list of all inner indicators. metrics : Union[str, List[str]] all metrics needs to be sumed. fill_value : float, optional fill np.nan with value. By default None. """ raise NotImplementedError(f"Please implement the 'sum_all_indicators' method")
sum indicators with the same metrics. and assign to the order_indicator(BaseOrderIndicator). NOTE: indicators could be a empty list when orders in lower level all fail. Parameters ---------- order_indicator : BaseOrderIndicator the order indicator to assign. indicators : List[BaseOrderIndicator] the list of all inner indicators. metrics : Union[str, List[str]] all metrics needs to be sumed. fill_value : float, optional fill np.nan with value. By default None.
sum_all_indicators
python
microsoft/qlib
qlib/backtest/high_performance_ds.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/high_performance_ds.py
MIT
def __init__(self, cash: float = 0, position_dict: Dict[str, Union[Dict[str, float], float]] = {}) -> None: """Init position by cash and position_dict. Parameters ---------- cash : float, optional initial cash in account, by default 0 position_dict : Dict[ stock_id, Union[ int, # it is equal to {"amount": int} {"amount": int, "price"(optional): float}, ] ] initial stocks with parameters amount and price, if there is no price key in the dict of stocks, it will be filled by _fill_stock_value. by default {}. """ super().__init__() # NOTE: The position dict must be copied!!! # Otherwise the initial value self.init_cash = cash self.position = position_dict.copy() for stock, value in self.position.items(): if isinstance(value, int): self.position[stock] = {"amount": value} self.position["cash"] = cash # If the stock price information is missing, the account value will not be calculated temporarily try: self.position["now_account_value"] = self.calculate_value() except KeyError: pass
Init position by cash and position_dict. Parameters ---------- cash : float, optional initial cash in account, by default 0 position_dict : Dict[ stock_id, Union[ int, # it is equal to {"amount": int} {"amount": int, "price"(optional): float}, ] ] initial stocks with parameters amount and price, if there is no price key in the dict of stocks, it will be filled by _fill_stock_value. by default {}.
__init__
python
microsoft/qlib
qlib/backtest/position.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/position.py
MIT
def fill_stock_value(self, start_time: Union[str, pd.Timestamp], freq: str, last_days: int = 30) -> None: """fill the stock value by the close price of latest last_days from qlib. Parameters ---------- start_time : the start time of backtest. freq : str Frequency last_days : int, optional the days to get the latest close price, by default 30. """ stock_list = [] for stock, value in self.position.items(): if not isinstance(value, dict): continue if value.get("price", None) is None: stock_list.append(stock) if len(stock_list) == 0: return start_time = pd.Timestamp(start_time) # note that start time is 2020-01-01 00:00:00 if raw start time is "2020-01-01" price_end_time = start_time price_start_time = start_time - timedelta(days=last_days) price_df = D.features( stock_list, ["$close"], price_start_time, price_end_time, freq=freq, disk_cache=True, ).dropna() price_dict = price_df.groupby(["instrument"], group_keys=False).tail(1)["$close"].to_dict() if len(price_dict) < len(stock_list): lack_stock = set(stock_list) - set(price_dict) raise ValueError(f"{lack_stock} doesn't have close price in qlib in the latest {last_days} days") for stock in stock_list: self.position[stock]["price"] = price_dict[stock] self.position["now_account_value"] = self.calculate_value()
fill the stock value by the close price of latest last_days from qlib. Parameters ---------- start_time : the start time of backtest. freq : str Frequency last_days : int, optional the days to get the latest close price, by default 30.
fill_stock_value
python
microsoft/qlib
qlib/backtest/position.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/position.py
MIT
def _init_stock(self, stock_id: str, amount: float, price: float | None = None) -> None: """ initialization the stock in current position Parameters ---------- stock_id : the id of the stock amount : float the amount of the stock price : the price when buying the init stock """ self.position[stock_id] = {} self.position[stock_id]["amount"] = amount self.position[stock_id]["price"] = price self.position[stock_id]["weight"] = 0 # update the weight in the end of the trade date
initialization the stock in current position Parameters ---------- stock_id : the id of the stock amount : float the amount of the stock price : the price when buying the init stock
_init_stock
python
microsoft/qlib
qlib/backtest/position.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/position.py
MIT
def get_stock_count(self, code: str, bar: str) -> float: """the days the account has been hold, it may be used in some special strategies""" if f"count_{bar}" in self.position[code]: return self.position[code][f"count_{bar}"] else: return 0
the days the account has been hold, it may be used in some special strategies
get_stock_count
python
microsoft/qlib
qlib/backtest/position.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/position.py
MIT
def get_stock_amount_dict(self) -> dict: """generate stock amount dict {stock_id : amount of stock}""" d = {} stock_list = self.get_stock_list() for stock_code in stock_list: d[stock_code] = self.get_stock_amount(code=stock_code) return d
generate stock amount dict {stock_id : amount of stock}
get_stock_amount_dict
python
microsoft/qlib
qlib/backtest/position.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/position.py
MIT
def get_stock_weight_dict(self, only_stock: bool = False) -> dict: """get_stock_weight_dict generate stock weight dict {stock_id : value weight of stock in the position} it is meaningful in the beginning or the end of each trade date :param only_stock: If only_stock=True, the weight of each stock in total stock will be returned If only_stock=False, the weight of each stock in total assets(stock + cash) will be returned """ if only_stock: position_value = self.calculate_stock_value() else: position_value = self.calculate_value() d = {} stock_list = self.get_stock_list() for stock_code in stock_list: d[stock_code] = self.position[stock_code]["amount"] * self.position[stock_code]["price"] / position_value return d
get_stock_weight_dict generate stock weight dict {stock_id : value weight of stock in the position} it is meaningful in the beginning or the end of each trade date :param only_stock: If only_stock=True, the weight of each stock in total stock will be returned If only_stock=False, the weight of each stock in total assets(stock + cash) will be returned
get_stock_weight_dict
python
microsoft/qlib
qlib/backtest/position.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/position.py
MIT
def get_benchmark_weight( bench, start_date=None, end_date=None, path=None, freq="day", ): """get_benchmark_weight get the stock weight distribution of the benchmark :param bench: :param start_date: :param end_date: :param path: :param freq: :return: The weight distribution of the the benchmark described by a pandas dataframe Every row corresponds to a trading day. Every column corresponds to a stock. Every cell represents the strategy. """ if not path: path = Path(C.dpm.get_data_uri(freq)).expanduser() / "raw" / "AIndexMembers" / "weights.csv" # TODO: the storage of weights should be implemented in a more elegent way # TODO: The benchmark is not consistent with the filename in instruments. bench_weight_df = pd.read_csv(path, usecols=["code", "date", "index", "weight"]) bench_weight_df = bench_weight_df[bench_weight_df["index"] == bench] bench_weight_df["date"] = pd.to_datetime(bench_weight_df["date"]) if start_date is not None: bench_weight_df = bench_weight_df[bench_weight_df.date >= start_date] if end_date is not None: bench_weight_df = bench_weight_df[bench_weight_df.date <= end_date] bench_stock_weight = bench_weight_df.pivot_table(index="date", columns="code", values="weight") / 100.0 return bench_stock_weight
get_benchmark_weight get the stock weight distribution of the benchmark :param bench: :param start_date: :param end_date: :param path: :param freq: :return: The weight distribution of the the benchmark described by a pandas dataframe Every row corresponds to a trading day. Every column corresponds to a stock. Every cell represents the strategy.
get_benchmark_weight
python
microsoft/qlib
qlib/backtest/profit_attribution.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/profit_attribution.py
MIT
def get_stock_weight_df(positions): """get_stock_weight_df :param positions: Given a positions from backtest result. :return: A weight distribution for the position """ stock_weight = [] index = [] for date in sorted(positions.keys()): pos = positions[date] if isinstance(pos, dict): pos = Position(position_dict=pos) index.append(date) stock_weight.append(pos.get_stock_weight_dict(only_stock=True)) return pd.DataFrame(stock_weight, index=index)
get_stock_weight_df :param positions: Given a positions from backtest result. :return: A weight distribution for the position
get_stock_weight_df
python
microsoft/qlib
qlib/backtest/profit_attribution.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/profit_attribution.py
MIT
def decompose_portofolio_weight(stock_weight_df, stock_group_df): """decompose_portofolio_weight ''' :param stock_weight_df: a pandas dataframe to describe the portofolio by weight. every row corresponds to a day every column corresponds to a stock. Here is an example below. code SH600004 SH600006 SH600017 SH600022 SH600026 SH600037 \ date 2016-01-05 0.001543 0.001570 0.002732 0.001320 0.003000 NaN 2016-01-06 0.001538 0.001569 0.002770 0.001417 0.002945 NaN .... :param stock_group_df: a pandas dataframe to describe the stock group. every row corresponds to a day every column corresponds to a stock. the value in the cell repreponds the group id. Here is a example by for stock_group_df for industry. The value is the industry code instrument SH600000 SH600004 SH600005 SH600006 SH600007 SH600008 \ datetime 2016-01-05 801780.0 801170.0 801040.0 801880.0 801180.0 801160.0 2016-01-06 801780.0 801170.0 801040.0 801880.0 801180.0 801160.0 ... :return: Two dict will be returned. The group_weight and the stock_weight_in_group. The key is the group. The value is a Series or Dataframe to describe the weight of group or weight of stock """ all_group = np.unique(stock_group_df.values.flatten()) all_group = all_group[~np.isnan(all_group)] group_weight = {} stock_weight_in_group = {} for group_key in all_group: group_mask = stock_group_df == group_key group_weight[group_key] = stock_weight_df[group_mask].sum(axis=1) stock_weight_in_group[group_key] = stock_weight_df[group_mask].divide(group_weight[group_key], axis=0) return group_weight, stock_weight_in_group
decompose_portofolio_weight ''' :param stock_weight_df: a pandas dataframe to describe the portofolio by weight. every row corresponds to a day every column corresponds to a stock. Here is an example below. code SH600004 SH600006 SH600017 SH600022 SH600026 SH600037 date 2016-01-05 0.001543 0.001570 0.002732 0.001320 0.003000 NaN 2016-01-06 0.001538 0.001569 0.002770 0.001417 0.002945 NaN .... :param stock_group_df: a pandas dataframe to describe the stock group. every row corresponds to a day every column corresponds to a stock. the value in the cell repreponds the group id. Here is a example by for stock_group_df for industry. The value is the industry code instrument SH600000 SH600004 SH600005 SH600006 SH600007 SH600008 datetime 2016-01-05 801780.0 801170.0 801040.0 801880.0 801180.0 801160.0 2016-01-06 801780.0 801170.0 801040.0 801880.0 801180.0 801160.0 ... :return: Two dict will be returned. The group_weight and the stock_weight_in_group. The key is the group. The value is a Series or Dataframe to describe the weight of group or weight of stock
decompose_portofolio_weight
python
microsoft/qlib
qlib/backtest/profit_attribution.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/profit_attribution.py
MIT
def decompose_portofolio(stock_weight_df, stock_group_df, stock_ret_df): """ :param stock_weight_df: a pandas dataframe to describe the portofolio by weight. every row corresponds to a day every column corresponds to a stock. Here is an example below. code SH600004 SH600006 SH600017 SH600022 SH600026 SH600037 \ date 2016-01-05 0.001543 0.001570 0.002732 0.001320 0.003000 NaN 2016-01-06 0.001538 0.001569 0.002770 0.001417 0.002945 NaN 2016-01-07 0.001555 0.001546 0.002772 0.001393 0.002904 NaN 2016-01-08 0.001564 0.001527 0.002791 0.001506 0.002948 NaN 2016-01-11 0.001597 0.001476 0.002738 0.001493 0.003043 NaN .... :param stock_group_df: a pandas dataframe to describe the stock group. every row corresponds to a day every column corresponds to a stock. the value in the cell repreponds the group id. Here is a example by for stock_group_df for industry. The value is the industry code instrument SH600000 SH600004 SH600005 SH600006 SH600007 SH600008 \ datetime 2016-01-05 801780.0 801170.0 801040.0 801880.0 801180.0 801160.0 2016-01-06 801780.0 801170.0 801040.0 801880.0 801180.0 801160.0 2016-01-07 801780.0 801170.0 801040.0 801880.0 801180.0 801160.0 2016-01-08 801780.0 801170.0 801040.0 801880.0 801180.0 801160.0 2016-01-11 801780.0 801170.0 801040.0 801880.0 801180.0 801160.0 ... :param stock_ret_df: a pandas dataframe to describe the stock return. every row corresponds to a day every column corresponds to a stock. the value in the cell repreponds the return of the group. Here is a example by for stock_ret_df. instrument SH600000 SH600004 SH600005 SH600006 SH600007 SH600008 \ datetime 2016-01-05 0.007795 0.022070 0.099099 0.024707 0.009473 0.016216 2016-01-06 -0.032597 -0.075205 -0.098361 -0.098985 -0.099707 -0.098936 2016-01-07 -0.001142 0.022544 0.100000 0.004225 0.000651 0.047226 2016-01-08 -0.025157 -0.047244 -0.038567 -0.098177 -0.099609 -0.074408 2016-01-11 0.023460 0.004959 -0.034384 0.018663 0.014461 0.010962 ... :return: It will decompose the portofolio to the group weight and group return. """ all_group = np.unique(stock_group_df.values.flatten()) all_group = all_group[~np.isnan(all_group)] group_weight, stock_weight_in_group = decompose_portofolio_weight(stock_weight_df, stock_group_df) group_ret = {} for group_key, val in stock_weight_in_group.items(): stock_weight_in_group_start_date = min(val.index) stock_weight_in_group_end_date = max(val.index) temp_stock_ret_df = stock_ret_df[ (stock_ret_df.index >= stock_weight_in_group_start_date) & (stock_ret_df.index <= stock_weight_in_group_end_date) ] group_ret[group_key] = (temp_stock_ret_df * val).sum(axis=1) # If no weight is assigned, then the return of group will be np.nan group_ret[group_key][group_weight[group_key] == 0.0] = np.nan group_weight_df = pd.DataFrame(group_weight) group_ret_df = pd.DataFrame(group_ret) return group_weight_df, group_ret_df
:param stock_weight_df: a pandas dataframe to describe the portofolio by weight. every row corresponds to a day every column corresponds to a stock. Here is an example below. code SH600004 SH600006 SH600017 SH600022 SH600026 SH600037 date 2016-01-05 0.001543 0.001570 0.002732 0.001320 0.003000 NaN 2016-01-06 0.001538 0.001569 0.002770 0.001417 0.002945 NaN 2016-01-07 0.001555 0.001546 0.002772 0.001393 0.002904 NaN 2016-01-08 0.001564 0.001527 0.002791 0.001506 0.002948 NaN 2016-01-11 0.001597 0.001476 0.002738 0.001493 0.003043 NaN .... :param stock_group_df: a pandas dataframe to describe the stock group. every row corresponds to a day every column corresponds to a stock. the value in the cell repreponds the group id. Here is a example by for stock_group_df for industry. The value is the industry code instrument SH600000 SH600004 SH600005 SH600006 SH600007 SH600008 datetime 2016-01-05 801780.0 801170.0 801040.0 801880.0 801180.0 801160.0 2016-01-06 801780.0 801170.0 801040.0 801880.0 801180.0 801160.0 2016-01-07 801780.0 801170.0 801040.0 801880.0 801180.0 801160.0 2016-01-08 801780.0 801170.0 801040.0 801880.0 801180.0 801160.0 2016-01-11 801780.0 801170.0 801040.0 801880.0 801180.0 801160.0 ... :param stock_ret_df: a pandas dataframe to describe the stock return. every row corresponds to a day every column corresponds to a stock. the value in the cell repreponds the return of the group. Here is a example by for stock_ret_df. instrument SH600000 SH600004 SH600005 SH600006 SH600007 SH600008 datetime 2016-01-05 0.007795 0.022070 0.099099 0.024707 0.009473 0.016216 2016-01-06 -0.032597 -0.075205 -0.098361 -0.098985 -0.099707 -0.098936 2016-01-07 -0.001142 0.022544 0.100000 0.004225 0.000651 0.047226 2016-01-08 -0.025157 -0.047244 -0.038567 -0.098177 -0.099609 -0.074408 2016-01-11 0.023460 0.004959 -0.034384 0.018663 0.014461 0.010962 ... :return: It will decompose the portofolio to the group weight and group return.
decompose_portofolio
python
microsoft/qlib
qlib/backtest/profit_attribution.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/profit_attribution.py
MIT
def get_daily_bin_group(bench_values, stock_values, group_n): """get_daily_bin_group Group the values of the stocks of benchmark into several bins in a day. Put the stocks into these bins. :param bench_values: A series contains the value of stocks in benchmark. The index is the stock code. :param stock_values: A series contains the value of stocks of your portofolio The index is the stock code. :param group_n: Bins will be produced :return: A series with the same size and index as the stock_value. The value in the series is the group id of the bins. The No.1 bin contains the biggest values. """ stock_group = stock_values.copy() # get the bin split points based on the daily proportion of benchmark split_points = np.percentile(bench_values[~bench_values.isna()], np.linspace(0, 100, group_n + 1)) # Modify the biggest uppper bound and smallest lowerbound split_points[0], split_points[-1] = -np.inf, np.inf for i, (lb, up) in enumerate(zip(split_points, split_points[1:])): stock_group.loc[stock_values[(stock_values >= lb) & (stock_values < up)].index] = group_n - i return stock_group
get_daily_bin_group Group the values of the stocks of benchmark into several bins in a day. Put the stocks into these bins. :param bench_values: A series contains the value of stocks in benchmark. The index is the stock code. :param stock_values: A series contains the value of stocks of your portofolio The index is the stock code. :param group_n: Bins will be produced :return: A series with the same size and index as the stock_value. The value in the series is the group id of the bins. The No.1 bin contains the biggest values.
get_daily_bin_group
python
microsoft/qlib
qlib/backtest/profit_attribution.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/profit_attribution.py
MIT
def brinson_pa( positions, bench="SH000905", group_field="industry", group_method="category", group_n=None, deal_price="vwap", freq="day", ): """brinson profit attribution :param positions: The position produced by the backtest class :param bench: The benchmark for comparing. TODO: if no benchmark is set, the equal-weighted is used. :param group_field: The field used to set the group for assets allocation. `industry` and `market_value` is often used. :param group_method: 'category' or 'bins'. The method used to set the group for asstes allocation `bin` will split the value into `group_n` bins and each bins represents a group :param group_n: . Only used when group_method == 'bins'. :return: A dataframe with three columns: RAA(excess Return of Assets Allocation), RSS(excess Return of Stock Selectino), RTotal(Total excess Return) Every row corresponds to a trading day, the value corresponds to the next return for this trading day The middle info of brinson profit attribution """ # group_method will decide how to group the group_field. dates = sorted(positions.keys()) start_date, end_date = min(dates), max(dates) bench_stock_weight = get_benchmark_weight(bench, start_date, end_date, freq) # The attributes for allocation will not if not group_field.startswith("$"): group_field = "$" + group_field if not deal_price.startswith("$"): deal_price = "$" + deal_price # FIXME: In current version. Some attributes(such as market_value) of some # suspend stock is NAN. So we have to get more date to forward fill the NAN shift_start_date = start_date - datetime.timedelta(days=250) instruments = D.list_instruments( D.instruments(market="all"), start_time=shift_start_date, end_time=end_date, as_list=True, freq=freq, ) stock_df = D.features( instruments, [group_field, deal_price], start_time=shift_start_date, end_time=end_date, freq=freq, ) stock_df.columns = [group_field, "deal_price"] stock_group_field = stock_df[group_field].unstack().T # FIXME: some attributes of some suspend stock is NAN. stock_group_field = stock_group_field.fillna(method="ffill") stock_group_field = stock_group_field.loc[start_date:end_date] stock_group = get_stock_group(stock_group_field, bench_stock_weight, group_method, group_n) deal_price_df = stock_df["deal_price"].unstack().T deal_price_df = deal_price_df.fillna(method="ffill") # NOTE: # The return will be slightly different from the of the return in the report. # Here the position are adjusted at the end of the trading day with close stock_ret = (deal_price_df - deal_price_df.shift(1)) / deal_price_df.shift(1) stock_ret = stock_ret.shift(-1).loc[start_date:end_date] port_stock_weight_df = get_stock_weight_df(positions) # decomposing the portofolio port_group_weight_df, port_group_ret_df = decompose_portofolio(port_stock_weight_df, stock_group, stock_ret) bench_group_weight_df, bench_group_ret_df = decompose_portofolio(bench_stock_weight, stock_group, stock_ret) # if the group return of the portofolio is NaN, replace it with the market # value mod_port_group_ret_df = port_group_ret_df.copy() mod_port_group_ret_df[mod_port_group_ret_df.isna()] = bench_group_ret_df Q1 = (bench_group_weight_df * bench_group_ret_df).sum(axis=1) Q2 = (port_group_weight_df * bench_group_ret_df).sum(axis=1) Q3 = (bench_group_weight_df * mod_port_group_ret_df).sum(axis=1) Q4 = (port_group_weight_df * mod_port_group_ret_df).sum(axis=1) return ( pd.DataFrame( { "RAA": Q2 - Q1, # The excess profit from the assets allocation "RSS": Q3 - Q1, # The excess profit from the stocks selection # The excess profit from the interaction of assets allocation and stocks selection "RIN": Q4 - Q3 - Q2 + Q1, "RTotal": Q4 - Q1, # The totoal excess profit }, ), { "port_group_ret": port_group_ret_df, "port_group_weight": port_group_weight_df, "bench_group_ret": bench_group_ret_df, "bench_group_weight": bench_group_weight_df, "stock_group": stock_group, "bench_stock_weight": bench_stock_weight, "port_stock_weight": port_stock_weight_df, "stock_ret": stock_ret, }, )
brinson profit attribution :param positions: The position produced by the backtest class :param bench: The benchmark for comparing. TODO: if no benchmark is set, the equal-weighted is used. :param group_field: The field used to set the group for assets allocation. `industry` and `market_value` is often used. :param group_method: 'category' or 'bins'. The method used to set the group for asstes allocation `bin` will split the value into `group_n` bins and each bins represents a group :param group_n: . Only used when group_method == 'bins'. :return: A dataframe with three columns: RAA(excess Return of Assets Allocation), RSS(excess Return of Stock Selectino), RTotal(Total excess Return) Every row corresponds to a trading day, the value corresponds to the next return for this trading day The middle info of brinson profit attribution
brinson_pa
python
microsoft/qlib
qlib/backtest/profit_attribution.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/profit_attribution.py
MIT
def load_portfolio_metrics(self, path: str) -> None: """load pm from a file should have format like columns = ['account', 'return', 'total_turnover', 'turnover', 'cost', 'total_cost', 'value', 'cash', 'bench'] :param path: str/ pathlib.Path() """ with pathlib.Path(path).open("rb") as f: r = pd.read_csv(f, index_col=0) r.index = pd.DatetimeIndex(r.index) index = r.index self.init_vars() for trade_start_time in index: self.update_portfolio_metrics_record( trade_start_time=trade_start_time, account_value=r.loc[trade_start_time]["account"], cash=r.loc[trade_start_time]["cash"], return_rate=r.loc[trade_start_time]["return"], total_turnover=r.loc[trade_start_time]["total_turnover"], turnover_rate=r.loc[trade_start_time]["turnover"], total_cost=r.loc[trade_start_time]["total_cost"], cost_rate=r.loc[trade_start_time]["cost"], stock_value=r.loc[trade_start_time]["value"], bench_value=r.loc[trade_start_time]["bench"], )
load pm from a file should have format like columns = ['account', 'return', 'total_turnover', 'turnover', 'cost', 'total_cost', 'value', 'cash', 'bench'] :param path: str/ pathlib.Path()
load_portfolio_metrics
python
microsoft/qlib
qlib/backtest/report.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/report.py
MIT
def _get_base_vol_pri( self, inst: str, trade_start_time: pd.Timestamp, trade_end_time: pd.Timestamp, direction: OrderDir, decision: BaseTradeDecision, trade_exchange: Exchange, pa_config: dict = {}, ) -> Tuple[Optional[float], Optional[float]]: """ Get the base volume and price information All the base price values are rooted from this function """ agg = pa_config.get("agg", "twap").lower() price = pa_config.get("price", "deal_price").lower() if decision.trade_range is not None: trade_start_time, trade_end_time = decision.trade_range.clip_time_range( start_time=trade_start_time, end_time=trade_end_time, ) if price == "deal_price": price_s = trade_exchange.get_deal_price( inst, trade_start_time, trade_end_time, direction=direction, method=None, ) else: raise NotImplementedError(f"This type of input is not supported") # if there is no stock data during the time period if price_s is None: return None, None if isinstance(price_s, (int, float, np.number)): price_s = idd.SingleData(price_s, [trade_start_time]) elif isinstance(price_s, idd.SingleData): pass else: raise NotImplementedError(f"This type of input is not supported") # NOTE: there are some zeros in the trading price. These cases are known meaningless # for aligning the previous logic, remove it. # remove zero and negative values. assert isinstance(price_s, idd.SingleData) price_s = price_s.loc[(price_s > 1e-08).data.astype(bool)] # NOTE ~(price_s < 1e-08) is different from price_s >= 1e-8 # ~(np.nan < 1e-8) -> ~(False) -> True # if price_s is empty if price_s.empty: return None, None assert isinstance(price_s, idd.SingleData) if agg == "vwap": volume_s = trade_exchange.get_volume(inst, trade_start_time, trade_end_time, method=None) if isinstance(volume_s, (int, float, np.number)): volume_s = idd.SingleData(volume_s, [trade_start_time]) assert isinstance(volume_s, idd.SingleData) volume_s = volume_s.reindex(price_s.index) elif agg == "twap": volume_s = idd.SingleData(1, price_s.index) else: raise NotImplementedError(f"This type of input is not supported") assert isinstance(volume_s, idd.SingleData) base_volume = volume_s.sum() base_price = (price_s * volume_s).sum() / base_volume return base_price, base_volume
Get the base volume and price information All the base price values are rooted from this function
_get_base_vol_pri
python
microsoft/qlib
qlib/backtest/report.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/report.py
MIT
def _agg_base_price( self, inner_order_indicators: List[BaseOrderIndicator], decision_list: List[Tuple[BaseTradeDecision, pd.Timestamp, pd.Timestamp]], trade_exchange: Exchange, pa_config: dict = {}, ) -> None: """ # NOTE:!!!! # Strong assumption!!!!!! # the correctness of the base_price relies on that the **same** exchange is used Parameters ---------- inner_order_indicators : List[BaseOrderIndicator] the indicators of account of inner executor decision_list: List[Tuple[BaseTradeDecision, pd.Timestamp, pd.Timestamp]], a list of decisions according to inner_order_indicators trade_exchange : Exchange for retrieving trading price pa_config : dict For example { "agg": "twap", # "vwap" "price": "$close", # TODO: this is not supported now!!!!! # default to use deal price of the exchange } """ # TODO: I think there are potentials to be optimized trade_dir = self.order_indicator.get_index_data("trade_dir") if len(trade_dir) > 0: bp_all, bv_all = [], [] # <step, inst, (base_volume | base_price)> for oi, (dec, start, end) in zip(inner_order_indicators, decision_list): bp_s = oi.get_index_data("base_price").reindex(trade_dir.index) bv_s = oi.get_index_data("base_volume").reindex(trade_dir.index) bp_new, bv_new = {}, {} for pr, v, (inst, direction) in zip(bp_s.data, bv_s.data, zip(trade_dir.index, trade_dir.data)): if np.isnan(pr): bp_tmp, bv_tmp = self._get_base_vol_pri( inst, start, end, decision=dec, direction=direction, trade_exchange=trade_exchange, pa_config=pa_config, ) if (bp_tmp is not None) and (bv_tmp is not None): bp_new[inst], bv_new[inst] = bp_tmp, bv_tmp else: bp_new[inst], bv_new[inst] = pr, v bp_new = idd.SingleData(bp_new) bv_new = idd.SingleData(bv_new) bp_all.append(bp_new) bv_all.append(bv_new) bp_all_multi_data = idd.concat(bp_all, axis=1) bv_all_multi_data = idd.concat(bv_all, axis=1) base_volume = bv_all_multi_data.sum(axis=1) self.order_indicator.assign("base_volume", base_volume.to_dict()) self.order_indicator.assign( "base_price", ((bp_all_multi_data * bv_all_multi_data).sum(axis=1) / base_volume).to_dict(), )
# NOTE:!!!! # Strong assumption!!!!!! # the correctness of the base_price relies on that the **same** exchange is used Parameters ---------- inner_order_indicators : List[BaseOrderIndicator] the indicators of account of inner executor decision_list: List[Tuple[BaseTradeDecision, pd.Timestamp, pd.Timestamp]], a list of decisions according to inner_order_indicators trade_exchange : Exchange for retrieving trading price pa_config : dict For example { "agg": "twap", # "vwap" "price": "$close", # TODO: this is not supported now!!!!! # default to use deal price of the exchange }
_agg_base_price
python
microsoft/qlib
qlib/backtest/report.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/report.py
MIT
def get_signal(self, start_time: pd.Timestamp, end_time: pd.Timestamp) -> Union[pd.Series, pd.DataFrame, None]: """ get the signal at the end of the decision step(from `start_time` to `end_time`) Returns ------- Union[pd.Series, pd.DataFrame, None]: returns None if no signal in the specific day """
get the signal at the end of the decision step(from `start_time` to `end_time`) Returns ------- Union[pd.Series, pd.DataFrame, None]: returns None if no signal in the specific day
get_signal
python
microsoft/qlib
qlib/backtest/signal.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/signal.py
MIT
def _update_model(self) -> None: """ When using online data, update model in each bar as the following steps: - update dataset with online data, the dataset should support online update - make the latest prediction scores of the new bar - update the pred score into the latest prediction """ # TODO: this method is not included in the framework and could be refactor later raise NotImplementedError("_update_model is not implemented!")
When using online data, update model in each bar as the following steps: - update dataset with online data, the dataset should support online update - make the latest prediction scores of the new bar - update the pred score into the latest prediction
_update_model
python
microsoft/qlib
qlib/backtest/signal.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/signal.py
MIT
def create_signal_from( obj: Union[Signal, Tuple[BaseModel, Dataset], List, Dict, Text, pd.Series, pd.DataFrame], ) -> Signal: """ create signal from diverse information This method will choose the right method to create a signal based on `obj` Please refer to the code below. """ if isinstance(obj, Signal): return obj elif isinstance(obj, (tuple, list)): return ModelSignal(*obj) elif isinstance(obj, (dict, str)): return init_instance_by_config(obj) elif isinstance(obj, (pd.DataFrame, pd.Series)): return SignalWCache(signal=obj) else: raise NotImplementedError(f"This type of signal is not supported")
create signal from diverse information This method will choose the right method to create a signal based on `obj` Please refer to the code below.
create_signal_from
python
microsoft/qlib
qlib/backtest/signal.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/signal.py
MIT
def __init__( self, freq: str, start_time: Union[str, pd.Timestamp] = None, end_time: Union[str, pd.Timestamp] = None, level_infra: LevelInfrastructure | None = None, ) -> None: """ Parameters ---------- freq : str frequency of trading calendar, also trade time per trading step start_time : Union[str, pd.Timestamp], optional closed start of the trading calendar, by default None If `start_time` is None, it must be reset before trading. end_time : Union[str, pd.Timestamp], optional closed end of the trade time range, by default None If `end_time` is None, it must be reset before trading. """ self.level_infra = level_infra self.reset(freq=freq, start_time=start_time, end_time=end_time)
Parameters ---------- freq : str frequency of trading calendar, also trade time per trading step start_time : Union[str, pd.Timestamp], optional closed start of the trading calendar, by default None If `start_time` is None, it must be reset before trading. end_time : Union[str, pd.Timestamp], optional closed end of the trade time range, by default None If `end_time` is None, it must be reset before trading.
__init__
python
microsoft/qlib
qlib/backtest/utils.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/utils.py
MIT
def reset( self, freq: str, start_time: Union[str, pd.Timestamp] = None, end_time: Union[str, pd.Timestamp] = None, ) -> None: """ Please refer to the docs of `__init__` Reset the trade calendar - self.trade_len : The total count for trading step - self.trade_step : The number of trading step finished, self.trade_step can be [0, 1, 2, ..., self.trade_len - 1] """ self.freq = freq self.start_time = pd.Timestamp(start_time) if start_time else None self.end_time = pd.Timestamp(end_time) if end_time else None _calendar = Cal.calendar(freq=freq, future=True) assert isinstance(_calendar, np.ndarray) self._calendar = _calendar _, _, _start_index, _end_index = Cal.locate_index(start_time, end_time, freq=freq, future=True) self.start_index = _start_index self.end_index = _end_index self.trade_len = _end_index - _start_index + 1 self.trade_step = 0
Please refer to the docs of `__init__` Reset the trade calendar - self.trade_len : The total count for trading step - self.trade_step : The number of trading step finished, self.trade_step can be [0, 1, 2, ..., self.trade_len - 1]
reset
python
microsoft/qlib
qlib/backtest/utils.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/utils.py
MIT
def get_step_time(self, trade_step: int | None = None, shift: int = 0) -> Tuple[pd.Timestamp, pd.Timestamp]: """ Get the left and right endpoints of the trade_step'th trading interval About the endpoints: - Qlib uses the closed interval in time-series data selection, which has the same performance as pandas.Series.loc # - The returned right endpoints should minus 1 seconds because of the closed interval representation in # Qlib. # Note: Qlib supports up to minutely decision execution, so 1 seconds is less than any trading time # interval. Parameters ---------- trade_step : int, optional the number of trading step finished, by default None to indicate current step shift : int, optional shift bars , by default 0 Returns ------- Tuple[pd.Timestamp, pd.Timestamp] - If shift == 0, return the trading time range - If shift > 0, return the trading time range of the earlier shift bars - If shift < 0, return the trading time range of the later shift bar """ if trade_step is None: trade_step = self.get_trade_step() calendar_index = self.start_index + trade_step - shift return self._calendar[calendar_index], epsilon_change(self._calendar[calendar_index + 1])
Get the left and right endpoints of the trade_step'th trading interval About the endpoints: - Qlib uses the closed interval in time-series data selection, which has the same performance as pandas.Series.loc # - The returned right endpoints should minus 1 seconds because of the closed interval representation in # Qlib. # Note: Qlib supports up to minutely decision execution, so 1 seconds is less than any trading time # interval. Parameters ---------- trade_step : int, optional the number of trading step finished, by default None to indicate current step shift : int, optional shift bars , by default 0 Returns ------- Tuple[pd.Timestamp, pd.Timestamp] - If shift == 0, return the trading time range - If shift > 0, return the trading time range of the earlier shift bars - If shift < 0, return the trading time range of the later shift bar
get_step_time
python
microsoft/qlib
qlib/backtest/utils.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/utils.py
MIT
def get_range_idx(self, start_time: pd.Timestamp, end_time: pd.Timestamp) -> Tuple[int, int]: """ get the range index which involve start_time~end_time (both sides are closed) Parameters ---------- start_time : pd.Timestamp end_time : pd.Timestamp Returns ------- Tuple[int, int]: the index of the range. **the left and right are closed** """ left = int(np.searchsorted(self._calendar, start_time, side="right") - 1) right = int(np.searchsorted(self._calendar, end_time, side="right") - 1) left -= self.start_index right -= self.start_index def clip(idx: int) -> int: return min(max(0, idx), self.trade_len - 1) return clip(left), clip(right)
get the range index which involve start_time~end_time (both sides are closed) Parameters ---------- start_time : pd.Timestamp end_time : pd.Timestamp Returns ------- Tuple[int, int]: the index of the range. **the left and right are closed**
get_range_idx
python
microsoft/qlib
qlib/backtest/utils.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/utils.py
MIT
def create_account_instance( start_time: Union[pd.Timestamp, str], end_time: Union[pd.Timestamp, str], benchmark: Optional[str], account: Union[float, int, dict], pos_type: str = "Position", ) -> Account: """ # TODO: is very strange pass benchmark_config in the account (maybe for report) # There should be a post-step to process the report. Parameters ---------- start_time start time of the benchmark end_time end time of the benchmark benchmark : str the benchmark for reporting account : Union[ float, { "cash": float, "stock1": Union[ int, # it is equal to {"amount": int} {"amount": int, "price"(optional): float}, ] }, ] information for describing how to creating the account For `float`: Using Account with only initial cash For `dict`: key "cash" means initial cash. key "stock1" means the information of first stock with amount and price(optional). ... pos_type: str Postion type. """ if isinstance(account, (int, float)): init_cash = account position_dict = {} elif isinstance(account, dict): init_cash = account.pop("cash") position_dict = account else: raise ValueError("account must be in (int, float, dict)") return Account( init_cash=init_cash, position_dict=position_dict, pos_type=pos_type, benchmark_config=( {} if benchmark is None else { "benchmark": benchmark, "start_time": start_time, "end_time": end_time, } ), )
# TODO: is very strange pass benchmark_config in the account (maybe for report) # There should be a post-step to process the report. Parameters ---------- start_time start time of the benchmark end_time end time of the benchmark benchmark : str the benchmark for reporting account : Union[ float, { "cash": float, "stock1": Union[ int, # it is equal to {"amount": int} {"amount": int, "price"(optional): float}, ] }, ] information for describing how to creating the account For `float`: Using Account with only initial cash For `dict`: key "cash" means initial cash. key "stock1" means the information of first stock with amount and price(optional). ... pos_type: str Postion type.
create_account_instance
python
microsoft/qlib
qlib/backtest/__init__.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/__init__.py
MIT
def backtest( start_time: Union[pd.Timestamp, str], end_time: Union[pd.Timestamp, str], strategy: Union[str, dict, object, Path], executor: Union[str, dict, object, Path], benchmark: str = "SH000300", account: Union[float, int, dict] = 1e9, exchange_kwargs: dict = {}, pos_type: str = "Position", ) -> Tuple[PORT_METRIC, INDICATOR_METRIC]: """initialize the strategy and executor, then backtest function for the interaction of the outermost strategy and executor in the nested decision execution Parameters ---------- start_time : Union[pd.Timestamp, str] closed start time for backtest **NOTE**: This will be applied to the outmost executor's calendar. end_time : Union[pd.Timestamp, str] closed end time for backtest **NOTE**: This will be applied to the outmost executor's calendar. E.g. Executor[day](Executor[1min]), setting `end_time == 20XX0301` will include all the minutes on 20XX0301 strategy : Union[str, dict, object, Path] for initializing outermost portfolio strategy. Please refer to the docs of init_instance_by_config for more information. executor : Union[str, dict, object, Path] for initializing the outermost executor. benchmark: str the benchmark for reporting. account : Union[float, int, Position] information for describing how to create the account For `float` or `int`: Using Account with only initial cash For `Position`: Using Account with a Position exchange_kwargs : dict the kwargs for initializing Exchange pos_type : str the type of Position. Returns ------- portfolio_dict: PORT_METRIC it records the trading portfolio_metrics information indicator_dict: INDICATOR_METRIC it computes the trading indicator It is organized in a dict format """ trade_strategy, trade_executor = get_strategy_executor( start_time, end_time, strategy, executor, benchmark, account, exchange_kwargs, pos_type=pos_type, ) return backtest_loop(start_time, end_time, trade_strategy, trade_executor)
initialize the strategy and executor, then backtest function for the interaction of the outermost strategy and executor in the nested decision execution Parameters ---------- start_time : Union[pd.Timestamp, str] closed start time for backtest **NOTE**: This will be applied to the outmost executor's calendar. end_time : Union[pd.Timestamp, str] closed end time for backtest **NOTE**: This will be applied to the outmost executor's calendar. E.g. Executor[day](Executor[1min]), setting `end_time == 20XX0301` will include all the minutes on 20XX0301 strategy : Union[str, dict, object, Path] for initializing outermost portfolio strategy. Please refer to the docs of init_instance_by_config for more information. executor : Union[str, dict, object, Path] for initializing the outermost executor. benchmark: str the benchmark for reporting. account : Union[float, int, Position] information for describing how to create the account For `float` or `int`: Using Account with only initial cash For `Position`: Using Account with a Position exchange_kwargs : dict the kwargs for initializing Exchange pos_type : str the type of Position. Returns ------- portfolio_dict: PORT_METRIC it records the trading portfolio_metrics information indicator_dict: INDICATOR_METRIC it computes the trading indicator It is organized in a dict format
backtest
python
microsoft/qlib
qlib/backtest/__init__.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/__init__.py
MIT