code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def collect_data( start_time: Union[pd.Timestamp, str], end_time: Union[pd.Timestamp, str], strategy: Union[str, dict, object, Path], executor: Union[str, dict, object, Path], benchmark: str = "SH000300", account: Union[float, int, dict] = 1e9, exchange_kwargs: dict = {}, pos_type: str = "Position", return_value: dict | None = None, ) -> Generator[object, None, None]: """initialize the strategy and executor, then collect the trade decision data for rl training please refer to the docs of the backtest for the explanation of the parameters Yields ------- object trade decision """ trade_strategy, trade_executor = get_strategy_executor( start_time, end_time, strategy, executor, benchmark, account, exchange_kwargs, pos_type=pos_type, ) yield from collect_data_loop(start_time, end_time, trade_strategy, trade_executor, return_value=return_value)
initialize the strategy and executor, then collect the trade decision data for rl training please refer to the docs of the backtest for the explanation of the parameters Yields ------- object trade decision
collect_data
python
microsoft/qlib
qlib/backtest/__init__.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/__init__.py
MIT
def format_decisions( decisions: List[BaseTradeDecision], ) -> Optional[Tuple[str, List[Tuple[BaseTradeDecision, Union[Tuple, None]]]]]: """ format the decisions collected by `qlib.backtest.collect_data` The decisions will be organized into a tree-like structure. Parameters ---------- decisions : List[BaseTradeDecision] decisions collected by `qlib.backtest.collect_data` Returns ------- Tuple[str, List[Tuple[BaseTradeDecision, Union[Tuple, None]]]]: reformat the list of decisions into a more user-friendly format <decisions> := Tuple[<freq>, List[Tuple[<decision>, <sub decisions>]]] - <sub decisions> := `<decisions> in lower level` | None - <freq> := "day" | "30min" | "1min" | ... - <decision> := <instance of BaseTradeDecision> """ if len(decisions) == 0: return None cur_freq = decisions[0].strategy.trade_calendar.get_freq() res: Tuple[str, list] = (cur_freq, []) last_dec_idx = 0 for i, dec in enumerate(decisions[1:], 1): if dec.strategy.trade_calendar.get_freq() == cur_freq: res[1].append((decisions[last_dec_idx], format_decisions(decisions[last_dec_idx + 1 : i]))) last_dec_idx = i res[1].append((decisions[last_dec_idx], format_decisions(decisions[last_dec_idx + 1 :]))) return res
format the decisions collected by `qlib.backtest.collect_data` The decisions will be organized into a tree-like structure. Parameters ---------- decisions : List[BaseTradeDecision] decisions collected by `qlib.backtest.collect_data` Returns ------- Tuple[str, List[Tuple[BaseTradeDecision, Union[Tuple, None]]]]: reformat the list of decisions into a more user-friendly format <decisions> := Tuple[<freq>, List[Tuple[<decision>, <sub decisions>]]] - <sub decisions> := `<decisions> in lower level` | None - <freq> := "day" | "30min" | "1min" | ... - <decision> := <instance of BaseTradeDecision>
format_decisions
python
microsoft/qlib
qlib/backtest/__init__.py
https://github.com/microsoft/qlib/blob/master/qlib/backtest/__init__.py
MIT
def risk_analysis(r, N: int = None, freq: str = "day", mode: Literal["sum", "product"] = "sum"): """Risk Analysis NOTE: The calculation of annualized return is different from the definition of annualized return. It is implemented by design. Qlib tries to cumulate returns by summation instead of production to avoid the cumulated curve being skewed exponentially. All the calculation of annualized returns follows this principle in Qlib. Parameters ---------- r : pandas.Series daily return series. N: int scaler for annualizing information_ratio (day: 252, week: 50, month: 12), at least one of `N` and `freq` should exist freq: str analysis frequency used for calculating the scaler, at least one of `N` and `freq` should exist mode: Literal["sum", "product"] the method by which returns are accumulated: - "sum": Arithmetic accumulation (linear returns). - "product": Geometric accumulation (compounded returns). """ def cal_risk_analysis_scaler(freq): _count, _freq = Freq.parse(freq) _freq_scaler = { Freq.NORM_FREQ_MINUTE: 240 * 238, Freq.NORM_FREQ_DAY: 238, Freq.NORM_FREQ_WEEK: 50, Freq.NORM_FREQ_MONTH: 12, } return _freq_scaler[_freq] / _count if N is None and freq is None: raise ValueError("at least one of `N` and `freq` should exist") if N is not None and freq is not None: warnings.warn("risk_analysis freq will be ignored") if N is None: N = cal_risk_analysis_scaler(freq) if mode == "sum": mean = r.mean() std = r.std(ddof=1) annualized_return = mean * N max_drawdown = (r.cumsum() - r.cumsum().cummax()).min() elif mode == "product": cumulative_curve = (1 + r).cumprod() # geometric mean (compound annual growth rate) mean = cumulative_curve.iloc[-1] ** (1 / len(r)) - 1 # volatility of log returns std = np.log(1 + r).std(ddof=1) cumulative_return = cumulative_curve.iloc[-1] - 1 annualized_return = (1 + cumulative_return) ** (N / len(r)) - 1 # max percentage drawdown from peak cumulative product max_drawdown = (cumulative_curve / cumulative_curve.cummax() - 1).min() else: raise ValueError(f"risk_analysis accumulation mode {mode} is not supported. Expected `sum` or `product`.") information_ratio = mean / std * np.sqrt(N) data = { "mean": mean, "std": std, "annualized_return": annualized_return, "information_ratio": information_ratio, "max_drawdown": max_drawdown, } res = pd.Series(data).to_frame("risk") return res
Risk Analysis NOTE: The calculation of annualized return is different from the definition of annualized return. It is implemented by design. Qlib tries to cumulate returns by summation instead of production to avoid the cumulated curve being skewed exponentially. All the calculation of annualized returns follows this principle in Qlib. Parameters ---------- r : pandas.Series daily return series. N: int scaler for annualizing information_ratio (day: 252, week: 50, month: 12), at least one of `N` and `freq` should exist freq: str analysis frequency used for calculating the scaler, at least one of `N` and `freq` should exist mode: Literal["sum", "product"] the method by which returns are accumulated: - "sum": Arithmetic accumulation (linear returns). - "product": Geometric accumulation (compounded returns).
risk_analysis
python
microsoft/qlib
qlib/contrib/evaluate.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/evaluate.py
MIT
def indicator_analysis(df, method="mean"): """analyze statistical time-series indicators of trading Parameters ---------- df : pandas.DataFrame columns: like ['pa', 'pos', 'ffr', 'deal_amount', 'value']. Necessary fields: - 'pa' is the price advantage in trade indicators - 'pos' is the positive rate in trade indicators - 'ffr' is the fulfill rate in trade indicators Optional fields: - 'deal_amount' is the total deal deal_amount, only necessary when method is 'amount_weighted' - 'value' is the total trade value, only necessary when method is 'value_weighted' index: Index(datetime) method : str, optional statistics method of pa/ffr, by default "mean" - if method is 'mean', count the mean statistical value of each trade indicator - if method is 'amount_weighted', count the deal_amount weighted mean statistical value of each trade indicator - if method is 'value_weighted', count the value weighted mean statistical value of each trade indicator Note: statistics method of pos is always "mean" Returns ------- pd.DataFrame statistical value of each trade indicators """ weights_dict = { "mean": df["count"], "amount_weighted": df["deal_amount"].abs(), "value_weighted": df["value"].abs(), } if method not in weights_dict: raise ValueError(f"indicator_analysis method {method} is not supported!") # statistic pa/ffr indicator indicators_df = df[["ffr", "pa"]] weights = weights_dict.get(method) res = indicators_df.mul(weights, axis=0).sum() / weights.sum() # statistic pos weights = weights_dict.get("mean") res.loc["pos"] = df["pos"].mul(weights).sum() / weights.sum() res = res.to_frame("value") return res
analyze statistical time-series indicators of trading Parameters ---------- df : pandas.DataFrame columns: like ['pa', 'pos', 'ffr', 'deal_amount', 'value']. Necessary fields: - 'pa' is the price advantage in trade indicators - 'pos' is the positive rate in trade indicators - 'ffr' is the fulfill rate in trade indicators Optional fields: - 'deal_amount' is the total deal deal_amount, only necessary when method is 'amount_weighted' - 'value' is the total trade value, only necessary when method is 'value_weighted' index: Index(datetime) method : str, optional statistics method of pa/ffr, by default "mean" - if method is 'mean', count the mean statistical value of each trade indicator - if method is 'amount_weighted', count the deal_amount weighted mean statistical value of each trade indicator - if method is 'value_weighted', count the value weighted mean statistical value of each trade indicator Note: statistics method of pos is always "mean" Returns ------- pd.DataFrame statistical value of each trade indicators
indicator_analysis
python
microsoft/qlib
qlib/contrib/evaluate.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/evaluate.py
MIT
def _get_position_value_from_df(evaluate_date, position, close_data_df): """Get position value by existed close data df close_data_df: pd.DataFrame multi-index close_data_df['$close'][stock_id][evaluate_date]: close price for (stock_id, evaluate_date) position: same in get_position_value() """ value = 0 for stock_id, report in position.items(): if stock_id != "cash": value += report["amount"] * close_data_df["$close"][stock_id][evaluate_date] # value += report['amount'] * report['price'] if "cash" in position: value += position["cash"] return value
Get position value by existed close data df close_data_df: pd.DataFrame multi-index close_data_df['$close'][stock_id][evaluate_date]: close price for (stock_id, evaluate_date) position: same in get_position_value()
_get_position_value_from_df
python
microsoft/qlib
qlib/contrib/evaluate_portfolio.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/evaluate_portfolio.py
MIT
def get_position_value(evaluate_date, position): """sum of close*amount get value of position use close price positions: { Timestamp('2016-01-05 00:00:00'): { 'SH600022': { 'amount':100.00, 'price':12.00 }, 'cash':100000.0 } } It means Hold 100.0 'SH600022' and 100000.0 RMB in '2016-01-05' """ # load close price for position # position should also consider cash instruments = list(position.keys()) instruments = list(set(instruments) - {"cash"}) # filter 'cash' fields = ["$close"] close_data_df = D.features( instruments, fields, start_time=evaluate_date, end_time=evaluate_date, freq="day", disk_cache=0, ) value = _get_position_value_from_df(evaluate_date, position, close_data_df) return value
sum of close*amount get value of position use close price positions: { Timestamp('2016-01-05 00:00:00'): { 'SH600022': { 'amount':100.00, 'price':12.00 }, 'cash':100000.0 } } It means Hold 100.0 'SH600022' and 100000.0 RMB in '2016-01-05'
get_position_value
python
microsoft/qlib
qlib/contrib/evaluate_portfolio.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/evaluate_portfolio.py
MIT
def get_daily_return_series_from_positions(positions, init_asset_value): """Parameters generate daily return series from position view positions: positions generated by strategy init_asset_value : init asset value return: pd.Series of daily return , return_series[date] = daily return rate """ value_dict = get_position_list_value(positions) value_series = pd.Series(value_dict) value_series = value_series.sort_index() # check date return_series = value_series.pct_change() return_series[value_series.index[0]] = ( value_series[value_series.index[0]] / init_asset_value - 1 ) # update daily return for the first date return return_series
Parameters generate daily return series from position view positions: positions generated by strategy init_asset_value : init asset value return: pd.Series of daily return , return_series[date] = daily return rate
get_daily_return_series_from_positions
python
microsoft/qlib
qlib/contrib/evaluate_portfolio.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/evaluate_portfolio.py
MIT
def get_annual_return_from_positions(positions, init_asset_value): """Annualized Returns p_r = (p_end / p_start)^{(250/n)} - 1 p_r annual return p_end final value p_start init value n days of backtest """ date_range_list = sorted(list(positions.keys())) end_time = date_range_list[-1] p_end = get_position_value(end_time, positions[end_time]) p_start = init_asset_value n_period = len(date_range_list) annual = pow((p_end / p_start), (250 / n_period)) - 1 return annual
Annualized Returns p_r = (p_end / p_start)^{(250/n)} - 1 p_r annual return p_end final value p_start init value n days of backtest
get_annual_return_from_positions
python
microsoft/qlib
qlib/contrib/evaluate_portfolio.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/evaluate_portfolio.py
MIT
def get_annaul_return_from_return_series(r, method="ci"): """Risk Analysis from daily return series Parameters ---------- r : pandas.Series daily return series method : str interest calculation method, ci(compound interest)/si(simple interest) """ mean = r.mean() annual = (1 + mean) ** 250 - 1 if method == "ci" else mean * 250 return annual
Risk Analysis from daily return series Parameters ---------- r : pandas.Series daily return series method : str interest calculation method, ci(compound interest)/si(simple interest)
get_annaul_return_from_return_series
python
microsoft/qlib
qlib/contrib/evaluate_portfolio.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/evaluate_portfolio.py
MIT
def get_sharpe_ratio_from_return_series(r, risk_free_rate=0.00, method="ci"): """Risk Analysis Parameters ---------- r : pandas.Series daily return series method : str interest calculation method, ci(compound interest)/si(simple interest) risk_free_rate : float risk_free_rate, default as 0.00, can set as 0.03 etc """ std = r.std(ddof=1) annual = get_annaul_return_from_return_series(r, method=method) sharpe = (annual - risk_free_rate) / std / np.sqrt(250) return sharpe
Risk Analysis Parameters ---------- r : pandas.Series daily return series method : str interest calculation method, ci(compound interest)/si(simple interest) risk_free_rate : float risk_free_rate, default as 0.00, can set as 0.03 etc
get_sharpe_ratio_from_return_series
python
microsoft/qlib
qlib/contrib/evaluate_portfolio.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/evaluate_portfolio.py
MIT
def get_max_drawdown_from_series(r): """Risk Analysis from asset value cumprod way Parameters ---------- r : pandas.Series daily return series """ # mdd = ((r.cumsum() - r.cumsum().cummax()) / (1 + r.cumsum().cummax())).min() mdd = (((1 + r).cumprod() - (1 + r).cumprod().cummax()) / ((1 + r).cumprod().cummax())).min() return mdd
Risk Analysis from asset value cumprod way Parameters ---------- r : pandas.Series daily return series
get_max_drawdown_from_series
python
microsoft/qlib
qlib/contrib/evaluate_portfolio.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/evaluate_portfolio.py
MIT
def get_beta(r, b): """Risk Analysis beta Parameters ---------- r : pandas.Series daily return series of strategy b : pandas.Series daily return series of baseline """ cov_r_b = np.cov(r, b) var_b = np.var(b) return cov_r_b / var_b
Risk Analysis beta Parameters ---------- r : pandas.Series daily return series of strategy b : pandas.Series daily return series of baseline
get_beta
python
microsoft/qlib
qlib/contrib/evaluate_portfolio.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/evaluate_portfolio.py
MIT
def _create_ts_slices(index, seq_len): """ create time series slices from pandas index Args: index (pd.MultiIndex): pandas multiindex with <instrument, datetime> order seq_len (int): sequence length """ assert isinstance(index, pd.MultiIndex), "unsupported index type" assert seq_len > 0, "sequence length should be larger than 0" assert index.is_monotonic_increasing, "index should be sorted" # number of dates for each instrument sample_count_by_insts = index.to_series().groupby(level=0, group_keys=False).size().values # start index for each instrument start_index_of_insts = np.roll(np.cumsum(sample_count_by_insts), 1) start_index_of_insts[0] = 0 # all the [start, stop) indices of features # features between [start, stop) will be used to predict label at `stop - 1` slices = [] for cur_loc, cur_cnt in zip(start_index_of_insts, sample_count_by_insts): for stop in range(1, cur_cnt + 1): end = cur_loc + stop start = max(end - seq_len, 0) slices.append(slice(start, end)) slices = np.array(slices, dtype="object") assert len(slices) == len(index) # the i-th slice = index[i] return slices
create time series slices from pandas index Args: index (pd.MultiIndex): pandas multiindex with <instrument, datetime> order seq_len (int): sequence length
_create_ts_slices
python
microsoft/qlib
qlib/contrib/data/dataset.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/data/dataset.py
MIT
def _get_date_parse_fn(target): """get date parse function This method is used to parse date arguments as target type. Example: get_date_parse_fn('20120101')('2017-01-01') => '20170101' get_date_parse_fn(20120101)('2017-01-01') => 20170101 """ if isinstance(target, int): def _fn(x): return int(str(x).replace("-", "")[:8]) # 20200201 elif isinstance(target, str) and len(target) == 8: def _fn(x): return str(x).replace("-", "")[:8] # '20200201' else: def _fn(x): return x # '2021-01-01' return _fn
get date parse function This method is used to parse date arguments as target type. Example: get_date_parse_fn('20120101')('2017-01-01') => '20170101' get_date_parse_fn(20120101)('2017-01-01') => 20170101
_get_date_parse_fn
python
microsoft/qlib
qlib/contrib/data/dataset.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/data/dataset.py
MIT
def _maybe_padding(x, seq_len, zeros=None): """padding 2d <time * feature> data with zeros Args: x (np.ndarray): 2d data with shape <time * feature> seq_len (int): target sequence length zeros (np.ndarray): zeros with shape <seq_len * feature> """ assert seq_len > 0, "sequence length should be larger than 0" if zeros is None: zeros = np.zeros((seq_len, x.shape[1]), dtype=np.float32) else: assert len(zeros) >= seq_len, "zeros matrix is not large enough for padding" if len(x) != seq_len: # padding zeros x = np.concatenate([zeros[: seq_len - len(x), : x.shape[1]], x], axis=0) return x
padding 2d <time * feature> data with zeros Args: x (np.ndarray): 2d data with shape <time * feature> seq_len (int): target sequence length zeros (np.ndarray): zeros with shape <seq_len * feature>
_maybe_padding
python
microsoft/qlib
qlib/contrib/data/dataset.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/data/dataset.py
MIT
def get_pre_datasets(self): """Generate the training, validation and test datasets for prediction Returns: Tuple[BaseDataset, BaseDataset, BaseDataset]: The training and test datasets """ dict_feature_path = self.feature_conf["path"] train_feature_path = dict_feature_path[:-4] + "_train.pkl" valid_feature_path = dict_feature_path[:-4] + "_valid.pkl" test_feature_path = dict_feature_path[:-4] + "_test.pkl" dict_label_path = self.label_conf["path"] train_label_path = dict_label_path[:-4] + "_train.pkl" valid_label_path = dict_label_path[:-4] + "_valid.pkl" test_label_path = dict_label_path[:-4] + "_test.pkl" if ( not os.path.isfile(train_feature_path) or not os.path.isfile(valid_feature_path) or not os.path.isfile(test_feature_path) ): xtrain, xvalid, xtest = self._gen_data(self.feature_conf) xtrain.to_pickle(train_feature_path) xvalid.to_pickle(valid_feature_path) xtest.to_pickle(test_feature_path) del xtrain, xvalid, xtest if ( not os.path.isfile(train_label_path) or not os.path.isfile(valid_label_path) or not os.path.isfile(test_label_path) ): ytrain, yvalid, ytest = self._gen_data(self.label_conf) ytrain.to_pickle(train_label_path) yvalid.to_pickle(valid_label_path) ytest.to_pickle(test_label_path) del ytrain, yvalid, ytest feature = { "train": train_feature_path, "valid": valid_feature_path, "test": test_feature_path, } label = { "train": train_label_path, "valid": valid_label_path, "test": test_label_path, } return feature, label
Generate the training, validation and test datasets for prediction Returns: Tuple[BaseDataset, BaseDataset, BaseDataset]: The training and test datasets
get_pre_datasets
python
microsoft/qlib
qlib/contrib/data/highfreq_provider.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/data/highfreq_provider.py
MIT
def get_feature_config( config={ "kbar": {}, "price": { "windows": [0], "feature": ["OPEN", "HIGH", "LOW", "VWAP"], }, "rolling": {}, } ): """create factors from config config = { 'kbar': {}, # whether to use some hard-code kbar features 'price': { # whether to use raw price features 'windows': [0, 1, 2, 3, 4], # use price at n days ago 'feature': ['OPEN', 'HIGH', 'LOW'] # which price field to use }, 'volume': { # whether to use raw volume features 'windows': [0, 1, 2, 3, 4], # use volume at n days ago }, 'rolling': { # whether to use rolling operator based features 'windows': [5, 10, 20, 30, 60], # rolling windows size 'include': ['ROC', 'MA', 'STD'], # rolling operator to use #if include is None we will use default operators 'exclude': ['RANK'], # rolling operator not to use } } """ fields = [] names = [] if "kbar" in config: fields += [ "($close-$open)/$open", "($high-$low)/$open", "($close-$open)/($high-$low+1e-12)", "($high-Greater($open, $close))/$open", "($high-Greater($open, $close))/($high-$low+1e-12)", "(Less($open, $close)-$low)/$open", "(Less($open, $close)-$low)/($high-$low+1e-12)", "(2*$close-$high-$low)/$open", "(2*$close-$high-$low)/($high-$low+1e-12)", ] names += [ "KMID", "KLEN", "KMID2", "KUP", "KUP2", "KLOW", "KLOW2", "KSFT", "KSFT2", ] if "price" in config: windows = config["price"].get("windows", range(5)) feature = config["price"].get("feature", ["OPEN", "HIGH", "LOW", "CLOSE", "VWAP"]) for field in feature: field = field.lower() fields += ["Ref($%s, %d)/$close" % (field, d) if d != 0 else "$%s/$close" % field for d in windows] names += [field.upper() + str(d) for d in windows] if "volume" in config: windows = config["volume"].get("windows", range(5)) fields += ["Ref($volume, %d)/($volume+1e-12)" % d if d != 0 else "$volume/($volume+1e-12)" for d in windows] names += ["VOLUME" + str(d) for d in windows] if "rolling" in config: windows = config["rolling"].get("windows", [5, 10, 20, 30, 60]) include = config["rolling"].get("include", None) exclude = config["rolling"].get("exclude", []) # `exclude` in dataset config unnecessary filed # `include` in dataset config necessary field def use(x): return x not in exclude and (include is None or x in include) # Some factor ref: https://guorn.com/static/upload/file/3/134065454575605.pdf if use("ROC"): # https://www.investopedia.com/terms/r/rateofchange.asp # Rate of change, the price change in the past d days, divided by latest close price to remove unit fields += ["Ref($close, %d)/$close" % d for d in windows] names += ["ROC%d" % d for d in windows] if use("MA"): # https://www.investopedia.com/ask/answers/071414/whats-difference-between-moving-average-and-weighted-moving-average.asp # Simple Moving Average, the simple moving average in the past d days, divided by latest close price to remove unit fields += ["Mean($close, %d)/$close" % d for d in windows] names += ["MA%d" % d for d in windows] if use("STD"): # The standard diviation of close price for the past d days, divided by latest close price to remove unit fields += ["Std($close, %d)/$close" % d for d in windows] names += ["STD%d" % d for d in windows] if use("BETA"): # The rate of close price change in the past d days, divided by latest close price to remove unit # For example, price increase 10 dollar per day in the past d days, then Slope will be 10. fields += ["Slope($close, %d)/$close" % d for d in windows] names += ["BETA%d" % d for d in windows] if use("RSQR"): # The R-sqaure value of linear regression for the past d days, represent the trend linear fields += ["Rsquare($close, %d)" % d for d in windows] names += ["RSQR%d" % d for d in windows] if use("RESI"): # The redisdual for linear regression for the past d days, represent the trend linearity for past d days. fields += ["Resi($close, %d)/$close" % d for d in windows] names += ["RESI%d" % d for d in windows] if use("MAX"): # The max price for past d days, divided by latest close price to remove unit fields += ["Max($high, %d)/$close" % d for d in windows] names += ["MAX%d" % d for d in windows] if use("LOW"): # The low price for past d days, divided by latest close price to remove unit fields += ["Min($low, %d)/$close" % d for d in windows] names += ["MIN%d" % d for d in windows] if use("QTLU"): # The 80% quantile of past d day's close price, divided by latest close price to remove unit # Used with MIN and MAX fields += ["Quantile($close, %d, 0.8)/$close" % d for d in windows] names += ["QTLU%d" % d for d in windows] if use("QTLD"): # The 20% quantile of past d day's close price, divided by latest close price to remove unit fields += ["Quantile($close, %d, 0.2)/$close" % d for d in windows] names += ["QTLD%d" % d for d in windows] if use("RANK"): # Get the percentile of current close price in past d day's close price. # Represent the current price level comparing to past N days, add additional information to moving average. fields += ["Rank($close, %d)" % d for d in windows] names += ["RANK%d" % d for d in windows] if use("RSV"): # Represent the price position between upper and lower resistent price for past d days. fields += ["($close-Min($low, %d))/(Max($high, %d)-Min($low, %d)+1e-12)" % (d, d, d) for d in windows] names += ["RSV%d" % d for d in windows] if use("IMAX"): # The number of days between current date and previous highest price date. # Part of Aroon Indicator https://www.investopedia.com/terms/a/aroon.asp # The indicator measures the time between highs and the time between lows over a time period. # The idea is that strong uptrends will regularly see new highs, and strong downtrends will regularly see new lows. fields += ["IdxMax($high, %d)/%d" % (d, d) for d in windows] names += ["IMAX%d" % d for d in windows] if use("IMIN"): # The number of days between current date and previous lowest price date. # Part of Aroon Indicator https://www.investopedia.com/terms/a/aroon.asp # The indicator measures the time between highs and the time between lows over a time period. # The idea is that strong uptrends will regularly see new highs, and strong downtrends will regularly see new lows. fields += ["IdxMin($low, %d)/%d" % (d, d) for d in windows] names += ["IMIN%d" % d for d in windows] if use("IMXD"): # The time period between previous lowest-price date occur after highest price date. # Large value suggest downward momemtum. fields += ["(IdxMax($high, %d)-IdxMin($low, %d))/%d" % (d, d, d) for d in windows] names += ["IMXD%d" % d for d in windows] if use("CORR"): # The correlation between absolute close price and log scaled trading volume fields += ["Corr($close, Log($volume+1), %d)" % d for d in windows] names += ["CORR%d" % d for d in windows] if use("CORD"): # The correlation between price change ratio and volume change ratio fields += ["Corr($close/Ref($close,1), Log($volume/Ref($volume, 1)+1), %d)" % d for d in windows] names += ["CORD%d" % d for d in windows] if use("CNTP"): # The percentage of days in past d days that price go up. fields += ["Mean($close>Ref($close, 1), %d)" % d for d in windows] names += ["CNTP%d" % d for d in windows] if use("CNTN"): # The percentage of days in past d days that price go down. fields += ["Mean($close<Ref($close, 1), %d)" % d for d in windows] names += ["CNTN%d" % d for d in windows] if use("CNTD"): # The diff between past up day and past down day fields += ["Mean($close>Ref($close, 1), %d)-Mean($close<Ref($close, 1), %d)" % (d, d) for d in windows] names += ["CNTD%d" % d for d in windows] if use("SUMP"): # The total gain / the absolute total price changed # Similar to RSI indicator. https://www.investopedia.com/terms/r/rsi.asp fields += [ "Sum(Greater($close-Ref($close, 1), 0), %d)/(Sum(Abs($close-Ref($close, 1)), %d)+1e-12)" % (d, d) for d in windows ] names += ["SUMP%d" % d for d in windows] if use("SUMN"): # The total lose / the absolute total price changed # Can be derived from SUMP by SUMN = 1 - SUMP # Similar to RSI indicator. https://www.investopedia.com/terms/r/rsi.asp fields += [ "Sum(Greater(Ref($close, 1)-$close, 0), %d)/(Sum(Abs($close-Ref($close, 1)), %d)+1e-12)" % (d, d) for d in windows ] names += ["SUMN%d" % d for d in windows] if use("SUMD"): # The diff ratio between total gain and total lose # Similar to RSI indicator. https://www.investopedia.com/terms/r/rsi.asp fields += [ "(Sum(Greater($close-Ref($close, 1), 0), %d)-Sum(Greater(Ref($close, 1)-$close, 0), %d))" "/(Sum(Abs($close-Ref($close, 1)), %d)+1e-12)" % (d, d, d) for d in windows ] names += ["SUMD%d" % d for d in windows] if use("VMA"): # Simple Volume Moving average: https://www.barchart.com/education/technical-indicators/volume_moving_average fields += ["Mean($volume, %d)/($volume+1e-12)" % d for d in windows] names += ["VMA%d" % d for d in windows] if use("VSTD"): # The standard deviation for volume in past d days. fields += ["Std($volume, %d)/($volume+1e-12)" % d for d in windows] names += ["VSTD%d" % d for d in windows] if use("WVMA"): # The volume weighted price change volatility fields += [ "Std(Abs($close/Ref($close, 1)-1)*$volume, %d)/(Mean(Abs($close/Ref($close, 1)-1)*$volume, %d)+1e-12)" % (d, d) for d in windows ] names += ["WVMA%d" % d for d in windows] if use("VSUMP"): # The total volume increase / the absolute total volume changed fields += [ "Sum(Greater($volume-Ref($volume, 1), 0), %d)/(Sum(Abs($volume-Ref($volume, 1)), %d)+1e-12)" % (d, d) for d in windows ] names += ["VSUMP%d" % d for d in windows] if use("VSUMN"): # The total volume increase / the absolute total volume changed # Can be derived from VSUMP by VSUMN = 1 - VSUMP fields += [ "Sum(Greater(Ref($volume, 1)-$volume, 0), %d)/(Sum(Abs($volume-Ref($volume, 1)), %d)+1e-12)" % (d, d) for d in windows ] names += ["VSUMN%d" % d for d in windows] if use("VSUMD"): # The diff ratio between total volume increase and total volume decrease # RSI indicator for volume fields += [ "(Sum(Greater($volume-Ref($volume, 1), 0), %d)-Sum(Greater(Ref($volume, 1)-$volume, 0), %d))" "/(Sum(Abs($volume-Ref($volume, 1)), %d)+1e-12)" % (d, d, d) for d in windows ] names += ["VSUMD%d" % d for d in windows] return fields, names
create factors from config config = { 'kbar': {}, # whether to use some hard-code kbar features 'price': { # whether to use raw price features 'windows': [0, 1, 2, 3, 4], # use price at n days ago 'feature': ['OPEN', 'HIGH', 'LOW'] # which price field to use }, 'volume': { # whether to use raw volume features 'windows': [0, 1, 2, 3, 4], # use volume at n days ago }, 'rolling': { # whether to use rolling operator based features 'windows': [5, 10, 20, 30, 60], # rolling windows size 'include': ['ROC', 'MA', 'STD'], # rolling operator to use #if include is None we will use default operators 'exclude': ['RANK'], # rolling operator not to use } }
get_feature_config
python
microsoft/qlib
qlib/contrib/data/loader.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/data/loader.py
MIT
def __init__(self, df_dict: Dict[str, pd.DataFrame], join: str, skip_align=False): """ initialize the data based on the dataframe dictionary Parameters ---------- df_dict : Dict[str, pd.DataFrame] dataframe dictionary join : str how to join the data It will reindex the dataframe based on the join key. If join is None, the reindex step will be skipped skip_align : for some cases, we can improve performance by skipping aligning index """ self.join = join if skip_align: self._df_dict = df_dict else: self._df_dict = align_index(df_dict, join)
initialize the data based on the dataframe dictionary Parameters ---------- df_dict : Dict[str, pd.DataFrame] dataframe dictionary join : str how to join the data It will reindex the dataframe based on the join key. If join is None, the reindex step will be skipped skip_align : for some cases, we can improve performance by skipping aligning index
__init__
python
microsoft/qlib
qlib/contrib/data/utils/sepdf.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/data/utils/sepdf.py
MIT
def apply_each(self, method: str, skip_align=True, *args, **kwargs): """ Assumptions: - inplace methods will return None """ inplace = False df_dict = {} for k, df in self._df_dict.items(): df_dict[k] = getattr(df, method)(*args, **kwargs) if df_dict[k] is None: inplace = True if not inplace: return SepDataFrame(df_dict=df_dict, join=self.join, skip_align=skip_align)
Assumptions: - inplace methods will return None
apply_each
python
microsoft/qlib
qlib/contrib/data/utils/sepdf.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/data/utils/sepdf.py
MIT
def calc_long_short_prec( pred: pd.Series, label: pd.Series, date_col="datetime", quantile: float = 0.2, dropna=False, is_alpha=False ) -> Tuple[pd.Series, pd.Series]: """ calculate the precision for long and short operation :param pred/label: index is **pd.MultiIndex**, index name is **[datetime, instruments]**; columns names is **[score]**. .. code-block:: python score datetime instrument 2020-12-01 09:30:00 SH600068 0.553634 SH600195 0.550017 SH600276 0.540321 SH600584 0.517297 SH600715 0.544674 label : label date_col : date_col Returns ------- (pd.Series, pd.Series) long precision and short precision in time level """ if is_alpha: label = label - label.groupby(level=date_col, group_keys=False).mean() if int(1 / quantile) >= len(label.index.get_level_values(1).unique()): raise ValueError("Need more instruments to calculate precision") df = pd.DataFrame({"pred": pred, "label": label}) if dropna: df.dropna(inplace=True) group = df.groupby(level=date_col, group_keys=False) def N(x): return int(len(x) * quantile) # find the top/low quantile of prediction and treat them as long and short target long = group.apply(lambda x: x.nlargest(N(x), columns="pred").label) short = group.apply(lambda x: x.nsmallest(N(x), columns="pred").label) groupll = long.groupby(date_col, group_keys=False) l_dom = groupll.apply(lambda x: x > 0) l_c = groupll.count() groups = short.groupby(date_col, group_keys=False) s_dom = groups.apply(lambda x: x < 0) s_c = groups.count() return (l_dom.groupby(date_col, group_keys=False).sum() / l_c), ( s_dom.groupby(date_col, group_keys=False).sum() / s_c )
calculate the precision for long and short operation :param pred/label: index is **pd.MultiIndex**, index name is **[datetime, instruments]**; columns names is **[score]**. .. code-block:: python score datetime instrument 2020-12-01 09:30:00 SH600068 0.553634 SH600195 0.550017 SH600276 0.540321 SH600584 0.517297 SH600715 0.544674 label : label date_col : date_col Returns ------- (pd.Series, pd.Series) long precision and short precision in time level
calc_long_short_prec
python
microsoft/qlib
qlib/contrib/eva/alpha.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/eva/alpha.py
MIT
def calc_long_short_return( pred: pd.Series, label: pd.Series, date_col: str = "datetime", quantile: float = 0.2, dropna: bool = False, ) -> Tuple[pd.Series, pd.Series]: """ calculate long-short return Note: `label` must be raw stock returns. Parameters ---------- pred : pd.Series stock predictions label : pd.Series stock returns date_col : str datetime index name quantile : float long-short quantile Returns ---------- long_short_r : pd.Series daily long-short returns long_avg_r : pd.Series daily long-average returns """ df = pd.DataFrame({"pred": pred, "label": label}) if dropna: df.dropna(inplace=True) group = df.groupby(level=date_col, group_keys=False) def N(x): return int(len(x) * quantile) r_long = group.apply(lambda x: x.nlargest(N(x), columns="pred").label.mean()) r_short = group.apply(lambda x: x.nsmallest(N(x), columns="pred").label.mean()) r_avg = group.label.mean() return (r_long - r_short) / 2, r_avg
calculate long-short return Note: `label` must be raw stock returns. Parameters ---------- pred : pd.Series stock predictions label : pd.Series stock returns date_col : str datetime index name quantile : float long-short quantile Returns ---------- long_short_r : pd.Series daily long-short returns long_avg_r : pd.Series daily long-average returns
calc_long_short_return
python
microsoft/qlib
qlib/contrib/eva/alpha.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/eva/alpha.py
MIT
def pred_autocorr_all(pred_dict, n_jobs=-1, **kwargs): """ calculate auto correlation for pred_dict Parameters ---------- pred_dict : dict A dict like {<method_name>: <prediction>} kwargs : all these arguments will be passed into pred_autocorr """ ac_dict = {} for k, pred in pred_dict.items(): ac_dict[k] = delayed(pred_autocorr)(pred, **kwargs) return complex_parallel(Parallel(n_jobs=n_jobs, verbose=10), ac_dict)
calculate auto correlation for pred_dict Parameters ---------- pred_dict : dict A dict like {<method_name>: <prediction>} kwargs : all these arguments will be passed into pred_autocorr
pred_autocorr_all
python
microsoft/qlib
qlib/contrib/eva/alpha.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/eva/alpha.py
MIT
def calc_ic(pred: pd.Series, label: pd.Series, date_col="datetime", dropna=False) -> (pd.Series, pd.Series): """calc_ic. Parameters ---------- pred : pred label : label date_col : date_col Returns ------- (pd.Series, pd.Series) ic and rank ic """ df = pd.DataFrame({"pred": pred, "label": label}) ic = df.groupby(date_col, group_keys=False).apply(lambda df: df["pred"].corr(df["label"])) ric = df.groupby(date_col, group_keys=False).apply(lambda df: df["pred"].corr(df["label"], method="spearman")) if dropna: return ic.dropna(), ric.dropna() else: return ic, ric
calc_ic. Parameters ---------- pred : pred label : label date_col : date_col Returns ------- (pd.Series, pd.Series) ic and rank ic
calc_ic
python
microsoft/qlib
qlib/contrib/eva/alpha.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/eva/alpha.py
MIT
def calc_all_ic(pred_dict_all, label, date_col="datetime", dropna=False, n_jobs=-1): """calc_all_ic. Parameters ---------- pred_dict_all : A dict like {<method_name>: <prediction>} label: A pd.Series of label values Returns ------- {'Q2+IND_z': {'ic': <ic series like> 2016-01-04 -0.057407 ... 2020-05-28 0.183470 2020-05-29 0.171393 'ric': <rank ic series like> 2016-01-04 -0.040888 ... 2020-05-28 0.236665 2020-05-29 0.183886 } ...} """ pred_all_ics = {} for k, pred in pred_dict_all.items(): pred_all_ics[k] = DelayedDict(["ic", "ric"], delayed(calc_ic)(pred, label, date_col=date_col, dropna=dropna)) pred_all_ics = complex_parallel(Parallel(n_jobs=n_jobs, verbose=10), pred_all_ics) return pred_all_ics
calc_all_ic. Parameters ---------- pred_dict_all : A dict like {<method_name>: <prediction>} label: A pd.Series of label values Returns ------- {'Q2+IND_z': {'ic': <ic series like> 2016-01-04 -0.057407 ... 2020-05-28 0.183470 2020-05-29 0.171393 'ric': <rank ic series like> 2016-01-04 -0.040888 ... 2020-05-28 0.236665 2020-05-29 0.183886 } ...}
calc_all_ic
python
microsoft/qlib
qlib/contrib/eva/alpha.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/eva/alpha.py
MIT
def setup(self, trainer=TrainerR, trainer_kwargs={}): """ after running this function `self.data_ic_df` will become set. Each col represents a data. Each row represents the Timestamp of performance of that data. For example, .. code-block:: python 2021-06-21 2021-06-04 2021-05-21 2021-05-07 2021-04-20 2021-04-06 2021-03-22 2021-03-08 ... 2021-07-02 2021-06-18 2021-06-03 2021-05-20 2021-05-06 2021-04-19 2021-04-02 2021-03-19 ... datetime ... 2018-01-02 0.079782 0.115975 0.070866 0.028849 -0.081170 0.140380 0.063864 0.110987 ... 2018-01-03 0.123386 0.107789 0.071037 0.045278 -0.060782 0.167446 0.089779 0.124476 ... 2018-01-04 0.140775 0.097206 0.063702 0.042415 -0.078164 0.173218 0.098914 0.114389 ... 2018-01-05 0.030320 -0.037209 -0.044536 -0.047267 -0.081888 0.045648 0.059947 0.047652 ... 2018-01-08 0.107201 0.009219 -0.015995 -0.036594 -0.086633 0.108965 0.122164 0.108508 ... ... ... ... ... ... ... ... ... ... ... """ # 1) prepare the prediction of proxy models perf_task_tpl = deepcopy(self.task_tpl) # this task is supposed to contains no complicated objects # The only thing we want to save is the prediction perf_task_tpl["record"] = ["qlib.workflow.record_temp.SignalRecord"] trainer = auto_filter_kwargs(trainer)(experiment_name=self.exp_name, **trainer_kwargs) # NOTE: # The handler is initialized for only once. if not trainer.has_worker(): self.dh = init_task_handler(perf_task_tpl) self.dh.config(dump_all=False) # in some cases, the data handler are saved to disk with `dump_all=True` else: self.dh = init_instance_by_config(perf_task_tpl["dataset"]["kwargs"]["handler"]) assert self.dh.dump_all is False # otherwise, it will save all the detailed data seg = perf_task_tpl["dataset"]["kwargs"]["segments"] # We want to split the training time period into small segments. perf_task_tpl["dataset"]["kwargs"]["segments"] = { "train": (DatasetH.get_min_time(seg), DatasetH.get_max_time(seg)), "test": (None, None), } # NOTE: # we play a trick here # treat the training segments as test to create the rolling tasks rg = RollingGen(step=self.step, test_key="train", train_key=None, task_copy_func=deepcopy_basic_type) gen_task = task_generator(perf_task_tpl, [rg]) recorders = R.list_recorders(experiment_name=self.exp_name) if len(gen_task) == len(recorders): get_module_logger("Internal Data").info("the data has been initialized") else: # train new models assert 0 == len(recorders), "An empty experiment is required for setup `InternalData`" trainer.train(gen_task) # 2) extract the similarity matrix label_df = self.dh.fetch(col_set="label") # for recorders = R.list_recorders(experiment_name=self.exp_name) key_l = [] ic_l = [] for _, rec in tqdm(recorders.items(), desc="calc"): pred = rec.load_object("pred.pkl") task = rec.load_object("task") data_key = task["dataset"]["kwargs"]["segments"]["train"] key_l.append(data_key) ic_l.append(delayed(self._calc_perf)(pred.iloc[:, 0], label_df.iloc[:, 0])) ic_l = Parallel(n_jobs=-1)(ic_l) self.data_ic_df = pd.DataFrame(dict(zip(key_l, ic_l))) self.data_ic_df = self.data_ic_df.sort_index().sort_index(axis=1) del self.dh # handler is not useful now
after running this function `self.data_ic_df` will become set. Each col represents a data. Each row represents the Timestamp of performance of that data. For example, .. code-block:: python 2021-06-21 2021-06-04 2021-05-21 2021-05-07 2021-04-20 2021-04-06 2021-03-22 2021-03-08 ... 2021-07-02 2021-06-18 2021-06-03 2021-05-20 2021-05-06 2021-04-19 2021-04-02 2021-03-19 ... datetime ... 2018-01-02 0.079782 0.115975 0.070866 0.028849 -0.081170 0.140380 0.063864 0.110987 ... 2018-01-03 0.123386 0.107789 0.071037 0.045278 -0.060782 0.167446 0.089779 0.124476 ... 2018-01-04 0.140775 0.097206 0.063702 0.042415 -0.078164 0.173218 0.098914 0.114389 ... 2018-01-05 0.030320 -0.037209 -0.044536 -0.047267 -0.081888 0.045648 0.059947 0.047652 ... 2018-01-08 0.107201 0.009219 -0.015995 -0.036594 -0.086633 0.108965 0.122164 0.108508 ... ... ... ... ... ... ... ... ... ... ...
setup
python
microsoft/qlib
qlib/contrib/meta/data_selection/dataset.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/meta/data_selection/dataset.py
MIT
def update(self): """update the data for online trading""" # TODO: # when new data are totally(including label) available # - update the prediction # - update the data similarity map(if applied)
update the data for online trading
update
python
microsoft/qlib
qlib/contrib/meta/data_selection/dataset.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/meta/data_selection/dataset.py
MIT
def __init__(self, task: dict, meta_info: pd.DataFrame, mode: str = MetaTask.PROC_MODE_FULL, fill_method="max"): """ The description of the processed data time_perf: A array with shape <hist_step_n * step, data pieces> -> data piece performance time_belong: A array with shape <sample, data pieces> -> belong or not (1. or 0.) array([[1., 0., 0., ..., 0., 0., 0.], [1., 0., 0., ..., 0., 0., 0.], [1., 0., 0., ..., 0., 0., 0.], ..., [0., 0., 0., ..., 0., 0., 1.], [0., 0., 0., ..., 0., 0., 1.], [0., 0., 0., ..., 0., 0., 1.]]) Parameters ---------- meta_info: pd.DataFrame please refer to the docs of _prepare_meta_ipt for detailed explanation. """ super().__init__(task, meta_info) self.fill_method = fill_method time_perf = self._get_processed_meta_info() self.processed_meta_input = {"time_perf": time_perf} # FIXME: memory issue in this step if mode == MetaTask.PROC_MODE_FULL: # process metainfo_ ds = self.get_dataset() # these three lines occupied 70% of the time of initializing MetaTaskDS d_train, d_test = ds.prepare(["train", "test"], col_set=["feature", "label"]) prev_size = d_test.shape[0] d_train = d_train.dropna(axis=0) d_test = d_test.dropna(axis=0) if prev_size == 0 or d_test.shape[0] / prev_size <= 0.1: raise ValueError(f"Most of samples are dropped. Please check this task: {task}") assert ( d_test.groupby("datetime", group_keys=False).size().shape[0] >= 5 ), "In this segment, this trading dates is less than 5, you'd better check the data." sample_time_belong = np.zeros((d_train.shape[0], time_perf.shape[1])) for i, col in enumerate(time_perf.columns): # these two lines of code occupied 20% of the time of initializing MetaTaskDS slc = slice(*d_train.index.slice_locs(start=col[0], end=col[1])) sample_time_belong[slc, i] = 1.0 # If you want that last month also belongs to the last time_perf # Assumptions: the latest data has similar performance like the last month sample_time_belong[sample_time_belong.sum(axis=1) != 1, -1] = 1.0 self.processed_meta_input.update( dict( X=d_train["feature"], y=d_train["label"].iloc[:, 0], X_test=d_test["feature"], y_test=d_test["label"].iloc[:, 0], time_belong=sample_time_belong, test_idx=d_test["label"].index, ) ) # TODO: set device: I think this is not necessary to converting data format. self.processed_meta_input = data_to_tensor(self.processed_meta_input)
The description of the processed data time_perf: A array with shape <hist_step_n * step, data pieces> -> data piece performance time_belong: A array with shape <sample, data pieces> -> belong or not (1. or 0.) array([[1., 0., 0., ..., 0., 0., 0.], [1., 0., 0., ..., 0., 0., 0.], [1., 0., 0., ..., 0., 0., 0.], ..., [0., 0., 0., ..., 0., 0., 1.], [0., 0., 0., ..., 0., 0., 1.], [0., 0., 0., ..., 0., 0., 1.]]) Parameters ---------- meta_info: pd.DataFrame please refer to the docs of _prepare_meta_ipt for detailed explanation.
__init__
python
microsoft/qlib
qlib/contrib/meta/data_selection/dataset.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/meta/data_selection/dataset.py
MIT
def __init__( self, *, task_tpl: Union[dict, list], step: int, trunc_days: int = None, rolling_ext_days: int = 0, exp_name: Union[str, InternalData], segments: Union[Dict[Text, Tuple], float, str], hist_step_n: int = 10, task_mode: str = MetaTask.PROC_MODE_FULL, fill_method: str = "max", ): """ A dataset for meta model. Parameters ---------- task_tpl : Union[dict, list] Decide what tasks are used. - dict : the task template, the prepared task is generated with `step`, `trunc_days` and `RollingGen` - list : when list, use the list of tasks directly the list is supposed to be sorted according timeline step : int the rolling step trunc_days: int days to be truncated based on the test start rolling_ext_days: int sometimes users want to train meta models for a longer test period but with smaller rolling steps for more task samples. the total length of test periods will be `step + rolling_ext_days` exp_name : Union[str, InternalData] Decide what meta_info are used for prediction. - str: the name of the experiment to store the performance of data - InternalData: a prepared internal data segments: Union[Dict[Text, Tuple], float] if the segment is a Dict the segments to divide data both left and right are included if segments is a float: the float represents the percentage of data for training if segments is a string: it will try its best to put its data in training and ensure that the date `segments` is in the test set hist_step_n: int length of historical steps for the meta infomation Number of steps of the data similarity information task_mode : str Please refer to the docs of MetaTask """ super().__init__(segments=segments) if isinstance(exp_name, InternalData): self.internal_data = exp_name else: self.internal_data = InternalData(task_tpl, step=step, exp_name=exp_name) self.internal_data.setup() self.task_tpl = deepcopy(task_tpl) # FIXME: if the handler is shared, how to avoid the explosion of the memroy. self.trunc_days = trunc_days self.hist_step_n = hist_step_n self.step = step if isinstance(task_tpl, dict): rg = RollingGen( step=step, trunc_days=trunc_days, task_copy_func=deepcopy_basic_type ) # NOTE: trunc_days is very important !!!! task_iter = rg(task_tpl) if rolling_ext_days > 0: self.ta = TimeAdjuster(future=True) for t in task_iter: t["dataset"]["kwargs"]["segments"]["test"] = self.ta.shift( t["dataset"]["kwargs"]["segments"]["test"], step=rolling_ext_days, rtype=RollingGen.ROLL_EX ) if task_mode == MetaTask.PROC_MODE_FULL: # Only pre initializing the task when full task is req # initializing handler and share it. init_task_handler(task_tpl) else: assert isinstance(task_tpl, list) task_iter = task_tpl self.task_list = [] self.meta_task_l = [] logger = get_module_logger("MetaDatasetDS") logger.info(f"Example task for training meta model: {task_iter[0]}") for t in tqdm(task_iter, desc="creating meta tasks"): try: self.meta_task_l.append( MetaTaskDS(t, meta_info=self._prepare_meta_ipt(t), mode=task_mode, fill_method=fill_method) ) self.task_list.append(t) except ValueError as e: logger.warning(f"ValueError: {e}") assert len(self.meta_task_l) > 0, "No meta tasks found. Please check the data and setting"
A dataset for meta model. Parameters ---------- task_tpl : Union[dict, list] Decide what tasks are used. - dict : the task template, the prepared task is generated with `step`, `trunc_days` and `RollingGen` - list : when list, use the list of tasks directly the list is supposed to be sorted according timeline step : int the rolling step trunc_days: int days to be truncated based on the test start rolling_ext_days: int sometimes users want to train meta models for a longer test period but with smaller rolling steps for more task samples. the total length of test periods will be `step + rolling_ext_days` exp_name : Union[str, InternalData] Decide what meta_info are used for prediction. - str: the name of the experiment to store the performance of data - InternalData: a prepared internal data segments: Union[Dict[Text, Tuple], float] if the segment is a Dict the segments to divide data both left and right are included if segments is a float: the float represents the percentage of data for training if segments is a string: it will try its best to put its data in training and ensure that the date `segments` is in the test set hist_step_n: int length of historical steps for the meta infomation Number of steps of the data similarity information task_mode : str Please refer to the docs of MetaTask
__init__
python
microsoft/qlib
qlib/contrib/meta/data_selection/dataset.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/meta/data_selection/dataset.py
MIT
def _prepare_meta_ipt(self, task) -> pd.DataFrame: """ Please refer to `self.internal_data.setup` for detailed information about `self.internal_data.data_ic_df` Indices with format below can be successfully sliced by `ic_df.loc[:end, pd.IndexSlice[:, :end]]` 2021-06-21 2021-06-04 .. 2021-03-22 2021-03-08 2021-07-02 2021-06-18 .. 2021-04-02 None Returns ------- a pd.DataFrame with similar content below. - each column corresponds to a trained model named by the training data range - each row corresponds to a day of data tested by the models of the columns - The rows cells that overlaps with the data used by columns are masked 2009-01-05 2009-02-09 ... 2011-04-27 2011-05-26 2009-02-06 2009-03-06 ... 2011-05-25 2011-06-23 datetime ... 2009-01-13 NaN 0.310639 ... -0.169057 0.137792 2009-01-14 NaN 0.261086 ... -0.143567 0.082581 ... ... ... ... ... ... 2011-06-30 -0.054907 -0.020219 ... -0.023226 NaN 2011-07-01 -0.075762 -0.026626 ... -0.003167 NaN """ ic_df = self.internal_data.data_ic_df segs = task["dataset"]["kwargs"]["segments"] end = max(segs[k][1] for k in ("train", "valid") if k in segs) ic_df_avail = ic_df.loc[:end, pd.IndexSlice[:, :end]] # meta data set focus on the **information** instead of preprocess # 1) filter the overlap info def mask_overlap(s): """ mask overlap information data after self.name[end] with self.trunc_days that contains future info are also considered as overlap info Approximately the diagnal + horizon length of data are masked. """ start, end = s.name end = get_date_by_shift(trading_date=end, shift=self.trunc_days - 1, future=True) return s.mask((s.index >= start) & (s.index <= end)) ic_df_avail = ic_df_avail.apply(mask_overlap) # apply to each col # 2) filter the info with too long periods total_len = self.step * self.hist_step_n if ic_df_avail.shape[0] >= total_len: return ic_df_avail.iloc[-total_len:] else: raise ValueError("the history of distribution data is not long enough.")
Please refer to `self.internal_data.setup` for detailed information about `self.internal_data.data_ic_df` Indices with format below can be successfully sliced by `ic_df.loc[:end, pd.IndexSlice[:, :end]]` 2021-06-21 2021-06-04 .. 2021-03-22 2021-03-08 2021-07-02 2021-06-18 .. 2021-04-02 None Returns ------- a pd.DataFrame with similar content below. - each column corresponds to a trained model named by the training data range - each row corresponds to a day of data tested by the models of the columns - The rows cells that overlaps with the data used by columns are masked 2009-01-05 2009-02-09 ... 2011-04-27 2011-05-26 2009-02-06 2009-03-06 ... 2011-05-25 2011-06-23 datetime ... 2009-01-13 NaN 0.310639 ... -0.169057 0.137792 2009-01-14 NaN 0.261086 ... -0.143567 0.082581 ... ... ... ... ... ... 2011-06-30 -0.054907 -0.020219 ... -0.023226 NaN 2011-07-01 -0.075762 -0.026626 ... -0.003167 NaN
_prepare_meta_ipt
python
microsoft/qlib
qlib/contrib/meta/data_selection/dataset.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/meta/data_selection/dataset.py
MIT
def mask_overlap(s): """ mask overlap information data after self.name[end] with self.trunc_days that contains future info are also considered as overlap info Approximately the diagnal + horizon length of data are masked. """ start, end = s.name end = get_date_by_shift(trading_date=end, shift=self.trunc_days - 1, future=True) return s.mask((s.index >= start) & (s.index <= end))
mask overlap information data after self.name[end] with self.trunc_days that contains future info are also considered as overlap info Approximately the diagnal + horizon length of data are masked.
mask_overlap
python
microsoft/qlib
qlib/contrib/meta/data_selection/dataset.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/meta/data_selection/dataset.py
MIT
def __init__( self, step, hist_step_n, clip_method="tanh", clip_weight=2.0, criterion="ic_loss", lr=0.0001, max_epoch=100, seed=43, alpha=0.0, loss_skip_thresh=50, ): """ loss_skip_size: int The number of threshold to skip the loss calculation for each day. """ self.step = step self.hist_step_n = hist_step_n self.clip_method = clip_method self.clip_weight = clip_weight self.criterion = criterion self.lr = lr self.max_epoch = max_epoch self.fitted = False self.alpha = alpha self.loss_skip_thresh = loss_skip_thresh torch.manual_seed(seed)
loss_skip_size: int The number of threshold to skip the loss calculation for each day.
__init__
python
microsoft/qlib
qlib/contrib/meta/data_selection/model.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/meta/data_selection/model.py
MIT
def fit(self, meta_dataset: MetaDatasetDS): """ The meta-learning-based data selection interacts directly with meta-dataset due to the close-form proxy measurement. Parameters ---------- meta_dataset : MetaDatasetDS The meta-model takes the meta-dataset for its training process. """ if not self.fitted: for k in set(["lr", "step", "hist_step_n", "clip_method", "clip_weight", "criterion", "max_epoch"]): R.log_params(**{k: getattr(self, k)}) # FIXME: get test tasks for just checking the performance phases = ["train", "test"] meta_tasks_l = meta_dataset.prepare_tasks(phases) if len(meta_tasks_l[1]): R.log_params( **dict(proxy_test_begin=meta_tasks_l[1][0].task["dataset"]["kwargs"]["segments"]["test"]) ) # debug: record when the test phase starts self.tn = PredNet( step=self.step, hist_step_n=self.hist_step_n, clip_weight=self.clip_weight, clip_method=self.clip_method, alpha=self.alpha, ) opt = optim.Adam(self.tn.parameters(), lr=self.lr) # run weight with no weight for phase, task_list in zip(phases, meta_tasks_l): self.run_epoch(f"{phase}_noweight", task_list, 0, opt, {}, ignore_weight=True) self.run_epoch(f"{phase}_init", task_list, 0, opt, {}) # run training loss_l = {} for epoch in tqdm(range(self.max_epoch), desc="epoch"): for phase, task_list in zip(phases, meta_tasks_l): self.run_epoch(phase, task_list, epoch, opt, loss_l) R.save_objects(**{"model.pkl": self.tn}) self.fitted = True
The meta-learning-based data selection interacts directly with meta-dataset due to the close-form proxy measurement. Parameters ---------- meta_dataset : MetaDatasetDS The meta-model takes the meta-dataset for its training process.
fit
python
microsoft/qlib
qlib/contrib/meta/data_selection/model.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/meta/data_selection/model.py
MIT
def __init__(self, step, hist_step_n, clip_weight=None, clip_method="tanh", alpha: float = 0.0): """ Parameters ---------- alpha : float the regularization for sub model (useful when align meta model with linear submodel) """ super().__init__() self.step = step self.twm = TimeWeightMeta(hist_step_n=hist_step_n, clip_weight=clip_weight, clip_method=clip_method) self.init_paramters(hist_step_n) self.alpha = alpha
Parameters ---------- alpha : float the regularization for sub model (useful when align meta model with linear submodel)
__init__
python
microsoft/qlib
qlib/contrib/meta/data_selection/net.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/meta/data_selection/net.py
MIT
def forward(self, X, y, time_perf, time_belong, X_test, ignore_weight=False): """Please refer to the docs of MetaTaskDS for the description of the variables""" weights = self.get_sample_weights(X, time_perf, time_belong, ignore_weight=ignore_weight) X_w = X.T * weights.view(1, -1) theta = torch.inverse(X_w @ X + self.alpha * torch.eye(X_w.shape[0])) @ X_w @ y return X_test @ theta, weights
Please refer to the docs of MetaTaskDS for the description of the variables
forward
python
microsoft/qlib
qlib/contrib/meta/data_selection/net.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/meta/data_selection/net.py
MIT
def forward(self, pred, y, idx): """forward. FIXME: - Some times it will be a slightly different from the result from `pandas.corr()` - It may be caused by the precision problem of model; :param pred: :param y: :param idx: Assume the level of the idx is (date, inst), and it is sorted """ prev = None diff_point = [] for i, (date, inst) in enumerate(idx): if date != prev: diff_point.append(i) prev = date diff_point.append(None) # The lengths of diff_point will be one more larger then diff_point ic_all = 0.0 skip_n = 0 for start_i, end_i in zip(diff_point, diff_point[1:]): pred_focus = pred[start_i:end_i] # TODO: just for fake if pred_focus.shape[0] < self.skip_size: # skip some days which have very small amount of stock. skip_n += 1 continue y_focus = y[start_i:end_i] if pred_focus.std() < EPS or y_focus.std() < EPS: # These cases often happend at the end of test data. # Usually caused by fillna(0.) skip_n += 1 continue ic_day = torch.dot( (pred_focus - pred_focus.mean()) / np.sqrt(pred_focus.shape[0]) / pred_focus.std(), (y_focus - y_focus.mean()) / np.sqrt(y_focus.shape[0]) / y_focus.std(), ) ic_all += ic_day if len(diff_point) - 1 - skip_n <= 0: __import__("ipdb").set_trace() raise ValueError("No enough data for calculating IC") if skip_n > 0: get_module_logger("ICLoss").info( f"{skip_n} days are skipped due to zero std or small scale of valid samples." ) ic_mean = ic_all / (len(diff_point) - 1 - skip_n) return -ic_mean # ic loss
forward. FIXME: - Some times it will be a slightly different from the result from `pandas.corr()` - It may be caused by the precision problem of model; :param pred: :param y: :param idx: Assume the level of the idx is (date, inst), and it is sorted
forward
python
microsoft/qlib
qlib/contrib/meta/data_selection/utils.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/meta/data_selection/utils.py
MIT
def preds_to_weight_with_clamp(preds, clip_weight=None, clip_method="tanh"): """ Clip the weights. Parameters ---------- clip_weight: float The clip threshold. clip_method: str The clip method. Current available: "clamp", "tanh", and "sigmoid". """ if clip_weight is not None: if clip_method == "clamp": weights = torch.exp(preds) weights = weights.clamp(1.0 / clip_weight, clip_weight) elif clip_method == "tanh": weights = torch.exp(torch.tanh(preds) * np.log(clip_weight)) elif clip_method == "sigmoid": # intuitively assume its sum is 1 if clip_weight == 0.0: weights = torch.ones_like(preds) else: sm = nn.Sigmoid() weights = sm(preds) * clip_weight # TODO: The clip_weight is useless here. weights = weights / torch.sum(weights) * weights.numel() else: raise ValueError("Unknown clip_method") else: weights = torch.exp(preds) return weights
Clip the weights. Parameters ---------- clip_weight: float The clip threshold. clip_method: str The clip method. Current available: "clamp", "tanh", and "sigmoid".
preds_to_weight_with_clamp
python
microsoft/qlib
qlib/contrib/meta/data_selection/utils.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/meta/data_selection/utils.py
MIT
def get_feature_importance(self, *args, **kwargs) -> pd.Series: """get feature importance Notes ----- parameters references: https://catboost.ai/docs/concepts/python-reference_catboost_get_feature_importance.html#python-reference_catboost_get_feature_importance """ return pd.Series( data=self.model.get_feature_importance(*args, **kwargs), index=self.model.feature_names_ ).sort_values(ascending=False)
get feature importance Notes ----- parameters references: https://catboost.ai/docs/concepts/python-reference_catboost_get_feature_importance.html#python-reference_catboost_get_feature_importance
get_feature_importance
python
microsoft/qlib
qlib/contrib/model/catboost_model.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/catboost_model.py
MIT
def sample_reweight(self, loss_curve, loss_values, k_th): """ the SR module of Double Ensemble :param loss_curve: the shape is NxT the loss curve for the previous sub-model, where the element (i, t) if the error on the i-th sample after the t-th iteration in the training of the previous sub-model. :param loss_values: the shape is N the loss of the current ensemble on the i-th sample. :param k_th: the index of the current sub-model, starting from 1 :return: weights the weights for all the samples. """ # normalize loss_curve and loss_values with ranking loss_curve_norm = loss_curve.rank(axis=0, pct=True) loss_values_norm = (-loss_values).rank(pct=True) # calculate l_start and l_end from loss_curve N, T = loss_curve.shape part = np.maximum(int(T * 0.1), 1) l_start = loss_curve_norm.iloc[:, :part].mean(axis=1) l_end = loss_curve_norm.iloc[:, -part:].mean(axis=1) # calculate h-value for each sample h1 = loss_values_norm h2 = (l_end / l_start).rank(pct=True) h = pd.DataFrame({"h_value": self.alpha1 * h1 + self.alpha2 * h2}) # calculate weights h["bins"] = pd.cut(h["h_value"], self.bins_sr) h_avg = h.groupby("bins", group_keys=False, observed=False)["h_value"].mean() weights = pd.Series(np.zeros(N, dtype=float)) for b in h_avg.index: weights[h["bins"] == b] = 1.0 / (self.decay**k_th * h_avg[b] + 0.1) return weights
the SR module of Double Ensemble :param loss_curve: the shape is NxT the loss curve for the previous sub-model, where the element (i, t) if the error on the i-th sample after the t-th iteration in the training of the previous sub-model. :param loss_values: the shape is N the loss of the current ensemble on the i-th sample. :param k_th: the index of the current sub-model, starting from 1 :return: weights the weights for all the samples.
sample_reweight
python
microsoft/qlib
qlib/contrib/model/double_ensemble.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/double_ensemble.py
MIT
def feature_selection(self, df_train, loss_values): """ the FS module of Double Ensemble :param df_train: the shape is NxF :param loss_values: the shape is N the loss of the current ensemble on the i-th sample. :return: res_feat: in the form of pandas.Index """ x_train, y_train = df_train["feature"], df_train["label"] features = x_train.columns N, F = x_train.shape g = pd.DataFrame({"g_value": np.zeros(F, dtype=float)}) M = len(self.ensemble) # shuffle specific columns and calculate g-value for each feature x_train_tmp = x_train.copy() for i_f, feat in enumerate(features): x_train_tmp.loc[:, feat] = np.random.permutation(x_train_tmp.loc[:, feat].values) pred = pd.Series(np.zeros(N), index=x_train_tmp.index) for i_s, submodel in enumerate(self.ensemble): pred += ( pd.Series( submodel.predict(x_train_tmp.loc[:, self.sub_features[i_s]].values), index=x_train_tmp.index ) / M ) loss_feat = self.get_loss(y_train.values.squeeze(), pred.values) g.loc[i_f, "g_value"] = np.mean(loss_feat - loss_values) / (np.std(loss_feat - loss_values) + 1e-7) x_train_tmp.loc[:, feat] = x_train.loc[:, feat].copy() # one column in train features is all-nan # if g['g_value'].isna().any() g["g_value"].replace(np.nan, 0, inplace=True) # divide features into bins_fs bins g["bins"] = pd.cut(g["g_value"], self.bins_fs) # randomly sample features from bins to construct the new features res_feat = [] sorted_bins = sorted(g["bins"].unique(), reverse=True) for i_b, b in enumerate(sorted_bins): b_feat = features[g["bins"] == b] num_feat = int(np.ceil(self.sample_ratios[i_b] * len(b_feat))) res_feat = res_feat + np.random.choice(b_feat, size=num_feat, replace=False).tolist() return pd.Index(set(res_feat))
the FS module of Double Ensemble :param df_train: the shape is NxF :param loss_values: the shape is N the loss of the current ensemble on the i-th sample. :return: res_feat: in the form of pandas.Index
feature_selection
python
microsoft/qlib
qlib/contrib/model/double_ensemble.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/double_ensemble.py
MIT
def get_feature_importance(self, *args, **kwargs) -> pd.Series: """get feature importance Notes ----- parameters reference: https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.Booster.html?highlight=feature_importance#lightgbm.Booster.feature_importance """ res = [] for _model, _weight in zip(self.ensemble, self.sub_weights): res.append(pd.Series(_model.feature_importance(*args, **kwargs), index=_model.feature_name()) * _weight) return pd.concat(res, axis=1, sort=False).sum(axis=1).sort_values(ascending=False)
get feature importance Notes ----- parameters reference: https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.Booster.html?highlight=feature_importance#lightgbm.Booster.feature_importance
get_feature_importance
python
microsoft/qlib
qlib/contrib/model/double_ensemble.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/double_ensemble.py
MIT
def _prepare_data(self, dataset: DatasetH, reweighter=None) -> List[Tuple[lgb.Dataset, str]]: """ The motivation of current version is to make validation optional - train segment is necessary; """ ds_l = [] assert "train" in dataset.segments for key in ["train", "valid"]: if key in dataset.segments: df = dataset.prepare(key, col_set=["feature", "label"], data_key=DataHandlerLP.DK_L) if df.empty: raise ValueError("Empty data from dataset, please check your dataset config.") x, y = df["feature"], df["label"] # Lightgbm need 1D array as its label if y.values.ndim == 2 and y.values.shape[1] == 1: y = np.squeeze(y.values) else: raise ValueError("LightGBM doesn't support multi-label training") if reweighter is None: w = None elif isinstance(reweighter, Reweighter): w = reweighter.reweight(df) else: raise ValueError("Unsupported reweighter type.") ds_l.append((lgb.Dataset(x.values, label=y, weight=w), key)) return ds_l
The motivation of current version is to make validation optional - train segment is necessary;
_prepare_data
python
microsoft/qlib
qlib/contrib/model/gbdt.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/gbdt.py
MIT
def finetune(self, dataset: DatasetH, num_boost_round=10, verbose_eval=20, reweighter=None): """ finetune model Parameters ---------- dataset : DatasetH dataset for finetuning num_boost_round : int number of round to finetune model verbose_eval : int verbose level """ # Based on existing model and finetune by train more rounds dtrain, _ = self._prepare_data(dataset, reweighter) # pylint: disable=W0632 if dtrain.empty: raise ValueError("Empty data from dataset, please check your dataset config.") verbose_eval_callback = lgb.log_evaluation(period=verbose_eval) self.model = lgb.train( self.params, dtrain, num_boost_round=num_boost_round, init_model=self.model, valid_sets=[dtrain], valid_names=["train"], callbacks=[verbose_eval_callback], )
finetune model Parameters ---------- dataset : DatasetH dataset for finetuning num_boost_round : int number of round to finetune model verbose_eval : int verbose level
finetune
python
microsoft/qlib
qlib/contrib/model/gbdt.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/gbdt.py
MIT
def _cal_signal_metrics(self, y_test, l_cut, r_cut): """ Calcaute the signal metrics by daily level """ up_pre, down_pre = [], [] up_alpha_ll, down_alpha_ll = [], [] for date in y_test.index.get_level_values(0).unique(): df_res = y_test.loc[date].sort_values("pred") if int(l_cut * len(df_res)) < 10: warnings.warn("Warning: threhold is too low or instruments number is not enough") continue top = df_res.iloc[: int(l_cut * len(df_res))] bottom = df_res.iloc[int(r_cut * len(df_res)) :] down_precision = len(top[top[top.columns[0]] < 0]) / (len(top)) up_precision = len(bottom[bottom[top.columns[0]] > 0]) / (len(bottom)) down_alpha = top[top.columns[0]].mean() up_alpha = bottom[bottom.columns[0]].mean() up_pre.append(up_precision) down_pre.append(down_precision) up_alpha_ll.append(up_alpha) down_alpha_ll.append(down_alpha) return ( np.array(up_pre).mean(), np.array(down_pre).mean(), np.array(up_alpha_ll).mean(), np.array(down_alpha_ll).mean(), )
Calcaute the signal metrics by daily level
_cal_signal_metrics
python
microsoft/qlib
qlib/contrib/model/highfreq_gdbt_model.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/highfreq_gdbt_model.py
MIT
def hf_signal_test(self, dataset: DatasetH, threhold=0.2): """ Test the signal in high frequency test set """ if self.model is None: raise ValueError("Model hasn't been trained yet") df_test = dataset.prepare("test", col_set=["feature", "label"], data_key=DataHandlerLP.DK_I) df_test.dropna(inplace=True) x_test, y_test = df_test["feature"], df_test["label"] # Convert label into alpha y_test[y_test.columns[0]] = y_test[y_test.columns[0]] - y_test[y_test.columns[0]].mean(level=0) res = pd.Series(self.model.predict(x_test.values), index=x_test.index) y_test["pred"] = res up_p, down_p, up_a, down_a = self._cal_signal_metrics(y_test, threhold, 1 - threhold) print("===============================") print("High frequency signal test") print("===============================") print("Test set precision: ") print("Positive precision: {}, Negative precision: {}".format(up_p, down_p)) print("Test Alpha Average in test set: ") print("Positive average alpha: {}, Negative average alpha: {}".format(up_a, down_a))
Test the signal in high frequency test set
hf_signal_test
python
microsoft/qlib
qlib/contrib/model/highfreq_gdbt_model.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/highfreq_gdbt_model.py
MIT
def finetune(self, dataset: DatasetH, num_boost_round=10, verbose_eval=20): """ finetune model Parameters ---------- dataset : DatasetH dataset for finetuning num_boost_round : int number of round to finetune model verbose_eval : int verbose level """ # Based on existing model and finetune by train more rounds dtrain, _ = self._prepare_data(dataset) verbose_eval_callback = lgb.log_evaluation(period=verbose_eval) self.model = lgb.train( self.params, dtrain, num_boost_round=num_boost_round, init_model=self.model, valid_sets=[dtrain], valid_names=["train"], callbacks=[verbose_eval_callback], )
finetune model Parameters ---------- dataset : DatasetH dataset for finetuning num_boost_round : int number of round to finetune model verbose_eval : int verbose level
finetune
python
microsoft/qlib
qlib/contrib/model/highfreq_gdbt_model.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/highfreq_gdbt_model.py
MIT
def __init__(self, estimator="ols", alpha=0.0, fit_intercept=False, include_valid: bool = False): """ Parameters ---------- estimator : str which estimator to use for linear regression alpha : float l1 or l2 regularization parameter fit_intercept : bool whether fit intercept include_valid: bool Should the validation data be included for training? The validation data should be included """ assert estimator in [self.OLS, self.NNLS, self.RIDGE, self.LASSO], f"unsupported estimator `{estimator}`" self.estimator = estimator assert alpha == 0 or estimator in [self.RIDGE, self.LASSO], f"alpha is only supported in `ridge`&`lasso`" self.alpha = alpha self.fit_intercept = fit_intercept self.coef_ = None self.include_valid = include_valid
Parameters ---------- estimator : str which estimator to use for linear regression alpha : float l1 or l2 regularization parameter fit_intercept : bool whether fit intercept include_valid: bool Should the validation data be included for training? The validation data should be included
__init__
python
microsoft/qlib
qlib/contrib/model/linear.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/linear.py
MIT
def calc_all_metrics(pred): """pred is a pandas dataframe that has two attributes: score (pred) and label (real)""" res = {} ic = pred.groupby(level="datetime", group_keys=False).apply(lambda x: x.label.corr(x.score)) rank_ic = pred.groupby(level="datetime", group_keys=False).apply( lambda x: x.label.corr(x.score, method="spearman") ) res["ic"] = ic.mean() res["icir"] = ic.mean() / ic.std() res["ric"] = rank_ic.mean() res["ricir"] = rank_ic.mean() / rank_ic.std() res["mse"] = -(pred["label"] - pred["score"]).mean() res["loss"] = res["mse"] return res
pred is a pandas dataframe that has two attributes: score (pred) and label (real)
calc_all_metrics
python
microsoft/qlib
qlib/contrib/model/pytorch_adarnn.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/pytorch_adarnn.py
MIT
def __init__(self, loss_type="cosine", input_dim=512, GPU=0): """ Supported loss_type: mmd(mmd_lin), mmd_rbf, coral, cosine, kl, js, mine, adv """ self.loss_type = loss_type self.input_dim = input_dim self.device = torch.device("cuda:%d" % GPU if torch.cuda.is_available() and GPU >= 0 else "cpu")
Supported loss_type: mmd(mmd_lin), mmd_rbf, coral, cosine, kl, js, mine, adv
__init__
python
microsoft/qlib
qlib/contrib/model/pytorch_adarnn.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/pytorch_adarnn.py
MIT
def compute(self, X, Y): """Compute adaptation loss Arguments: X {tensor} -- source matrix Y {tensor} -- target matrix Returns: [tensor] -- transfer loss """ loss = None if self.loss_type in ("mmd_lin", "mmd"): mmdloss = MMD_loss(kernel_type="linear") loss = mmdloss(X, Y) elif self.loss_type == "coral": loss = CORAL(X, Y, self.device) elif self.loss_type in ("cosine", "cos"): loss = 1 - cosine(X, Y) elif self.loss_type == "kl": loss = kl_div(X, Y) elif self.loss_type == "js": loss = js(X, Y) elif self.loss_type == "mine": mine_model = Mine_estimator(input_dim=self.input_dim, hidden_dim=60).to(self.device) loss = mine_model(X, Y) elif self.loss_type == "adv": loss = adv(X, Y, self.device, input_dim=self.input_dim, hidden_dim=32) elif self.loss_type == "mmd_rbf": mmdloss = MMD_loss(kernel_type="rbf") loss = mmdloss(X, Y) elif self.loss_type == "pairwise": pair_mat = pairwise_dist(X, Y) loss = torch.norm(pair_mat) return loss
Compute adaptation loss Arguments: X {tensor} -- source matrix Y {tensor} -- target matrix Returns: [tensor] -- transfer loss
compute
python
microsoft/qlib
qlib/contrib/model/pytorch_adarnn.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/pytorch_adarnn.py
MIT
def __init__(self, gamma=0.1, gamma_clip=0.4, *args, **kwargs): """ A gradient reversal layer. This layer has no parameters, and simply reverses the gradient in the backward pass. """ super().__init__(*args, **kwargs) self.gamma = gamma self.gamma_clip = torch.tensor(float(gamma_clip), requires_grad=False) self._alpha = torch.tensor(0, requires_grad=False) self._p = 0
A gradient reversal layer. This layer has no parameters, and simply reverses the gradient in the backward pass.
__init__
python
microsoft/qlib
qlib/contrib/model/pytorch_add.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/pytorch_add.py
MIT
def _get_fl(self, data: torch.Tensor): """ get feature and label from data - Handle the different data shape of time series and tabular data Parameters ---------- data : torch.Tensor input data which maybe 3 dimension or 2 dimension - 3dim: [batch_size, time_step, feature_dim] - 2dim: [batch_size, feature_dim] Returns ------- Tuple[torch.Tensor, torch.Tensor] """ if data.dim() == 3: # it is a time series dataset feature = data[:, :, 0:-1].to(self.device) label = data[:, -1, -1].to(self.device) elif data.dim() == 2: # it is a tabular dataset feature = data[:, 0:-1].to(self.device) label = data[:, -1].to(self.device) else: raise ValueError("Unsupported data shape.") return feature, label
get feature and label from data - Handle the different data shape of time series and tabular data Parameters ---------- data : torch.Tensor input data which maybe 3 dimension or 2 dimension - 3dim: [batch_size, time_step, feature_dim] - 2dim: [batch_size, feature_dim] Returns ------- Tuple[torch.Tensor, torch.Tensor]
_get_fl
python
microsoft/qlib
qlib/contrib/model/pytorch_general_nn.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/pytorch_general_nn.py
MIT
def __init__(self, input_dim, output_dim, kernel_size, device): """Build a basic CNN encoder Parameters ---------- input_dim : int The input dimension output_dim : int The output dimension kernel_size : int The size of convolutional kernels """ super().__init__() self.input_dim = input_dim self.output_dim = output_dim self.kernel_size = kernel_size self.device = device # set padding to ensure the same length # it is correct only when kernel_size is odd, dilation is 1, stride is 1 self.conv = nn.Conv1d(input_dim, output_dim, kernel_size, padding=(kernel_size - 1) // 2)
Build a basic CNN encoder Parameters ---------- input_dim : int The input dimension output_dim : int The output dimension kernel_size : int The size of convolutional kernels
__init__
python
microsoft/qlib
qlib/contrib/model/pytorch_krnn.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/pytorch_krnn.py
MIT
def forward(self, x): """ Parameters ---------- x : torch.Tensor input data Returns ------- torch.Tensor Updated representations """ # input shape: [batch_size, seq_len*input_dim] # output shape: [batch_size, seq_len, input_dim] x = x.view(x.shape[0], -1, self.input_dim).permute(0, 2, 1).to(self.device) y = self.conv(x) # [batch_size, output_dim, conved_seq_len] y = y.permute(0, 2, 1) # [batch_size, conved_seq_len, output_dim] return y
Parameters ---------- x : torch.Tensor input data Returns ------- torch.Tensor Updated representations
forward
python
microsoft/qlib
qlib/contrib/model/pytorch_krnn.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/pytorch_krnn.py
MIT
def __init__(self, input_dim, output_dim, dup_num, rnn_layers, dropout, device): """Build K parallel RNNs Parameters ---------- input_dim : int The input dimension output_dim : int The output dimension dup_num : int The number of parallel RNNs rnn_layers: int The number of RNN layers """ super().__init__() self.input_dim = input_dim self.output_dim = output_dim self.dup_num = dup_num self.rnn_layers = rnn_layers self.dropout = dropout self.device = device self.rnn_modules = nn.ModuleList() for _ in range(dup_num): self.rnn_modules.append(nn.GRU(input_dim, output_dim, num_layers=self.rnn_layers, dropout=dropout))
Build K parallel RNNs Parameters ---------- input_dim : int The input dimension output_dim : int The output dimension dup_num : int The number of parallel RNNs rnn_layers: int The number of RNN layers
__init__
python
microsoft/qlib
qlib/contrib/model/pytorch_krnn.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/pytorch_krnn.py
MIT
def forward(self, x): """ Parameters ---------- x : torch.Tensor Input data n_id : torch.Tensor Node indices Returns ------- torch.Tensor Updated representations """ # input shape: [batch_size, seq_len, input_dim] # output shape: [batch_size, seq_len, output_dim] # [seq_len, batch_size, input_dim] batch_size, seq_len, input_dim = x.shape x = x.permute(1, 0, 2).to(self.device) hids = [] for rnn in self.rnn_modules: h, _ = rnn(x) # [seq_len, batch_size, output_dim] hids.append(h) # [seq_len, batch_size, output_dim, num_dups] hids = torch.stack(hids, dim=-1) hids = hids.view(seq_len, batch_size, self.output_dim, self.dup_num) hids = hids.mean(dim=3) hids = hids.permute(1, 0, 2) return hids
Parameters ---------- x : torch.Tensor Input data n_id : torch.Tensor Node indices Returns ------- torch.Tensor Updated representations
forward
python
microsoft/qlib
qlib/contrib/model/pytorch_krnn.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/pytorch_krnn.py
MIT
def __init__( self, cnn_input_dim, cnn_output_dim, cnn_kernel_size, rnn_output_dim, rnn_dup_num, rnn_layers, dropout, device ): """Build an encoder composed of CNN and KRNN Parameters ---------- cnn_input_dim : int The input dimension of CNN cnn_output_dim : int The output dimension of CNN cnn_kernel_size : int The size of convolutional kernels rnn_output_dim : int The output dimension of KRNN rnn_dup_num : int The number of parallel duplicates for KRNN rnn_layers : int The number of RNN layers """ super().__init__() self.cnn_encoder = CNNEncoderBase(cnn_input_dim, cnn_output_dim, cnn_kernel_size, device) self.krnn_encoder = KRNNEncoderBase(cnn_output_dim, rnn_output_dim, rnn_dup_num, rnn_layers, dropout, device)
Build an encoder composed of CNN and KRNN Parameters ---------- cnn_input_dim : int The input dimension of CNN cnn_output_dim : int The output dimension of CNN cnn_kernel_size : int The size of convolutional kernels rnn_output_dim : int The output dimension of KRNN rnn_dup_num : int The number of parallel duplicates for KRNN rnn_layers : int The number of RNN layers
__init__
python
microsoft/qlib
qlib/contrib/model/pytorch_krnn.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/pytorch_krnn.py
MIT
def forward(self, x): """ Parameters ---------- x : torch.Tensor Input data n_id : torch.Tensor Node indices Returns ------- torch.Tensor Updated representations """ cnn_out = self.cnn_encoder(x) krnn_out = self.krnn_encoder(cnn_out) return krnn_out
Parameters ---------- x : torch.Tensor Input data n_id : torch.Tensor Node indices Returns ------- torch.Tensor Updated representations
forward
python
microsoft/qlib
qlib/contrib/model/pytorch_krnn.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/pytorch_krnn.py
MIT
def __init__(self, fea_dim, cnn_dim, cnn_kernel_size, rnn_dim, rnn_dups, rnn_layers, dropout, device, **params): """Build a KRNN model Parameters ---------- fea_dim : int The feature dimension cnn_dim : int The hidden dimension of CNN cnn_kernel_size : int The size of convolutional kernels rnn_dim : int The hidden dimension of KRNN rnn_dups : int The number of parallel duplicates rnn_layers: int The number of RNN layers """ super().__init__() self.encoder = CNNKRNNEncoder( cnn_input_dim=fea_dim, cnn_output_dim=cnn_dim, cnn_kernel_size=cnn_kernel_size, rnn_output_dim=rnn_dim, rnn_dup_num=rnn_dups, rnn_layers=rnn_layers, dropout=dropout, device=device, ) self.out_fc = nn.Linear(rnn_dim, 1) self.device = device
Build a KRNN model Parameters ---------- fea_dim : int The feature dimension cnn_dim : int The hidden dimension of CNN cnn_kernel_size : int The size of convolutional kernels rnn_dim : int The hidden dimension of KRNN rnn_dups : int The number of parallel duplicates rnn_layers: int The number of RNN layers
__init__
python
microsoft/qlib
qlib/contrib/model/pytorch_krnn.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/pytorch_krnn.py
MIT
def _nn_predict(self, data, return_cpu=True): """Reusing predicting NN. Scenarios 1) test inference (data may come from CPU and expect the output data is on CPU) 2) evaluation on training (data may come from GPU) """ if not isinstance(data, torch.Tensor): if isinstance(data, pd.DataFrame): data = data.values data = torch.Tensor(data) data = data.to(self.device) preds = [] self.dnn_model.eval() with torch.no_grad(): batch_size = 8096 for i in range(0, len(data), batch_size): x = data[i : i + batch_size] preds.append(self.dnn_model(x.to(self.device)).detach().reshape(-1)) if return_cpu: preds = np.concatenate([pr.cpu().numpy() for pr in preds]) else: preds = torch.cat(preds, axis=0) return preds
Reusing predicting NN. Scenarios 1) test inference (data may come from CPU and expect the output data is on CPU) 2) evaluation on training (data may come from GPU)
_nn_predict
python
microsoft/qlib
qlib/contrib/model/pytorch_nn.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/pytorch_nn.py
MIT
def __init__( self, fea_dim, cnn_dim_1, cnn_dim_2, cnn_kernel_size, rnn_dim_1, rnn_dim_2, rnn_dups, rnn_layers, dropout, device, **params, ): """Build a Sandwich model Parameters ---------- fea_dim : int The feature dimension cnn_dim_1 : int The hidden dimension of the first CNN cnn_dim_2 : int The hidden dimension of the second CNN cnn_kernel_size : int The size of convolutional kernels rnn_dim_1 : int The hidden dimension of the first KRNN rnn_dim_2 : int The hidden dimension of the second KRNN rnn_dups : int The number of parallel duplicates rnn_layers: int The number of RNN layers """ super().__init__() self.first_encoder = CNNKRNNEncoder( cnn_input_dim=fea_dim, cnn_output_dim=cnn_dim_1, cnn_kernel_size=cnn_kernel_size, rnn_output_dim=rnn_dim_1, rnn_dup_num=rnn_dups, rnn_layers=rnn_layers, dropout=dropout, device=device, ) self.second_encoder = CNNKRNNEncoder( cnn_input_dim=rnn_dim_1, cnn_output_dim=cnn_dim_2, cnn_kernel_size=cnn_kernel_size, rnn_output_dim=rnn_dim_2, rnn_dup_num=rnn_dups, rnn_layers=rnn_layers, dropout=dropout, device=device, ) self.out_fc = nn.Linear(rnn_dim_2, 1) self.device = device
Build a Sandwich model Parameters ---------- fea_dim : int The feature dimension cnn_dim_1 : int The hidden dimension of the first CNN cnn_dim_2 : int The hidden dimension of the second CNN cnn_kernel_size : int The size of convolutional kernels rnn_dim_1 : int The hidden dimension of the first KRNN rnn_dim_2 : int The hidden dimension of the second KRNN rnn_dups : int The number of parallel duplicates rnn_layers: int The number of RNN layers
__init__
python
microsoft/qlib
qlib/contrib/model/pytorch_sandwich.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/pytorch_sandwich.py
MIT
def __init__( self, d_feat=158, out_dim=64, final_out_dim=1, batch_size=4096, n_d=64, n_a=64, n_shared=2, n_ind=2, n_steps=5, n_epochs=100, pretrain_n_epochs=50, relax=1.3, vbs=2048, seed=993, optimizer="adam", loss="mse", metric="", early_stop=20, GPU=0, pretrain_loss="custom", ps=0.3, lr=0.01, pretrain=True, pretrain_file=None, ): """ TabNet model for Qlib Args: ps: probability to generate the bernoulli mask """ # set hyper-parameters. self.d_feat = d_feat self.out_dim = out_dim self.final_out_dim = final_out_dim self.lr = lr self.batch_size = batch_size self.optimizer = optimizer.lower() self.pretrain_loss = pretrain_loss self.seed = seed self.ps = ps self.n_epochs = n_epochs self.logger = get_module_logger("TabNet") self.pretrain_n_epochs = pretrain_n_epochs self.device = "cuda:%s" % (GPU) if torch.cuda.is_available() and GPU >= 0 else "cpu" self.loss = loss self.metric = metric self.early_stop = early_stop self.pretrain = pretrain self.pretrain_file = get_or_create_path(pretrain_file) self.logger.info( "TabNet:" "\nbatch_size : {}" "\nvirtual bs : {}" "\ndevice : {}" "\npretrain: {}".format(self.batch_size, vbs, self.device, self.pretrain) ) self.fitted = False np.random.seed(self.seed) torch.manual_seed(self.seed) self.tabnet_model = TabNet(inp_dim=self.d_feat, out_dim=self.out_dim, vbs=vbs, relax=relax).to(self.device) self.tabnet_decoder = TabNet_Decoder(self.out_dim, self.d_feat, n_shared, n_ind, vbs, n_steps).to(self.device) self.logger.info("model:\n{:}\n{:}".format(self.tabnet_model, self.tabnet_decoder)) self.logger.info("model size: {:.4f} MB".format(count_parameters([self.tabnet_model, self.tabnet_decoder]))) if optimizer.lower() == "adam": self.pretrain_optimizer = optim.Adam( list(self.tabnet_model.parameters()) + list(self.tabnet_decoder.parameters()), lr=self.lr ) self.train_optimizer = optim.Adam(self.tabnet_model.parameters(), lr=self.lr) elif optimizer.lower() == "gd": self.pretrain_optimizer = optim.SGD( list(self.tabnet_model.parameters()) + list(self.tabnet_decoder.parameters()), lr=self.lr ) self.train_optimizer = optim.SGD(self.tabnet_model.parameters(), lr=self.lr) else: raise NotImplementedError("optimizer {} is not supported!".format(optimizer))
TabNet model for Qlib Args: ps: probability to generate the bernoulli mask
__init__
python
microsoft/qlib
qlib/contrib/model/pytorch_tabnet.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/pytorch_tabnet.py
MIT
def pretrain_loss_fn(self, f_hat, f, S): """ Pretrain loss function defined in the original paper, read "Tabular self-supervised learning" in https://arxiv.org/pdf/1908.07442.pdf """ down_mean = torch.mean(f, dim=0) down = torch.sqrt(torch.sum(torch.square(f - down_mean), dim=0)) up = (f_hat - f) * S return torch.sum(torch.square(up / down))
Pretrain loss function defined in the original paper, read "Tabular self-supervised learning" in https://arxiv.org/pdf/1908.07442.pdf
pretrain_loss_fn
python
microsoft/qlib
qlib/contrib/model/pytorch_tabnet.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/pytorch_tabnet.py
MIT
def __init__(self, inp_dim, out_dim, n_shared, n_ind, vbs, n_steps): """ TabNet decoder that is used in pre-training """ super().__init__() self.out_dim = out_dim if n_shared > 0: self.shared = nn.ModuleList() self.shared.append(nn.Linear(inp_dim, 2 * out_dim)) for x in range(n_shared - 1): self.shared.append(nn.Linear(out_dim, 2 * out_dim)) # preset the linear function we will use else: self.shared = None self.n_steps = n_steps self.steps = nn.ModuleList() for x in range(n_steps): self.steps.append(DecoderStep(inp_dim, out_dim, self.shared, n_ind, vbs))
TabNet decoder that is used in pre-training
__init__
python
microsoft/qlib
qlib/contrib/model/pytorch_tabnet.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/pytorch_tabnet.py
MIT
def __init__(self, inp_dim=6, out_dim=6, n_d=64, n_a=64, n_shared=2, n_ind=2, n_steps=5, relax=1.2, vbs=1024): """ TabNet AKA the original encoder Args: n_d: dimension of the features used to calculate the final results n_a: dimension of the features input to the attention transformer of the next step n_shared: numbr of shared steps in feature transformer(optional) n_ind: number of independent steps in feature transformer n_steps: number of steps of pass through tabbet relax coefficient: virtual batch size: """ super().__init__() # set the number of shared step in feature transformer if n_shared > 0: self.shared = nn.ModuleList() self.shared.append(nn.Linear(inp_dim, 2 * (n_d + n_a))) for x in range(n_shared - 1): self.shared.append(nn.Linear(n_d + n_a, 2 * (n_d + n_a))) # preset the linear function we will use else: self.shared = None self.first_step = FeatureTransformer(inp_dim, n_d + n_a, self.shared, n_ind, vbs) self.steps = nn.ModuleList() for x in range(n_steps - 1): self.steps.append(DecisionStep(inp_dim, n_d, n_a, self.shared, n_ind, relax, vbs)) self.fc = nn.Linear(n_d, out_dim) self.bn = nn.BatchNorm1d(inp_dim, momentum=0.01) self.n_d = n_d
TabNet AKA the original encoder Args: n_d: dimension of the features used to calculate the final results n_a: dimension of the features input to the attention transformer of the next step n_shared: numbr of shared steps in feature transformer(optional) n_ind: number of independent steps in feature transformer n_steps: number of steps of pass through tabbet relax coefficient: virtual batch size:
__init__
python
microsoft/qlib
qlib/contrib/model/pytorch_tabnet.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/pytorch_tabnet.py
MIT
def shoot_infs(inp_tensor): """Replaces inf by maximum of tensor""" mask_inf = torch.isinf(inp_tensor) ind_inf = torch.nonzero(mask_inf, as_tuple=False) if len(ind_inf) > 0: for ind in ind_inf: if len(ind) == 2: inp_tensor[ind[0], ind[1]] = 0 elif len(ind) == 1: inp_tensor[ind[0]] = 0 m = torch.max(inp_tensor) for ind in ind_inf: if len(ind) == 2: inp_tensor[ind[0], ind[1]] = m elif len(ind) == 1: inp_tensor[ind[0]] = m return inp_tensor
Replaces inf by maximum of tensor
shoot_infs
python
microsoft/qlib
qlib/contrib/model/pytorch_tra.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/pytorch_tra.py
MIT
def transport_sample(all_preds, label, choice, prob, hist_loss, count, transport_method, alpha, training=False): """ sample-wise transport Args: all_preds (torch.Tensor): predictions from all predictors, [sample x states] label (torch.Tensor): label, [sample] choice (torch.Tensor): gumbel softmax choice, [sample x states] prob (torch.Tensor): router predicted probility, [sample x states] hist_loss (torch.Tensor): history loss matrix, [sample x states] count (list): sample counts for each day, empty list for sample-wise transport transport_method (str): transportation method alpha (float): fusion parameter for calculating transport loss matrix training (bool): indicate training or inference """ assert all_preds.shape == choice.shape assert len(all_preds) == len(label) assert transport_method in ["oracle", "router"] all_loss = torch.zeros_like(all_preds) mask = ~torch.isnan(label) all_loss[mask] = (all_preds[mask] - label[mask, None]).pow(2) # [sample x states] L = minmax_norm(all_loss.detach()) Lh = L * alpha + minmax_norm(hist_loss) * (1 - alpha) # add hist loss for transport Lh = minmax_norm(Lh) P = sinkhorn(-Lh) del Lh if transport_method == "router": if training: pred = (all_preds * choice).sum(dim=1) # gumbel softmax else: pred = all_preds[range(len(all_preds)), prob.argmax(dim=-1)] # argmax else: pred = (all_preds * P).sum(dim=1) if transport_method == "router": loss = loss_fn(pred, label) else: loss = (all_loss * P).sum(dim=1).mean() return loss, pred, L, P
sample-wise transport Args: all_preds (torch.Tensor): predictions from all predictors, [sample x states] label (torch.Tensor): label, [sample] choice (torch.Tensor): gumbel softmax choice, [sample x states] prob (torch.Tensor): router predicted probility, [sample x states] hist_loss (torch.Tensor): history loss matrix, [sample x states] count (list): sample counts for each day, empty list for sample-wise transport transport_method (str): transportation method alpha (float): fusion parameter for calculating transport loss matrix training (bool): indicate training or inference
transport_sample
python
microsoft/qlib
qlib/contrib/model/pytorch_tra.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/pytorch_tra.py
MIT
def transport_daily(all_preds, label, choice, prob, hist_loss, count, transport_method, alpha, training=False): """ daily transport Args: all_preds (torch.Tensor): predictions from all predictors, [sample x states] label (torch.Tensor): label, [sample] choice (torch.Tensor): gumbel softmax choice, [days x states] prob (torch.Tensor): router predicted probility, [days x states] hist_loss (torch.Tensor): history loss matrix, [days x states] count (list): sample counts for each day, [days] transport_method (str): transportation method alpha (float): fusion parameter for calculating transport loss matrix training (bool): indicate training or inference """ assert len(prob) == len(count) assert len(all_preds) == sum(count) assert transport_method in ["oracle", "router"] all_loss = [] # loss of all predictions start = 0 for i, cnt in enumerate(count): slc = slice(start, start + cnt) # samples from the i-th day start += cnt tloss = loss_fn(all_preds[slc], label[slc]) # loss of the i-th day all_loss.append(tloss) all_loss = torch.stack(all_loss, dim=0) # [days x states] L = minmax_norm(all_loss.detach()) Lh = L * alpha + minmax_norm(hist_loss) * (1 - alpha) # add hist loss for transport Lh = minmax_norm(Lh) P = sinkhorn(-Lh) del Lh pred = [] start = 0 for i, cnt in enumerate(count): slc = slice(start, start + cnt) # samples from the i-th day start += cnt if transport_method == "router": if training: tpred = all_preds[slc] @ choice[i] # gumbel softmax else: tpred = all_preds[slc][:, prob[i].argmax(dim=-1)] # argmax else: tpred = all_preds[slc] @ P[i] pred.append(tpred) pred = torch.cat(pred, dim=0) # [samples] if transport_method == "router": loss = loss_fn(pred, label) else: loss = (all_loss * P).sum(dim=1).mean() return loss, pred, L, P
daily transport Args: all_preds (torch.Tensor): predictions from all predictors, [sample x states] label (torch.Tensor): label, [sample] choice (torch.Tensor): gumbel softmax choice, [days x states] prob (torch.Tensor): router predicted probility, [days x states] hist_loss (torch.Tensor): history loss matrix, [days x states] count (list): sample counts for each day, [days] transport_method (str): transportation method alpha (float): fusion parameter for calculating transport loss matrix training (bool): indicate training or inference
transport_daily
python
microsoft/qlib
qlib/contrib/model/pytorch_tra.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/pytorch_tra.py
MIT
def load_state_dict_unsafe(model, state_dict): """ Load state dict to provided model while ignore exceptions. """ missing_keys = [] unexpected_keys = [] error_msgs = [] # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, "_metadata", None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata def load(module, prefix=""): local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) module._load_from_state_dict( state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs ) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + ".") load(model) load = None # break load->load reference cycle return {"unexpected_keys": unexpected_keys, "missing_keys": missing_keys, "error_msgs": error_msgs}
Load state dict to provided model while ignore exceptions.
load_state_dict_unsafe
python
microsoft/qlib
qlib/contrib/model/pytorch_tra.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/pytorch_tra.py
MIT
def count_parameters(models_or_parameters, unit="m"): """ This function is to obtain the storage size unit of a (or multiple) models. Parameters ---------- models_or_parameters : PyTorch model(s) or a list of parameters. unit : the storage size unit. Returns ------- The number of parameters of the given model(s) or parameters. """ if isinstance(models_or_parameters, nn.Module): counts = sum(v.numel() for v in models_or_parameters.parameters()) elif isinstance(models_or_parameters, nn.Parameter): counts = models_or_parameters.numel() elif isinstance(models_or_parameters, (list, tuple)): return sum(count_parameters(x, unit) for x in models_or_parameters) else: counts = sum(v.numel() for v in models_or_parameters) unit = unit.lower() if unit in ("kb", "k"): counts /= 2**10 elif unit in ("mb", "m"): counts /= 2**20 elif unit in ("gb", "g"): counts /= 2**30 elif unit is not None: raise ValueError("Unknown unit: {:}".format(unit)) return counts
This function is to obtain the storage size unit of a (or multiple) models. Parameters ---------- models_or_parameters : PyTorch model(s) or a list of parameters. unit : the storage size unit. Returns ------- The number of parameters of the given model(s) or parameters.
count_parameters
python
microsoft/qlib
qlib/contrib/model/pytorch_utils.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/model/pytorch_utils.py
MIT
def __init__(self, user_data_path, save_report=True): """ This module is designed to manager the users in online system all users' data were assumed to be saved in user_data_path Parameter user_data_path : string data path that all users' data were saved in variables: data_path : string data path that all users' data were saved in users_file : string A path of the file record the add_date of users save_report : bool whether to save report after each trading process users : dict{} [user_id]->User() the python dict save instances of User() for each user_id user_record : pd.Dataframe user_id(string), add_date(string) indicate the add_date for each users """ self.data_path = pathlib.Path(user_data_path) self.users_file = self.data_path / "users.csv" self.save_report = save_report self.users = {} self.user_record = None
This module is designed to manager the users in online system all users' data were assumed to be saved in user_data_path Parameter user_data_path : string data path that all users' data were saved in variables: data_path : string data path that all users' data were saved in users_file : string A path of the file record the add_date of users save_report : bool whether to save report after each trading process users : dict{} [user_id]->User() the python dict save instances of User() for each user_id user_record : pd.Dataframe user_id(string), add_date(string) indicate the add_date for each users
__init__
python
microsoft/qlib
qlib/contrib/online/manager.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/online/manager.py
MIT
def load_users(self): """ load all users' data into manager """ self.users = {} self.user_record = pd.read_csv(self.users_file, index_col=0) for user_id in self.user_record.index: self.users[user_id] = self.load_user(user_id)
load all users' data into manager
load_users
python
microsoft/qlib
qlib/contrib/online/manager.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/online/manager.py
MIT
def load_user(self, user_id): """ return a instance of User() represents a user to be processed Parameter user_id : string :return user : User() """ account_path = self.data_path / user_id strategy_file = self.data_path / user_id / "strategy_{}.pickle".format(user_id) model_file = self.data_path / user_id / "model_{}.pickle".format(user_id) cur_user_list = list(self.users) if user_id in cur_user_list: raise ValueError("User {} has been loaded".format(user_id)) else: trade_account = Account(0) trade_account.load_account(account_path) strategy = load_instance(strategy_file) model = load_instance(model_file) user = User(account=trade_account, strategy=strategy, model=model) return user
return a instance of User() represents a user to be processed Parameter user_id : string :return user : User()
load_user
python
microsoft/qlib
qlib/contrib/online/manager.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/online/manager.py
MIT
def save_user_data(self, user_id): """ save a instance of User() to user data path Parameter user_id : string """ if not user_id in self.users: raise ValueError("Cannot find user {}".format(user_id)) self.users[user_id].account.save_account(self.data_path / user_id) save_instance( self.users[user_id].strategy, self.data_path / user_id / "strategy_{}.pickle".format(user_id), ) save_instance( self.users[user_id].model, self.data_path / user_id / "model_{}.pickle".format(user_id), )
save a instance of User() to user data path Parameter user_id : string
save_user_data
python
microsoft/qlib
qlib/contrib/online/manager.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/online/manager.py
MIT
def add_user(self, user_id, config_file, add_date): """ add the new user {user_id} into user data will create a new folder named "{user_id}" in user data path Parameter user_id : string init_cash : int config_file : str/pathlib.Path() path of config file """ config_file = pathlib.Path(config_file) if not config_file.exists(): raise ValueError("Cannot find config file {}".format(config_file)) user_path = self.data_path / user_id if user_path.exists(): raise ValueError("User data for {} already exists".format(user_id)) with config_file.open("r") as fp: yaml = YAML(typ="safe", pure=True) config = yaml.load(fp) # load model model = init_instance_by_config(config["model"]) # load strategy strategy = init_instance_by_config(config["strategy"]) init_args = strategy.get_init_args_from_model(model, add_date) strategy.init(**init_args) # init Account trade_account = Account(init_cash=config["init_cash"]) # save user user_path.mkdir() save_instance(model, self.data_path / user_id / "model_{}.pickle".format(user_id)) save_instance(strategy, self.data_path / user_id / "strategy_{}.pickle".format(user_id)) trade_account.save_account(self.data_path / user_id) user_record = pd.read_csv(self.users_file, index_col=0) user_record.loc[user_id] = [add_date] user_record.to_csv(self.users_file)
add the new user {user_id} into user data will create a new folder named "{user_id}" in user data path Parameter user_id : string init_cash : int config_file : str/pathlib.Path() path of config file
add_user
python
microsoft/qlib
qlib/contrib/online/manager.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/online/manager.py
MIT
def remove_user(self, user_id): """ remove user {user_id} in current user dataset will delete the folder "{user_id}" in user data path :param user_id : string """ user_path = self.data_path / user_id if not user_path.exists(): raise ValueError("Cannot find user data {}".format(user_id)) shutil.rmtree(user_path) user_record = pd.read_csv(self.users_file, index_col=0) user_record.drop([user_id], inplace=True) user_record.to_csv(self.users_file)
remove user {user_id} in current user dataset will delete the folder "{user_id}" in user data path :param user_id : string
remove_user
python
microsoft/qlib
qlib/contrib/online/manager.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/online/manager.py
MIT
def __init__(self, client: str): """ Parameters ---------- client: str The qlib client config file(.yaml) """ self.logger = get_module_logger("online operator", level=logging.INFO) self.client = client
Parameters ---------- client: str The qlib client config file(.yaml)
__init__
python
microsoft/qlib
qlib/contrib/online/operator.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/online/operator.py
MIT
def init(client, path, date=None): """Initial UserManager(), get predict date and trade date Parameters ---------- client: str The qlib client config file(.yaml) path : str Path to save user account. date : str (YYYY-MM-DD) Trade date, when the generated order list will be traded. Return ---------- um: UserManager() pred_date: pd.Timestamp trade_date: pd.Timestamp """ qlib.init_from_yaml_conf(client) um = UserManager(user_data_path=pathlib.Path(path)) um.load_users() if not date: trade_date, pred_date = None, None else: trade_date = pd.Timestamp(date) if not is_tradable_date(trade_date): raise ValueError("trade date is not tradable date".format(trade_date.date())) pred_date = get_pre_trading_date(trade_date, future=True) return um, pred_date, trade_date
Initial UserManager(), get predict date and trade date Parameters ---------- client: str The qlib client config file(.yaml) path : str Path to save user account. date : str (YYYY-MM-DD) Trade date, when the generated order list will be traded. Return ---------- um: UserManager() pred_date: pd.Timestamp trade_date: pd.Timestamp
init
python
microsoft/qlib
qlib/contrib/online/operator.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/online/operator.py
MIT
def add_user(self, id, config, path, date): """Add a new user into the a folder to run 'online' module. Parameters ---------- id : str User id, should be unique. config : str The file path (yaml) of user config path : str Path to save user account. date : str (YYYY-MM-DD) The date that user account was added. """ create_user_folder(path) qlib.init_from_yaml_conf(self.client) um = UserManager(user_data_path=path) add_date = D.calendar(end_time=date)[-1] if not is_tradable_date(add_date): raise ValueError("add date is not tradable date".format(add_date.date())) um.add_user(user_id=id, config_file=config, add_date=add_date)
Add a new user into the a folder to run 'online' module. Parameters ---------- id : str User id, should be unique. config : str The file path (yaml) of user config path : str Path to save user account. date : str (YYYY-MM-DD) The date that user account was added.
add_user
python
microsoft/qlib
qlib/contrib/online/operator.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/online/operator.py
MIT
def generate(self, date, path): """Generate order list that will be traded at 'date'. Parameters ---------- date : str (YYYY-MM-DD) Trade date, when the generated order list will be traded. path : str Path to save user account. """ um, pred_date, trade_date = self.init(self.client, path, date) for user_id, user in um.users.items(): dates, trade_exchange = prepare(um, pred_date, user_id) # get and save the score at predict date input_data = user.model.get_data_with_date(pred_date) score_series = user.model.predict(input_data) save_score_series(score_series, (pathlib.Path(path) / user_id), trade_date) # update strategy (and model) user.strategy.update(score_series, pred_date, trade_date) # generate and save order list order_list = user.strategy.generate_trade_decision( score_series=score_series, current=user.account.current_position, trade_exchange=trade_exchange, trade_date=trade_date, ) save_order_list( order_list=order_list, user_path=(pathlib.Path(path) / user_id), trade_date=trade_date, ) self.logger.info("Generate order list at {} for {}".format(trade_date, user_id)) um.save_user_data(user_id)
Generate order list that will be traded at 'date'. Parameters ---------- date : str (YYYY-MM-DD) Trade date, when the generated order list will be traded. path : str Path to save user account.
generate
python
microsoft/qlib
qlib/contrib/online/operator.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/online/operator.py
MIT
def execute(self, date, exchange_config, path): """Execute the orderlist at 'date'. Parameters ---------- date : str (YYYY-MM-DD) Trade date, that the generated order list will be traded. exchange_config: str The file path (yaml) of exchange config path : str Path to save user account. """ um, pred_date, trade_date = self.init(self.client, path, date) for user_id, user in um.users.items(): dates, trade_exchange = prepare(um, trade_date, user_id, exchange_config) executor = SimulatorExecutor(trade_exchange=trade_exchange) if str(dates[0].date()) != str(pred_date.date()): raise ValueError( "The account data is not newest! last trading date {}, today {}".format( dates[0].date(), trade_date.date() ) ) # load and execute the order list # will not modify the trade_account after executing order_list = load_order_list(user_path=(pathlib.Path(path) / user_id), trade_date=trade_date) trade_info = executor.execute(order_list=order_list, trade_account=user.account, trade_date=trade_date) executor.save_executed_file_from_trade_info( trade_info=trade_info, user_path=(pathlib.Path(path) / user_id), trade_date=trade_date, ) self.logger.info("execute order list at {} for {}".format(trade_date.date(), user_id))
Execute the orderlist at 'date'. Parameters ---------- date : str (YYYY-MM-DD) Trade date, that the generated order list will be traded. exchange_config: str The file path (yaml) of exchange config path : str Path to save user account.
execute
python
microsoft/qlib
qlib/contrib/online/operator.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/online/operator.py
MIT
def update(self, date, path, type="SIM"): """Update account at 'date'. Parameters ---------- date : str (YYYY-MM-DD) Trade date, that the generated order list will be traded. path : str Path to save user account. type : str which executor was been used to execute the order list 'SIM': SimulatorExecutor() """ if type not in ["SIM", "YC"]: raise ValueError("type is invalid, {}".format(type)) um, pred_date, trade_date = self.init(self.client, path, date) for user_id, user in um.users.items(): dates, trade_exchange = prepare(um, trade_date, user_id) if type == "SIM": executor = SimulatorExecutor(trade_exchange=trade_exchange) else: raise ValueError("not found executor") # dates[0] is the last_trading_date if str(dates[0].date()) > str(pred_date.date()): raise ValueError( "The account data is not newest! last trading date {}, today {}".format( dates[0].date(), trade_date.date() ) ) # load trade info and update account trade_info = executor.load_trade_info_from_executed_file( user_path=(pathlib.Path(path) / user_id), trade_date=trade_date ) score_series = load_score_series((pathlib.Path(path) / user_id), trade_date) update_account(user.account, trade_info, trade_exchange, trade_date) portfolio_metrics = user.account.portfolio_metrics.generate_portfolio_metrics_dataframe() self.logger.info(portfolio_metrics) um.save_user_data(user_id) self.logger.info("Update account state {} for {}".format(trade_date, user_id))
Update account at 'date'. Parameters ---------- date : str (YYYY-MM-DD) Trade date, that the generated order list will be traded. path : str Path to save user account. type : str which executor was been used to execute the order list 'SIM': SimulatorExecutor()
update
python
microsoft/qlib
qlib/contrib/online/operator.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/online/operator.py
MIT
def simulate(self, id, config, exchange_config, start, end, path, bench="SH000905"): """Run the ( generate_trade_decision -> execute_order_list -> update_account) process everyday from start date to end date. Parameters ---------- id : str user id, need to be unique config : str The file path (yaml) of user config exchange_config: str The file path (yaml) of exchange config start : str "YYYY-MM-DD" The start date to run the online simulate end : str "YYYY-MM-DD" The end date to run the online simulate path : str Path to save user account. bench : str The benchmark that our result compared with. 'SH000905' for csi500, 'SH000300' for csi300 """ # Clear the current user if exists, then add a new user. create_user_folder(path) um = self.init(self.client, path, None)[0] start_date, end_date = pd.Timestamp(start), pd.Timestamp(end) try: um.remove_user(user_id=id) except BaseException: pass um.add_user(user_id=id, config_file=config, add_date=pd.Timestamp(start_date)) # Do the online simulate um.load_users() user = um.users[id] dates, trade_exchange = prepare(um, end_date, id, exchange_config) executor = SimulatorExecutor(trade_exchange=trade_exchange) for pred_date, trade_date in zip(dates[:-2], dates[1:-1]): user_path = pathlib.Path(path) / id # 1. load and save score_series input_data = user.model.get_data_with_date(pred_date) score_series = user.model.predict(input_data) save_score_series(score_series, (pathlib.Path(path) / id), trade_date) # 2. update strategy (and model) user.strategy.update(score_series, pred_date, trade_date) # 3. generate and save order list order_list = user.strategy.generate_trade_decision( score_series=score_series, current=user.account.current_position, trade_exchange=trade_exchange, trade_date=trade_date, ) save_order_list(order_list=order_list, user_path=user_path, trade_date=trade_date) # 4. auto execute order list order_list = load_order_list(user_path=user_path, trade_date=trade_date) trade_info = executor.execute(trade_account=user.account, order_list=order_list, trade_date=trade_date) executor.save_executed_file_from_trade_info( trade_info=trade_info, user_path=user_path, trade_date=trade_date ) # 5. update account state trade_info = executor.load_trade_info_from_executed_file(user_path=user_path, trade_date=trade_date) update_account(user.account, trade_info, trade_exchange, trade_date) portfolio_metrics = user.account.portfolio_metrics.generate_portfolio_metrics_dataframe() self.logger.info(portfolio_metrics) um.save_user_data(id) self.show(id, path, bench)
Run the ( generate_trade_decision -> execute_order_list -> update_account) process everyday from start date to end date. Parameters ---------- id : str user id, need to be unique config : str The file path (yaml) of user config exchange_config: str The file path (yaml) of exchange config start : str "YYYY-MM-DD" The start date to run the online simulate end : str "YYYY-MM-DD" The end date to run the online simulate path : str Path to save user account. bench : str The benchmark that our result compared with. 'SH000905' for csi500, 'SH000300' for csi300
simulate
python
microsoft/qlib
qlib/contrib/online/operator.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/online/operator.py
MIT
def show(self, id, path, bench="SH000905"): """show the newly report (mean, std, information_ratio, annualized_return) Parameters ---------- id : str user id, need to be unique path : str Path to save user account. bench : str The benchmark that our result compared with. 'SH000905' for csi500, 'SH000300' for csi300 """ um = self.init(self.client, path, None)[0] if id not in um.users: raise ValueError("Cannot find user ".format(id)) bench = D.features([bench], ["$change"]).loc[bench, "$change"] portfolio_metrics = um.users[id].account.portfolio_metrics.generate_portfolio_metrics_dataframe() portfolio_metrics["bench"] = bench analysis_result = {} r = (portfolio_metrics["return"] - portfolio_metrics["bench"]).dropna() analysis_result["excess_return_without_cost"] = risk_analysis(r) r = (portfolio_metrics["return"] - portfolio_metrics["bench"] - portfolio_metrics["cost"]).dropna() analysis_result["excess_return_with_cost"] = risk_analysis(r) print("Result:") print("excess_return_without_cost:") print(analysis_result["excess_return_without_cost"]) print("excess_return_with_cost:") print(analysis_result["excess_return_with_cost"])
show the newly report (mean, std, information_ratio, annualized_return) Parameters ---------- id : str user id, need to be unique path : str Path to save user account. bench : str The benchmark that our result compared with. 'SH000905' for csi500, 'SH000300' for csi300
show
python
microsoft/qlib
qlib/contrib/online/operator.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/online/operator.py
MIT
def __init__(self, account, strategy, model, verbose=False): """ A user in online system, which contains account, strategy and model three module. Parameter account : Account() strategy : a strategy instance model : a model instance report_save_path : string the path to save report. Will not save report if None verbose : bool Whether to print the info during the process """ self.logger = get_module_logger("User", level=logging.INFO) self.account = account self.strategy = strategy self.model = model self.verbose = verbose
A user in online system, which contains account, strategy and model three module. Parameter account : Account() strategy : a strategy instance model : a model instance report_save_path : string the path to save report. Will not save report if None verbose : bool Whether to print the info during the process
__init__
python
microsoft/qlib
qlib/contrib/online/user.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/online/user.py
MIT
def init_state(self, date): """ init state when each trading date begin Parameter date : pd.Timestamp """ self.account.init_state(today=date) self.strategy.init_state(trade_date=date, model=self.model, account=self.account) return
init state when each trading date begin Parameter date : pd.Timestamp
init_state
python
microsoft/qlib
qlib/contrib/online/user.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/online/user.py
MIT
def get_latest_trading_date(self): """ return the latest trading date for user {user_id} Parameter user_id : string :return date : string (e.g '2018-10-08') """ if not self.account.last_trade_date: return None return str(self.account.last_trade_date.date())
return the latest trading date for user {user_id} Parameter user_id : string :return date : string (e.g '2018-10-08')
get_latest_trading_date
python
microsoft/qlib
qlib/contrib/online/user.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/online/user.py
MIT
def showReport(self, benchmark="SH000905"): """ show the newly report (mean, std, information_ratio, annualized_return) Parameter benchmark : string bench that to be compared, 'SH000905' for csi500 """ bench = D.features([benchmark], ["$change"], disk_cache=True).loc[benchmark, "$change"] portfolio_metrics = self.account.portfolio_metrics.generate_portfolio_metrics_dataframe() portfolio_metrics["bench"] = bench analysis_result = {"pred": {}, "excess_return_without_cost": {}, "excess_return_with_cost": {}} r = (portfolio_metrics["return"] - portfolio_metrics["bench"]).dropna() analysis_result["excess_return_without_cost"][0] = risk_analysis(r) r = (portfolio_metrics["return"] - portfolio_metrics["bench"] - portfolio_metrics["cost"]).dropna() analysis_result["excess_return_with_cost"][0] = risk_analysis(r) self.logger.info("Result of porfolio:") self.logger.info("excess_return_without_cost:") self.logger.info(analysis_result["excess_return_without_cost"][0]) self.logger.info("excess_return_with_cost:") self.logger.info(analysis_result["excess_return_with_cost"][0]) return portfolio_metrics
show the newly report (mean, std, information_ratio, annualized_return) Parameter benchmark : string bench that to be compared, 'SH000905' for csi500
showReport
python
microsoft/qlib
qlib/contrib/online/user.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/online/user.py
MIT
def load_instance(file_path): """ load a pickle file Parameter file_path : string / pathlib.Path() path of file to be loaded :return An instance loaded from file """ file_path = pathlib.Path(file_path) if not file_path.exists(): raise ValueError("Cannot find file {}".format(file_path)) with file_path.open("rb") as fr: instance = pickle.load(fr) return instance
load a pickle file Parameter file_path : string / pathlib.Path() path of file to be loaded :return An instance loaded from file
load_instance
python
microsoft/qlib
qlib/contrib/online/utils.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/online/utils.py
MIT
def save_instance(instance, file_path): """ save(dump) an instance to a pickle file Parameter instance : data to be dumped file_path : string / pathlib.Path() path of file to be dumped """ file_path = pathlib.Path(file_path) with file_path.open("wb") as fr: pickle.dump(instance, fr, C.dump_protocol_version)
save(dump) an instance to a pickle file Parameter instance : data to be dumped file_path : string / pathlib.Path() path of file to be dumped
save_instance
python
microsoft/qlib
qlib/contrib/online/utils.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/online/utils.py
MIT
def prepare(um, today, user_id, exchange_config=None): """ 1. Get the dates that need to do trading till today for user {user_id} dates[0] indicate the latest trading date of User{user_id}, if User{user_id} haven't do trading before, than dates[0] presents the init date of User{user_id}. 2. Set the exchange with exchange_config file Parameter um : UserManager() today : pd.Timestamp() user_id : str :return dates : list of pd.Timestamp trade_exchange : Exchange() """ # get latest trading date for {user_id} # if is None, indicate it haven't traded, then last trading date is init date of {user_id} latest_trading_date = um.users[user_id].get_latest_trading_date() if not latest_trading_date: latest_trading_date = um.user_record.loc[user_id][0] if str(today.date()) < latest_trading_date: log.warning("user_id:{}, last trading date {} after today {}".format(user_id, latest_trading_date, today)) return [pd.Timestamp(latest_trading_date)], None dates = D.calendar( start_time=pd.Timestamp(latest_trading_date), end_time=pd.Timestamp(today), future=True, ) dates = list(dates) dates.append(get_next_trading_date(dates[-1], future=True)) if exchange_config: with pathlib.Path(exchange_config).open("r") as fp: yaml = YAML(typ="safe", pure=True) exchange_paras = yaml.load(fp) else: exchange_paras = {} trade_exchange = Exchange(trade_dates=dates, **exchange_paras) return dates, trade_exchange
1. Get the dates that need to do trading till today for user {user_id} dates[0] indicate the latest trading date of User{user_id}, if User{user_id} haven't do trading before, than dates[0] presents the init date of User{user_id}. 2. Set the exchange with exchange_config file Parameter um : UserManager() today : pd.Timestamp() user_id : str :return dates : list of pd.Timestamp trade_exchange : Exchange()
prepare
python
microsoft/qlib
qlib/contrib/online/utils.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/online/utils.py
MIT
def get_calendar_day(freq="1min", future=False): """ Load High-Freq Calendar Date Using Memcache. !!!NOTE: Loading the calendar is quite slow. So loading calendar before start multiprocessing will make it faster. Parameters ---------- freq : str frequency of read calendar file. future : bool whether including future trading day. Returns ------- _calendar: array of date. """ flag = f"{freq}_future_{future}_day" if flag in H["c"]: _calendar = H["c"][flag] else: _calendar = np.array(list(map(lambda x: x.date(), Cal.load_calendar(freq, future)))) H["c"][flag] = _calendar return _calendar
Load High-Freq Calendar Date Using Memcache. !!!NOTE: Loading the calendar is quite slow. So loading calendar before start multiprocessing will make it faster. Parameters ---------- freq : str frequency of read calendar file. future : bool whether including future trading day. Returns ------- _calendar: array of date.
get_calendar_day
python
microsoft/qlib
qlib/contrib/ops/high_freq.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/ops/high_freq.py
MIT
def get_calendar_minute(freq="day", future=False): """Load High-Freq Calendar Minute Using Memcache""" flag = f"{freq}_future_{future}_day" if flag in H["c"]: _calendar = H["c"][flag] else: _calendar = np.array(list(map(lambda x: x.minute // 30, Cal.load_calendar(freq, future)))) H["c"][flag] = _calendar return _calendar
Load High-Freq Calendar Minute Using Memcache
get_calendar_minute
python
microsoft/qlib
qlib/contrib/ops/high_freq.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/ops/high_freq.py
MIT
def __init__( self, df: pd.DataFrame = None, layout: dict = None, graph_kwargs: dict = None, name_dict: dict = None, **kwargs ): """ :param df: :param layout: :param graph_kwargs: :param name_dict: :param kwargs: layout: dict go.Layout parameters graph_kwargs: dict Graph parameters, eg: go.Bar(**graph_kwargs) """ self._df = df self._layout = dict() if layout is None else layout self._graph_kwargs = dict() if graph_kwargs is None else graph_kwargs self._name_dict = name_dict self.data = None self._init_parameters(**kwargs) self._init_data()
:param df: :param layout: :param graph_kwargs: :param name_dict: :param kwargs: layout: dict go.Layout parameters graph_kwargs: dict Graph parameters, eg: go.Bar(**graph_kwargs)
__init__
python
microsoft/qlib
qlib/contrib/report/graph.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/report/graph.py
MIT
def __init__( self, df: pd.DataFrame = None, kind_map: dict = None, layout: dict = None, sub_graph_layout: dict = None, sub_graph_data: list = None, subplots_kwargs: dict = None, **kwargs, ): """ :param df: pd.DataFrame :param kind_map: dict, subplots graph kind and kwargs eg: dict(kind='ScatterGraph', kwargs=dict()) :param layout: `go.Layout` parameters :param sub_graph_layout: Layout of each graphic, similar to 'layout' :param sub_graph_data: Instantiation parameters for each sub-graphic eg: [(column_name, instance_parameters), ] column_name: str or go.Figure Instance_parameters: - row: int, the row where the graph is located - col: int, the col where the graph is located - name: str, show name, default column_name in 'df' - kind: str, graph kind, default `kind` param, eg: bar, scatter, ... - graph_kwargs: dict, graph kwargs, default {}, used in `go.Bar(**graph_kwargs)` :param subplots_kwargs: `plotly.tools.make_subplots` original parameters - shared_xaxes: bool, default False - shared_yaxes: bool, default False - vertical_spacing: float, default 0.3 / rows - subplot_titles: list, default [] If `sub_graph_data` is None, will generate 'subplot_titles' according to `df.columns`, this field will be discarded - specs: list, see `make_subplots` docs - rows: int, Number of rows in the subplot grid, default 1 If `sub_graph_data` is None, will generate 'rows' according to `df`, this field will be discarded - cols: int, Number of cols in the subplot grid, default 1 If `sub_graph_data` is None, will generate 'cols' according to `df`, this field will be discarded :param kwargs: """ self._df = df self._layout = layout self._sub_graph_layout = sub_graph_layout self._kind_map = kind_map if self._kind_map is None: self._kind_map = dict(kind="ScatterGraph", kwargs=dict()) self._subplots_kwargs = subplots_kwargs if self._subplots_kwargs is None: self._init_subplots_kwargs() self.__cols = self._subplots_kwargs.get("cols", 2) # pylint: disable=W0238 self.__rows = self._subplots_kwargs.get( # pylint: disable=W0238 "rows", math.ceil(len(self._df.columns) / self.__cols) ) self._sub_graph_data = sub_graph_data if self._sub_graph_data is None: self._init_sub_graph_data() self._init_figure()
:param df: pd.DataFrame :param kind_map: dict, subplots graph kind and kwargs eg: dict(kind='ScatterGraph', kwargs=dict()) :param layout: `go.Layout` parameters :param sub_graph_layout: Layout of each graphic, similar to 'layout' :param sub_graph_data: Instantiation parameters for each sub-graphic eg: [(column_name, instance_parameters), ] column_name: str or go.Figure Instance_parameters: - row: int, the row where the graph is located - col: int, the col where the graph is located - name: str, show name, default column_name in 'df' - kind: str, graph kind, default `kind` param, eg: bar, scatter, ... - graph_kwargs: dict, graph kwargs, default {}, used in `go.Bar(**graph_kwargs)` :param subplots_kwargs: `plotly.tools.make_subplots` original parameters - shared_xaxes: bool, default False - shared_yaxes: bool, default False - vertical_spacing: float, default 0.3 / rows - subplot_titles: list, default [] If `sub_graph_data` is None, will generate 'subplot_titles' according to `df.columns`, this field will be discarded - specs: list, see `make_subplots` docs - rows: int, Number of rows in the subplot grid, default 1 If `sub_graph_data` is None, will generate 'rows' according to `df`, this field will be discarded - cols: int, Number of cols in the subplot grid, default 1 If `sub_graph_data` is None, will generate 'cols' according to `df`, this field will be discarded :param kwargs:
__init__
python
microsoft/qlib
qlib/contrib/report/graph.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/report/graph.py
MIT
def guess_plotly_rangebreaks(dt_index: pd.DatetimeIndex): """ This function `guesses` the rangebreaks required to remove gaps in datetime index. It basically calculates the difference between a `continuous` datetime index and index given. For more details on `rangebreaks` params in plotly, see https://plotly.com/python/reference/layout/xaxis/#layout-xaxis-rangebreaks Parameters ---------- dt_index: pd.DatetimeIndex The datetimes of the data. Returns ------- the `rangebreaks` to be passed into plotly axis. """ dt_idx = dt_index.sort_values() gaps = dt_idx[1:] - dt_idx[:-1] min_gap = gaps.min() gaps_to_break = {} for gap, d in zip(gaps, dt_idx[:-1]): if gap > min_gap: gaps_to_break.setdefault(gap - min_gap, []).append(d + min_gap) return [dict(values=v, dvalue=int(k.total_seconds() * 1000)) for k, v in gaps_to_break.items()]
This function `guesses` the rangebreaks required to remove gaps in datetime index. It basically calculates the difference between a `continuous` datetime index and index given. For more details on `rangebreaks` params in plotly, see https://plotly.com/python/reference/layout/xaxis/#layout-xaxis-rangebreaks Parameters ---------- dt_index: pd.DatetimeIndex The datetimes of the data. Returns ------- the `rangebreaks` to be passed into plotly axis.
guess_plotly_rangebreaks
python
microsoft/qlib
qlib/contrib/report/utils.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/report/utils.py
MIT
def _pred_ic( pred_label: pd.DataFrame = None, methods: Sequence[Literal["IC", "Rank IC"]] = ("IC", "Rank IC"), **kwargs ) -> tuple: """ :param pred_label: pd.DataFrame must contain one column of realized return with name `label` and one column of predicted score names `score`. :param methods: Sequence[Literal["IC", "Rank IC"]] IC series to plot. IC is sectional pearson correlation between label and score Rank IC is the spearman correlation between label and score For the Monthly IC, IC histogram, IC Q-Q plot. Only the first type of IC will be plotted. :return: """ _methods_mapping = {"IC": "pearson", "Rank IC": "spearman"} def _corr_series(x, method): return x["label"].corr(x["score"], method=method) ic_df = pd.concat( [ pred_label.groupby(level="datetime", group_keys=False) .apply(partial(_corr_series, method=_methods_mapping[m])) .rename(m) for m in methods ], axis=1, ) _ic = ic_df.iloc(axis=1)[0] _index = _ic.index.get_level_values(0).astype("str").str.replace("-", "").str.slice(0, 6) _monthly_ic = _ic.groupby(_index, group_keys=False).mean() _monthly_ic.index = pd.MultiIndex.from_arrays( [_monthly_ic.index.str.slice(0, 4), _monthly_ic.index.str.slice(4, 6)], names=["year", "month"], ) # fill month _month_list = pd.date_range( start=pd.Timestamp(f"{_index.min()[:4]}0101"), end=pd.Timestamp(f"{_index.max()[:4]}1231"), freq="1M", ) _years = [] _month = [] for _date in _month_list: _date = _date.strftime("%Y%m%d") _years.append(_date[:4]) _month.append(_date[4:6]) fill_index = pd.MultiIndex.from_arrays([_years, _month], names=["year", "month"]) _monthly_ic = _monthly_ic.reindex(fill_index) ic_bar_figure = ic_figure(ic_df, kwargs.get("show_nature_day", False)) ic_heatmap_figure = HeatmapGraph( _monthly_ic.unstack(), layout=dict(title="Monthly IC", xaxis=dict(dtick=1), yaxis=dict(tickformat="04d", dtick=1)), graph_kwargs=dict(xtype="array", ytype="array"), ).figure dist = stats.norm _qqplot_fig = _plot_qq(_ic, dist) if isinstance(dist, stats.norm.__class__): dist_name = "Normal" else: dist_name = "Unknown" _ic_df = _ic.to_frame("IC") _bin_size = ((_ic_df.max() - _ic_df.min()) / 20).min() _sub_graph_data = [ ( "IC", dict( row=1, col=1, name="", kind="DistplotGraph", graph_kwargs=dict(bin_size=_bin_size), ), ), (_qqplot_fig, dict(row=1, col=2)), ] ic_hist_figure = SubplotsGraph( _ic_df.dropna(), kind_map=dict(kind="HistogramGraph", kwargs=dict()), subplots_kwargs=dict( rows=1, cols=2, print_grid=False, subplot_titles=["IC", "IC %s Dist. Q-Q" % dist_name], ), sub_graph_data=_sub_graph_data, layout=dict( yaxis2=dict(title="Observed Quantile"), xaxis2=dict(title=f"{dist_name} Distribution Quantile"), ), ).figure return ic_bar_figure, ic_heatmap_figure, ic_hist_figure
:param pred_label: pd.DataFrame must contain one column of realized return with name `label` and one column of predicted score names `score`. :param methods: Sequence[Literal["IC", "Rank IC"]] IC series to plot. IC is sectional pearson correlation between label and score Rank IC is the spearman correlation between label and score For the Monthly IC, IC histogram, IC Q-Q plot. Only the first type of IC will be plotted. :return:
_pred_ic
python
microsoft/qlib
qlib/contrib/report/analysis_model/analysis_model_performance.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/report/analysis_model/analysis_model_performance.py
MIT
def ic_figure(ic_df: pd.DataFrame, show_nature_day=True, **kwargs) -> go.Figure: r"""IC figure :param ic_df: ic DataFrame :param show_nature_day: whether to display the abscissa of non-trading day :param \*\*kwargs: contains some parameters to control plot style in plotly. Currently, supports - `rangebreaks`: https://plotly.com/python/time-series/#Hiding-Weekends-and-Holidays :return: plotly.graph_objs.Figure """ if show_nature_day: date_index = pd.date_range(ic_df.index.min(), ic_df.index.max()) ic_df = ic_df.reindex(date_index) ic_bar_figure = BarGraph( ic_df, layout=dict( title="Information Coefficient (IC)", xaxis=dict(tickangle=45, rangebreaks=kwargs.get("rangebreaks", guess_plotly_rangebreaks(ic_df.index))), ), ).figure return ic_bar_figure
IC figure :param ic_df: ic DataFrame :param show_nature_day: whether to display the abscissa of non-trading day :param \*\*kwargs: contains some parameters to control plot style in plotly. Currently, supports - `rangebreaks`: https://plotly.com/python/time-series/#Hiding-Weekends-and-Holidays :return: plotly.graph_objs.Figure
ic_figure
python
microsoft/qlib
qlib/contrib/report/analysis_model/analysis_model_performance.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/report/analysis_model/analysis_model_performance.py
MIT
def model_performance_graph( pred_label: pd.DataFrame, lag: int = 1, N: int = 5, reverse=False, rank=False, graph_names: list = ["group_return", "pred_ic", "pred_autocorr"], show_notebook: bool = True, show_nature_day: bool = False, **kwargs, ) -> [list, tuple]: r"""Model performance :param pred_label: index is **pd.MultiIndex**, index name is **[instrument, datetime]**; columns names is **[score, label]**. It is usually same as the label of model training(e.g. "Ref($close, -2)/Ref($close, -1) - 1"). .. code-block:: python instrument datetime score label SH600004 2017-12-11 -0.013502 -0.013502 2017-12-12 -0.072367 -0.072367 2017-12-13 -0.068605 -0.068605 2017-12-14 0.012440 0.012440 2017-12-15 -0.102778 -0.102778 :param lag: `pred.groupby(level='instrument', group_keys=False)['score'].shift(lag)`. It will be only used in the auto-correlation computing. :param N: group number, default 5. :param reverse: if `True`, `pred['score'] *= -1`. :param rank: if **True**, calculate rank ic. :param graph_names: graph names; default ['cumulative_return', 'pred_ic', 'pred_autocorr', 'pred_turnover']. :param show_notebook: whether to display graphics in notebook, the default is `True`. :param show_nature_day: whether to display the abscissa of non-trading day. :param \*\*kwargs: contains some parameters to control plot style in plotly. Currently, supports - `rangebreaks`: https://plotly.com/python/time-series/#Hiding-Weekends-and-Holidays :return: if show_notebook is True, display in notebook; else return `plotly.graph_objs.Figure` list. """ figure_list = [] for graph_name in graph_names: fun_res = eval(f"_{graph_name}")( pred_label=pred_label, lag=lag, N=N, reverse=reverse, rank=rank, show_nature_day=show_nature_day, **kwargs ) figure_list += fun_res if show_notebook: BarGraph.show_graph_in_notebook(figure_list) else: return figure_list
Model performance :param pred_label: index is **pd.MultiIndex**, index name is **[instrument, datetime]**; columns names is **[score, label]**. It is usually same as the label of model training(e.g. "Ref($close, -2)/Ref($close, -1) - 1"). .. code-block:: python instrument datetime score label SH600004 2017-12-11 -0.013502 -0.013502 2017-12-12 -0.072367 -0.072367 2017-12-13 -0.068605 -0.068605 2017-12-14 0.012440 0.012440 2017-12-15 -0.102778 -0.102778 :param lag: `pred.groupby(level='instrument', group_keys=False)['score'].shift(lag)`. It will be only used in the auto-correlation computing. :param N: group number, default 5. :param reverse: if `True`, `pred['score'] *= -1`. :param rank: if **True**, calculate rank ic. :param graph_names: graph names; default ['cumulative_return', 'pred_ic', 'pred_autocorr', 'pred_turnover']. :param show_notebook: whether to display graphics in notebook, the default is `True`. :param show_nature_day: whether to display the abscissa of non-trading day. :param \*\*kwargs: contains some parameters to control plot style in plotly. Currently, supports - `rangebreaks`: https://plotly.com/python/time-series/#Hiding-Weekends-and-Holidays :return: if show_notebook is True, display in notebook; else return `plotly.graph_objs.Figure` list.
model_performance_graph
python
microsoft/qlib
qlib/contrib/report/analysis_model/analysis_model_performance.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/report/analysis_model/analysis_model_performance.py
MIT
def _get_cum_return_data_with_position( position: dict, report_normal: pd.DataFrame, label_data: pd.DataFrame, start_date=None, end_date=None, ): """ :param position: :param report_normal: :param label_data: :param start_date: :param end_date: :return: """ _cumulative_return_df = get_position_data( position=position, report_normal=report_normal, label_data=label_data, start_date=start_date, end_date=end_date, ).copy() _cumulative_return_df["label"] = _cumulative_return_df["label"] - _cumulative_return_df["bench"] _cumulative_return_df = _cumulative_return_df.dropna() df_gp = _cumulative_return_df.groupby(level="datetime", group_keys=False) result_list = [] for gp in df_gp: date = gp[0] day_df = gp[1] _hold_df = day_df[day_df["status"] == 0] _buy_df = day_df[day_df["status"] == 1] _sell_df = day_df[day_df["status"] == -1] hold_value = (_hold_df["label"] * _hold_df["weight"]).sum() hold_weight = _hold_df["weight"].sum() hold_mean = (hold_value / hold_weight) if hold_weight else 0 sell_value = (_sell_df["label"] * _sell_df["weight"]).sum() sell_weight = _sell_df["weight"].sum() sell_mean = (sell_value / sell_weight) if sell_weight else 0 buy_value = (_buy_df["label"] * _buy_df["weight"]).sum() buy_weight = _buy_df["weight"].sum() buy_mean = (buy_value / buy_weight) if buy_weight else 0 result_list.append( dict( hold_value=hold_value, hold_mean=hold_mean, hold_weight=hold_weight, buy_value=buy_value, buy_mean=buy_mean, buy_weight=buy_weight, sell_value=sell_value, sell_mean=sell_mean, sell_weight=sell_weight, buy_minus_sell_value=buy_value - sell_value, buy_minus_sell_mean=buy_mean - sell_mean, buy_plus_sell_weight=buy_weight + sell_weight, date=date, ) ) r_df = pd.DataFrame(data=result_list) r_df["cum_hold"] = r_df["hold_mean"].cumsum() r_df["cum_buy"] = r_df["buy_mean"].cumsum() r_df["cum_sell"] = r_df["sell_mean"].cumsum() r_df["cum_buy_minus_sell"] = r_df["buy_minus_sell_mean"].cumsum() return r_df
:param position: :param report_normal: :param label_data: :param start_date: :param end_date: :return:
_get_cum_return_data_with_position
python
microsoft/qlib
qlib/contrib/report/analysis_position/cumulative_return.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/report/analysis_position/cumulative_return.py
MIT
def _get_figure_with_position( position: dict, report_normal: pd.DataFrame, label_data: pd.DataFrame, start_date=None, end_date=None, ) -> Iterable[go.Figure]: """Get average analysis figures :param position: position :param report_normal: :param label_data: :param start_date: :param end_date: :return: """ cum_return_df = _get_cum_return_data_with_position(position, report_normal, label_data, start_date, end_date) cum_return_df = cum_return_df.set_index("date") # FIXME: support HIGH-FREQ cum_return_df.index = cum_return_df.index.strftime("%Y-%m-%d") # Create figures for _t_name in ["buy", "sell", "buy_minus_sell", "hold"]: sub_graph_data = [ ( "cum_{}".format(_t_name), dict(row=1, col=1, graph_kwargs={"mode": "lines+markers", "xaxis": "x3"}), ), ( "{}_weight".format(_t_name.replace("minus", "plus") if "minus" in _t_name else _t_name), dict(row=2, col=1), ), ( "{}_value".format(_t_name), dict(row=1, col=2, kind="HistogramGraph", graph_kwargs={}), ), ] _default_xaxis = dict(showline=False, zeroline=True, tickangle=45) _default_yaxis = dict(zeroline=True, showline=True, showticklabels=True) sub_graph_layout = dict( xaxis1=dict(**_default_xaxis, type="category", showticklabels=False), xaxis3=dict(**_default_xaxis, type="category"), xaxis2=_default_xaxis, yaxis1=dict(**_default_yaxis, title=_t_name), yaxis2=_default_yaxis, yaxis3=_default_yaxis, ) mean_value = cum_return_df["{}_value".format(_t_name)].mean() layout = dict( height=500, title=f"{_t_name}(the red line in the histogram on the right represents the average)", shapes=[ { "type": "line", "xref": "x2", "yref": "paper", "x0": mean_value, "y0": 0, "x1": mean_value, "y1": 1, # NOTE: 'fillcolor': '#d3d3d3', 'opacity': 0.3, "line": {"color": "red", "width": 1}, }, ], ) kind_map = dict(kind="ScatterGraph", kwargs=dict(mode="lines+markers")) specs = [ [{"rowspan": 1}, {"rowspan": 2}], [{"rowspan": 1}, None], ] subplots_kwargs = dict( vertical_spacing=0.01, rows=2, cols=2, row_width=[1, 2], column_width=[3, 1], print_grid=False, specs=specs, ) yield SubplotsGraph( cum_return_df, layout=layout, kind_map=kind_map, sub_graph_layout=sub_graph_layout, sub_graph_data=sub_graph_data, subplots_kwargs=subplots_kwargs, ).figure
Get average analysis figures :param position: position :param report_normal: :param label_data: :param start_date: :param end_date: :return:
_get_figure_with_position
python
microsoft/qlib
qlib/contrib/report/analysis_position/cumulative_return.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/report/analysis_position/cumulative_return.py
MIT