code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def parse_position(position: dict = None) -> pd.DataFrame: """Parse position dict to position DataFrame :param position: position data :return: position DataFrame; .. code-block:: python position_df = parse_position(positions) print(position_df.head()) # status: 0-hold, -1-sell, 1-buy amount cash count price status weight instrument datetime SZ000547 2017-01-04 44.154290 211405.285654 1 205.189575 1 0.031255 SZ300202 2017-01-04 60.638845 211405.285654 1 154.356506 1 0.032290 SH600158 2017-01-04 46.531681 211405.285654 1 153.895142 1 0.024704 SH600545 2017-01-04 197.173093 211405.285654 1 48.607037 1 0.033063 SZ000930 2017-01-04 103.938300 211405.285654 1 80.759453 1 0.028958 """ position_weight_df = get_stock_weight_df(position) # If the day does not exist, use the last weight position_weight_df.fillna(method="ffill", inplace=True) previous_data = {"date": None, "code_list": []} result_df = pd.DataFrame() for _trading_date, _value in position.items(): _value = _value.position # pd_date type: pd.Timestamp _cash = _value.pop("cash") for _item in ["now_account_value"]: if _item in _value: _value.pop(_item) _trading_day_df = pd.DataFrame.from_dict(_value, orient="index") _trading_day_df["weight"] = position_weight_df.loc[_trading_date] _trading_day_df["cash"] = _cash _trading_day_df["date"] = _trading_date # status: 0-hold, -1-sell, 1-buy _trading_day_df["status"] = 0 # T not exist, T-1 exist, T sell _cur_day_sell = set(previous_data["code_list"]) - set(_trading_day_df.index) # T exist, T-1 not exist, T buy _cur_day_buy = set(_trading_day_df.index) - set(previous_data["code_list"]) # Trading day buy _trading_day_df.loc[_trading_day_df.index.isin(_cur_day_buy), "status"] = 1 # Trading day sell if not result_df.empty: _trading_day_sell_df = result_df.loc[ (result_df["date"] == previous_data["date"]) & (result_df.index.isin(_cur_day_sell)) ].copy() if not _trading_day_sell_df.empty: _trading_day_sell_df["status"] = -1 _trading_day_sell_df["date"] = _trading_date _trading_day_df = pd.concat([_trading_day_df, _trading_day_sell_df], sort=False) result_df = pd.concat([result_df, _trading_day_df], sort=True) previous_data = dict( date=_trading_date, code_list=_trading_day_df[_trading_day_df["status"] != -1].index, ) result_df.reset_index(inplace=True) result_df.rename(columns={"date": "datetime", "index": "instrument"}, inplace=True) return result_df.set_index(["instrument", "datetime"])
Parse position dict to position DataFrame :param position: position data :return: position DataFrame; .. code-block:: python position_df = parse_position(positions) print(position_df.head()) # status: 0-hold, -1-sell, 1-buy amount cash count price status weight instrument datetime SZ000547 2017-01-04 44.154290 211405.285654 1 205.189575 1 0.031255 SZ300202 2017-01-04 60.638845 211405.285654 1 154.356506 1 0.032290 SH600158 2017-01-04 46.531681 211405.285654 1 153.895142 1 0.024704 SH600545 2017-01-04 197.173093 211405.285654 1 48.607037 1 0.033063 SZ000930 2017-01-04 103.938300 211405.285654 1 80.759453 1 0.028958
parse_position
python
microsoft/qlib
qlib/contrib/report/analysis_position/parse_position.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/report/analysis_position/parse_position.py
MIT
def _add_label_to_position(position_df: pd.DataFrame, label_data: pd.DataFrame) -> pd.DataFrame: """Concat position with custom label :param position_df: position DataFrame :param label_data: :return: concat result """ _start_time = position_df.index.get_level_values(level="datetime").min() _end_time = position_df.index.get_level_values(level="datetime").max() label_data = label_data.loc(axis=0)[:, pd.to_datetime(_start_time) :] _result_df = pd.concat([position_df, label_data], axis=1, sort=True).reindex(label_data.index) _result_df = _result_df.loc[_result_df.index.get_level_values(1) <= _end_time] return _result_df
Concat position with custom label :param position_df: position DataFrame :param label_data: :return: concat result
_add_label_to_position
python
microsoft/qlib
qlib/contrib/report/analysis_position/parse_position.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/report/analysis_position/parse_position.py
MIT
def _add_bench_to_position(position_df: pd.DataFrame = None, bench: pd.Series = None) -> pd.DataFrame: """Concat position with bench :param position_df: position DataFrame :param bench: report normal data :return: concat result """ _temp_df = position_df.reset_index(level="instrument") # FIXME: After the stock is bought and sold, the rise and fall of the next trading day are calculated. _temp_df["bench"] = bench.shift(-1) res_df = _temp_df.set_index(["instrument", _temp_df.index]) return res_df
Concat position with bench :param position_df: position DataFrame :param bench: report normal data :return: concat result
_add_bench_to_position
python
microsoft/qlib
qlib/contrib/report/analysis_position/parse_position.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/report/analysis_position/parse_position.py
MIT
def _calculate_label_rank(df: pd.DataFrame) -> pd.DataFrame: """calculate label rank :param df: :return: """ _label_name = "label" def _calculate_day_value(g_df: pd.DataFrame): g_df = g_df.copy() g_df["rank_ratio"] = g_df[_label_name].rank(ascending=False) / len(g_df) * 100 # Sell: -1, Hold: 0, Buy: 1 for i in [-1, 0, 1]: g_df.loc[g_df["status"] == i, "rank_label_mean"] = g_df[g_df["status"] == i]["rank_ratio"].mean() g_df["excess_return"] = g_df[_label_name] - g_df[_label_name].mean() return g_df return df.groupby(level="datetime", group_keys=False).apply(_calculate_day_value)
calculate label rank :param df: :return:
_calculate_label_rank
python
microsoft/qlib
qlib/contrib/report/analysis_position/parse_position.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/report/analysis_position/parse_position.py
MIT
def get_position_data( position: dict, label_data: pd.DataFrame, report_normal: pd.DataFrame = None, calculate_label_rank=False, start_date=None, end_date=None, ) -> pd.DataFrame: """Concat position data with pred/report_normal :param position: position data :param report_normal: report normal, must be container 'bench' column :param label_data: :param calculate_label_rank: :param start_date: start date :param end_date: end date :return: concat result, columns: ['amount', 'cash', 'count', 'price', 'status', 'weight', 'label', 'rank_ratio', 'rank_label_mean', 'excess_return', 'score', 'bench'] index: ['instrument', 'date'] """ _position_df = parse_position(position) # Add custom_label, rank_ratio, rank_mean, and excess_return field _position_df = _add_label_to_position(_position_df, label_data) if calculate_label_rank: _position_df = _calculate_label_rank(_position_df) if report_normal is not None: # Add bench field _position_df = _add_bench_to_position(_position_df, report_normal["bench"]) _date_list = _position_df.index.get_level_values(level="datetime") start_date = _date_list.min() if start_date is None else start_date end_date = _date_list.max() if end_date is None else end_date _position_df = _position_df.loc[(start_date <= _date_list) & (_date_list <= end_date)] return _position_df
Concat position data with pred/report_normal :param position: position data :param report_normal: report normal, must be container 'bench' column :param label_data: :param calculate_label_rank: :param start_date: start date :param end_date: end date :return: concat result, columns: ['amount', 'cash', 'count', 'price', 'status', 'weight', 'label', 'rank_ratio', 'rank_label_mean', 'excess_return', 'score', 'bench'] index: ['instrument', 'date']
get_position_data
python
microsoft/qlib
qlib/contrib/report/analysis_position/parse_position.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/report/analysis_position/parse_position.py
MIT
def _get_figure_with_position( position: dict, label_data: pd.DataFrame, start_date=None, end_date=None ) -> Iterable[go.Figure]: """Get average analysis figures :param position: position :param label_data: :param start_date: :param end_date: :return: """ _position_df = get_position_data( position, label_data, calculate_label_rank=True, start_date=start_date, end_date=end_date, ) res_dict = dict() _pos_gp = _position_df.groupby(level=1, group_keys=False) for _item in _pos_gp: _date = _item[0] _day_df = _item[1] _day_value = res_dict.setdefault(_date, {}) for _i, _name in {0: "Hold", 1: "Buy", -1: "Sell"}.items(): _temp_df = _day_df[_day_df["status"] == _i] if _temp_df.empty: _day_value[_name] = 0 else: _day_value[_name] = _temp_df["rank_label_mean"].values[0] _res_df = pd.DataFrame.from_dict(res_dict, orient="index") # FIXME: support HIGH-FREQ _res_df.index = _res_df.index.strftime("%Y-%m-%d") for _col in _res_df.columns: yield ScatterGraph( _res_df.loc[:, [_col]], layout=dict( title=_col, xaxis=dict(type="category", tickangle=45), yaxis=dict(title="lable-rank-ratio: %"), ), graph_kwargs=dict(mode="lines+markers"), ).figure
Get average analysis figures :param position: position :param label_data: :param start_date: :param end_date: :return:
_get_figure_with_position
python
microsoft/qlib
qlib/contrib/report/analysis_position/rank_label.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/report/analysis_position/rank_label.py
MIT
def _get_risk_analysis_data_with_report( report_normal_df: pd.DataFrame, # report_long_short_df: pd.DataFrame, date: pd.Timestamp, ) -> pd.DataFrame: """Get risk analysis data with report :param report_normal_df: report data :param report_long_short_df: report data :param date: date string :return: """ analysis = dict() # if not report_long_short_df.empty: # analysis["pred_long"] = risk_analysis(report_long_short_df["long"]) # analysis["pred_short"] = risk_analysis(report_long_short_df["short"]) # analysis["pred_long_short"] = risk_analysis(report_long_short_df["long_short"]) if not report_normal_df.empty: analysis["excess_return_without_cost"] = risk_analysis(report_normal_df["return"] - report_normal_df["bench"]) analysis["excess_return_with_cost"] = risk_analysis( report_normal_df["return"] - report_normal_df["bench"] - report_normal_df["cost"] ) analysis_df = pd.concat(analysis) # type: pd.DataFrame analysis_df["date"] = date return analysis_df
Get risk analysis data with report :param report_normal_df: report data :param report_long_short_df: report data :param date: date string :return:
_get_risk_analysis_data_with_report
python
microsoft/qlib
qlib/contrib/report/analysis_position/risk_analysis.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/report/analysis_position/risk_analysis.py
MIT
def _get_all_risk_analysis(risk_df: pd.DataFrame) -> pd.DataFrame: """risk_df to standard :param risk_df: risk data :return: """ if risk_df is None: return pd.DataFrame() risk_df = risk_df.unstack() risk_df.columns = risk_df.columns.droplevel(0) return risk_df.drop("mean", axis=1)
risk_df to standard :param risk_df: risk data :return:
_get_all_risk_analysis
python
microsoft/qlib
qlib/contrib/report/analysis_position/risk_analysis.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/report/analysis_position/risk_analysis.py
MIT
def _get_monthly_risk_analysis_with_report(report_normal_df: pd.DataFrame) -> pd.DataFrame: """Get monthly analysis data :param report_normal_df: # :param report_long_short_df: :return: """ # Group by month report_normal_gp = report_normal_df.groupby( [report_normal_df.index.year, report_normal_df.index.month], group_keys=False ) # report_long_short_gp = report_long_short_df.groupby( # [report_long_short_df.index.year, report_long_short_df.index.month], group_keys=False # ) gp_month = sorted(set(report_normal_gp.size().index)) _monthly_df = pd.DataFrame() for gp_m in gp_month: _m_report_normal = report_normal_gp.get_group(gp_m) # _m_report_long_short = report_long_short_gp.get_group(gp_m) if len(_m_report_normal) < 3: # The month's data is less than 3, not displayed # FIXME: If the trading day of a month is less than 3 days, a breakpoint will appear in the graph continue month_days = pd.Timestamp(year=gp_m[0], month=gp_m[1], day=1).days_in_month _temp_df = _get_risk_analysis_data_with_report( _m_report_normal, # _m_report_long_short, pd.Timestamp(year=gp_m[0], month=gp_m[1], day=month_days), ) _monthly_df = pd.concat([_monthly_df, _temp_df], sort=False) return _monthly_df
Get monthly analysis data :param report_normal_df: # :param report_long_short_df: :return:
_get_monthly_risk_analysis_with_report
python
microsoft/qlib
qlib/contrib/report/analysis_position/risk_analysis.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/report/analysis_position/risk_analysis.py
MIT
def _get_risk_analysis_figure(analysis_df: pd.DataFrame) -> Iterable[py.Figure]: """Get analysis graph figure :param analysis_df: :return: """ if analysis_df is None: return [] _figure = SubplotsGraph( _get_all_risk_analysis(analysis_df), kind_map=dict(kind="BarGraph", kwargs={}), subplots_kwargs={"rows": 1, "cols": 4}, ).figure return (_figure,)
Get analysis graph figure :param analysis_df: :return:
_get_risk_analysis_figure
python
microsoft/qlib
qlib/contrib/report/analysis_position/risk_analysis.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/report/analysis_position/risk_analysis.py
MIT
def _get_monthly_risk_analysis_figure(report_normal_df: pd.DataFrame) -> Iterable[py.Figure]: """Get analysis monthly graph figure :param report_normal_df: :param report_long_short_df: :return: """ # if report_normal_df is None and report_long_short_df is None: # return [] if report_normal_df is None: return [] # if report_normal_df is None: # report_normal_df = pd.DataFrame(index=report_long_short_df.index) # if report_long_short_df is None: # report_long_short_df = pd.DataFrame(index=report_normal_df.index) _monthly_df = _get_monthly_risk_analysis_with_report( report_normal_df=report_normal_df, # report_long_short_df=report_long_short_df, ) for _feature in ["annualized_return", "max_drawdown", "information_ratio", "std"]: _temp_df = _get_monthly_analysis_with_feature(_monthly_df, _feature) yield ScatterGraph( _temp_df, layout=dict(title=_feature, xaxis=dict(type="category", tickangle=45)), graph_kwargs={"mode": "lines+markers"}, ).figure
Get analysis monthly graph figure :param report_normal_df: :param report_long_short_df: :return:
_get_monthly_risk_analysis_figure
python
microsoft/qlib
qlib/contrib/report/analysis_position/risk_analysis.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/report/analysis_position/risk_analysis.py
MIT
def score_ic_graph(pred_label: pd.DataFrame, show_notebook: bool = True, **kwargs) -> [list, tuple]: """score IC Example: .. code-block:: python from qlib.data import D from qlib.contrib.report import analysis_position pred_df_dates = pred_df.index.get_level_values(level='datetime') features_df = D.features(D.instruments('csi500'), ['Ref($close, -2)/Ref($close, -1)-1'], pred_df_dates.min(), pred_df_dates.max()) features_df.columns = ['label'] pred_label = pd.concat([features_df, pred], axis=1, sort=True).reindex(features_df.index) analysis_position.score_ic_graph(pred_label) :param pred_label: index is **pd.MultiIndex**, index name is **[instrument, datetime]**; columns names is **[score, label]**. .. code-block:: python instrument datetime score label SH600004 2017-12-11 -0.013502 -0.013502 2017-12-12 -0.072367 -0.072367 2017-12-13 -0.068605 -0.068605 2017-12-14 0.012440 0.012440 2017-12-15 -0.102778 -0.102778 :param show_notebook: whether to display graphics in notebook, the default is **True**. :return: if show_notebook is True, display in notebook; else return **plotly.graph_objs.Figure** list. """ _ic_df = _get_score_ic(pred_label) _figure = ScatterGraph( _ic_df, layout=dict( title="Score IC", xaxis=dict(tickangle=45, rangebreaks=kwargs.get("rangebreaks", guess_plotly_rangebreaks(_ic_df.index))), ), graph_kwargs={"mode": "lines+markers"}, ).figure if show_notebook: ScatterGraph.show_graph_in_notebook([_figure]) else: return (_figure,)
score IC Example: .. code-block:: python from qlib.data import D from qlib.contrib.report import analysis_position pred_df_dates = pred_df.index.get_level_values(level='datetime') features_df = D.features(D.instruments('csi500'), ['Ref($close, -2)/Ref($close, -1)-1'], pred_df_dates.min(), pred_df_dates.max()) features_df.columns = ['label'] pred_label = pd.concat([features_df, pred], axis=1, sort=True).reindex(features_df.index) analysis_position.score_ic_graph(pred_label) :param pred_label: index is **pd.MultiIndex**, index name is **[instrument, datetime]**; columns names is **[score, label]**. .. code-block:: python instrument datetime score label SH600004 2017-12-11 -0.013502 -0.013502 2017-12-12 -0.072367 -0.072367 2017-12-13 -0.068605 -0.068605 2017-12-14 0.012440 0.012440 2017-12-15 -0.102778 -0.102778 :param show_notebook: whether to display graphics in notebook, the default is **True**. :return: if show_notebook is True, display in notebook; else return **plotly.graph_objs.Figure** list.
score_ic_graph
python
microsoft/qlib
qlib/contrib/report/analysis_position/score_ic.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/report/analysis_position/score_ic.py
MIT
def __init__(self, dataset: pd.DataFrame): """ Parameters ---------- dataset : pd.DataFrame We often have multiple columns for dataset. Each column corresponds to one sub figure. There will be a datatime column in the index levels. Aggretation will be used for more summarized metrics overtime. Here is an example of data: .. code-block:: return datetime instrument 2007-02-06 equity_tpx 0.010087 equity_spx 0.000786 """ self._dataset = dataset with TimeInspector.logt("calc_stat_values"): self.calc_stat_values()
Parameters ---------- dataset : pd.DataFrame We often have multiple columns for dataset. Each column corresponds to one sub figure. There will be a datatime column in the index levels. Aggretation will be used for more summarized metrics overtime. Here is an example of data: .. code-block:: return datetime instrument 2007-02-06 equity_tpx 0.010087 equity_spx 0.000786
__init__
python
microsoft/qlib
qlib/contrib/report/data/base.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/report/data/base.py
MIT
def __init__( self, conf_path: Union[str, Path], exp_name: Optional[str] = None, horizon: Optional[int] = 20, step: int = 20, h_path: Optional[str] = None, train_start: Optional[str] = None, test_end: Optional[str] = None, task_ext_conf: Optional[dict] = None, rolling_exp: Optional[str] = None, ) -> None: """ Parameters ---------- conf_path : str Path to the config for rolling. exp_name : Optional[str] The exp name of the outputs (Output is a record which contains the concatenated predictions of rolling records). horizon: Optional[int] = 20, The horizon of the prediction target. This is used to override the prediction horizon of the file. h_path : Optional[str] It is other data source that is dumped as a handler. It will override the data handler section in the config. If it is not given, it will create a customized cache for the handler when `enable_handler_cache=True` test_end : Optional[str] the test end for the data. It is typically used together with the handler You can do the same thing with task_ext_conf in a more complicated way train_start : Optional[str] the train start for the data. It is typically used together with the handler. You can do the same thing with task_ext_conf in a more complicated way task_ext_conf : Optional[dict] some option to update the task config. rolling_exp : Optional[str] The name for the experiments for rolling. It will contains a lot of record in an experiment. Each record corresponds to a specific rolling. Please note that it is different from the final experiments """ self.logger = get_module_logger("Rolling") self.conf_path = Path(conf_path) self.exp_name = exp_name self._rid = None # the final combined recorder id in `exp_name` self.step = step assert horizon is not None, "Current version does not support extracting horizon from the underlying dataset" self.horizon = horizon if rolling_exp is None: datetime_suffix = pd.Timestamp.now().strftime("%Y%m%d%H%M%S") self.rolling_exp = f"rolling_models_{datetime_suffix}" else: self.rolling_exp = rolling_exp self.logger.warning( "Using user specifiied name for rolling models. So the experiment names duplicateds. " "Please manually remove your experiment for rolling model with command like `rm -r mlruns`." " Otherwise it will prevents the creating of experimen with same name" ) self.train_start = train_start self.test_end = test_end self.task_ext_conf = task_ext_conf self.h_path = h_path # FIXME: # - the qlib_init section will be ignored by me. # - So we have to design a priority mechanism to solve this issue.
Parameters ---------- conf_path : str Path to the config for rolling. exp_name : Optional[str] The exp name of the outputs (Output is a record which contains the concatenated predictions of rolling records). horizon: Optional[int] = 20, The horizon of the prediction target. This is used to override the prediction horizon of the file. h_path : Optional[str] It is other data source that is dumped as a handler. It will override the data handler section in the config. If it is not given, it will create a customized cache for the handler when `enable_handler_cache=True` test_end : Optional[str] the test end for the data. It is typically used together with the handler You can do the same thing with task_ext_conf in a more complicated way train_start : Optional[str] the train start for the data. It is typically used together with the handler. You can do the same thing with task_ext_conf in a more complicated way task_ext_conf : Optional[dict] some option to update the task config. rolling_exp : Optional[str] The name for the experiments for rolling. It will contains a lot of record in an experiment. Each record corresponds to a specific rolling. Please note that it is different from the final experiments
__init__
python
microsoft/qlib
qlib/contrib/rolling/base.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/rolling/base.py
MIT
def _replace_handler_with_cache(self, task: dict): """ Due to the data processing part in original rolling is slow. So we have to This class tries to add more feature """ if self.h_path is not None: h_path = Path(self.h_path) task["dataset"]["kwargs"]["handler"] = f"file://{h_path}" else: task = replace_task_handler_with_cache(task, self.conf_path.parent) return task
Due to the data processing part in original rolling is slow. So we have to This class tries to add more feature
_replace_handler_with_cache
python
microsoft/qlib
qlib/contrib/rolling/base.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/rolling/base.py
MIT
def basic_task(self, enable_handler_cache: Optional[bool] = True): """ The basic task may not be the exactly same as the config from `conf_path` from __init__ due to - some parameters could be overriding by some parameters from __init__ - user could implementing sublcass to change it for higher performance """ task: dict = self._raw_conf()["task"] task = deepcopy(task) # modify dataset horizon # NOTE: # It assumpts that the label can be modifiled in the handler's kwargs # But is not always a valid. It is only valid in the predefined dataset `Alpha158` & `Alpha360` if self.horizon is None: # TODO: # - get horizon automatically from the expression!!!! raise NotImplementedError(f"This type of input is not supported") else: if enable_handler_cache and self.h_path is not None: self.logger.info("Fail to override the horizon due to data handler cache") else: self.logger.info("The prediction horizon is overrided") if isinstance(task["dataset"]["kwargs"]["handler"], dict): task["dataset"]["kwargs"]["handler"]["kwargs"]["label"] = [ "Ref($close, -{}) / Ref($close, -1) - 1".format(self.horizon + 1) ] else: self.logger.warning("Try to automatically configure the lablel but failed.") if self.h_path is not None or enable_handler_cache: # if we already have provided data source or we want to create one task = self._replace_handler_with_cache(task) task = self._update_start_end_time(task) if self.task_ext_conf is not None: task = update_config(task, self.task_ext_conf) self.logger.info(task) return task
The basic task may not be the exactly same as the config from `conf_path` from __init__ due to - some parameters could be overriding by some parameters from __init__ - user could implementing sublcass to change it for higher performance
basic_task
python
microsoft/qlib
qlib/contrib/rolling/base.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/rolling/base.py
MIT
def run_basic_task(self): """ Run the basic task without rolling. This is for fast testing for model tunning. """ task = self.basic_task() print(task) trainer = TrainerR(experiment_name=self.exp_name) trainer([task])
Run the basic task without rolling. This is for fast testing for model tunning.
run_basic_task
python
microsoft/qlib
qlib/contrib/rolling/base.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/rolling/base.py
MIT
def get_task_list(self) -> List[dict]: """return a batch of tasks for rolling.""" task = self.basic_task() task_l = task_generator( task, RollingGen(step=self.step, trunc_days=self.horizon + 1) ) # the last two days should be truncated to avoid information leakage for t in task_l: # when we rolling tasks. No further analyis is needed. # analyis are postponed to the final ensemble. t["record"] = ["qlib.workflow.record_temp.SignalRecord"] return task_l
return a batch of tasks for rolling.
get_task_list
python
microsoft/qlib
qlib/contrib/rolling/base.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/rolling/base.py
MIT
def __init__( self, sim_task_model: UTIL_MODEL_TYPE = "gbdt", meta_1st_train_end: Optional[str] = None, alpha: float = 0.01, loss_skip_thresh: int = 50, fea_imp_n: Optional[int] = 30, meta_data_proc: Optional[str] = "V01", segments: Union[float, str] = 0.62, hist_step_n: int = 30, working_dir: Optional[Union[str, Path]] = None, **kwargs, ): """ Parameters ---------- sim_task_model: Literal["linear", "gbdt"] = "gbdt", The model for calculating similarity between data. meta_1st_train_end: Optional[str] the datetime of training end of the first meta_task alpha: float Setting the L2 regularization for ridge The `alpha` is only passed to MetaModelDS (it is not passed to sim_task_model currently..) loss_skip_thresh: int The thresh to skip the loss calculation for each day. If the number of item is less than it, it will skip the loss on that day. meta_data_proc : Optional[str] How we process the meta dataset for learning meta model. segments : Union[float, str] if segments is a float: The ratio of training data in the meta task dataset if segments is a string: it will try its best to put its data in training and ensure that the date `segments` is in the test set """ # NOTE: # the horizon must match the meaning in the base task template self.meta_exp_name = "DDG-DA" self.sim_task_model: UTIL_MODEL_TYPE = sim_task_model # The model to capture the distribution of data. self.alpha = alpha self.meta_1st_train_end = meta_1st_train_end super().__init__(**kwargs) self.working_dir = self.conf_path.parent if working_dir is None else Path(working_dir) self.proxy_hd = self.working_dir / "handler_proxy.pkl" self.fea_imp_n = fea_imp_n self.meta_data_proc = meta_data_proc self.loss_skip_thresh = loss_skip_thresh self.segments = segments self.hist_step_n = hist_step_n
Parameters ---------- sim_task_model: Literal["linear", "gbdt"] = "gbdt", The model for calculating similarity between data. meta_1st_train_end: Optional[str] the datetime of training end of the first meta_task alpha: float Setting the L2 regularization for ridge The `alpha` is only passed to MetaModelDS (it is not passed to sim_task_model currently..) loss_skip_thresh: int The thresh to skip the loss calculation for each day. If the number of item is less than it, it will skip the loss on that day. meta_data_proc : Optional[str] How we process the meta dataset for learning meta model. segments : Union[float, str] if segments is a float: The ratio of training data in the meta task dataset if segments is a string: it will try its best to put its data in training and ensure that the date `segments` is in the test set
__init__
python
microsoft/qlib
qlib/contrib/rolling/ddgda.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/rolling/ddgda.py
MIT
def _adjust_task(self, task: dict, astype: UTIL_MODEL_TYPE): """ Base on the original task, we need to do some extra things. For example: - GBDT for calculating feature importance - Linear or GBDT for calculating similarity - Datset (well processed) that aligned to Linear that for meta learning So we may need to change the dataset and model for the special purpose and other settings remains the same. """ # NOTE: here is just for aligning with previous implementation # It is not necessary for the current implementation handler = task["dataset"].setdefault("kwargs", {}).setdefault("handler", {}) if astype == "gbdt": task["model"] = LGBM_MODEL if isinstance(handler, dict): # We don't need preprocessing when using GBDT model for k in ["infer_processors", "learn_processors"]: if k in handler.setdefault("kwargs", {}): handler["kwargs"].pop(k) elif astype == "linear": task["model"] = LINEAR_MODEL if isinstance(handler, dict): handler["kwargs"].update(PROC_ARGS) else: self.logger.warning("The handler can't be adjusted.") else: raise ValueError(f"astype not supported: {astype}") return task
Base on the original task, we need to do some extra things. For example: - GBDT for calculating feature importance - Linear or GBDT for calculating similarity - Datset (well processed) that aligned to Linear that for meta learning So we may need to change the dataset and model for the special purpose and other settings remains the same.
_adjust_task
python
microsoft/qlib
qlib/contrib/rolling/ddgda.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/rolling/ddgda.py
MIT
def _dump_data_for_proxy_model(self): """ Dump data for training meta model. The meta model will be trained upon the proxy forecasting model. This dataset is for the proxy forecasting model. """ # NOTE: adjusting to `self.sim_task_model` just for aligning with previous implementation. # In previous version. The data for proxy model is using sim_task_model's way for processing task = self._adjust_task(self.basic_task(enable_handler_cache=False), self.sim_task_model) task = replace_task_handler_with_cache(task, self.working_dir) # if self.meta_data_proc is not None: # else: # # Otherwise, we don't need futher processing # task = self.basic_task() dataset = init_instance_by_config(task["dataset"]) prep_ds = dataset.prepare(slice(None), col_set=["feature", "label"], data_key=DataHandlerLP.DK_L) feature_df = prep_ds["feature"] label_df = prep_ds["label"] if self.fea_imp_n is not None: fi = self._get_feature_importance() col_selected = fi.nlargest(self.fea_imp_n) feature_selected = feature_df.loc[:, col_selected.index] else: feature_selected = feature_df if self.meta_data_proc == "V01": feature_selected = feature_selected.groupby("datetime", group_keys=False).apply( lambda df: (df - df.mean()).div(df.std()) ) feature_selected = feature_selected.fillna(0.0) df_all = { "label": label_df.reindex(feature_selected.index), "feature": feature_selected, } df_all = pd.concat(df_all, axis=1) df_all.to_pickle(self.working_dir / "fea_label_df.pkl") # dump data in handler format for aligning the interface handler = DataHandlerLP( data_loader={ "class": "qlib.data.dataset.loader.StaticDataLoader", "kwargs": {"config": self.working_dir / "fea_label_df.pkl"}, } ) handler.to_pickle(self.working_dir / self.proxy_hd, dump_all=True)
Dump data for training meta model. The meta model will be trained upon the proxy forecasting model. This dataset is for the proxy forecasting model.
_dump_data_for_proxy_model
python
microsoft/qlib
qlib/contrib/rolling/ddgda.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/rolling/ddgda.py
MIT
def _dump_meta_ipt(self): """ Dump data for training meta model. This function will dump the input data for meta model """ # According to the experiments, the choice of the model type is very important for achieving good results sim_task = self._adjust_task(self.basic_task(enable_handler_cache=False), astype=self.sim_task_model) sim_task = replace_task_handler_with_cache(sim_task, self.working_dir) if self.sim_task_model == "gbdt": sim_task["model"].setdefault("kwargs", {}).update({"early_stopping_rounds": None, "num_boost_round": 150}) exp_name_sim = f"data_sim_s{self.step}" internal_data = InternalData(sim_task, self.step, exp_name=exp_name_sim) internal_data.setup(trainer=TrainerR) with self._internal_data_path.open("wb") as f: pickle.dump(internal_data, f)
Dump data for training meta model. This function will dump the input data for meta model
_dump_meta_ipt
python
microsoft/qlib
qlib/contrib/rolling/ddgda.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/rolling/ddgda.py
MIT
def _train_meta_model(self, fill_method="max"): """ training a meta model based on a simplified linear proxy model; """ # 1) leverage the simplified proxy forecasting model to train meta model. # - Only the dataset part is important, in current version of meta model will integrate the # NOTE: # - The train_start for training meta model does not necessarily align with final rolling # But please select a right time to make sure the finnal rolling tasks are not leaked in the training data. # - The test_start is automatically aligned to the next day of test_end. Validation is ignored. train_start = "2008-01-01" if self.train_start is None else self.train_start train_end = "2010-12-31" if self.meta_1st_train_end is None else self.meta_1st_train_end test_start = (pd.Timestamp(train_end) + pd.Timedelta(days=1)).strftime("%Y-%m-%d") proxy_forecast_model_task = { # "model": "qlib.contrib.model.linear.LinearModel", "dataset": { "class": "qlib.data.dataset.DatasetH", "kwargs": { "handler": f"file://{(self.working_dir / self.proxy_hd).absolute()}", "segments": { "train": (train_start, train_end), "test": (test_start, self.basic_task()["dataset"]["kwargs"]["segments"]["test"][1]), }, }, }, # "record": ["qlib.workflow.record_temp.SignalRecord"] } # the proxy_forecast_model_task will be used to create meta tasks. # The test date of first task will be 2011-01-01. Each test segment will be about 20days # The tasks include all training tasks and test tasks. # 2) preparing meta dataset kwargs = dict( task_tpl=proxy_forecast_model_task, step=self.step, segments=self.segments, # keep test period consistent with the dataset yaml trunc_days=1 + self.horizon, hist_step_n=self.hist_step_n, fill_method=fill_method, rolling_ext_days=0, ) # NOTE: # the input of meta model (internal data) are shared between proxy model and final forecasting model # but their task test segment are not aligned! It worked in my previous experiment. # So the misalignment will not affect the effectiveness of the method. with self._internal_data_path.open("rb") as f: internal_data = pickle.load(f) md = MetaDatasetDS(exp_name=internal_data, **kwargs) # 3) train and logging meta model with R.start(experiment_name=self.meta_exp_name): R.log_params(**kwargs) mm = MetaModelDS( step=self.step, hist_step_n=kwargs["hist_step_n"], lr=0.001, max_epoch=30, seed=43, alpha=self.alpha, loss_skip_thresh=self.loss_skip_thresh, ) mm.fit(md) R.save_objects(model=mm)
training a meta model based on a simplified linear proxy model;
_train_meta_model
python
microsoft/qlib
qlib/contrib/rolling/ddgda.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/rolling/ddgda.py
MIT
def get_task_list(self): """ Leverage meta-model for inference: - Given - baseline tasks - input for meta model(internal data) - meta model (its learnt knowledge on proxy forecasting model is expected to transfer to normal forecasting model) """ # 1) get meta model exp = R.get_exp(experiment_name=self.meta_exp_name) rec = exp.list_recorders(rtype=exp.RT_L)[0] meta_model: MetaModelDS = rec.load_object("model") # 2) # we are transfer to knowledge of meta model to final forecasting tasks. # Create MetaTaskDataset for the final forecasting tasks # Aligning the setting of it to the MetaTaskDataset when training Meta model is necessary # 2.1) get previous config param = rec.list_params() trunc_days = int(param["trunc_days"]) step = int(param["step"]) hist_step_n = int(param["hist_step_n"]) fill_method = param.get("fill_method", "max") task_l = super().get_task_list() # 2.2) create meta dataset for final dataset kwargs = dict( task_tpl=task_l, step=step, segments=0.0, # all the tasks are for testing trunc_days=trunc_days, hist_step_n=hist_step_n, fill_method=fill_method, task_mode=MetaTask.PROC_MODE_TRANSFER, ) with self._internal_data_path.open("rb") as f: internal_data = pickle.load(f) mds = MetaDatasetDS(exp_name=internal_data, **kwargs) # 3) meta model make inference and get new qlib task new_tasks = meta_model.inference(mds) with self._task_path.open("wb") as f: pickle.dump(new_tasks, f) return new_tasks
Leverage meta-model for inference: - Given - baseline tasks - input for meta model(internal data) - meta model (its learnt knowledge on proxy forecasting model is expected to transfer to normal forecasting model)
get_task_list
python
microsoft/qlib
qlib/contrib/rolling/ddgda.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/rolling/ddgda.py
MIT
def __init__( self, model, dataset, topk, order_generator_cls_or_obj=OrderGenWInteract, max_sold_weight=1.0, risk_degree=0.95, buy_method="first_fill", trade_exchange=None, level_infra=None, common_infra=None, **kwargs, ): """ Parameters ---------- topk : int top-N stocks to buy risk_degree : float position percentage of total value buy_method: rank_fill: assign the weight stocks that rank high first(1/topk max) average_fill: assign the weight to the stocks rank high averagely. """ super(SoftTopkStrategy, self).__init__( model, dataset, order_generator_cls_or_obj, trade_exchange, level_infra, common_infra, **kwargs ) self.topk = topk self.max_sold_weight = max_sold_weight self.risk_degree = risk_degree self.buy_method = buy_method
Parameters ---------- topk : int top-N stocks to buy risk_degree : float position percentage of total value buy_method: rank_fill: assign the weight stocks that rank high first(1/topk max) average_fill: assign the weight to the stocks rank high averagely.
__init__
python
microsoft/qlib
qlib/contrib/strategy/cost_control.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/strategy/cost_control.py
MIT
def generate_target_weight_position(self, score, current, trade_start_time, trade_end_time): """ Parameters ---------- score: pred score for this trade date, pd.Series, index is stock_id, contain 'score' column current: current position, use Position() class trade_date: trade date generate target position from score for this date and the current position The cache is not considered in the position """ # TODO: # If the current stock list is more than topk(eg. The weights are modified # by risk control), the weight will not be handled correctly. buy_signal_stocks = set(score.sort_values(ascending=False).iloc[: self.topk].index) cur_stock_weight = current.get_stock_weight_dict(only_stock=True) if len(cur_stock_weight) == 0: final_stock_weight = {code: 1 / self.topk for code in buy_signal_stocks} else: final_stock_weight = copy.deepcopy(cur_stock_weight) sold_stock_weight = 0.0 for stock_id in final_stock_weight: if stock_id not in buy_signal_stocks: sw = min(self.max_sold_weight, final_stock_weight[stock_id]) sold_stock_weight += sw final_stock_weight[stock_id] -= sw if self.buy_method == "first_fill": for stock_id in buy_signal_stocks: add_weight = min( max(1 / self.topk - final_stock_weight.get(stock_id, 0), 0.0), sold_stock_weight, ) final_stock_weight[stock_id] = final_stock_weight.get(stock_id, 0.0) + add_weight sold_stock_weight -= add_weight elif self.buy_method == "average_fill": for stock_id in buy_signal_stocks: final_stock_weight[stock_id] = final_stock_weight.get(stock_id, 0.0) + sold_stock_weight / len( buy_signal_stocks ) else: raise ValueError("Buy method not found") return final_stock_weight
Parameters ---------- score: pred score for this trade date, pd.Series, index is stock_id, contain 'score' column current: current position, use Position() class trade_date: trade date generate target position from score for this date and the current position The cache is not considered in the position
generate_target_weight_position
python
microsoft/qlib
qlib/contrib/strategy/cost_control.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/strategy/cost_control.py
MIT
def generate_order_list_from_target_weight_position( self, current: Position, trade_exchange: Exchange, target_weight_position: dict, risk_degree: float, pred_start_time: pd.Timestamp, pred_end_time: pd.Timestamp, trade_start_time: pd.Timestamp, trade_end_time: pd.Timestamp, ) -> list: """generate_order_list_from_target_weight_position :param current: The current position :type current: Position :param trade_exchange: :type trade_exchange: Exchange :param target_weight_position: {stock_id : weight} :type target_weight_position: dict :param risk_degree: :type risk_degree: float :param pred_start_time: :type pred_start_time: pd.Timestamp :param pred_end_time: :type pred_end_time: pd.Timestamp :param trade_start_time: :type trade_start_time: pd.Timestamp :param trade_end_time: :type trade_end_time: pd.Timestamp :rtype: list """ raise NotImplementedError()
generate_order_list_from_target_weight_position :param current: The current position :type current: Position :param trade_exchange: :type trade_exchange: Exchange :param target_weight_position: {stock_id : weight} :type target_weight_position: dict :param risk_degree: :type risk_degree: float :param pred_start_time: :type pred_start_time: pd.Timestamp :param pred_end_time: :type pred_end_time: pd.Timestamp :param trade_start_time: :type trade_start_time: pd.Timestamp :param trade_end_time: :type trade_end_time: pd.Timestamp :rtype: list
generate_order_list_from_target_weight_position
python
microsoft/qlib
qlib/contrib/strategy/order_generator.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/strategy/order_generator.py
MIT
def generate_order_list_from_target_weight_position( self, current: Position, trade_exchange: Exchange, target_weight_position: dict, risk_degree: float, pred_start_time: pd.Timestamp, pred_end_time: pd.Timestamp, trade_start_time: pd.Timestamp, trade_end_time: pd.Timestamp, ) -> list: """generate_order_list_from_target_weight_position No adjustment for for the nontradable share. All the tadable value is assigned to the tadable stock according to the weight. if interact == True, will use the price at trade date to generate order list else, will only use the price before the trade date to generate order list :param current: :type current: Position :param trade_exchange: :type trade_exchange: Exchange :param target_weight_position: :type target_weight_position: dict :param risk_degree: :type risk_degree: float :param pred_start_time: :type pred_start_time: pd.Timestamp :param pred_end_time: :type pred_end_time: pd.Timestamp :param trade_start_time: :type trade_start_time: pd.Timestamp :param trade_end_time: :type trade_end_time: pd.Timestamp :rtype: list """ if target_weight_position is None: return [] # calculate current_tradable_value current_amount_dict = current.get_stock_amount_dict() current_total_value = trade_exchange.calculate_amount_position_value( amount_dict=current_amount_dict, start_time=trade_start_time, end_time=trade_end_time, only_tradable=False, ) current_tradable_value = trade_exchange.calculate_amount_position_value( amount_dict=current_amount_dict, start_time=trade_start_time, end_time=trade_end_time, only_tradable=True, ) # add cash current_tradable_value += current.get_cash() reserved_cash = (1.0 - risk_degree) * (current_total_value + current.get_cash()) current_tradable_value -= reserved_cash if current_tradable_value < 0: # if you sell all the tradable stock can not meet the reserved # value. Then just sell all the stocks target_amount_dict = copy.deepcopy(current_amount_dict.copy()) for stock_id in list(target_amount_dict.keys()): if trade_exchange.is_stock_tradable(stock_id, start_time=trade_start_time, end_time=trade_end_time): del target_amount_dict[stock_id] else: # consider cost rate current_tradable_value /= 1 + max(trade_exchange.close_cost, trade_exchange.open_cost) # strategy 1 : generate amount_position by weight_position # Use API in Exchange() target_amount_dict = trade_exchange.generate_amount_position_from_weight_position( weight_position=target_weight_position, cash=current_tradable_value, start_time=trade_start_time, end_time=trade_end_time, ) order_list = trade_exchange.generate_order_for_target_amount_position( target_position=target_amount_dict, current_position=current_amount_dict, start_time=trade_start_time, end_time=trade_end_time, ) return order_list
generate_order_list_from_target_weight_position No adjustment for for the nontradable share. All the tadable value is assigned to the tadable stock according to the weight. if interact == True, will use the price at trade date to generate order list else, will only use the price before the trade date to generate order list :param current: :type current: Position :param trade_exchange: :type trade_exchange: Exchange :param target_weight_position: :type target_weight_position: dict :param risk_degree: :type risk_degree: float :param pred_start_time: :type pred_start_time: pd.Timestamp :param pred_end_time: :type pred_end_time: pd.Timestamp :param trade_start_time: :type trade_start_time: pd.Timestamp :param trade_end_time: :type trade_end_time: pd.Timestamp :rtype: list
generate_order_list_from_target_weight_position
python
microsoft/qlib
qlib/contrib/strategy/order_generator.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/strategy/order_generator.py
MIT
def generate_order_list_from_target_weight_position( self, current: Position, trade_exchange: Exchange, target_weight_position: dict, risk_degree: float, pred_start_time: pd.Timestamp, pred_end_time: pd.Timestamp, trade_start_time: pd.Timestamp, trade_end_time: pd.Timestamp, ) -> list: """generate_order_list_from_target_weight_position generate order list directly not using the information (e.g. whether can be traded, the accurate trade price) at trade date. In target weight position, generating order list need to know the price of objective stock in trade date, but we cannot get that value when do not interact with exchange, so we check the %close price at pred_date or price recorded in current position. :param current: :type current: Position :param trade_exchange: :type trade_exchange: Exchange :param target_weight_position: :type target_weight_position: dict :param risk_degree: :type risk_degree: float :param pred_start_time: :type pred_start_time: pd.Timestamp :param pred_end_time: :type pred_end_time: pd.Timestamp :param trade_start_time: :type trade_start_time: pd.Timestamp :param trade_end_time: :type trade_end_time: pd.Timestamp :rtype: list of generated orders """ if target_weight_position is None: return [] risk_total_value = risk_degree * current.calculate_value() current_stock = current.get_stock_list() amount_dict = {} for stock_id in target_weight_position: # Current rule will ignore the stock that not hold and cannot be traded at predict date if trade_exchange.is_stock_tradable( stock_id=stock_id, start_time=trade_start_time, end_time=trade_end_time ) and trade_exchange.is_stock_tradable( stock_id=stock_id, start_time=pred_start_time, end_time=pred_end_time ): amount_dict[stock_id] = ( risk_total_value * target_weight_position[stock_id] / trade_exchange.get_close(stock_id, start_time=pred_start_time, end_time=pred_end_time) ) # TODO: Qlib use None to represent trading suspension. # So last close price can't be the estimated trading price. # Maybe a close price with forward fill will be a better solution. elif stock_id in current_stock: amount_dict[stock_id] = ( risk_total_value * target_weight_position[stock_id] / current.get_stock_price(stock_id) ) else: continue order_list = trade_exchange.generate_order_for_target_amount_position( target_position=amount_dict, current_position=current.get_stock_amount_dict(), start_time=trade_start_time, end_time=trade_end_time, ) return order_list
generate_order_list_from_target_weight_position generate order list directly not using the information (e.g. whether can be traded, the accurate trade price) at trade date. In target weight position, generating order list need to know the price of objective stock in trade date, but we cannot get that value when do not interact with exchange, so we check the %close price at pred_date or price recorded in current position. :param current: :type current: Position :param trade_exchange: :type trade_exchange: Exchange :param target_weight_position: :type target_weight_position: dict :param risk_degree: :type risk_degree: float :param pred_start_time: :type pred_start_time: pd.Timestamp :param pred_end_time: :type pred_end_time: pd.Timestamp :param trade_start_time: :type trade_start_time: pd.Timestamp :param trade_end_time: :type trade_end_time: pd.Timestamp :rtype: list of generated orders
generate_order_list_from_target_weight_position
python
microsoft/qlib
qlib/contrib/strategy/order_generator.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/strategy/order_generator.py
MIT
def __init__( self, outer_trade_decision: BaseTradeDecision = None, instruments: Union[List, str] = "csi300", freq: str = "day", trade_exchange: Exchange = None, level_infra: LevelInfrastructure = None, common_infra: CommonInfrastructure = None, **kwargs, ): """ Parameters ---------- instruments : Union[List, str], optional instruments of EMA signal, by default "csi300" freq : str, optional freq of EMA signal, by default "day" Note: `freq` may be different from `time_per_step` """ if instruments is None: warnings.warn("`instruments` is not set, will load all stocks") self.instruments = "all" elif isinstance(instruments, str): self.instruments = D.instruments(instruments) elif isinstance(instruments, List): self.instruments = instruments self.freq = freq super(SBBStrategyEMA, self).__init__( outer_trade_decision, level_infra, common_infra, trade_exchange=trade_exchange, **kwargs )
Parameters ---------- instruments : Union[List, str], optional instruments of EMA signal, by default "csi300" freq : str, optional freq of EMA signal, by default "day" Note: `freq` may be different from `time_per_step`
__init__
python
microsoft/qlib
qlib/contrib/strategy/rule_strategy.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/strategy/rule_strategy.py
MIT
def __init__( self, lamb: float = 1e-6, eta: float = 2.5e-6, window_size: int = 20, outer_trade_decision: BaseTradeDecision = None, instruments: Union[List, str] = "csi300", freq: str = "day", trade_exchange: Exchange = None, level_infra: LevelInfrastructure = None, common_infra: CommonInfrastructure = None, **kwargs, ): """ Parameters ---------- instruments : Union[List, str], optional instruments of Volatility, by default "csi300" freq : str, optional freq of Volatility, by default "day" Note: `freq` may be different from `time_per_step` """ self.lamb = lamb self.eta = eta self.window_size = window_size if instruments is None: warnings.warn("`instruments` is not set, will load all stocks") self.instruments = "all" if isinstance(instruments, str): self.instruments = D.instruments(instruments) self.freq = freq super(ACStrategy, self).__init__( outer_trade_decision, level_infra, common_infra, trade_exchange=trade_exchange, **kwargs )
Parameters ---------- instruments : Union[List, str], optional instruments of Volatility, by default "csi300" freq : str, optional freq of Volatility, by default "day" Note: `freq` may be different from `time_per_step`
__init__
python
microsoft/qlib
qlib/contrib/strategy/rule_strategy.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/strategy/rule_strategy.py
MIT
def __init__( self, trade_range: Union[Tuple[int, int], TradeRange], # The range is closed on both left and right. sample_ratio: float = 1.0, volume_ratio: float = 0.01, market: str = "all", direction: int = Order.BUY, *args, **kwargs, ): """ Parameters ---------- trade_range : Tuple please refer to the `trade_range` parameter of BaseStrategy sample_ratio : float the ratio of all orders are sampled volume_ratio : float the volume of the total day raito of the total volume of a specific day market : str stock pool for sampling """ super().__init__(*args, **kwargs) self.sample_ratio = sample_ratio self.volume_ratio = volume_ratio self.market = market self.direction = direction exch: Exchange = self.common_infra.get("trade_exchange") # TODO: this can't be online self.volume = D.features( D.instruments(market), ["Mean(Ref($volume, 1), 10)"], start_time=exch.start_time, end_time=exch.end_time ) self.volume_df = self.volume.iloc[:, 0].unstack() self.trade_range = trade_range
Parameters ---------- trade_range : Tuple please refer to the `trade_range` parameter of BaseStrategy sample_ratio : float the ratio of all orders are sampled volume_ratio : float the volume of the total day raito of the total volume of a specific day market : str stock pool for sampling
__init__
python
microsoft/qlib
qlib/contrib/strategy/rule_strategy.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/strategy/rule_strategy.py
MIT
def generate_trade_decision(self, execute_result=None) -> TradeDecisionWO: """ Parameters ---------- execute_result : execute_result will be ignored in FileOrderStrategy """ oh: OrderHelper = self.common_infra.get("trade_exchange").get_order_helper() start, _ = self.trade_calendar.get_step_time() # CONVERSION: the bar is indexed by the time try: df = self.order_df.loc(axis=0)[start] except KeyError: return TradeDecisionWO([], self) else: order_list = [] for idx, row in df.iterrows(): order_list.append( oh.create( code=idx, amount=row["amount"], direction=Order.parse_dir(row["direction"]), ) ) return TradeDecisionWO(order_list, self, self.trade_range)
Parameters ---------- execute_result : execute_result will be ignored in FileOrderStrategy
generate_trade_decision
python
microsoft/qlib
qlib/contrib/strategy/rule_strategy.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/strategy/rule_strategy.py
MIT
def __init__( self, *, signal: Union[Signal, Tuple[BaseModel, Dataset], List, Dict, Text, pd.Series, pd.DataFrame] = None, model=None, dataset=None, risk_degree: float = 0.95, trade_exchange=None, level_infra=None, common_infra=None, **kwargs, ): """ Parameters ----------- signal : the information to describe a signal. Please refer to the docs of `qlib.backtest.signal.create_signal_from` the decision of the strategy will base on the given signal risk_degree : float position percentage of total value. trade_exchange : Exchange exchange that provides market info, used to deal order and generate report - If `trade_exchange` is None, self.trade_exchange will be set with common_infra - It allowes different trade_exchanges is used in different executions. - For example: - In daily execution, both daily exchange and minutely are usable, but the daily exchange is recommended because it runs faster. - In minutely execution, the daily exchange is not usable, only the minutely exchange is recommended. """ super().__init__(level_infra=level_infra, common_infra=common_infra, trade_exchange=trade_exchange, **kwargs) self.risk_degree = risk_degree # This is trying to be compatible with previous version of qlib task config if model is not None and dataset is not None: warnings.warn("`model` `dataset` is deprecated; use `signal`.", DeprecationWarning) signal = model, dataset self.signal: Signal = create_signal_from(signal)
Parameters ----------- signal : the information to describe a signal. Please refer to the docs of `qlib.backtest.signal.create_signal_from` the decision of the strategy will base on the given signal risk_degree : float position percentage of total value. trade_exchange : Exchange exchange that provides market info, used to deal order and generate report - If `trade_exchange` is None, self.trade_exchange will be set with common_infra - It allowes different trade_exchanges is used in different executions. - For example: - In daily execution, both daily exchange and minutely are usable, but the daily exchange is recommended because it runs faster. - In minutely execution, the daily exchange is not usable, only the minutely exchange is recommended.
__init__
python
microsoft/qlib
qlib/contrib/strategy/signal_strategy.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/strategy/signal_strategy.py
MIT
def __init__( self, *, order_generator_cls_or_obj=OrderGenWOInteract, **kwargs, ): """ signal : the information to describe a signal. Please refer to the docs of `qlib.backtest.signal.create_signal_from` the decision of the strategy will base on the given signal trade_exchange : Exchange exchange that provides market info, used to deal order and generate report - If `trade_exchange` is None, self.trade_exchange will be set with common_infra - It allowes different trade_exchanges is used in different executions. - For example: - In daily execution, both daily exchange and minutely are usable, but the daily exchange is recommended because it runs faster. - In minutely execution, the daily exchange is not usable, only the minutely exchange is recommended. """ super().__init__(**kwargs) if isinstance(order_generator_cls_or_obj, type): self.order_generator: OrderGenerator = order_generator_cls_or_obj() else: self.order_generator: OrderGenerator = order_generator_cls_or_obj
signal : the information to describe a signal. Please refer to the docs of `qlib.backtest.signal.create_signal_from` the decision of the strategy will base on the given signal trade_exchange : Exchange exchange that provides market info, used to deal order and generate report - If `trade_exchange` is None, self.trade_exchange will be set with common_infra - It allowes different trade_exchanges is used in different executions. - For example: - In daily execution, both daily exchange and minutely are usable, but the daily exchange is recommended because it runs faster. - In minutely execution, the daily exchange is not usable, only the minutely exchange is recommended.
__init__
python
microsoft/qlib
qlib/contrib/strategy/signal_strategy.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/strategy/signal_strategy.py
MIT
def __call__( self, r: np.ndarray, F: np.ndarray, cov_b: np.ndarray, var_u: np.ndarray, w0: np.ndarray, wb: np.ndarray, mfh: Optional[np.ndarray] = None, mfs: Optional[np.ndarray] = None, ) -> np.ndarray: """ Args: r (np.ndarray): expected returns F (np.ndarray): factor exposure cov_b (np.ndarray): factor covariance var_u (np.ndarray): residual variance w0 (np.ndarray): current holding weights wb (np.ndarray): benchmark weights mfh (np.ndarray): mask force holding mfs (np.ndarray): mask force selling Returns: np.ndarray: optimized portfolio allocation """ # scale return to match volatility if self.scale_return: r = r / r.std() r *= np.sqrt(np.mean(np.diag(F @ cov_b @ F.T) + var_u)) # target weight w = cp.Variable(len(r), nonneg=True) w.value = wb # for warm start # precompute exposure d = w - wb # benchmark exposure v = d @ F # factor exposure # objective ret = d @ r # excess return risk = cp.quad_form(v, cov_b) + var_u @ (d**2) # tracking error obj = cp.Maximize(ret - self.lamb * risk) # weight bounds lb = np.zeros_like(wb) ub = np.ones_like(wb) # bench bounds if self.b_dev is not None: lb = np.maximum(lb, wb - self.b_dev) ub = np.minimum(ub, wb + self.b_dev) # force holding if mfh is not None: lb[mfh] = w0[mfh] ub[mfh] = w0[mfh] # force selling # NOTE: this will override mfh if mfs is not None: lb[mfs] = 0 ub[mfs] = 0 # constraints # TODO: currently we assume fullly invest in the stocks, # in the future we should support holding cash as an asset cons = [cp.sum(w) == 1, w >= lb, w <= ub] # factor deviation if self.f_dev is not None: cons.extend([v >= -self.f_dev, v <= self.f_dev]) # pylint: disable=E1130 # total turnover constraint t_cons = [] if self.delta is not None: if w0 is not None and w0.sum() > 0: t_cons.extend([cp.norm(w - w0, 1) <= self.delta]) # optimize # trial 1: use all constraints success = False try: prob = cp.Problem(obj, cons + t_cons) prob.solve(solver=cp.ECOS, warm_start=True, **self.solver_kwargs) assert prob.status == "optimal" success = True except Exception as e: logger.warning(f"trial 1 failed {e} (status: {prob.status})") # trial 2: remove turnover constraint if not success and len(t_cons): logger.info("try removing turnover constraint as the last optimization failed") try: w.value = wb prob = cp.Problem(obj, cons) prob.solve(solver=cp.ECOS, warm_start=True, **self.solver_kwargs) assert prob.status in ["optimal", "optimal_inaccurate"] success = True except Exception as e: logger.warning(f"trial 2 failed {e} (status: {prob.status})") # return current weight if not success if not success: logger.warning("optimization failed, will return current holding weight") return w0 if prob.status == "optimal_inaccurate": logger.warning(f"the optimization is inaccurate") # remove small weight w = np.asarray(w.value) w[w < self.epsilon] = 0 w /= w.sum() return w
Args: r (np.ndarray): expected returns F (np.ndarray): factor exposure cov_b (np.ndarray): factor covariance var_u (np.ndarray): residual variance w0 (np.ndarray): current holding weights wb (np.ndarray): benchmark weights mfh (np.ndarray): mask force holding mfs (np.ndarray): mask force selling Returns: np.ndarray: optimized portfolio allocation
__call__
python
microsoft/qlib
qlib/contrib/strategy/optimizer/enhanced_indexing.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/strategy/optimizer/enhanced_indexing.py
MIT
def __call__( self, S: Union[np.ndarray, pd.DataFrame], r: Optional[Union[np.ndarray, pd.Series]] = None, w0: Optional[Union[np.ndarray, pd.Series]] = None, ) -> Union[np.ndarray, pd.Series]: """ Args: S (np.ndarray or pd.DataFrame): covariance matrix r (np.ndarray or pd.Series): expected return w0 (np.ndarray or pd.Series): initial weights (for turnover control) Returns: np.ndarray or pd.Series: optimized portfolio allocation """ # transform dataframe into array index = None if isinstance(S, pd.DataFrame): index = S.index S = S.values # transform return if r is not None: assert len(r) == len(S), "`r` has mismatched shape" if isinstance(r, pd.Series): assert r.index.equals(index), "`r` has mismatched index" r = r.values # transform initial weights if w0 is not None: assert len(w0) == len(S), "`w0` has mismatched shape" if isinstance(w0, pd.Series): assert w0.index.equals(index), "`w0` has mismatched index" w0 = w0.values # scale return to match volatility if r is not None and self.scale_return: r = r / r.std() r *= np.sqrt(np.mean(np.diag(S))) # optimize w = self._optimize(S, r, w0) # restore index if needed if index is not None: w = pd.Series(w, index=index) return w
Args: S (np.ndarray or pd.DataFrame): covariance matrix r (np.ndarray or pd.Series): expected return w0 (np.ndarray or pd.Series): initial weights (for turnover control) Returns: np.ndarray or pd.Series: optimized portfolio allocation
__call__
python
microsoft/qlib
qlib/contrib/strategy/optimizer/optimizer.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/strategy/optimizer/optimizer.py
MIT
def _optimize_mvo( self, S: np.ndarray, r: Optional[np.ndarray] = None, w0: Optional[np.ndarray] = None ) -> np.ndarray: """optimize mean-variance portfolio This method solves the following optimization problem min_w - w' r + lamb * w' S w s.t. w >= 0, sum(w) == 1 where `S` is the covariance matrix, `u` is the expected returns, and `lamb` is the risk aversion parameter. """ return self._solve(len(S), self._get_objective_mvo(S, r), *self._get_constrains(w0))
optimize mean-variance portfolio This method solves the following optimization problem min_w - w' r + lamb * w' S w s.t. w >= 0, sum(w) == 1 where `S` is the covariance matrix, `u` is the expected returns, and `lamb` is the risk aversion parameter.
_optimize_mvo
python
microsoft/qlib
qlib/contrib/strategy/optimizer/optimizer.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/strategy/optimizer/optimizer.py
MIT
def _get_objective_gmv(self, S: np.ndarray) -> Callable: """global minimum variance optimization objective Optimization objective min_w w' S w """ def func(x): return x @ S @ x return func
global minimum variance optimization objective Optimization objective min_w w' S w
_get_objective_gmv
python
microsoft/qlib
qlib/contrib/strategy/optimizer/optimizer.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/strategy/optimizer/optimizer.py
MIT
def _get_objective_mvo(self, S: np.ndarray, r: np.ndarray = None) -> Callable: """mean-variance optimization objective Optimization objective min_w - w' r + lamb * w' S w """ def func(x): risk = x @ S @ x ret = x @ r return -ret + self.lamb * risk return func
mean-variance optimization objective Optimization objective min_w - w' r + lamb * w' S w
_get_objective_mvo
python
microsoft/qlib
qlib/contrib/strategy/optimizer/optimizer.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/strategy/optimizer/optimizer.py
MIT
def _get_objective_rp(self, S: np.ndarray) -> Callable: """risk-parity optimization objective Optimization objective min_w sum_i [w_i - (w' S w) / ((S w)_i * N)]**2 """ def func(x): N = len(x) Sx = S @ x xSx = x @ Sx return np.sum((x - xSx / Sx / N) ** 2) return func
risk-parity optimization objective Optimization objective min_w sum_i [w_i - (w' S w) / ((S w)_i * N)]**2
_get_objective_rp
python
microsoft/qlib
qlib/contrib/strategy/optimizer/optimizer.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/strategy/optimizer/optimizer.py
MIT
def _get_constrains(self, w0: Optional[np.ndarray] = None): """optimization constraints Defines the following constraints: - no shorting and leverage: 0 <= w <= 1 - full investment: sum(w) == 1 - turnover constraint: |w - w0| <= delta """ # no shorting and leverage bounds = so.Bounds(0.0, 1.0) # full investment constraint cons = [{"type": "eq", "fun": lambda x: np.sum(x) - 1}] # == 0 # turnover constraint if w0 is not None: cons.append({"type": "ineq", "fun": lambda x: self.delta - np.sum(np.abs(x - w0))}) # >= 0 return bounds, cons
optimization constraints Defines the following constraints: - no shorting and leverage: 0 <= w <= 1 - full investment: sum(w) == 1 - turnover constraint: |w - w0| <= delta
_get_constrains
python
microsoft/qlib
qlib/contrib/strategy/optimizer/optimizer.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/strategy/optimizer/optimizer.py
MIT
def _solve(self, n: int, obj: Callable, bounds: so.Bounds, cons: List) -> np.ndarray: """solve optimization Args: n (int): number of parameters obj (callable): optimization objective bounds (Bounds): bounds of parameters cons (list): optimization constraints """ # add l2 regularization wrapped_obj = obj if self.alpha > 0: def opt_obj(x): return obj(x) + self.alpha * np.sum(np.square(x)) wrapped_obj = opt_obj # solve x0 = np.ones(n) / n # init results sol = so.minimize(wrapped_obj, x0, bounds=bounds, constraints=cons, tol=self.tol) if not sol.success: warnings.warn(f"optimization not success ({sol.status})") return sol.x
solve optimization Args: n (int): number of parameters obj (callable): optimization objective bounds (Bounds): bounds of parameters cons (list): optimization constraints
_solve
python
microsoft/qlib
qlib/contrib/strategy/optimizer/optimizer.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/strategy/optimizer/optimizer.py
MIT
def __init__(self, config, TUNER_CONFIG_MANAGER): """ :param config: The config dict for tuner experiment :param TUNER_CONFIG_MANAGER: The tuner config manager """ self.name = config.get("name", "tuner_experiment") # The dir of the config self.global_dir = config.get("dir", os.path.dirname(TUNER_CONFIG_MANAGER.config_path)) # The dir of the result of tuner experiment self.tuner_ex_dir = config.get("tuner_ex_dir", os.path.join(self.global_dir, self.name)) if not os.path.exists(self.tuner_ex_dir): os.makedirs(self.tuner_ex_dir) # The dir of the results of all estimator experiments self.estimator_ex_dir = config.get("estimator_ex_dir", os.path.join(self.tuner_ex_dir, "estimator_experiment")) if not os.path.exists(self.estimator_ex_dir): os.makedirs(self.estimator_ex_dir) # Get the tuner type self.tuner_module_path = config.get("tuner_module_path", "qlib.contrib.tuner.tuner") self.tuner_class = config.get("tuner_class", "QLibTuner") # Save the tuner experiment for further view tuner_ex_config_path = os.path.join(self.tuner_ex_dir, "tuner_config.yaml") with open(tuner_ex_config_path, "w") as fp: yaml.dump(TUNER_CONFIG_MANAGER.config, fp)
:param config: The config dict for tuner experiment :param TUNER_CONFIG_MANAGER: The tuner config manager
__init__
python
microsoft/qlib
qlib/contrib/tuner/config.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/tuner/config.py
MIT
def init_tuner(self, tuner_index, tuner_config): """ Implement this method to build the tuner by config return: tuner """ # 1. Add experiment config in tuner_config tuner_config["experiment"] = { "name": "estimator_experiment_{}".format(tuner_index), "id": tuner_index, "dir": self.pipeline_ex_config.estimator_ex_dir, "observer_type": "file_storage", } tuner_config["qlib_client"] = self.qlib_client_config # 2. Add data config in tuner_config tuner_config["data"] = self.data_config # 3. Add backtest config in tuner_config tuner_config["backtest"] = self.backtest_config # 4. Update trainer in tuner_config tuner_config["trainer"].update({"args": self.time_config}) # 5. Import Tuner class tuner_module = get_module_by_module_path(self.pipeline_ex_config.tuner_module_path) tuner_class = getattr(tuner_module, self.pipeline_ex_config.tuner_class) # 6. Return the specific tuner return tuner_class(tuner_config, self.optim_config)
Implement this method to build the tuner by config return: tuner
init_tuner
python
microsoft/qlib
qlib/contrib/tuner/pipeline.py
https://github.com/microsoft/qlib/blob/master/qlib/contrib/tuner/pipeline.py
MIT
def load(self, instrument, start_index, end_index, *args): """load feature This function is responsible for loading feature/expression based on the expression engine. The concrete implementation will be separated into two parts: 1) caching data, handle errors. - This part is shared by all the expressions and implemented in Expression 2) processing and calculating data based on the specific expression. - This part is different in each expression and implemented in each expression Expression Engine is shared by different data. Different data will have different extra information for `args`. Parameters ---------- instrument : str instrument code. start_index : str feature start index [in calendar]. end_index : str feature end index [in calendar]. *args may contain following information: 1) if it is used in basic expression engine data, it contains following arguments freq: str feature frequency. 2) if is used in PIT data, it contains following arguments cur_pit: it is designed for the point-in-time data. period: int This is used for query specific period. The period is represented with int in Qlib. (e.g. 202001 may represent the first quarter in 2020) Returns ---------- pd.Series feature series: The index of the series is the calendar index """ from .cache import H # pylint: disable=C0415 # cache cache_key = str(self), instrument, start_index, end_index, *args if cache_key in H["f"]: return H["f"][cache_key] if start_index is not None and end_index is not None and start_index > end_index: raise ValueError("Invalid index range: {} {}".format(start_index, end_index)) try: series = self._load_internal(instrument, start_index, end_index, *args) except Exception as e: get_module_logger("data").debug( f"Loading data error: instrument={instrument}, expression={str(self)}, " f"start_index={start_index}, end_index={end_index}, args={args}. " f"error info: {str(e)}" ) raise series.name = str(self) H["f"][cache_key] = series return series
load feature This function is responsible for loading feature/expression based on the expression engine. The concrete implementation will be separated into two parts: 1) caching data, handle errors. - This part is shared by all the expressions and implemented in Expression 2) processing and calculating data based on the specific expression. - This part is different in each expression and implemented in each expression Expression Engine is shared by different data. Different data will have different extra information for `args`. Parameters ---------- instrument : str instrument code. start_index : str feature start index [in calendar]. end_index : str feature end index [in calendar]. *args may contain following information: 1) if it is used in basic expression engine data, it contains following arguments freq: str feature frequency. 2) if is used in PIT data, it contains following arguments cur_pit: it is designed for the point-in-time data. period: int This is used for query specific period. The period is represented with int in Qlib. (e.g. 202001 may represent the first quarter in 2020) Returns ---------- pd.Series feature series: The index of the series is the calendar index
load
python
microsoft/qlib
qlib/data/base.py
https://github.com/microsoft/qlib/blob/master/qlib/data/base.py
MIT
def get_longest_back_rolling(self): """Get the longest length of historical data the feature has accessed This is designed for getting the needed range of the data to calculate the features in specific range at first. However, situations like Ref(Ref($close, -1), 1) can not be handled rightly. So this will only used for detecting the length of historical data needed. """ # TODO: forward operator like Ref($close, -1) is not supported yet. raise NotImplementedError("This function must be implemented in your newly defined feature")
Get the longest length of historical data the feature has accessed This is designed for getting the needed range of the data to calculate the features in specific range at first. However, situations like Ref(Ref($close, -1), 1) can not be handled rightly. So this will only used for detecting the length of historical data needed.
get_longest_back_rolling
python
microsoft/qlib
qlib/data/base.py
https://github.com/microsoft/qlib/blob/master/qlib/data/base.py
MIT
def get_cache(mem_cache, key): """get mem cache :param mem_cache: MemCache attribute('c'/'i'/'f'). :param key: cache key. :return: cache value; if cache not exist, return None. """ value = None expire = False if key in mem_cache: value, latest_time = mem_cache[key] expire = (time.time() - latest_time) > MemCacheExpire.CACHE_EXPIRE return value, expire
get mem cache :param mem_cache: MemCache attribute('c'/'i'/'f'). :param key: cache key. :return: cache value; if cache not exist, return None.
get_cache
python
microsoft/qlib
qlib/data/cache.py
https://github.com/microsoft/qlib/blob/master/qlib/data/cache.py
MIT
def expression(self, instrument, field, start_time, end_time, freq): """Get expression data. .. note:: Same interface as `expression` method in expression provider """ try: return self._expression(instrument, field, start_time, end_time, freq) except NotImplementedError: return self.provider.expression(instrument, field, start_time, end_time, freq)
Get expression data. .. note:: Same interface as `expression` method in expression provider
expression
python
microsoft/qlib
qlib/data/cache.py
https://github.com/microsoft/qlib/blob/master/qlib/data/cache.py
MIT
def dataset( self, instruments, fields, start_time=None, end_time=None, freq="day", disk_cache=1, inst_processors=[] ): """Get feature dataset. .. note:: Same interface as `dataset` method in dataset provider .. note:: The server use redis_lock to make sure read-write conflicts will not be triggered but client readers are not considered. """ if disk_cache == 0: # skip cache return self.provider.dataset( instruments, fields, start_time, end_time, freq, inst_processors=inst_processors ) else: # use and replace cache try: return self._dataset( instruments, fields, start_time, end_time, freq, disk_cache, inst_processors=inst_processors ) except NotImplementedError: return self.provider.dataset( instruments, fields, start_time, end_time, freq, inst_processors=inst_processors )
Get feature dataset. .. note:: Same interface as `dataset` method in dataset provider .. note:: The server use redis_lock to make sure read-write conflicts will not be triggered but client readers are not considered.
dataset
python
microsoft/qlib
qlib/data/cache.py
https://github.com/microsoft/qlib/blob/master/qlib/data/cache.py
MIT
def _dataset( self, instruments, fields, start_time=None, end_time=None, freq="day", disk_cache=1, inst_processors=[] ): """Get feature dataset using cache. Override this method to define how to get feature dataset corresponding to users' own cache mechanism. """ raise NotImplementedError("Implement this method if you want to use dataset feature cache")
Get feature dataset using cache. Override this method to define how to get feature dataset corresponding to users' own cache mechanism.
_dataset
python
microsoft/qlib
qlib/data/cache.py
https://github.com/microsoft/qlib/blob/master/qlib/data/cache.py
MIT
def _dataset_uri( self, instruments, fields, start_time=None, end_time=None, freq="day", disk_cache=1, inst_processors=[] ): """Get a uri of feature dataset using cache. specially: disk_cache=1 means using data set cache and return the uri of cache file. disk_cache=0 means client knows the path of expression cache, server checks if the cache exists(if not, generate it), and client loads data by itself. Override this method to define how to get feature dataset uri corresponding to users' own cache mechanism. """ raise NotImplementedError( "Implement this method if you want to use dataset feature cache as a cache file for client" )
Get a uri of feature dataset using cache. specially: disk_cache=1 means using data set cache and return the uri of cache file. disk_cache=0 means client knows the path of expression cache, server checks if the cache exists(if not, generate it), and client loads data by itself. Override this method to define how to get feature dataset uri corresponding to users' own cache mechanism.
_dataset_uri
python
microsoft/qlib
qlib/data/cache.py
https://github.com/microsoft/qlib/blob/master/qlib/data/cache.py
MIT
def cache_to_origin_data(data, fields): """cache data to origin data :param data: pd.DataFrame, cache data. :param fields: feature fields. :return: pd.DataFrame. """ not_space_fields = remove_fields_space(fields) data = data.loc[:, not_space_fields] # set features fields data.columns = [str(i) for i in fields] return data
cache data to origin data :param data: pd.DataFrame, cache data. :param fields: feature fields. :return: pd.DataFrame.
cache_to_origin_data
python
microsoft/qlib
qlib/data/cache.py
https://github.com/microsoft/qlib/blob/master/qlib/data/cache.py
MIT
def gen_expression_cache(self, expression_data, cache_path, instrument, field, freq, last_update): """use bin file to save like feature-data.""" # Make sure the cache runs right when the directory is deleted # while running meta = { "info": {"instrument": instrument, "field": field, "freq": freq, "last_update": last_update}, "meta": {"last_visit": time.time(), "visits": 1}, } self.logger.debug(f"generating expression cache: {meta}") self.clear_cache(cache_path) meta_path = cache_path.with_suffix(".meta") with meta_path.open("wb") as f: pickle.dump(meta, f, protocol=C.dump_protocol_version) meta_path.chmod(stat.S_IRWXU | stat.S_IRGRP | stat.S_IROTH) df = expression_data.to_frame() r = np.hstack([df.index[0], expression_data]).astype("<f") r.tofile(str(cache_path))
use bin file to save like feature-data.
gen_expression_cache
python
microsoft/qlib
qlib/data/cache.py
https://github.com/microsoft/qlib/blob/master/qlib/data/cache.py
MIT
def read_data_from_cache(cls, cache_path: Union[str, Path], start_time, end_time, fields): """read_cache_from This function can read data from the disk cache dataset :param cache_path: :param start_time: :param end_time: :param fields: The fields order of the dataset cache is sorted. So rearrange the columns to make it consistent. :return: """ im = DiskDatasetCache.IndexManager(cache_path) index_data = im.get_index(start_time, end_time) if index_data.shape[0] > 0: start, stop = ( index_data["start"].iloc[0].item(), index_data["end"].iloc[-1].item(), ) else: start = stop = 0 with pd.HDFStore(cache_path, mode="r") as store: if "/{}".format(im.KEY) in store.keys(): df = store.select(key=im.KEY, start=start, stop=stop) df = df.swaplevel("datetime", "instrument").sort_index() # read cache and need to replace not-space fields to field df = cls.cache_to_origin_data(df, fields) else: df = pd.DataFrame(columns=fields) return df
read_cache_from This function can read data from the disk cache dataset :param cache_path: :param start_time: :param end_time: :param fields: The fields order of the dataset cache is sorted. So rearrange the columns to make it consistent. :return:
read_data_from_cache
python
microsoft/qlib
qlib/data/cache.py
https://github.com/microsoft/qlib/blob/master/qlib/data/cache.py
MIT
def gen_dataset_cache(self, cache_path: Union[str, Path], instruments, fields, freq, inst_processors=[]): """gen_dataset_cache .. note:: This function does not consider the cache read write lock. Please acquire the lock outside this function The format the cache contains 3 parts(followed by typical filename). - index : cache/d41366901e25de3ec47297f12e2ba11d.index - The content of the file may be in following format(pandas.Series) .. code-block:: python start end 1999-11-10 00:00:00 0 1 1999-11-11 00:00:00 1 2 1999-11-12 00:00:00 2 3 ... .. note:: The start is closed. The end is open!!!!! - Each line contains two element <start_index, end_index> with a timestamp as its index. - It indicates the `start_index` (included) and `end_index` (excluded) of the data for `timestamp` - meta data: cache/d41366901e25de3ec47297f12e2ba11d.meta - data : cache/d41366901e25de3ec47297f12e2ba11d - This is a hdf file sorted by datetime :param cache_path: The path to store the cache. :param instruments: The instruments to store the cache. :param fields: The fields to store the cache. :param freq: The freq to store the cache. :param inst_processors: Instrument processors. :return type pd.DataFrame; The fields of the returned DataFrame are consistent with the parameters of the function. """ # get calendar from .data import Cal # pylint: disable=C0415 cache_path = Path(cache_path) _calendar = Cal.calendar(freq=freq) self.logger.debug(f"Generating dataset cache {cache_path}") # Make sure the cache runs right when the directory is deleted # while running self.clear_cache(cache_path) features = self.provider.dataset( instruments, fields, _calendar[0], _calendar[-1], freq, inst_processors=inst_processors ) if features.empty: return features # swap index and sorted features = features.swaplevel("instrument", "datetime").sort_index() # write cache data with pd.HDFStore(str(cache_path.with_suffix(".data"))) as store: cache_to_orig_map = dict(zip(remove_fields_space(features.columns), features.columns)) orig_to_cache_map = dict(zip(features.columns, remove_fields_space(features.columns))) cache_features = features[list(cache_to_orig_map.values())].rename(columns=orig_to_cache_map) # cache columns cache_columns = sorted(cache_features.columns) cache_features = cache_features.loc[:, cache_columns] cache_features = cache_features.loc[:, ~cache_features.columns.duplicated()] store.append(DatasetCache.HDF_KEY, cache_features, append=False) # write meta file meta = { "info": { "instruments": instruments, "fields": list(cache_features.columns), "freq": freq, "last_update": str(_calendar[-1]), # The last_update to store the cache "inst_processors": inst_processors, # The last_update to store the cache }, "meta": {"last_visit": time.time(), "visits": 1}, } with cache_path.with_suffix(".meta").open("wb") as f: pickle.dump(meta, f, protocol=C.dump_protocol_version) cache_path.with_suffix(".meta").chmod(stat.S_IRWXU | stat.S_IRGRP | stat.S_IROTH) # write index file im = DiskDatasetCache.IndexManager(cache_path) index_data = im.build_index_from_data(features) im.update(index_data) # rename the file after the cache has been generated # this doesn't work well on windows, but our server won't use windows # temporarily cache_path.with_suffix(".data").rename(cache_path) # the fields of the cached features are converted to the original fields return features.swaplevel("datetime", "instrument")
gen_dataset_cache .. note:: This function does not consider the cache read write lock. Please acquire the lock outside this function The format the cache contains 3 parts(followed by typical filename). - index : cache/d41366901e25de3ec47297f12e2ba11d.index - The content of the file may be in following format(pandas.Series) .. code-block:: python start end 1999-11-10 00:00:00 0 1 1999-11-11 00:00:00 1 2 1999-11-12 00:00:00 2 3 ... .. note:: The start is closed. The end is open!!!!! - Each line contains two element <start_index, end_index> with a timestamp as its index. - It indicates the `start_index` (included) and `end_index` (excluded) of the data for `timestamp` - meta data: cache/d41366901e25de3ec47297f12e2ba11d.meta - data : cache/d41366901e25de3ec47297f12e2ba11d - This is a hdf file sorted by datetime :param cache_path: The path to store the cache. :param instruments: The instruments to store the cache. :param fields: The fields to store the cache. :param freq: The freq to store the cache. :param inst_processors: Instrument processors. :return type pd.DataFrame; The fields of the returned DataFrame are consistent with the parameters of the function.
gen_dataset_cache
python
microsoft/qlib
qlib/data/cache.py
https://github.com/microsoft/qlib/blob/master/qlib/data/cache.py
MIT
def send_request(self, request_type, request_content, msg_queue, msg_proc_func=None): """Send a certain request to server. Parameters ---------- request_type : str type of proposed request, 'calendar'/'instrument'/'feature'. request_content : dict records the information of the request. msg_proc_func : func the function to process the message when receiving response, should have arg `*args`. msg_queue: Queue The queue to pass the message after callback. """ head_info = {"version": qlib.__version__} def request_callback(*args): """callback_wrapper :param *args: args[0] is the response content """ # args[0] is the response content self.logger.debug("receive data and enter queue") msg = dict(args[0]) if msg["detailed_info"] is not None: if msg["status"] != 0: self.logger.error(msg["detailed_info"]) else: self.logger.info(msg["detailed_info"]) if msg["status"] != 0: ex = ValueError(f"Bad response(status=={msg['status']}), detailed info: {msg['detailed_info']}") msg_queue.put(ex) else: if msg_proc_func is not None: try: ret = msg_proc_func(msg["result"]) except Exception as e: self.logger.exception("Error when processing message.") ret = e else: ret = msg["result"] msg_queue.put(ret) self.disconnect() self.logger.debug("disconnected") self.logger.debug("try connecting") self.connect_server() self.logger.debug("connected") # The pickle is for passing some parameters with special type(such as # pd.Timestamp) request_content = {"head": head_info, "body": pickle.dumps(request_content, protocol=C.dump_protocol_version)} self.sio.on(request_type + "_response", request_callback) self.logger.debug("try sending") self.sio.emit(request_type + "_request", request_content) self.sio.wait()
Send a certain request to server. Parameters ---------- request_type : str type of proposed request, 'calendar'/'instrument'/'feature'. request_content : dict records the information of the request. msg_proc_func : func the function to process the message when receiving response, should have arg `*args`. msg_queue: Queue The queue to pass the message after callback.
send_request
python
microsoft/qlib
qlib/data/client.py
https://github.com/microsoft/qlib/blob/master/qlib/data/client.py
MIT
def request_callback(*args): """callback_wrapper :param *args: args[0] is the response content """ # args[0] is the response content self.logger.debug("receive data and enter queue") msg = dict(args[0]) if msg["detailed_info"] is not None: if msg["status"] != 0: self.logger.error(msg["detailed_info"]) else: self.logger.info(msg["detailed_info"]) if msg["status"] != 0: ex = ValueError(f"Bad response(status=={msg['status']}), detailed info: {msg['detailed_info']}") msg_queue.put(ex) else: if msg_proc_func is not None: try: ret = msg_proc_func(msg["result"]) except Exception as e: self.logger.exception("Error when processing message.") ret = e else: ret = msg["result"] msg_queue.put(ret) self.disconnect() self.logger.debug("disconnected")
callback_wrapper :param *args: args[0] is the response content
request_callback
python
microsoft/qlib
qlib/data/client.py
https://github.com/microsoft/qlib/blob/master/qlib/data/client.py
MIT
def calendar(self, start_time=None, end_time=None, freq="day", future=False): """Get calendar of certain market in given time range. Parameters ---------- start_time : str start of the time range. end_time : str end of the time range. freq : str time frequency, available: year/quarter/month/week/day. future : bool whether including future trading day. Returns ---------- list calendar list """ _calendar, _calendar_index = self._get_calendar(freq, future) if start_time == "None": start_time = None if end_time == "None": end_time = None # strip if start_time: start_time = pd.Timestamp(start_time) if start_time > _calendar[-1]: return np.array([]) else: start_time = _calendar[0] if end_time: end_time = pd.Timestamp(end_time) if end_time < _calendar[0]: return np.array([]) else: end_time = _calendar[-1] _, _, si, ei = self.locate_index(start_time, end_time, freq, future) return _calendar[si : ei + 1]
Get calendar of certain market in given time range. Parameters ---------- start_time : str start of the time range. end_time : str end of the time range. freq : str time frequency, available: year/quarter/month/week/day. future : bool whether including future trading day. Returns ---------- list calendar list
calendar
python
microsoft/qlib
qlib/data/data.py
https://github.com/microsoft/qlib/blob/master/qlib/data/data.py
MIT
def locate_index( self, start_time: Union[pd.Timestamp, str], end_time: Union[pd.Timestamp, str], freq: str, future: bool = False ): """Locate the start time index and end time index in a calendar under certain frequency. Parameters ---------- start_time : pd.Timestamp start of the time range. end_time : pd.Timestamp end of the time range. freq : str time frequency, available: year/quarter/month/week/day. future : bool whether including future trading day. Returns ------- pd.Timestamp the real start time. pd.Timestamp the real end time. int the index of start time. int the index of end time. """ start_time = pd.Timestamp(start_time) end_time = pd.Timestamp(end_time) calendar, calendar_index = self._get_calendar(freq=freq, future=future) if start_time not in calendar_index: try: start_time = calendar[bisect.bisect_left(calendar, start_time)] except IndexError as index_e: raise IndexError( "`start_time` uses a future date, if you want to get future trading days, you can use: `future=True`" ) from index_e start_index = calendar_index[start_time] if end_time not in calendar_index: end_time = calendar[bisect.bisect_right(calendar, end_time) - 1] end_index = calendar_index[end_time] return start_time, end_time, start_index, end_index
Locate the start time index and end time index in a calendar under certain frequency. Parameters ---------- start_time : pd.Timestamp start of the time range. end_time : pd.Timestamp end of the time range. freq : str time frequency, available: year/quarter/month/week/day. future : bool whether including future trading day. Returns ------- pd.Timestamp the real start time. pd.Timestamp the real end time. int the index of start time. int the index of end time.
locate_index
python
microsoft/qlib
qlib/data/data.py
https://github.com/microsoft/qlib/blob/master/qlib/data/data.py
MIT
def _get_calendar(self, freq, future): """Load calendar using memcache. Parameters ---------- freq : str frequency of read calendar file. future : bool whether including future trading day. Returns ------- list list of timestamps. dict dict composed by timestamp as key and index as value for fast search. """ flag = f"{freq}_future_{future}" if flag not in H["c"]: _calendar = np.array(self.load_calendar(freq, future)) _calendar_index = {x: i for i, x in enumerate(_calendar)} # for fast search H["c"][flag] = _calendar, _calendar_index return H["c"][flag]
Load calendar using memcache. Parameters ---------- freq : str frequency of read calendar file. future : bool whether including future trading day. Returns ------- list list of timestamps. dict dict composed by timestamp as key and index as value for fast search.
_get_calendar
python
microsoft/qlib
qlib/data/data.py
https://github.com/microsoft/qlib/blob/master/qlib/data/data.py
MIT
def instruments(market: Union[List, str] = "all", filter_pipe: Union[List, None] = None): """Get the general config dictionary for a base market adding several dynamic filters. Parameters ---------- market : Union[List, str] str: market/industry/index shortname, e.g. all/sse/szse/sse50/csi300/csi500. list: ["ID1", "ID2"]. A list of stocks filter_pipe : list the list of dynamic filters. Returns ---------- dict: if isinstance(market, str) dict of stockpool config. {`market` => base market name, `filter_pipe` => list of filters} example : .. code-block:: {'market': 'csi500', 'filter_pipe': [{'filter_type': 'ExpressionDFilter', 'rule_expression': '$open<40', 'filter_start_time': None, 'filter_end_time': None, 'keep': False}, {'filter_type': 'NameDFilter', 'name_rule_re': 'SH[0-9]{4}55', 'filter_start_time': None, 'filter_end_time': None}]} list: if isinstance(market, list) just return the original list directly. NOTE: this will make the instruments compatible with more cases. The user code will be simpler. """ if isinstance(market, list): return market from .filter import SeriesDFilter # pylint: disable=C0415 if filter_pipe is None: filter_pipe = [] config = {"market": market, "filter_pipe": []} # the order of the filters will affect the result, so we need to keep # the order for filter_t in filter_pipe: if isinstance(filter_t, dict): _config = filter_t elif isinstance(filter_t, SeriesDFilter): _config = filter_t.to_config() else: raise TypeError( f"Unsupported filter types: {type(filter_t)}! Filter only supports dict or isinstance(filter, SeriesDFilter)" ) config["filter_pipe"].append(_config) return config
Get the general config dictionary for a base market adding several dynamic filters. Parameters ---------- market : Union[List, str] str: market/industry/index shortname, e.g. all/sse/szse/sse50/csi300/csi500. list: ["ID1", "ID2"]. A list of stocks filter_pipe : list the list of dynamic filters. Returns ---------- dict: if isinstance(market, str) dict of stockpool config. {`market` => base market name, `filter_pipe` => list of filters} example : .. code-block:: {'market': 'csi500', 'filter_pipe': [{'filter_type': 'ExpressionDFilter', 'rule_expression': '$open<40', 'filter_start_time': None, 'filter_end_time': None, 'keep': False}, {'filter_type': 'NameDFilter', 'name_rule_re': 'SH[0-9]{4}55', 'filter_start_time': None, 'filter_end_time': None}]} list: if isinstance(market, list) just return the original list directly. NOTE: this will make the instruments compatible with more cases. The user code will be simpler.
instruments
python
microsoft/qlib
qlib/data/data.py
https://github.com/microsoft/qlib/blob/master/qlib/data/data.py
MIT
def period_feature( self, instrument, field, start_index: int, end_index: int, cur_time: pd.Timestamp, period: Optional[int] = None, ) -> pd.Series: """ get the historical periods data series between `start_index` and `end_index` Parameters ---------- start_index: int start_index is a relative index to the latest period to cur_time end_index: int end_index is a relative index to the latest period to cur_time in most cases, the start_index and end_index will be a non-positive values For example, start_index == -3 end_index == 0 and current period index is cur_idx, then the data between [start_index + cur_idx, end_index + cur_idx] will be retrieved. period: int This is used for query specific period. The period is represented with int in Qlib. (e.g. 202001 may represent the first quarter in 2020) NOTE: `period` will override `start_index` and `end_index` Returns ------- pd.Series The index will be integers to indicate the periods of the data An typical examples will be TODO Raises ------ FileNotFoundError This exception will be raised if the queried data do not exist. """ raise NotImplementedError(f"Please implement the `period_feature` method")
get the historical periods data series between `start_index` and `end_index` Parameters ---------- start_index: int start_index is a relative index to the latest period to cur_time end_index: int end_index is a relative index to the latest period to cur_time in most cases, the start_index and end_index will be a non-positive values For example, start_index == -3 end_index == 0 and current period index is cur_idx, then the data between [start_index + cur_idx, end_index + cur_idx] will be retrieved. period: int This is used for query specific period. The period is represented with int in Qlib. (e.g. 202001 may represent the first quarter in 2020) NOTE: `period` will override `start_index` and `end_index` Returns ------- pd.Series The index will be integers to indicate the periods of the data An typical examples will be TODO Raises ------ FileNotFoundError This exception will be raised if the queried data do not exist.
period_feature
python
microsoft/qlib
qlib/data/data.py
https://github.com/microsoft/qlib/blob/master/qlib/data/data.py
MIT
def _uri( self, instruments, fields, start_time=None, end_time=None, freq="day", disk_cache=1, inst_processors=[], **kwargs, ): """Get task uri, used when generating rabbitmq task in qlib_server Parameters ---------- instruments : list or dict list/dict of instruments or dict of stockpool config. fields : list list of feature instances. start_time : str start of the time range. end_time : str end of the time range. freq : str time frequency. disk_cache : int whether to skip(0)/use(1)/replace(2) disk_cache. """ # TODO: qlib-server support inst_processors return DiskDatasetCache._uri(instruments, fields, start_time, end_time, freq, disk_cache, inst_processors)
Get task uri, used when generating rabbitmq task in qlib_server Parameters ---------- instruments : list or dict list/dict of instruments or dict of stockpool config. fields : list list of feature instances. start_time : str start of the time range. end_time : str end of the time range. freq : str time frequency. disk_cache : int whether to skip(0)/use(1)/replace(2) disk_cache.
_uri
python
microsoft/qlib
qlib/data/data.py
https://github.com/microsoft/qlib/blob/master/qlib/data/data.py
MIT
def get_instruments_d(instruments, freq): """ Parse different types of input instruments to output instruments_d Wrong format of input instruments will lead to exception. """ if isinstance(instruments, dict): if "market" in instruments: # dict of stockpool config instruments_d = Inst.list_instruments(instruments=instruments, freq=freq, as_list=False) else: # dict of instruments and timestamp instruments_d = instruments elif isinstance(instruments, (list, tuple, pd.Index, np.ndarray)): # list or tuple of a group of instruments instruments_d = list(instruments) else: raise ValueError("Unsupported input type for param `instrument`") return instruments_d
Parse different types of input instruments to output instruments_d Wrong format of input instruments will lead to exception.
get_instruments_d
python
microsoft/qlib
qlib/data/data.py
https://github.com/microsoft/qlib/blob/master/qlib/data/data.py
MIT
def get_column_names(fields): """ Get column names from input fields """ if len(fields) == 0: raise ValueError("fields cannot be empty") column_names = [str(f) for f in fields] return column_names
Get column names from input fields
get_column_names
python
microsoft/qlib
qlib/data/data.py
https://github.com/microsoft/qlib/blob/master/qlib/data/data.py
MIT
def dataset_processor(instruments_d, column_names, start_time, end_time, freq, inst_processors=[]): """ Load and process the data, return the data set. - default using multi-kernel method. """ normalize_column_names = normalize_cache_fields(column_names) # One process for one task, so that the memory will be freed quicker. workers = max(min(C.get_kernels(freq), len(instruments_d)), 1) # create iterator if isinstance(instruments_d, dict): it = instruments_d.items() else: it = zip(instruments_d, [None] * len(instruments_d)) inst_l = [] task_l = [] for inst, spans in it: inst_l.append(inst) task_l.append( delayed(DatasetProvider.inst_calculator)( inst, start_time, end_time, freq, normalize_column_names, spans, C, inst_processors ) ) data = dict( zip( inst_l, ParallelExt(n_jobs=workers, backend=C.joblib_backend, maxtasksperchild=C.maxtasksperchild)(task_l), ) ) new_data = dict() for inst in sorted(data.keys()): if len(data[inst]) > 0: # NOTE: Python version >= 3.6; in versions after python3.6, dict will always guarantee the insertion order new_data[inst] = data[inst] if len(new_data) > 0: data = pd.concat(new_data, names=["instrument"], sort=False) data = DiskDatasetCache.cache_to_origin_data(data, column_names) else: data = pd.DataFrame( index=pd.MultiIndex.from_arrays([[], []], names=("instrument", "datetime")), columns=column_names, dtype=np.float32, ) return data
Load and process the data, return the data set. - default using multi-kernel method.
dataset_processor
python
microsoft/qlib
qlib/data/data.py
https://github.com/microsoft/qlib/blob/master/qlib/data/data.py
MIT
def inst_calculator(inst, start_time, end_time, freq, column_names, spans=None, g_config=None, inst_processors=[]): """ Calculate the expressions for **one** instrument, return a df result. If the expression has been calculated before, load from cache. return value: A data frame with index 'datetime' and other data columns. """ # FIXME: Windows OS or MacOS using spawn: https://docs.python.org/3.8/library/multiprocessing.html?highlight=spawn#contexts-and-start-methods # NOTE: This place is compatible with windows, windows multi-process is spawn C.register_from_C(g_config) obj = dict() for field in column_names: # The client does not have expression provider, the data will be loaded from cache using static method. obj[field] = ExpressionD.expression(inst, field, start_time, end_time, freq) data = pd.DataFrame(obj) if not data.empty and not np.issubdtype(data.index.dtype, np.dtype("M")): # If the underlaying provides the data not in datetime format, we'll convert it into datetime format _calendar = Cal.calendar(freq=freq) data.index = _calendar[data.index.values.astype(int)] data.index.names = ["datetime"] if not data.empty and spans is not None: mask = np.zeros(len(data), dtype=bool) for begin, end in spans: mask |= (data.index >= begin) & (data.index <= end) data = data[mask] for _processor in inst_processors: if _processor: _processor_obj = init_instance_by_config(_processor, accept_types=InstProcessor) data = _processor_obj(data, instrument=inst) return data
Calculate the expressions for **one** instrument, return a df result. If the expression has been calculated before, load from cache. return value: A data frame with index 'datetime' and other data columns.
inst_calculator
python
microsoft/qlib
qlib/data/data.py
https://github.com/microsoft/qlib/blob/master/qlib/data/data.py
MIT
def load_calendar(self, freq, future): """Load original calendar timestamp from file. Parameters ---------- freq : str frequency of read calendar file. future: bool Returns ---------- list list of timestamps """ try: backend_obj = self.backend_obj(freq=freq, future=future).data except ValueError: if future: get_module_logger("data").warning( f"load calendar error: freq={freq}, future={future}; return current calendar!" ) get_module_logger("data").warning( "You can get future calendar by referring to the following document: https://github.com/microsoft/qlib/blob/main/scripts/data_collector/contrib/README.md" ) backend_obj = self.backend_obj(freq=freq, future=False).data else: raise return [pd.Timestamp(x) for x in backend_obj]
Load original calendar timestamp from file. Parameters ---------- freq : str frequency of read calendar file. future: bool Returns ---------- list list of timestamps
load_calendar
python
microsoft/qlib
qlib/data/data.py
https://github.com/microsoft/qlib/blob/master/qlib/data/data.py
MIT
def __init__(self, align_time: bool = True): """ Parameters ---------- align_time : bool Will we align the time to calendar the frequency is flexible in some dataset and can't be aligned. For the data with fixed frequency with a shared calendar, the align data to the calendar will provides following benefits - Align queries to the same parameters, so the cache can be shared. """ super().__init__() self.align_time = align_time
Parameters ---------- align_time : bool Will we align the time to calendar the frequency is flexible in some dataset and can't be aligned. For the data with fixed frequency with a shared calendar, the align data to the calendar will provides following benefits - Align queries to the same parameters, so the cache can be shared.
__init__
python
microsoft/qlib
qlib/data/data.py
https://github.com/microsoft/qlib/blob/master/qlib/data/data.py
MIT
def multi_cache_walker(instruments, fields, start_time=None, end_time=None, freq="day"): """ This method is used to prepare the expression cache for the client. Then the client will load the data from expression cache by itself. """ instruments_d = DatasetProvider.get_instruments_d(instruments, freq) column_names = DatasetProvider.get_column_names(fields) cal = Cal.calendar(start_time, end_time, freq) if len(cal) == 0: return start_time = cal[0] end_time = cal[-1] workers = max(min(C.kernels, len(instruments_d)), 1) ParallelExt(n_jobs=workers, backend=C.joblib_backend, maxtasksperchild=C.maxtasksperchild)( delayed(LocalDatasetProvider.cache_walker)(inst, start_time, end_time, freq, column_names) for inst in instruments_d )
This method is used to prepare the expression cache for the client. Then the client will load the data from expression cache by itself.
multi_cache_walker
python
microsoft/qlib
qlib/data/data.py
https://github.com/microsoft/qlib/blob/master/qlib/data/data.py
MIT
def cache_walker(inst, start_time, end_time, freq, column_names): """ If the expressions of one instrument haven't been calculated before, calculate it and write it into expression cache. """ for field in column_names: ExpressionD.expression(inst, field, start_time, end_time, freq)
If the expressions of one instrument haven't been calculated before, calculate it and write it into expression cache.
cache_walker
python
microsoft/qlib
qlib/data/data.py
https://github.com/microsoft/qlib/blob/master/qlib/data/data.py
MIT
def features( self, instruments, fields, start_time=None, end_time=None, freq="day", disk_cache=None, inst_processors=[], ): """ Parameters ---------- disk_cache : int whether to skip(0)/use(1)/replace(2) disk_cache This function will try to use cache method which has a keyword `disk_cache`, and will use provider method if a type error is raised because the DatasetD instance is a provider class. """ disk_cache = C.default_disk_cache if disk_cache is None else disk_cache fields = list(fields) # In case of tuple. try: return DatasetD.dataset( instruments, fields, start_time, end_time, freq, disk_cache, inst_processors=inst_processors ) except TypeError: return DatasetD.dataset(instruments, fields, start_time, end_time, freq, inst_processors=inst_processors)
Parameters ---------- disk_cache : int whether to skip(0)/use(1)/replace(2) disk_cache This function will try to use cache method which has a keyword `disk_cache`, and will use provider method if a type error is raised because the DatasetD instance is a provider class.
features
python
microsoft/qlib
qlib/data/data.py
https://github.com/microsoft/qlib/blob/master/qlib/data/data.py
MIT
def _uri(self, type, **kwargs): """_uri The server hope to get the uri of the request. The uri will be decided by the dataprovider. For ex, different cache layer has different uri. :param type: The type of resource for the uri :param **kwargs: """ if type == "calendar": return Cal._uri(**kwargs) elif type == "instrument": return Inst._uri(**kwargs) elif type == "feature": return DatasetD._uri(**kwargs)
_uri The server hope to get the uri of the request. The uri will be decided by the dataprovider. For ex, different cache layer has different uri. :param type: The type of resource for the uri :param **kwargs:
_uri
python
microsoft/qlib
qlib/data/data.py
https://github.com/microsoft/qlib/blob/master/qlib/data/data.py
MIT
def __init__(self, fstart_time=None, fend_time=None, keep=False): """Init function for filter base class. Filter a set of instruments based on a certain rule within a certain period assigned by fstart_time and fend_time. Parameters ---------- fstart_time: str the time for the filter rule to start filter the instruments. fend_time: str the time for the filter rule to stop filter the instruments. keep: bool whether to keep the instruments of which features don't exist in the filter time span. """ super(SeriesDFilter, self).__init__() self.filter_start_time = pd.Timestamp(fstart_time) if fstart_time else None self.filter_end_time = pd.Timestamp(fend_time) if fend_time else None self.keep = keep
Init function for filter base class. Filter a set of instruments based on a certain rule within a certain period assigned by fstart_time and fend_time. Parameters ---------- fstart_time: str the time for the filter rule to start filter the instruments. fend_time: str the time for the filter rule to stop filter the instruments. keep: bool whether to keep the instruments of which features don't exist in the filter time span.
__init__
python
microsoft/qlib
qlib/data/filter.py
https://github.com/microsoft/qlib/blob/master/qlib/data/filter.py
MIT
def _getTimeBound(self, instruments): """Get time bound for all instruments. Parameters ---------- instruments: dict the dict of instruments in the form {instrument_name => list of timestamp tuple}. Returns ---------- pd.Timestamp, pd.Timestamp the lower time bound and upper time bound of all the instruments. """ trange = Cal.calendar(freq=self.filter_freq) ubound, lbound = trange[0], trange[-1] for _, timestamp in instruments.items(): if timestamp: lbound = timestamp[0][0] if timestamp[0][0] < lbound else lbound ubound = timestamp[-1][-1] if timestamp[-1][-1] > ubound else ubound return lbound, ubound
Get time bound for all instruments. Parameters ---------- instruments: dict the dict of instruments in the form {instrument_name => list of timestamp tuple}. Returns ---------- pd.Timestamp, pd.Timestamp the lower time bound and upper time bound of all the instruments.
_getTimeBound
python
microsoft/qlib
qlib/data/filter.py
https://github.com/microsoft/qlib/blob/master/qlib/data/filter.py
MIT
def _toSeries(self, time_range, target_timestamp): """Convert the target timestamp to a pandas series of bool value within a time range. Make the time inside the target_timestamp range TRUE, others FALSE. Parameters ---------- time_range : D.calendar the time range of the instruments. target_timestamp : list the list of tuple (timestamp, timestamp). Returns ---------- pd.Series the series of bool value for an instrument. """ # Construct a whole dict of {date => bool} timestamp_series = {timestamp: False for timestamp in time_range} # Convert to pd.Series timestamp_series = pd.Series(timestamp_series) # Fill the date within target_timestamp with TRUE for start, end in target_timestamp: timestamp_series[Cal.calendar(start_time=start, end_time=end, freq=self.filter_freq)] = True return timestamp_series
Convert the target timestamp to a pandas series of bool value within a time range. Make the time inside the target_timestamp range TRUE, others FALSE. Parameters ---------- time_range : D.calendar the time range of the instruments. target_timestamp : list the list of tuple (timestamp, timestamp). Returns ---------- pd.Series the series of bool value for an instrument.
_toSeries
python
microsoft/qlib
qlib/data/filter.py
https://github.com/microsoft/qlib/blob/master/qlib/data/filter.py
MIT
def _filterSeries(self, timestamp_series, filter_series): """Filter the timestamp series with filter series by using element-wise AND operation of the two series. Parameters ---------- timestamp_series : pd.Series the series of bool value indicating existing time. filter_series : pd.Series the series of bool value indicating filter feature. Returns ---------- pd.Series the series of bool value indicating whether the date satisfies the filter condition and exists in target timestamp. """ fstart, fend = list(filter_series.keys())[0], list(filter_series.keys())[-1] filter_series = filter_series.astype("bool") # Make sure the filter_series is boolean timestamp_series[fstart:fend] = timestamp_series[fstart:fend] & filter_series return timestamp_series
Filter the timestamp series with filter series by using element-wise AND operation of the two series. Parameters ---------- timestamp_series : pd.Series the series of bool value indicating existing time. filter_series : pd.Series the series of bool value indicating filter feature. Returns ---------- pd.Series the series of bool value indicating whether the date satisfies the filter condition and exists in target timestamp.
_filterSeries
python
microsoft/qlib
qlib/data/filter.py
https://github.com/microsoft/qlib/blob/master/qlib/data/filter.py
MIT
def _toTimestamp(self, timestamp_series): """Convert the timestamp series to a list of tuple (timestamp, timestamp) indicating a continuous range of TRUE. Parameters ---------- timestamp_series: pd.Series the series of bool value after being filtered. Returns ---------- list the list of tuple (timestamp, timestamp). """ # sort the timestamp_series according to the timestamps timestamp_series.sort_index() timestamp = [] _lbool = None _ltime = None _cur_start = None for _ts, _bool in timestamp_series.items(): # there is likely to be NAN when the filter series don't have the # bool value, so we just change the NAN into False if _bool == np.nan: _bool = False if _lbool is None: _cur_start = _ts _lbool = _bool _ltime = _ts continue if (_lbool, _bool) == (True, False): if _cur_start: timestamp.append((_cur_start, _ltime)) elif (_lbool, _bool) == (False, True): _cur_start = _ts _lbool = _bool _ltime = _ts if _lbool: timestamp.append((_cur_start, _ltime)) return timestamp
Convert the timestamp series to a list of tuple (timestamp, timestamp) indicating a continuous range of TRUE. Parameters ---------- timestamp_series: pd.Series the series of bool value after being filtered. Returns ---------- list the list of tuple (timestamp, timestamp).
_toTimestamp
python
microsoft/qlib
qlib/data/filter.py
https://github.com/microsoft/qlib/blob/master/qlib/data/filter.py
MIT
def __call__(self, instruments, start_time=None, end_time=None, freq="day"): """Call this filter to get filtered instruments list""" self.filter_freq = freq return self.filter_main(instruments, start_time, end_time)
Call this filter to get filtered instruments list
__call__
python
microsoft/qlib
qlib/data/filter.py
https://github.com/microsoft/qlib/blob/master/qlib/data/filter.py
MIT
def filter_main(self, instruments, start_time=None, end_time=None): """Implement this method to filter the instruments. Parameters ---------- instruments: dict input instruments to be filtered. start_time: str start of the time range. end_time: str end of the time range. Returns ---------- dict filtered instruments, same structure as input instruments. """ lbound, ubound = self._getTimeBound(instruments) start_time = pd.Timestamp(start_time or lbound) end_time = pd.Timestamp(end_time or ubound) _instruments_filtered = {} _all_calendar = Cal.calendar(start_time=start_time, end_time=end_time, freq=self.filter_freq) _filter_calendar = Cal.calendar( start_time=self.filter_start_time and max(self.filter_start_time, _all_calendar[0]) or _all_calendar[0], end_time=self.filter_end_time and min(self.filter_end_time, _all_calendar[-1]) or _all_calendar[-1], freq=self.filter_freq, ) _all_filter_series = self._getFilterSeries(instruments, _filter_calendar[0], _filter_calendar[-1]) for inst, timestamp in instruments.items(): # Construct a whole map of date _timestamp_series = self._toSeries(_all_calendar, timestamp) # Get filter series if inst in _all_filter_series: _filter_series = _all_filter_series[inst] else: if self.keep: _filter_series = pd.Series({timestamp: True for timestamp in _filter_calendar}) else: _filter_series = pd.Series({timestamp: False for timestamp in _filter_calendar}) # Calculate bool value within the range of filter _timestamp_series = self._filterSeries(_timestamp_series, _filter_series) # Reform the map to (start_timestamp, end_timestamp) format _timestamp = self._toTimestamp(_timestamp_series) # Remove empty timestamp if _timestamp: _instruments_filtered[inst] = _timestamp return _instruments_filtered
Implement this method to filter the instruments. Parameters ---------- instruments: dict input instruments to be filtered. start_time: str start of the time range. end_time: str end of the time range. Returns ---------- dict filtered instruments, same structure as input instruments.
filter_main
python
microsoft/qlib
qlib/data/filter.py
https://github.com/microsoft/qlib/blob/master/qlib/data/filter.py
MIT
def __init__(self, name_rule_re, fstart_time=None, fend_time=None): """Init function for name filter class Parameters ---------- name_rule_re: str regular expression for the name rule. """ super(NameDFilter, self).__init__(fstart_time, fend_time) self.name_rule_re = name_rule_re
Init function for name filter class Parameters ---------- name_rule_re: str regular expression for the name rule.
__init__
python
microsoft/qlib
qlib/data/filter.py
https://github.com/microsoft/qlib/blob/master/qlib/data/filter.py
MIT
def __init__(self, rule_expression, fstart_time=None, fend_time=None, keep=False): """Init function for expression filter class Parameters ---------- fstart_time: str filter the feature starting from this time. fend_time: str filter the feature ending by this time. rule_expression: str an input expression for the rule. """ super(ExpressionDFilter, self).__init__(fstart_time, fend_time, keep=keep) self.rule_expression = rule_expression
Init function for expression filter class Parameters ---------- fstart_time: str filter the feature starting from this time. fend_time: str filter the feature ending by this time. rule_expression: str an input expression for the rule.
__init__
python
microsoft/qlib
qlib/data/filter.py
https://github.com/microsoft/qlib/blob/master/qlib/data/filter.py
MIT
def __call__(self, df: pd.DataFrame, instrument, *args, **kwargs): """ process the data NOTE: **The processor could change the content of `df` inplace !!!!! ** User should keep a copy of data outside Parameters ---------- df : pd.DataFrame The raw_df of handler or result from previous processor. """
process the data NOTE: **The processor could change the content of `df` inplace !!!!! ** User should keep a copy of data outside Parameters ---------- df : pd.DataFrame The raw_df of handler or result from previous processor.
__call__
python
microsoft/qlib
qlib/data/inst_processor.py
https://github.com/microsoft/qlib/blob/master/qlib/data/inst_processor.py
MIT
def _load_internal(self, instrument, start_index, end_index, *args): """ To avoid error raised by bool type input, we transform the data into float32. """ series = self.feature.load(instrument, start_index, end_index, *args) # TODO: More precision types should be configurable series = series.astype(np.float32) return getattr(np, self.func)(series)
To avoid error raised by bool type input, we transform the data into float32.
_load_internal
python
microsoft/qlib
qlib/data/ops.py
https://github.com/microsoft/qlib/blob/master/qlib/data/ops.py
MIT
def __init__(self, feature, freq, func): """ Resampling the data to target frequency. The resample function of pandas is used. - the timestamp will be at the start of the time span after resample. Parameters ---------- feature : Expression An expression for calculating the feature freq : str It will be passed into the resample method for resampling basedn on given frequency func : method The method to get the resampled values Some expression are high frequently used """ self.feature = feature self.freq = freq self.func = func
Resampling the data to target frequency. The resample function of pandas is used. - the timestamp will be at the start of the time span after resample. Parameters ---------- feature : Expression An expression for calculating the feature freq : str It will be passed into the resample method for resampling basedn on given frequency func : method The method to get the resampled values Some expression are high frequently used
__init__
python
microsoft/qlib
qlib/data/ops.py
https://github.com/microsoft/qlib/blob/master/qlib/data/ops.py
MIT
def register(self, ops_list: List[Union[Type[ExpressionOps], dict]]): """register operator Parameters ---------- ops_list : List[Union[Type[ExpressionOps], dict]] - if type(ops_list) is List[Type[ExpressionOps]], each element of ops_list represents the operator class, which should be the subclass of `ExpressionOps`. - if type(ops_list) is List[dict], each element of ops_list represents the config of operator, which has the following format: .. code-block:: text { "class": class_name, "module_path": path, } Note: `class` should be the class name of operator, `module_path` should be a python module or path of file. """ for _operator in ops_list: if isinstance(_operator, dict): _ops_class, _ = get_callable_kwargs(_operator) else: _ops_class = _operator if not issubclass(_ops_class, (Expression,)): raise TypeError("operator must be subclass of ExpressionOps, not {}".format(_ops_class)) if _ops_class.__name__ in self._ops: get_module_logger(self.__class__.__name__).warning( "The custom operator [{}] will override the qlib default definition".format(_ops_class.__name__) ) self._ops[_ops_class.__name__] = _ops_class
register operator Parameters ---------- ops_list : List[Union[Type[ExpressionOps], dict]] - if type(ops_list) is List[Type[ExpressionOps]], each element of ops_list represents the operator class, which should be the subclass of `ExpressionOps`. - if type(ops_list) is List[dict], each element of ops_list represents the config of operator, which has the following format: .. code-block:: text { "class": class_name, "module_path": path, } Note: `class` should be the class name of operator, `module_path` should be a python module or path of file.
register
python
microsoft/qlib
qlib/data/ops.py
https://github.com/microsoft/qlib/blob/master/qlib/data/ops.py
MIT
def __init__( self, instruments=None, start_time=None, end_time=None, data_loader: Union[dict, str, DataLoader] = None, init_data=True, fetch_orig=True, ): """ Parameters ---------- instruments : The stock list to retrieve. start_time : start_time of the original data. end_time : end_time of the original data. data_loader : Union[dict, str, DataLoader] data loader to load the data. init_data : initialize the original data in the constructor. fetch_orig : bool Return the original data instead of copy if possible. """ # Setup data loader assert data_loader is not None # to make start_time end_time could have None default value # what data source to load data self.data_loader = init_instance_by_config( data_loader, None if (isinstance(data_loader, dict) and "module_path" in data_loader) else data_loader_module, accept_types=DataLoader, ) # what data to be loaded from data source # For IDE auto-completion. self.instruments = instruments self.start_time = start_time self.end_time = end_time self.fetch_orig = fetch_orig if init_data: with TimeInspector.logt("Init data"): self.setup_data() super().__init__()
Parameters ---------- instruments : The stock list to retrieve. start_time : start_time of the original data. end_time : end_time of the original data. data_loader : Union[dict, str, DataLoader] data loader to load the data. init_data : initialize the original data in the constructor. fetch_orig : bool Return the original data instead of copy if possible.
__init__
python
microsoft/qlib
qlib/data/dataset/handler.py
https://github.com/microsoft/qlib/blob/master/qlib/data/dataset/handler.py
MIT
def config(self, **kwargs): """ configuration of data. # what data to be loaded from data source This method will be used when loading pickled handler from dataset. The data will be initialized with different time range. """ attr_list = {"instruments", "start_time", "end_time"} for k, v in kwargs.items(): if k in attr_list: setattr(self, k, v) for attr in attr_list: if attr in kwargs: kwargs.pop(attr) super().config(**kwargs)
configuration of data. # what data to be loaded from data source This method will be used when loading pickled handler from dataset. The data will be initialized with different time range.
config
python
microsoft/qlib
qlib/data/dataset/handler.py
https://github.com/microsoft/qlib/blob/master/qlib/data/dataset/handler.py
MIT
def setup_data(self, enable_cache: bool = False): """ Set Up the data in case of running initialization for multiple time It is responsible for maintaining following variable 1) self._data Parameters ---------- enable_cache : bool default value is false: - if `enable_cache` == True: the processed data will be saved on disk, and handler will load the cached data from the disk directly when we call `init` next time """ # Setup data. # _data may be with multiple column index level. The outer level indicates the feature set name with TimeInspector.logt("Loading data"): # make sure the fetch method is based on an index-sorted pd.DataFrame self._data = lazy_sort_index(self.data_loader.load(self.instruments, self.start_time, self.end_time)) # TODO: cache
Set Up the data in case of running initialization for multiple time It is responsible for maintaining following variable 1) self._data Parameters ---------- enable_cache : bool default value is false: - if `enable_cache` == True: the processed data will be saved on disk, and handler will load the cached data from the disk directly when we call `init` next time
setup_data
python
microsoft/qlib
qlib/data/dataset/handler.py
https://github.com/microsoft/qlib/blob/master/qlib/data/dataset/handler.py
MIT
def fetch( self, selector: Union[pd.Timestamp, slice, str, pd.Index] = slice(None, None), level: Union[str, int] = "datetime", col_set: Union[str, List[str]] = CS_ALL, squeeze: bool = False, proc_func: Callable = None, ) -> pd.DataFrame: """ fetch data from underlying data source Design motivation: - providing a unified interface for underlying data. - Potential to make the interface more friendly. - User can improve performance when fetching data in this extra layer Parameters ---------- selector : Union[pd.Timestamp, slice, str] describe how to select data by index It can be categories as following - fetch single index - fetch a range of index - a slice range - pd.Index for specific indexes Following conflicts may occur - Does ["20200101", "20210101"] mean selecting this slice or these two days? - slice have higher priorities level : Union[str, int] which index level to select the data col_set : Union[str, List[str]] - if isinstance(col_set, str): select a set of meaningful, pd.Index columns.(e.g. features, columns) - if col_set == CS_RAW: the raw dataset will be returned. - if isinstance(col_set, List[str]): select several sets of meaningful columns, the returned data has multiple levels proc_func: Callable - Give a hook for processing data before fetching - An example to explain the necessity of the hook: - A Dataset learned some processors to process data which is related to data segmentation - It will apply them every time when preparing data. - The learned processor require the dataframe remains the same format when fitting and applying - However the data format will change according to the parameters. - So the processors should be applied to the underlayer data. squeeze : bool whether squeeze columns and index Returns ------- pd.DataFrame. """ return self._fetch_data( data_storage=self._data, selector=selector, level=level, col_set=col_set, squeeze=squeeze, proc_func=proc_func, )
fetch data from underlying data source Design motivation: - providing a unified interface for underlying data. - Potential to make the interface more friendly. - User can improve performance when fetching data in this extra layer Parameters ---------- selector : Union[pd.Timestamp, slice, str] describe how to select data by index It can be categories as following - fetch single index - fetch a range of index - a slice range - pd.Index for specific indexes Following conflicts may occur - Does ["20200101", "20210101"] mean selecting this slice or these two days? - slice have higher priorities level : Union[str, int] which index level to select the data col_set : Union[str, List[str]] - if isinstance(col_set, str): select a set of meaningful, pd.Index columns.(e.g. features, columns) - if col_set == CS_RAW: the raw dataset will be returned. - if isinstance(col_set, List[str]): select several sets of meaningful columns, the returned data has multiple levels proc_func: Callable - Give a hook for processing data before fetching - An example to explain the necessity of the hook: - A Dataset learned some processors to process data which is related to data segmentation - It will apply them every time when preparing data. - The learned processor require the dataframe remains the same format when fitting and applying - However the data format will change according to the parameters. - So the processors should be applied to the underlayer data. squeeze : bool whether squeeze columns and index Returns ------- pd.DataFrame.
fetch
python
microsoft/qlib
qlib/data/dataset/handler.py
https://github.com/microsoft/qlib/blob/master/qlib/data/dataset/handler.py
MIT
def get_cols(self, col_set=CS_ALL) -> list: """ get the column names Parameters ---------- col_set : str select a set of meaningful columns.(e.g. features, columns) Returns ------- list: list of column names """ df = self._data.head() df = fetch_df_by_col(df, col_set) return df.columns.to_list()
get the column names Parameters ---------- col_set : str select a set of meaningful columns.(e.g. features, columns) Returns ------- list: list of column names
get_cols
python
microsoft/qlib
qlib/data/dataset/handler.py
https://github.com/microsoft/qlib/blob/master/qlib/data/dataset/handler.py
MIT
def get_range_selector(self, cur_date: Union[pd.Timestamp, str], periods: int) -> slice: """ get range selector by number of periods Args: cur_date (pd.Timestamp or str): current date periods (int): number of periods """ trading_dates = self._data.index.unique(level="datetime") cur_loc = trading_dates.get_loc(cur_date) pre_loc = cur_loc - periods + 1 if pre_loc < 0: warnings.warn("`periods` is too large. the first date will be returned.") pre_loc = 0 ref_date = trading_dates[pre_loc] return slice(ref_date, cur_date)
get range selector by number of periods Args: cur_date (pd.Timestamp or str): current date periods (int): number of periods
get_range_selector
python
microsoft/qlib
qlib/data/dataset/handler.py
https://github.com/microsoft/qlib/blob/master/qlib/data/dataset/handler.py
MIT
def get_range_iterator( self, periods: int, min_periods: Optional[int] = None, **kwargs ) -> Iterator[Tuple[pd.Timestamp, pd.DataFrame]]: """ get an iterator of sliced data with given periods Args: periods (int): number of periods. min_periods (int): minimum periods for sliced dataframe. kwargs (dict): will be passed to `self.fetch`. """ trading_dates = self._data.index.unique(level="datetime") if min_periods is None: min_periods = periods for cur_date in trading_dates[min_periods:]: selector = self.get_range_selector(cur_date, periods) yield cur_date, self.fetch(selector, **kwargs)
get an iterator of sliced data with given periods Args: periods (int): number of periods. min_periods (int): minimum periods for sliced dataframe. kwargs (dict): will be passed to `self.fetch`.
get_range_iterator
python
microsoft/qlib
qlib/data/dataset/handler.py
https://github.com/microsoft/qlib/blob/master/qlib/data/dataset/handler.py
MIT
def __init__( self, instruments=None, start_time=None, end_time=None, data_loader: Union[dict, str, DataLoader] = None, infer_processors: List = [], learn_processors: List = [], shared_processors: List = [], process_type=PTYPE_A, drop_raw=False, **kwargs, ): """ Parameters ---------- infer_processors : list - list of <description info> of processors to generate data for inference - example of <description info>: .. code-block:: 1) classname & kwargs: { "class": "MinMaxNorm", "kwargs": { "fit_start_time": "20080101", "fit_end_time": "20121231" } } 2) Only classname: "DropnaFeature" 3) object instance of Processor learn_processors : list similar to infer_processors, but for generating data for learning models process_type: str PTYPE_I = 'independent' - self._infer will be processed by infer_processors - self._learn will be processed by learn_processors PTYPE_A = 'append' - self._infer will be processed by infer_processors - self._learn will be processed by infer_processors + learn_processors - (e.g. self._infer processed by learn_processors ) drop_raw: bool Whether to drop the raw data """ # Setup preprocessor self.infer_processors = [] # for lint self.learn_processors = [] # for lint self.shared_processors = [] # for lint for pname in "infer_processors", "learn_processors", "shared_processors": for proc in locals()[pname]: getattr(self, pname).append( init_instance_by_config( proc, None if (isinstance(proc, dict) and "module_path" in proc) else processor_module, accept_types=processor_module.Processor, ) ) self.process_type = process_type self.drop_raw = drop_raw super().__init__(instruments, start_time, end_time, data_loader, **kwargs)
Parameters ---------- infer_processors : list - list of <description info> of processors to generate data for inference - example of <description info>: .. code-block:: 1) classname & kwargs: { "class": "MinMaxNorm", "kwargs": { "fit_start_time": "20080101", "fit_end_time": "20121231" } } 2) Only classname: "DropnaFeature" 3) object instance of Processor learn_processors : list similar to infer_processors, but for generating data for learning models process_type: str PTYPE_I = 'independent' - self._infer will be processed by infer_processors - self._learn will be processed by learn_processors PTYPE_A = 'append' - self._infer will be processed by infer_processors - self._learn will be processed by infer_processors + learn_processors - (e.g. self._infer processed by learn_processors ) drop_raw: bool Whether to drop the raw data
__init__
python
microsoft/qlib
qlib/data/dataset/handler.py
https://github.com/microsoft/qlib/blob/master/qlib/data/dataset/handler.py
MIT
def fit(self): """ fit data without processing the data """ for proc in self.get_all_processors(): with TimeInspector.logt(f"{proc.__class__.__name__}"): proc.fit(self._data)
fit data without processing the data
fit
python
microsoft/qlib
qlib/data/dataset/handler.py
https://github.com/microsoft/qlib/blob/master/qlib/data/dataset/handler.py
MIT
def _is_proc_readonly(proc_l: List[processor_module.Processor]): """ NOTE: it will return True if `len(proc_l) == 0` """ for p in proc_l: if not p.readonly(): return False return True
NOTE: it will return True if `len(proc_l) == 0`
_is_proc_readonly
python
microsoft/qlib
qlib/data/dataset/handler.py
https://github.com/microsoft/qlib/blob/master/qlib/data/dataset/handler.py
MIT
def process_data(self, with_fit: bool = False): """ process_data data. Fun `processor.fit` if necessary Notation: (data) [processor] # data processing flow of self.process_type == DataHandlerLP.PTYPE_I .. code-block:: text (self._data)-[shared_processors]-(_shared_df)-[learn_processors]-(_learn_df) \\ -[infer_processors]-(_infer_df) # data processing flow of self.process_type == DataHandlerLP.PTYPE_A .. code-block:: text (self._data)-[shared_processors]-(_shared_df)-[infer_processors]-(_infer_df)-[learn_processors]-(_learn_df) Parameters ---------- with_fit : bool The input of the `fit` will be the output of the previous processor """ # shared data processors # 1) assign _shared_df = self._data if not self._is_proc_readonly(self.shared_processors): # avoid modifying the original data _shared_df = _shared_df.copy() # 2) process _shared_df = self._run_proc_l(_shared_df, self.shared_processors, with_fit=with_fit, check_for_infer=True) # data for inference # 1) assign _infer_df = _shared_df if not self._is_proc_readonly(self.infer_processors): # avoid modifying the original data _infer_df = _infer_df.copy() # 2) process _infer_df = self._run_proc_l(_infer_df, self.infer_processors, with_fit=with_fit, check_for_infer=True) self._infer = _infer_df # data for learning # 1) assign if self.process_type == DataHandlerLP.PTYPE_I: _learn_df = _shared_df elif self.process_type == DataHandlerLP.PTYPE_A: # based on `infer_df` and append the processor _learn_df = _infer_df else: raise NotImplementedError(f"This type of input is not supported") if not self._is_proc_readonly(self.learn_processors): # avoid modifying the original data _learn_df = _learn_df.copy() # 2) process _learn_df = self._run_proc_l(_learn_df, self.learn_processors, with_fit=with_fit, check_for_infer=False) self._learn = _learn_df if self.drop_raw: del self._data
process_data data. Fun `processor.fit` if necessary Notation: (data) [processor] # data processing flow of self.process_type == DataHandlerLP.PTYPE_I .. code-block:: text (self._data)-[shared_processors]-(_shared_df)-[learn_processors]-(_learn_df) \ -[infer_processors]-(_infer_df) # data processing flow of self.process_type == DataHandlerLP.PTYPE_A .. code-block:: text (self._data)-[shared_processors]-(_shared_df)-[infer_processors]-(_infer_df)-[learn_processors]-(_learn_df) Parameters ---------- with_fit : bool The input of the `fit` will be the output of the previous processor
process_data
python
microsoft/qlib
qlib/data/dataset/handler.py
https://github.com/microsoft/qlib/blob/master/qlib/data/dataset/handler.py
MIT
def config(self, processor_kwargs: dict = None, **kwargs): """ configuration of data. # what data to be loaded from data source This method will be used when loading pickled handler from dataset. The data will be initialized with different time range. """ super().config(**kwargs) if processor_kwargs is not None: for processor in self.get_all_processors(): processor.config(**processor_kwargs)
configuration of data. # what data to be loaded from data source This method will be used when loading pickled handler from dataset. The data will be initialized with different time range.
config
python
microsoft/qlib
qlib/data/dataset/handler.py
https://github.com/microsoft/qlib/blob/master/qlib/data/dataset/handler.py
MIT
def setup_data(self, init_type: str = IT_FIT_SEQ, **kwargs): """ Set up the data in case of running initialization for multiple time Parameters ---------- init_type : str The type `IT_*` listed above. enable_cache : bool default value is false: - if `enable_cache` == True: the processed data will be saved on disk, and handler will load the cached data from the disk directly when we call `init` next time """ # init raw data super().setup_data(**kwargs) with TimeInspector.logt("fit & process data"): if init_type == DataHandlerLP.IT_FIT_IND: self.fit() self.process_data() elif init_type == DataHandlerLP.IT_LS: self.process_data() elif init_type == DataHandlerLP.IT_FIT_SEQ: self.fit_process_data() else: raise NotImplementedError(f"This type of input is not supported") # TODO: Be able to cache handler data. Save the memory for data processing
Set up the data in case of running initialization for multiple time Parameters ---------- init_type : str The type `IT_*` listed above. enable_cache : bool default value is false: - if `enable_cache` == True: the processed data will be saved on disk, and handler will load the cached data from the disk directly when we call `init` next time
setup_data
python
microsoft/qlib
qlib/data/dataset/handler.py
https://github.com/microsoft/qlib/blob/master/qlib/data/dataset/handler.py
MIT