code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def train( simulator_fn: Callable[[InitialStateType], Simulator], state_interpreter: StateInterpreter, action_interpreter: ActionInterpreter, initial_states: Sequence[InitialStateType], policy: BasePolicy, reward: Reward, vessel_kwargs: Dict[str, Any], trainer_kwargs: Dict[str, Any], ) -> None: """Train a policy with the parallelism provided by RL framework. Experimental API. Parameters might change shortly. Parameters ---------- simulator_fn Callable receiving initial seed, returning a simulator. state_interpreter Interprets the state of simulators. action_interpreter Interprets the policy actions. initial_states Initial states to iterate over. Every state will be run exactly once. policy Policy to train against. reward Reward function. vessel_kwargs Keyword arguments passed to :class:`TrainingVessel`, like ``episode_per_iter``. trainer_kwargs Keyword arguments passed to :class:`Trainer`, like ``finite_env_type``, ``concurrency``. """ vessel = TrainingVessel( simulator_fn=simulator_fn, state_interpreter=state_interpreter, action_interpreter=action_interpreter, policy=policy, train_initial_states=initial_states, reward=reward, # ignore none **vessel_kwargs, ) trainer = Trainer(**trainer_kwargs) trainer.fit(vessel)
Train a policy with the parallelism provided by RL framework. Experimental API. Parameters might change shortly. Parameters ---------- simulator_fn Callable receiving initial seed, returning a simulator. state_interpreter Interprets the state of simulators. action_interpreter Interprets the policy actions. initial_states Initial states to iterate over. Every state will be run exactly once. policy Policy to train against. reward Reward function. vessel_kwargs Keyword arguments passed to :class:`TrainingVessel`, like ``episode_per_iter``. trainer_kwargs Keyword arguments passed to :class:`Trainer`, like ``finite_env_type``, ``concurrency``.
train
python
microsoft/qlib
qlib/rl/trainer/api.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/trainer/api.py
MIT
def backtest( simulator_fn: Callable[[InitialStateType], Simulator], state_interpreter: StateInterpreter, action_interpreter: ActionInterpreter, initial_states: Sequence[InitialStateType], policy: BasePolicy, logger: LogWriter | List[LogWriter], reward: Reward | None = None, finite_env_type: FiniteEnvType = "subproc", concurrency: int = 2, ) -> None: """Backtest with the parallelism provided by RL framework. Experimental API. Parameters might change shortly. Parameters ---------- simulator_fn Callable receiving initial seed, returning a simulator. state_interpreter Interprets the state of simulators. action_interpreter Interprets the policy actions. initial_states Initial states to iterate over. Every state will be run exactly once. policy Policy to test against. logger Logger to record the backtest results. Logger must be present because without logger, all information will be lost. reward Optional reward function. For backtest, this is for testing the rewards and logging them only. finite_env_type Type of finite env implementation. concurrency Parallel workers. """ vessel = TrainingVessel( simulator_fn=simulator_fn, state_interpreter=state_interpreter, action_interpreter=action_interpreter, policy=policy, test_initial_states=initial_states, reward=cast(Reward, reward), # ignore none ) trainer = Trainer( finite_env_type=finite_env_type, concurrency=concurrency, loggers=logger, ) trainer.test(vessel)
Backtest with the parallelism provided by RL framework. Experimental API. Parameters might change shortly. Parameters ---------- simulator_fn Callable receiving initial seed, returning a simulator. state_interpreter Interprets the state of simulators. action_interpreter Interprets the policy actions. initial_states Initial states to iterate over. Every state will be run exactly once. policy Policy to test against. logger Logger to record the backtest results. Logger must be present because without logger, all information will be lost. reward Optional reward function. For backtest, this is for testing the rewards and logging them only. finite_env_type Type of finite env implementation. concurrency Parallel workers.
backtest
python
microsoft/qlib
qlib/rl/trainer/api.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/trainer/api.py
MIT
def on_train_end(self, trainer: Trainer, vessel: TrainingVesselBase) -> None: """Called when the training ends. To access all outputs produced during training, cache the data in either trainer and vessel, and post-process them in this hook. """
Called when the training ends. To access all outputs produced during training, cache the data in either trainer and vessel, and post-process them in this hook.
on_train_end
python
microsoft/qlib
qlib/rl/trainer/callbacks.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/trainer/callbacks.py
MIT
def on_iter_end(self, trainer: Trainer, vessel: TrainingVesselBase) -> None: """Called upon every end of iteration. This is called **after** the bump of ``current_iter``, when the previous iteration is considered complete. """
Called upon every end of iteration. This is called **after** the bump of ``current_iter``, when the previous iteration is considered complete.
on_iter_end
python
microsoft/qlib
qlib/rl/trainer/callbacks.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/trainer/callbacks.py
MIT
def initialize(self): """Initialize the whole training process. The states here should be synchronized with state_dict. """ self.should_stop = False self.current_iter = 0 self.current_episode = 0 self.current_stage = "train"
Initialize the whole training process. The states here should be synchronized with state_dict.
initialize
python
microsoft/qlib
qlib/rl/trainer/trainer.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/trainer/trainer.py
MIT
def state_dict(self) -> dict: """Putting every states of current training into a dict, at best effort. It doesn't try to handle all the possible kinds of states in the middle of one training collect. For most cases at the end of each iteration, things should be usually correct. Note that it's also intended behavior that replay buffer data in the collector will be lost. """ return { "vessel": self.vessel.state_dict(), "callbacks": {name: callback.state_dict() for name, callback in self.named_callbacks().items()}, "loggers": {name: logger.state_dict() for name, logger in self.named_loggers().items()}, "should_stop": self.should_stop, "current_iter": self.current_iter, "current_episode": self.current_episode, "current_stage": self.current_stage, "metrics": self.metrics, }
Putting every states of current training into a dict, at best effort. It doesn't try to handle all the possible kinds of states in the middle of one training collect. For most cases at the end of each iteration, things should be usually correct. Note that it's also intended behavior that replay buffer data in the collector will be lost.
state_dict
python
microsoft/qlib
qlib/rl/trainer/trainer.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/trainer/trainer.py
MIT
def load_state_dict(self, state_dict: dict) -> None: """Load all states into current trainer.""" self.vessel.load_state_dict(state_dict["vessel"]) for name, callback in self.named_callbacks().items(): callback.load_state_dict(state_dict["callbacks"][name]) for name, logger in self.named_loggers().items(): logger.load_state_dict(state_dict["loggers"][name]) self.should_stop = state_dict["should_stop"] self.current_iter = state_dict["current_iter"] self.current_episode = state_dict["current_episode"] self.current_stage = state_dict["current_stage"] self.metrics = state_dict["metrics"]
Load all states into current trainer.
load_state_dict
python
microsoft/qlib
qlib/rl/trainer/trainer.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/trainer/trainer.py
MIT
def fit(self, vessel: TrainingVesselBase, ckpt_path: Path | None = None) -> None: """Train the RL policy upon the defined simulator. Parameters ---------- vessel A bundle of all elements used in training. ckpt_path Load a pre-trained / paused training checkpoint. """ self.vessel = vessel vessel.assign_trainer(self) if ckpt_path is not None: _logger.info("Resuming states from %s", str(ckpt_path)) self.load_state_dict(torch.load(ckpt_path, weights_only=False)) else: self.initialize() self._call_callback_hooks("on_fit_start") while not self.should_stop: msg = f"\n{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\tTrain iteration {self.current_iter + 1}/{self.max_iters}" _logger.info(msg) self.initialize_iter() self._call_callback_hooks("on_iter_start") self.current_stage = "train" self._call_callback_hooks("on_train_start") # TODO # Add a feature that supports reloading the training environment every few iterations. with _wrap_context(vessel.train_seed_iterator()) as iterator: vector_env = self.venv_from_iterator(iterator) self.vessel.train(vector_env) del vector_env # FIXME: Explicitly delete this object to avoid memory leak. self._call_callback_hooks("on_train_end") if self.val_every_n_iters is not None and (self.current_iter + 1) % self.val_every_n_iters == 0: # Implementation of validation loop self.current_stage = "val" self._call_callback_hooks("on_validate_start") with _wrap_context(vessel.val_seed_iterator()) as iterator: vector_env = self.venv_from_iterator(iterator) self.vessel.validate(vector_env) del vector_env # FIXME: Explicitly delete this object to avoid memory leak. self._call_callback_hooks("on_validate_end") # This iteration is considered complete. # Bumping the current iteration counter. self.current_iter += 1 if self.max_iters is not None and self.current_iter >= self.max_iters: self.should_stop = True self._call_callback_hooks("on_iter_end") self._call_callback_hooks("on_fit_end")
Train the RL policy upon the defined simulator. Parameters ---------- vessel A bundle of all elements used in training. ckpt_path Load a pre-trained / paused training checkpoint.
fit
python
microsoft/qlib
qlib/rl/trainer/trainer.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/trainer/trainer.py
MIT
def test(self, vessel: TrainingVesselBase) -> None: """Test the RL policy against the simulator. The simulator will be fed with data generated in ``test_seed_iterator``. Parameters ---------- vessel A bundle of all related elements. """ self.vessel = vessel vessel.assign_trainer(self) self.initialize_iter() self.current_stage = "test" self._call_callback_hooks("on_test_start") with _wrap_context(vessel.test_seed_iterator()) as iterator: vector_env = self.venv_from_iterator(iterator) self.vessel.test(vector_env) del vector_env # FIXME: Explicitly delete this object to avoid memory leak. self._call_callback_hooks("on_test_end")
Test the RL policy against the simulator. The simulator will be fed with data generated in ``test_seed_iterator``. Parameters ---------- vessel A bundle of all related elements.
test
python
microsoft/qlib
qlib/rl/trainer/trainer.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/trainer/trainer.py
MIT
def venv_from_iterator(self, iterator: Iterable[InitialStateType]) -> FiniteVectorEnv: """Create a vectorized environment from iterator and the training vessel.""" def env_factory(): # FIXME: state_interpreter and action_interpreter are stateful (having a weakref of env), # and could be thread unsafe. # I'm not sure whether it's a design flaw. # I'll rethink about this when designing the trainer. if self.finite_env_type == "dummy": # We could only experience the "threading-unsafe" problem in dummy. state = copy.deepcopy(self.vessel.state_interpreter) action = copy.deepcopy(self.vessel.action_interpreter) rew = copy.deepcopy(self.vessel.reward) else: state = self.vessel.state_interpreter action = self.vessel.action_interpreter rew = self.vessel.reward return EnvWrapper( self.vessel.simulator_fn, state, action, iterator, rew, logger=LogCollector(min_loglevel=self._min_loglevel()), ) return vectorize_env( env_factory, self.finite_env_type, self.concurrency, self.loggers, )
Create a vectorized environment from iterator and the training vessel.
venv_from_iterator
python
microsoft/qlib
qlib/rl/trainer/trainer.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/trainer/trainer.py
MIT
def _wrap_context(obj): """Make any object a (possibly dummy) context manager.""" if isinstance(obj, AbstractContextManager): # obj has __enter__ and __exit__ with obj as ctx: yield ctx else: yield obj
Make any object a (possibly dummy) context manager.
_wrap_context
python
microsoft/qlib
qlib/rl/trainer/trainer.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/trainer/trainer.py
MIT
def _named_collection(seq: Sequence[T]) -> Dict[str, T]: """Convert a list into a dict, where each item is named with its type.""" res = {} retry_cnt: collections.Counter = collections.Counter() for item in seq: typename = type(item).__name__.lower() key = typename if retry_cnt[typename] == 0 else f"{typename}{retry_cnt[typename]}" retry_cnt[typename] += 1 res[key] = item return res
Convert a list into a dict, where each item is named with its type.
_named_collection
python
microsoft/qlib
qlib/rl/trainer/trainer.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/trainer/trainer.py
MIT
def train(self, vector_env: FiniteVectorEnv) -> Dict[str, Any]: """Create a collector and collects ``episode_per_iter`` episodes. Update the policy on the collected replay buffer. """ self.policy.train() with vector_env.collector_guard(): collector = Collector( self.policy, vector_env, VectorReplayBuffer(self.buffer_size, len(vector_env)), exploration_noise=True ) # Number of episodes collected in each training iteration can be overridden by fast dev run. if self.trainer.fast_dev_run is not None: episodes = self.trainer.fast_dev_run else: episodes = self.episode_per_iter col_result = collector.collect(n_episode=episodes) update_result = self.policy.update(sample_size=0, buffer=collector.buffer, **self.update_kwargs) res = {**col_result, **update_result} self.log_dict(res) return res
Create a collector and collects ``episode_per_iter`` episodes. Update the policy on the collected replay buffer.
train
python
microsoft/qlib
qlib/rl/trainer/vessel.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/trainer/vessel.py
MIT
def reset(self, **kwargs: Any) -> ObsType: """ Try to get a state from state queue, and init the simulator with this state. If the queue is exhausted, generate an invalid (nan) observation. """ try: if self.seed_iterator is None: raise RuntimeError("You can trying to get a state from a dead environment wrapper.") # TODO: simulator/observation might need seed to prefetch something # as only seed has the ability to do the work beforehands # NOTE: though logger is reset here, logs in this function won't work, # because we can't send them outside. # See https://github.com/thu-ml/tianshou/issues/605 self.logger.reset() if self.seed_iterator is SEED_INTERATOR_MISSING: # no initial state initial_state = None self.simulator = cast(Callable[[], Simulator], self.simulator_fn)() else: initial_state = next(cast(Iterator[InitialStateType], self.seed_iterator)) self.simulator = self.simulator_fn(initial_state) self.status = EnvWrapperStatus( cur_step=0, done=False, initial_state=initial_state, obs_history=[], action_history=[], reward_history=[], ) self.simulator.env = cast(EnvWrapper, weakref.proxy(self)) sim_state = self.simulator.get_state() obs = self.state_interpreter(sim_state) self.status["obs_history"].append(obs) return obs except StopIteration: # The environment should be recycled because it's in a dead state. self.seed_iterator = None return generate_nan_observation(self.observation_space)
Try to get a state from state queue, and init the simulator with this state. If the queue is exhausted, generate an invalid (nan) observation.
reset
python
microsoft/qlib
qlib/rl/utils/env_wrapper.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/utils/env_wrapper.py
MIT
def step(self, policy_action: PolicyActType, **kwargs: Any) -> Tuple[ObsType, float, bool, InfoDict]: """Environment step. See the code along with comments to get a sequence of things happening here. """ if self.seed_iterator is None: raise RuntimeError("State queue is already exhausted, but the environment is still receiving action.") # Clear the logged information from last step self.logger.reset() # Action is what we have got from policy self.status["action_history"].append(policy_action) action = self.action_interpreter(self.simulator.get_state(), policy_action) # This update must be after action interpreter and before simulator. self.status["cur_step"] += 1 # Use the converted action of update the simulator self.simulator.step(action) # Update "done" first, as this status might be used by reward_fn later done = self.simulator.done() self.status["done"] = done # Get state and calculate observation sim_state = self.simulator.get_state() obs = self.state_interpreter(sim_state) self.status["obs_history"].append(obs) # Reward and extra info if self.reward_fn is not None: rew = self.reward_fn(sim_state) else: # No reward. Treated as 0. rew = 0.0 self.status["reward_history"].append(rew) if self.aux_info_collector is not None: aux_info = self.aux_info_collector(sim_state) else: aux_info = {} # Final logging stuff: RL-specific logs if done: self.logger.add_scalar("steps_per_episode", self.status["cur_step"]) self.logger.add_scalar("reward", rew) self.logger.add_any("obs", obs, loglevel=LogLevel.DEBUG) self.logger.add_any("policy_act", policy_action, loglevel=LogLevel.DEBUG) info_dict = InfoDict(log=self.logger.logs(), aux_info=aux_info) return obs, rew, done, info_dict
Environment step. See the code along with comments to get a sequence of things happening here.
step
python
microsoft/qlib
qlib/rl/utils/env_wrapper.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/utils/env_wrapper.py
MIT
def generate_nan_observation(obs_space: gym.Space) -> Any: """The NaN observation that indicates the environment receives no seed. We assume that obs is complex and there must be something like float. Otherwise this logic doesn't work. """ sample = obs_space.sample() sample = fill_invalid(sample) return sample
The NaN observation that indicates the environment receives no seed. We assume that obs is complex and there must be something like float. Otherwise this logic doesn't work.
generate_nan_observation
python
microsoft/qlib
qlib/rl/utils/finite_env.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/utils/finite_env.py
MIT
def collector_guard(self) -> Generator[FiniteVectorEnv, None, None]: """Guard the collector. Recommended to guard every collect. This guard is for two purposes. 1. Catch and ignore the StopIteration exception, which is the stopping signal thrown by FiniteEnv to let tianshou know that ``collector.collect()`` should exit. 2. Notify the loggers that the collect is ready / done what it's ready / done. Examples -------- >>> with finite_env.collector_guard(): ... collector.collect(n_episode=INF) """ self._collector_guarded = True for logger in self._logger: logger.on_env_all_ready() try: yield self except StopIteration: pass finally: self._collector_guarded = False # At last trigger the loggers for logger in self._logger: logger.on_env_all_done()
Guard the collector. Recommended to guard every collect. This guard is for two purposes. 1. Catch and ignore the StopIteration exception, which is the stopping signal thrown by FiniteEnv to let tianshou know that ``collector.collect()`` should exit. 2. Notify the loggers that the collect is ready / done what it's ready / done. Examples -------- >>> with finite_env.collector_guard(): ... collector.collect(n_episode=INF)
collector_guard
python
microsoft/qlib
qlib/rl/utils/finite_env.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/utils/finite_env.py
MIT
def vectorize_env( env_factory: Callable[..., gym.Env], env_type: FiniteEnvType, concurrency: int, logger: LogWriter | List[LogWriter], ) -> FiniteVectorEnv: """Helper function to create a vector env. Can be used to replace usual VectorEnv. For example, once you wrote: :: DummyVectorEnv([lambda: gym.make(task) for _ in range(env_num)]) Now you can replace it with: :: finite_env_factory(lambda: gym.make(task), "dummy", env_num, my_logger) By doing such replacement, you have two additional features enabled (compared to normal VectorEnv): 1. The vector env will check for NaN observation and kill the worker when its found. See :class:`FiniteVectorEnv` for why we need this. 2. A logger to explicit collect logs from environment workers. Parameters ---------- env_factory Callable to instantiate one single ``gym.Env``. All concurrent workers will have the same ``env_factory``. env_type dummy or subproc or shmem. Corresponding to `parallelism in tianshou <https://tianshou.readthedocs.io/en/master/api/tianshou.env.html#vectorenv>`_. concurrency Concurrent environment workers. logger Log writers. Warnings -------- Please do not use lambda expression here for ``env_factory`` as it may create incorrectly-shared instances. Don't do: :: vectorize_env(lambda: EnvWrapper(...), ...) Please do: :: def env_factory(): ... vectorize_env(env_factory, ...) """ env_type_cls_mapping: Dict[str, Type[FiniteVectorEnv]] = { "dummy": FiniteDummyVectorEnv, "subproc": FiniteSubprocVectorEnv, "shmem": FiniteShmemVectorEnv, } finite_env_cls = env_type_cls_mapping[env_type] return finite_env_cls(logger, [env_factory for _ in range(concurrency)])
Helper function to create a vector env. Can be used to replace usual VectorEnv. For example, once you wrote: :: DummyVectorEnv([lambda: gym.make(task) for _ in range(env_num)]) Now you can replace it with: :: finite_env_factory(lambda: gym.make(task), "dummy", env_num, my_logger) By doing such replacement, you have two additional features enabled (compared to normal VectorEnv): 1. The vector env will check for NaN observation and kill the worker when its found. See :class:`FiniteVectorEnv` for why we need this. 2. A logger to explicit collect logs from environment workers. Parameters ---------- env_factory Callable to instantiate one single ``gym.Env``. All concurrent workers will have the same ``env_factory``. env_type dummy or subproc or shmem. Corresponding to `parallelism in tianshou <https://tianshou.readthedocs.io/en/master/api/tianshou.env.html#vectorenv>`_. concurrency Concurrent environment workers. logger Log writers. Warnings -------- Please do not use lambda expression here for ``env_factory`` as it may create incorrectly-shared instances. Don't do: :: vectorize_env(lambda: EnvWrapper(...), ...) Please do: :: def env_factory(): ... vectorize_env(env_factory, ...)
vectorize_env
python
microsoft/qlib
qlib/rl/utils/finite_env.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/utils/finite_env.py
MIT
def add_string(self, name: str, string: str, loglevel: int | LogLevel = LogLevel.PERIODIC) -> None: """Add a string with name into logged contents.""" if loglevel < self._min_loglevel: return if not isinstance(string, str): raise TypeError(f"{string} is not a string.") self._add_metric(name, string, loglevel)
Add a string with name into logged contents.
add_string
python
microsoft/qlib
qlib/rl/utils/log.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/utils/log.py
MIT
def add_scalar(self, name: str, scalar: Any, loglevel: int | LogLevel = LogLevel.PERIODIC) -> None: """Add a scalar with name into logged contents. Scalar will be converted into a float. """ if loglevel < self._min_loglevel: return if hasattr(scalar, "item"): # could be single-item number scalar = scalar.item() if not isinstance(scalar, (float, int)): raise TypeError(f"{scalar} is not and can not be converted into float or integer.") scalar = float(scalar) self._add_metric(name, scalar, loglevel)
Add a scalar with name into logged contents. Scalar will be converted into a float.
add_scalar
python
microsoft/qlib
qlib/rl/utils/log.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/utils/log.py
MIT
def add_array( self, name: str, array: np.ndarray | pd.DataFrame | pd.Series, loglevel: int | LogLevel = LogLevel.PERIODIC, ) -> None: """Add an array with name into logging.""" if loglevel < self._min_loglevel: return if not isinstance(array, (np.ndarray, pd.DataFrame, pd.Series)): raise TypeError(f"{array} is not one of ndarray, DataFrame and Series.") self._add_metric(name, array, loglevel)
Add an array with name into logging.
add_array
python
microsoft/qlib
qlib/rl/utils/log.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/utils/log.py
MIT
def add_any(self, name: str, obj: Any, loglevel: int | LogLevel = LogLevel.PERIODIC) -> None: """Log something with any type. As it's an "any" object, the only LogWriter accepting it is pickle. Therefore, pickle must be able to serialize it. """ if loglevel < self._min_loglevel: return # FIXME: detect and rescue object that could be scalar or array self._add_metric(name, obj, loglevel)
Log something with any type. As it's an "any" object, the only LogWriter accepting it is pickle. Therefore, pickle must be able to serialize it.
add_any
python
microsoft/qlib
qlib/rl/utils/log.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/utils/log.py
MIT
def clear(self): """Clear all the metrics for a fresh start. To make the logger instance reusable. """ self.episode_count = self.step_count = 0 self.active_env_ids = set()
Clear all the metrics for a fresh start. To make the logger instance reusable.
clear
python
microsoft/qlib
qlib/rl/utils/log.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/utils/log.py
MIT
def state_dict(self) -> dict: """Save the states of the logger to a dict.""" return { "episode_count": self.episode_count, "step_count": self.step_count, "global_step": self.global_step, "global_episode": self.global_episode, "active_env_ids": self.active_env_ids, "episode_lengths": self.episode_lengths, "episode_rewards": self.episode_rewards, "episode_logs": self.episode_logs, }
Save the states of the logger to a dict.
state_dict
python
microsoft/qlib
qlib/rl/utils/log.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/utils/log.py
MIT
def load_state_dict(self, state_dict: dict) -> None: """Load the states of current logger from a dict.""" self.episode_count = state_dict["episode_count"] self.step_count = state_dict["step_count"] self.global_step = state_dict["global_step"] self.global_episode = state_dict["global_episode"] # These are runtime infos. # Though they are loaded, I don't think it really helps. self.active_env_ids = state_dict["active_env_ids"] self.episode_lengths = state_dict["episode_lengths"] self.episode_rewards = state_dict["episode_rewards"] self.episode_logs = state_dict["episode_logs"]
Load the states of current logger from a dict.
load_state_dict
python
microsoft/qlib
qlib/rl/utils/log.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/utils/log.py
MIT
def aggregation(array: Sequence[Any], name: str | None = None) -> Any: """Aggregation function from step-wise to episode-wise. If it's a sequence of float, take the mean. Otherwise, take the first element. If a name is specified and, - if it's ``reward``, the reduction will be sum. """ assert len(array) > 0, "The aggregated array must be not empty." if all(isinstance(v, float) for v in array): if name == "reward": return np.sum(array) return np.mean(array) else: return array[0]
Aggregation function from step-wise to episode-wise. If it's a sequence of float, take the mean. Otherwise, take the first element. If a name is specified and, - if it's ``reward``, the reduction will be sum.
aggregation
python
microsoft/qlib
qlib/rl/utils/log.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/utils/log.py
MIT
def log_episode(self, length: int, rewards: List[float], contents: List[Dict[str, Any]]) -> None: """This is triggered at the end of each trajectory. Parameters ---------- length Length of this trajectory. rewards A list of rewards at each step of this episode. contents Logged contents for every step. """
This is triggered at the end of each trajectory. Parameters ---------- length Length of this trajectory. rewards A list of rewards at each step of this episode. contents Logged contents for every step.
log_episode
python
microsoft/qlib
qlib/rl/utils/log.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/utils/log.py
MIT
def log_step(self, reward: float, contents: Dict[str, Any]) -> None: """This is triggered at each step. Parameters ---------- reward Reward for this step. contents Logged contents for this step. """
This is triggered at each step. Parameters ---------- reward Reward for this step. contents Logged contents for this step.
log_step
python
microsoft/qlib
qlib/rl/utils/log.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/utils/log.py
MIT
def on_env_step(self, env_id: int, obs: ObsType, rew: float, done: bool, info: InfoDict) -> None: """Callback for finite env, on each step.""" # Update counter self.global_step += 1 self.step_count += 1 self.active_env_ids.add(env_id) self.episode_lengths[env_id] += 1 # TODO: reward can be a list of list for MARL self.episode_rewards[env_id].append(rew) values: Dict[str, Any] = {} for key, (loglevel, value) in info["log"].items(): if loglevel >= self.loglevel: # FIXME: this is actually incorrect (see last FIXME) values[key] = value self.episode_logs[env_id].append(values) self.log_step(rew, values) if done: # Update counter self.global_episode += 1 self.episode_count += 1 self.log_episode(self.episode_lengths[env_id], self.episode_rewards[env_id], self.episode_logs[env_id])
Callback for finite env, on each step.
on_env_step
python
microsoft/qlib
qlib/rl/utils/log.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/utils/log.py
MIT
def episode_metrics(self) -> dict[str, float]: """Retrieve the numeric metrics of the latest episode.""" if self._latest_metrics is None: raise ValueError("No episode metrics available yet.") return self._latest_metrics
Retrieve the numeric metrics of the latest episode.
episode_metrics
python
microsoft/qlib
qlib/rl/utils/log.py
https://github.com/microsoft/qlib/blob/master/qlib/rl/utils/log.py
MIT
def __init__( self, outer_trade_decision: BaseTradeDecision = None, level_infra: LevelInfrastructure = None, common_infra: CommonInfrastructure = None, trade_exchange: Exchange = None, ) -> None: """ Parameters ---------- outer_trade_decision : BaseTradeDecision, optional the trade decision of outer strategy which this strategy relies, and it will be traded in [start_time, end_time], by default None - If the strategy is used to split trade decision, it will be used - If the strategy is used for portfolio management, it can be ignored level_infra : LevelInfrastructure, optional level shared infrastructure for backtesting, including trade calendar common_infra : CommonInfrastructure, optional common infrastructure for backtesting, including trade_account, trade_exchange, .etc trade_exchange : Exchange exchange that provides market info, used to deal order and generate report - If `trade_exchange` is None, self.trade_exchange will be set with common_infra - It allows different trade_exchanges is used in different executions. - For example: - In daily execution, both daily exchange and minutely are usable, but the daily exchange is recommended because it run faster. - In minutely execution, the daily exchange is not usable, only the minutely exchange is recommended. """ self._reset(level_infra=level_infra, common_infra=common_infra, outer_trade_decision=outer_trade_decision) self._trade_exchange = trade_exchange
Parameters ---------- outer_trade_decision : BaseTradeDecision, optional the trade decision of outer strategy which this strategy relies, and it will be traded in [start_time, end_time], by default None - If the strategy is used to split trade decision, it will be used - If the strategy is used for portfolio management, it can be ignored level_infra : LevelInfrastructure, optional level shared infrastructure for backtesting, including trade calendar common_infra : CommonInfrastructure, optional common infrastructure for backtesting, including trade_account, trade_exchange, .etc trade_exchange : Exchange exchange that provides market info, used to deal order and generate report - If `trade_exchange` is None, self.trade_exchange will be set with common_infra - It allows different trade_exchanges is used in different executions. - For example: - In daily execution, both daily exchange and minutely are usable, but the daily exchange is recommended because it run faster. - In minutely execution, the daily exchange is not usable, only the minutely exchange is recommended.
__init__
python
microsoft/qlib
qlib/strategy/base.py
https://github.com/microsoft/qlib/blob/master/qlib/strategy/base.py
MIT
def reset( self, level_infra: LevelInfrastructure = None, common_infra: CommonInfrastructure = None, outer_trade_decision: BaseTradeDecision = None, **kwargs, ) -> None: """ - reset `level_infra`, used to reset trade calendar, .etc - reset `common_infra`, used to reset `trade_account`, `trade_exchange`, .etc - reset `outer_trade_decision`, used to make split decision **NOTE**: split this function into `reset` and `_reset` will make following cases more convenient 1. Users want to initialize his strategy by overriding `reset`, but they don't want to affect the `_reset` called when initialization """ self._reset( level_infra=level_infra, common_infra=common_infra, outer_trade_decision=outer_trade_decision, )
- reset `level_infra`, used to reset trade calendar, .etc - reset `common_infra`, used to reset `trade_account`, `trade_exchange`, .etc - reset `outer_trade_decision`, used to make split decision **NOTE**: split this function into `reset` and `_reset` will make following cases more convenient 1. Users want to initialize his strategy by overriding `reset`, but they don't want to affect the `_reset` called when initialization
reset
python
microsoft/qlib
qlib/strategy/base.py
https://github.com/microsoft/qlib/blob/master/qlib/strategy/base.py
MIT
def _reset( self, level_infra: LevelInfrastructure = None, common_infra: CommonInfrastructure = None, outer_trade_decision: BaseTradeDecision = None, ): """ Please refer to the docs of `reset` """ if level_infra is not None: self.reset_level_infra(level_infra) if common_infra is not None: self.reset_common_infra(common_infra) if outer_trade_decision is not None: self.outer_trade_decision = outer_trade_decision
Please refer to the docs of `reset`
_reset
python
microsoft/qlib
qlib/strategy/base.py
https://github.com/microsoft/qlib/blob/master/qlib/strategy/base.py
MIT
def generate_trade_decision( self, execute_result: list = None, ) -> Union[BaseTradeDecision, Generator[Any, Any, BaseTradeDecision]]: """Generate trade decision in each trading bar Parameters ---------- execute_result : List[object], optional the executed result for trade decision, by default None - When call the generate_trade_decision firstly, `execute_result` could be None """ raise NotImplementedError("generate_trade_decision is not implemented!")
Generate trade decision in each trading bar Parameters ---------- execute_result : List[object], optional the executed result for trade decision, by default None - When call the generate_trade_decision firstly, `execute_result` could be None
generate_trade_decision
python
microsoft/qlib
qlib/strategy/base.py
https://github.com/microsoft/qlib/blob/master/qlib/strategy/base.py
MIT
def update_trade_decision( trade_decision: BaseTradeDecision, trade_calendar: TradeCalendarManager, ) -> Optional[BaseTradeDecision]: """ update trade decision in each step of inner execution, this method enable all order Parameters ---------- trade_decision : BaseTradeDecision the trade decision that will be updated trade_calendar : TradeCalendarManager The calendar of the **inner strategy**!!!!! Returns ------- BaseTradeDecision: """ # default to return None, which indicates that the trade decision is not changed return None
update trade decision in each step of inner execution, this method enable all order Parameters ---------- trade_decision : BaseTradeDecision the trade decision that will be updated trade_calendar : TradeCalendarManager The calendar of the **inner strategy**!!!!! Returns ------- BaseTradeDecision:
update_trade_decision
python
microsoft/qlib
qlib/strategy/base.py
https://github.com/microsoft/qlib/blob/master/qlib/strategy/base.py
MIT
def alter_outer_trade_decision(self, outer_trade_decision: BaseTradeDecision) -> BaseTradeDecision: """ A method for updating the outer_trade_decision. The outer strategy may change its decision during updating. Parameters ---------- outer_trade_decision : BaseTradeDecision the decision updated by the outer strategy Returns ------- BaseTradeDecision """ # default to reset the decision directly # NOTE: normally, user should do something to the strategy due to the change of outer decision return outer_trade_decision
A method for updating the outer_trade_decision. The outer strategy may change its decision during updating. Parameters ---------- outer_trade_decision : BaseTradeDecision the decision updated by the outer strategy Returns ------- BaseTradeDecision
alter_outer_trade_decision
python
microsoft/qlib
qlib/strategy/base.py
https://github.com/microsoft/qlib/blob/master/qlib/strategy/base.py
MIT
def post_upper_level_exe_step(self) -> None: """ A hook for doing sth after the upper level executor finished its execution (for example, finalize the metrics collection). """
A hook for doing sth after the upper level executor finished its execution (for example, finalize the metrics collection).
post_upper_level_exe_step
python
microsoft/qlib
qlib/strategy/base.py
https://github.com/microsoft/qlib/blob/master/qlib/strategy/base.py
MIT
def post_exe_step(self, execute_result: Optional[list]) -> None: """ A hook for doing sth after the corresponding executor finished its execution. Parameters ---------- execute_result : the execution result """
A hook for doing sth after the corresponding executor finished its execution. Parameters ---------- execute_result : the execution result
post_exe_step
python
microsoft/qlib
qlib/strategy/base.py
https://github.com/microsoft/qlib/blob/master/qlib/strategy/base.py
MIT
def __init__( self, policy, outer_trade_decision: BaseTradeDecision = None, level_infra: LevelInfrastructure = None, common_infra: CommonInfrastructure = None, **kwargs, ) -> None: """ Parameters ---------- policy : RL policy for generate action """ super(RLStrategy, self).__init__(outer_trade_decision, level_infra, common_infra, **kwargs) self.policy = policy
Parameters ---------- policy : RL policy for generate action
__init__
python
microsoft/qlib
qlib/strategy/base.py
https://github.com/microsoft/qlib/blob/master/qlib/strategy/base.py
MIT
def __init__( self, policy, state_interpreter: dict | StateInterpreter, action_interpreter: dict | ActionInterpreter, outer_trade_decision: BaseTradeDecision = None, level_infra: LevelInfrastructure = None, common_infra: CommonInfrastructure = None, **kwargs, ) -> None: """ Parameters ---------- state_interpreter : Union[dict, StateInterpreter] interpreter that interprets the qlib execute result into rl env state action_interpreter : Union[dict, ActionInterpreter] interpreter that interprets the rl agent action into qlib order list start_time : Union[str, pd.Timestamp], optional start time of trading, by default None end_time : Union[str, pd.Timestamp], optional end time of trading, by default None """ super(RLIntStrategy, self).__init__(policy, outer_trade_decision, level_infra, common_infra, **kwargs) self.policy = policy self.state_interpreter = init_instance_by_config(state_interpreter, accept_types=StateInterpreter) self.action_interpreter = init_instance_by_config(action_interpreter, accept_types=ActionInterpreter)
Parameters ---------- state_interpreter : Union[dict, StateInterpreter] interpreter that interprets the qlib execute result into rl env state action_interpreter : Union[dict, ActionInterpreter] interpreter that interprets the rl agent action into qlib order list start_time : Union[str, pd.Timestamp], optional start time of trading, by default None end_time : Union[str, pd.Timestamp], optional end time of trading, by default None
__init__
python
microsoft/qlib
qlib/strategy/base.py
https://github.com/microsoft/qlib/blob/master/qlib/strategy/base.py
MIT
def download(self, url: str, target_path: [Path, str]): """ Download a file from the specified url. Parameters ---------- url: str The url of the data. target_path: str The location where the data is saved, including the file name. """ file_name = str(target_path).rsplit("/", maxsplit=1)[-1] resp = requests.get(url, stream=True, timeout=60) resp.raise_for_status() if resp.status_code != 200: raise requests.exceptions.HTTPError() chunk_size = 1024 logger.warning( f"The data for the example is collected from Yahoo Finance. Please be aware that the quality of the data might not be perfect. (You can refer to the original data source: https://finance.yahoo.com/lookup.)" ) logger.info(f"{os.path.basename(file_name)} downloading......") with tqdm(total=int(resp.headers.get("Content-Length", 0))) as p_bar: with target_path.open("wb") as fp: for chunk in resp.iter_content(chunk_size=chunk_size): fp.write(chunk) p_bar.update(chunk_size)
Download a file from the specified url. Parameters ---------- url: str The url of the data. target_path: str The location where the data is saved, including the file name.
download
python
microsoft/qlib
qlib/tests/data.py
https://github.com/microsoft/qlib/blob/master/qlib/tests/data.py
MIT
def download_data(self, file_name: str, target_dir: [Path, str], delete_old: bool = True): """ Download the specified file to the target folder. Parameters ---------- target_dir: str data save directory file_name: str dataset name, needs to endwith .zip, value from [rl_data.zip, csv_data_cn.zip, ...] may contain folder names, for example: v2/qlib_data_simple_cn_1d_latest.zip delete_old: bool delete an existing directory, by default True Examples --------- # get rl data python get_data.py download_data --file_name rl_data.zip --target_dir ~/.qlib/qlib_data/rl_data When this command is run, the data will be downloaded from this link: https://qlibpublic.blob.core.windows.net/data/default/stock_data/rl_data.zip?{token} # get cn csv data python get_data.py download_data --file_name csv_data_cn.zip --target_dir ~/.qlib/csv_data/cn_data When this command is run, the data will be downloaded from this link: https://qlibpublic.blob.core.windows.net/data/default/stock_data/csv_data_cn.zip?{token} ------- """ target_dir = Path(target_dir).expanduser() target_dir.mkdir(exist_ok=True, parents=True) # saved file name _target_file_name = datetime.datetime.now().strftime("%Y%m%d%H%M%S") + "_" + os.path.basename(file_name) target_path = target_dir.joinpath(_target_file_name) url = self.merge_remote_url(file_name) self.download(url=url, target_path=target_path) self._unzip(target_path, target_dir, delete_old) if self.delete_zip_file: target_path.unlink()
Download the specified file to the target folder. Parameters ---------- target_dir: str data save directory file_name: str dataset name, needs to endwith .zip, value from [rl_data.zip, csv_data_cn.zip, ...] may contain folder names, for example: v2/qlib_data_simple_cn_1d_latest.zip delete_old: bool delete an existing directory, by default True Examples --------- # get rl data python get_data.py download_data --file_name rl_data.zip --target_dir ~/.qlib/qlib_data/rl_data When this command is run, the data will be downloaded from this link: https://qlibpublic.blob.core.windows.net/data/default/stock_data/rl_data.zip?{token} # get cn csv data python get_data.py download_data --file_name csv_data_cn.zip --target_dir ~/.qlib/csv_data/cn_data When this command is run, the data will be downloaded from this link: https://qlibpublic.blob.core.windows.net/data/default/stock_data/csv_data_cn.zip?{token} -------
download_data
python
microsoft/qlib
qlib/tests/data.py
https://github.com/microsoft/qlib/blob/master/qlib/tests/data.py
MIT
def qlib_data( self, name="qlib_data", target_dir="~/.qlib/qlib_data/cn_data", version=None, interval="1d", region="cn", delete_old=True, exists_skip=False, ): """download cn qlib data from remote Parameters ---------- target_dir: str data save directory name: str dataset name, value from [qlib_data, qlib_data_simple], by default qlib_data version: str data version, value from [v1, ...], by default None(use script to specify version) interval: str data freq, value from [1d], by default 1d region: str data region, value from [cn, us], by default cn delete_old: bool delete an existing directory, by default True exists_skip: bool exists skip, by default False Examples --------- # get 1d data python get_data.py qlib_data --name qlib_data --target_dir ~/.qlib/qlib_data/cn_data --interval 1d --region cn When this command is run, the data will be downloaded from this link: https://qlibpublic.blob.core.windows.net/data/default/stock_data/v2/qlib_data_cn_1d_latest.zip?{token} # get 1min data python get_data.py qlib_data --name qlib_data --target_dir ~/.qlib/qlib_data/cn_data_1min --interval 1min --region cn When this command is run, the data will be downloaded from this link: https://qlibpublic.blob.core.windows.net/data/default/stock_data/v2/qlib_data_cn_1min_latest.zip?{token} ------- """ if exists_skip and exists_qlib_data(target_dir): logger.warning( f"Data already exists: {target_dir}, the data download will be skipped\n" f"\tIf downloading is required: `exists_skip=False` or `change target_dir`" ) return qlib_version = ".".join(re.findall(r"(\d+)\.+", qlib.__version__)) def _get_file_name_with_version(qlib_version, dataset_version): dataset_version = "v2" if dataset_version is None else dataset_version file_name_with_version = f"{dataset_version}/{name}_{region.lower()}_{interval.lower()}_{qlib_version}.zip" return file_name_with_version file_name = _get_file_name_with_version(qlib_version, dataset_version=version) if not self.check_dataset(file_name): file_name = _get_file_name_with_version("latest", dataset_version=version) self.download_data(file_name.lower(), target_dir, delete_old)
download cn qlib data from remote Parameters ---------- target_dir: str data save directory name: str dataset name, value from [qlib_data, qlib_data_simple], by default qlib_data version: str data version, value from [v1, ...], by default None(use script to specify version) interval: str data freq, value from [1d], by default 1d region: str data region, value from [cn, us], by default cn delete_old: bool delete an existing directory, by default True exists_skip: bool exists skip, by default False Examples --------- # get 1d data python get_data.py qlib_data --name qlib_data --target_dir ~/.qlib/qlib_data/cn_data --interval 1d --region cn When this command is run, the data will be downloaded from this link: https://qlibpublic.blob.core.windows.net/data/default/stock_data/v2/qlib_data_cn_1d_latest.zip?{token} # get 1min data python get_data.py qlib_data --name qlib_data --target_dir ~/.qlib/qlib_data/cn_data_1min --interval 1min --region cn When this command is run, the data will be downloaded from this link: https://qlibpublic.blob.core.windows.net/data/default/stock_data/v2/qlib_data_cn_1min_latest.zip?{token} -------
qlib_data
python
microsoft/qlib
qlib/tests/data.py
https://github.com/microsoft/qlib/blob/master/qlib/tests/data.py
MIT
def robust_zscore(x: pd.Series, zscore=False): """Robust ZScore Normalization Use robust statistics for Z-Score normalization: mean(x) = median(x) std(x) = MAD(x) * 1.4826 Reference: https://en.wikipedia.org/wiki/Median_absolute_deviation. """ x = x - x.median() mad = x.abs().median() x = np.clip(x / mad / 1.4826, -3, 3) if zscore: x -= x.mean() x /= x.std() return x
Robust ZScore Normalization Use robust statistics for Z-Score normalization: mean(x) = median(x) std(x) = MAD(x) * 1.4826 Reference: https://en.wikipedia.org/wiki/Median_absolute_deviation.
robust_zscore
python
microsoft/qlib
qlib/utils/data.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/data.py
MIT
def deepcopy_basic_type(obj: object) -> object: """ deepcopy an object without copy the complicated objects. This is useful when you want to generate Qlib tasks and share the handler NOTE: - This function can't handle recursive objects!!!!! Parameters ---------- obj : object the object to be copied Returns ------- object: The copied object """ if isinstance(obj, tuple): return tuple(deepcopy_basic_type(i) for i in obj) elif isinstance(obj, list): return list(deepcopy_basic_type(i) for i in obj) elif isinstance(obj, dict): return {k: deepcopy_basic_type(v) for k, v in obj.items()} else: return obj
deepcopy an object without copy the complicated objects. This is useful when you want to generate Qlib tasks and share the handler NOTE: - This function can't handle recursive objects!!!!! Parameters ---------- obj : object the object to be copied Returns ------- object: The copied object
deepcopy_basic_type
python
microsoft/qlib
qlib/utils/data.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/data.py
MIT
def update_config(base_config: dict, ext_config: Union[dict, List[dict]]): """ supporting adding base config based on the ext_config >>> bc = {"a": "xixi"} >>> ec = {"b": "haha"} >>> new_bc = update_config(bc, ec) >>> print(new_bc) {'a': 'xixi', 'b': 'haha'} >>> print(bc) # base config should not be changed {'a': 'xixi'} >>> print(update_config(bc, {"b": S_DROP})) {'a': 'xixi'} >>> print(update_config(new_bc, {"b": S_DROP})) {'a': 'xixi'} """ base_config = deepcopy(base_config) # in case of modifying base config for ec in ext_config if isinstance(ext_config, (list, tuple)) else [ext_config]: for key in ec: if key not in base_config: # if it is not in the default key, then replace it. # ADD if not drop if ec[key] != S_DROP: base_config[key] = ec[key] else: if isinstance(base_config[key], dict) and isinstance(ec[key], dict): # Recursive # Both of them are dict, then update it nested base_config[key] = update_config(base_config[key], ec[key]) elif ec[key] == S_DROP: # DROP del base_config[key] else: # REPLACE # one of then are not dict. Then replace base_config[key] = ec[key] return base_config
supporting adding base config based on the ext_config >>> bc = {"a": "xixi"} >>> ec = {"b": "haha"} >>> new_bc = update_config(bc, ec) >>> print(new_bc) {'a': 'xixi', 'b': 'haha'} >>> print(bc) # base config should not be changed {'a': 'xixi'} >>> print(update_config(bc, {"b": S_DROP})) {'a': 'xixi'} >>> print(update_config(new_bc, {"b": S_DROP})) {'a': 'xixi'}
update_config
python
microsoft/qlib
qlib/utils/data.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/data.py
MIT
def guess_horizon(label: List): """ Try to guess the horizon by parsing label """ expr = DatasetProvider.parse_fields(label)[0] lft_etd, rght_etd = expr.get_extended_window_size() return rght_etd
Try to guess the horizon by parsing label
guess_horizon
python
microsoft/qlib
qlib/utils/data.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/data.py
MIT
def get_or_create_path(path: Optional[Text] = None, return_dir: bool = False): """Create or get a file or directory given the path and return_dir. Parameters ---------- path: a string indicates the path or None indicates creating a temporary path. return_dir: if True, create and return a directory; otherwise c&r a file. """ if path: if return_dir and not os.path.exists(path): os.makedirs(path) elif not return_dir: # return a file, thus we need to create its parent directory xpath = os.path.abspath(os.path.join(path, "..")) if not os.path.exists(xpath): os.makedirs(xpath) else: temp_dir = os.path.expanduser("~/tmp") if not os.path.exists(temp_dir): os.makedirs(temp_dir) if return_dir: _, path = tempfile.mkdtemp(dir=temp_dir) else: _, path = tempfile.mkstemp(dir=temp_dir) return path
Create or get a file or directory given the path and return_dir. Parameters ---------- path: a string indicates the path or None indicates creating a temporary path. return_dir: if True, create and return a directory; otherwise c&r a file.
get_or_create_path
python
microsoft/qlib
qlib/utils/file.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/file.py
MIT
def save_multiple_parts_file(filename, format="gztar"): """Save multiple parts file Implementation process: 1. get the absolute path to 'filename' 2. create a 'filename' directory 3. user does something with file_path('filename/') 4. remove 'filename' directory 5. make_archive 'filename' directory, and rename 'archive file' to filename :param filename: result model path :param format: archive format: one of "zip", "tar", "gztar", "bztar", or "xztar" :return: real model path Usage:: >>> # The following code will create an archive file('~/tmp/test_file') containing 'test_doc_i'(i is 0-10) files. >>> with save_multiple_parts_file('~/tmp/test_file') as filename_dir: ... for i in range(10): ... temp_path = os.path.join(filename_dir, 'test_doc_{}'.format(str(i))) ... with open(temp_path) as fp: ... fp.write(str(i)) ... """ if filename.startswith("~"): filename = os.path.expanduser(filename) file_path = os.path.abspath(filename) # Create model dir if os.path.exists(file_path): raise FileExistsError("ERROR: file exists: {}, cannot be create the directory.".format(file_path)) os.makedirs(file_path) # return model dir yield file_path # filename dir to filename.tar.gz file tar_file = shutil.make_archive(file_path, format=format, root_dir=file_path) # Remove filename dir if os.path.exists(file_path): shutil.rmtree(file_path) # filename.tar.gz rename to filename os.rename(tar_file, file_path)
Save multiple parts file Implementation process: 1. get the absolute path to 'filename' 2. create a 'filename' directory 3. user does something with file_path('filename/') 4. remove 'filename' directory 5. make_archive 'filename' directory, and rename 'archive file' to filename :param filename: result model path :param format: archive format: one of "zip", "tar", "gztar", "bztar", or "xztar" :return: real model path Usage:: >>> # The following code will create an archive file('~/tmp/test_file') containing 'test_doc_i'(i is 0-10) files. >>> with save_multiple_parts_file('~/tmp/test_file') as filename_dir: ... for i in range(10): ... temp_path = os.path.join(filename_dir, 'test_doc_{}'.format(str(i))) ... with open(temp_path) as fp: ... fp.write(str(i)) ...
save_multiple_parts_file
python
microsoft/qlib
qlib/utils/file.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/file.py
MIT
def unpack_archive_with_buffer(buffer, format="gztar"): """Unpack archive with archive buffer After the call is finished, the archive file and directory will be deleted. Implementation process: 1. create 'tempfile' in '~/tmp/' and directory 2. 'buffer' write to 'tempfile' 3. unpack archive file('tempfile') 4. user does something with file_path('tempfile/') 5. remove 'tempfile' and 'tempfile directory' :param buffer: bytes :param format: archive format: one of "zip", "tar", "gztar", "bztar", or "xztar" :return: unpack archive directory path Usage:: >>> # The following code is to print all the file names in 'test_unpack.tar.gz' >>> with open('test_unpack.tar.gz') as fp: ... buffer = fp.read() ... >>> with unpack_archive_with_buffer(buffer) as temp_dir: ... for f_n in os.listdir(temp_dir): ... print(f_n) ... """ temp_dir = os.path.expanduser("~/tmp") if not os.path.exists(temp_dir): os.makedirs(temp_dir) with tempfile.NamedTemporaryFile("wb", delete=False, dir=temp_dir) as fp: fp.write(buffer) file_path = fp.name try: tar_file = file_path + ".tar.gz" os.rename(file_path, tar_file) # Create dir os.makedirs(file_path) shutil.unpack_archive(tar_file, format=format, extract_dir=file_path) # Return temp dir yield file_path except Exception as e: log.error(str(e)) finally: # Remove temp tar file if os.path.exists(tar_file): os.unlink(tar_file) # Remove temp model dir if os.path.exists(file_path): shutil.rmtree(file_path)
Unpack archive with archive buffer After the call is finished, the archive file and directory will be deleted. Implementation process: 1. create 'tempfile' in '~/tmp/' and directory 2. 'buffer' write to 'tempfile' 3. unpack archive file('tempfile') 4. user does something with file_path('tempfile/') 5. remove 'tempfile' and 'tempfile directory' :param buffer: bytes :param format: archive format: one of "zip", "tar", "gztar", "bztar", or "xztar" :return: unpack archive directory path Usage:: >>> # The following code is to print all the file names in 'test_unpack.tar.gz' >>> with open('test_unpack.tar.gz') as fp: ... buffer = fp.read() ... >>> with unpack_archive_with_buffer(buffer) as temp_dir: ... for f_n in os.listdir(temp_dir): ... print(f_n) ...
unpack_archive_with_buffer
python
microsoft/qlib
qlib/utils/file.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/file.py
MIT
def get_io_object(file: Union[IO, str, Path], *args, **kwargs) -> IO: """ providing a easy interface to get an IO object Parameters ---------- file : Union[IO, str, Path] a object representing the file Returns ------- IO: a IO-like object Raises ------ NotImplementedError: """ if isinstance(file, IO): yield file else: if isinstance(file, str): file = Path(file) if not isinstance(file, Path): raise NotImplementedError(f"This type[{type(file)}] of input is not supported") with file.open(*args, **kwargs) as f: yield f
providing a easy interface to get an IO object Parameters ---------- file : Union[IO, str, Path] a object representing the file Returns ------- IO: a IO-like object Raises ------ NotImplementedError:
get_io_object
python
microsoft/qlib
qlib/utils/file.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/file.py
MIT
def concat(data_list: Union[SingleData], axis=0) -> MultiData: """concat all SingleData by index. TODO: now just for SingleData. Parameters ---------- data_list : List[SingleData] the list of all SingleData to concat. Returns ------- MultiData the MultiData with ndim == 2 """ if axis == 0: raise NotImplementedError(f"please implement this func when axis == 0") elif axis == 1: # get all index and row all_index = set() for index_data in data_list: all_index = all_index | set(index_data.index) all_index = list(all_index) all_index.sort() all_index_map = dict(zip(all_index, range(len(all_index)))) # concat all tmp_data = np.full((len(all_index), len(data_list)), np.nan) for data_id, index_data in enumerate(data_list): assert isinstance(index_data, SingleData) now_data_map = [all_index_map[index] for index in index_data.index] tmp_data[now_data_map, data_id] = index_data.data return MultiData(tmp_data, all_index) else: raise ValueError(f"axis must be 0 or 1")
concat all SingleData by index. TODO: now just for SingleData. Parameters ---------- data_list : List[SingleData] the list of all SingleData to concat. Returns ------- MultiData the MultiData with ndim == 2
concat
python
microsoft/qlib
qlib/utils/index_data.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/index_data.py
MIT
def sum_by_index(data_list: Union[SingleData], new_index: list, fill_value=0) -> SingleData: """concat all SingleData by new index. Parameters ---------- data_list : List[SingleData] the list of all SingleData to sum. new_index : list the new_index of new SingleData. fill_value : float fill the missing values or replace np.nan. Returns ------- SingleData the SingleData with new_index and values after sum. """ data_list = [data.to_dict() for data in data_list] data_sum = {} for id in new_index: item_sum = 0 for data in data_list: if id in data and not np.isnan(data[id]): item_sum += data[id] else: item_sum += fill_value data_sum[id] = item_sum return SingleData(data_sum)
concat all SingleData by new index. Parameters ---------- data_list : List[SingleData] the list of all SingleData to sum. new_index : list the new_index of new SingleData. fill_value : float fill the missing values or replace np.nan. Returns ------- SingleData the SingleData with new_index and values after sum.
sum_by_index
python
microsoft/qlib
qlib/utils/index_data.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/index_data.py
MIT
def _convert_type(self, item): """ After user creates indices with Type A, user may query data with other types with the same info. This method try to make type conversion and make query sane rather than raising KeyError strictly Parameters ---------- item : The item to query index """ if self.idx_list.dtype.type is np.datetime64: if isinstance(item, pd.Timestamp): # This happens often when creating index based on pandas.DatetimeIndex and query with pd.Timestamp return item.to_numpy().astype(self.idx_list.dtype) elif isinstance(item, np.datetime64): # This happens often when creating index based on np.datetime64 and query with another precision return item.astype(self.idx_list.dtype) # NOTE: It is hard to consider every case at first. # We just try to cover part of cases to make it more user-friendly return item
After user creates indices with Type A, user may query data with other types with the same info. This method try to make type conversion and make query sane rather than raising KeyError strictly Parameters ---------- item : The item to query index
_convert_type
python
microsoft/qlib
qlib/utils/index_data.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/index_data.py
MIT
def index(self, item) -> int: """ Given the index value, get the integer index Parameters ---------- item : The item to query Returns ------- int: The index of the item Raises ------ KeyError: If the query item does not exist """ try: return self.index_map[self._convert_type(item)] except IndexError as index_e: raise KeyError(f"{item} can't be found in {self}") from index_e
Given the index value, get the integer index Parameters ---------- item : The item to query Returns ------- int: The index of the item Raises ------ KeyError: If the query item does not exist
index
python
microsoft/qlib
qlib/utils/index_data.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/index_data.py
MIT
def sort(self) -> Tuple["Index", np.ndarray]: """ sort the index Returns ------- Tuple["Index", np.ndarray]: the sorted Index and the changed index """ sorted_idx = np.argsort(self.idx_list) idx = Index(self.idx_list[sorted_idx]) idx._is_sorted = True return idx, sorted_idx
sort the index Returns ------- Tuple["Index", np.ndarray]: the sorted Index and the changed index
sort
python
microsoft/qlib
qlib/utils/index_data.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/index_data.py
MIT
def proc_idx_l(indices: List[Union[List, pd.Index, Index]], data_shape: Tuple = None) -> List[Index]: """process the indices from user and output a list of `Index`""" res = [] for i, idx in enumerate(indices): res.append(Index(data_shape[i] if len(idx) == 0 else idx)) return res
process the indices from user and output a list of `Index`
proc_idx_l
python
microsoft/qlib
qlib/utils/index_data.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/index_data.py
MIT
def _slc_convert(self, index: Index, indexing: slice) -> slice: """ convert value-based indexing to integer-based indexing. Parameters ---------- index : Index index data. indexing : slice value based indexing data with slice type for indexing. Returns ------- slice: the integer based slicing """ if index.is_sorted(): int_start = None if indexing.start is None else bisect.bisect_left(index, indexing.start) int_stop = None if indexing.stop is None else bisect.bisect_right(index, indexing.stop) else: int_start = None if indexing.start is None else index.index(indexing.start) int_stop = None if indexing.stop is None else index.index(indexing.stop) + 1 return slice(int_start, int_stop)
convert value-based indexing to integer-based indexing. Parameters ---------- index : Index index data. indexing : slice value based indexing data with slice type for indexing. Returns ------- slice: the integer based slicing
_slc_convert
python
microsoft/qlib
qlib/utils/index_data.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/index_data.py
MIT
def __getitem__(self, indexing): """ Parameters ---------- indexing : query for data Raises ------ KeyError: If the non-slice index is queried but does not exist, `KeyError` is raised. """ # 1) convert slices to int loc if not isinstance(indexing, tuple): # NOTE: tuple is not supported for indexing indexing = (indexing,) # TODO: create a subclass for single value query assert len(indexing) <= len(self._indices) int_indexing = [] for dim, index in enumerate(self._indices): if dim < len(indexing): _indexing = indexing[dim] if not self._int_loc: # type converting is only necessary when it is not `iloc` if isinstance(_indexing, slice): _indexing = self._slc_convert(index, _indexing) elif isinstance(_indexing, (IndexData, np.ndarray)): if isinstance(_indexing, IndexData): _indexing = _indexing.data assert _indexing.ndim == 1 if _indexing.dtype != bool: _indexing = np.array(list(index.index(i) for i in _indexing)) else: _indexing = index.index(_indexing) else: # Default to select all when user input is not given _indexing = slice(None) int_indexing.append(_indexing) # 2) select data and index new_data = self._bind_id.data[tuple(int_indexing)] # return directly if it is scalar if new_data.ndim == 0: return new_data # otherwise we go on to the index part new_indices = [idx[indexing] for idx, indexing in zip(self._indices, int_indexing)] # 3) squash dimensions new_indices = [ idx for idx in new_indices if isinstance(idx, np.ndarray) and idx.ndim > 0 ] # squash the zero dim indexing if new_data.ndim == 1: cls = SingleData elif new_data.ndim == 2: cls = MultiData else: raise ValueError("Not supported") return cls(new_data, *new_indices)
Parameters ---------- indexing : query for data Raises ------ KeyError: If the non-slice index is queried but does not exist, `KeyError` is raised.
__getitem__
python
microsoft/qlib
qlib/utils/index_data.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/index_data.py
MIT
def index_data_ops_creator(*args, **kwargs): """ meta class for auto generating operations for index data. """ for method_name in ["__add__", "__sub__", "__rsub__", "__mul__", "__truediv__", "__eq__", "__gt__", "__lt__"]: args[2][method_name] = BinaryOps(method_name=method_name) return type(*args)
meta class for auto generating operations for index data.
index_data_ops_creator
python
microsoft/qlib
qlib/utils/index_data.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/index_data.py
MIT
def abs(self): """get the abs of data except np.nan.""" tmp_data = np.absolute(self.data) return self.__class__(tmp_data, *self.indices)
get the abs of data except np.nan.
abs
python
microsoft/qlib
qlib/utils/index_data.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/index_data.py
MIT
def __init__( self, data: Union[int, float, np.number, list, dict, pd.Series] = [], index: Union[List, pd.Index, Index] = [] ): """A data structure of index and numpy data. It's used to replace pd.Series due to high-speed. Parameters ---------- data : Union[int, float, np.number, list, dict, pd.Series] the input data index : Union[list, pd.Index] the index of data. empty list indicates that auto filling the index to the length of data """ # for special data type if isinstance(data, dict): assert len(index) == 0 if len(data) > 0: index, data = zip(*data.items()) else: index, data = [], [] elif isinstance(data, pd.Series): assert len(index) == 0 index, data = data.index, data.values elif isinstance(data, (int, float, np.number)): data = [data] super().__init__(data, index) assert self.ndim == 1
A data structure of index and numpy data. It's used to replace pd.Series due to high-speed. Parameters ---------- data : Union[int, float, np.number, list, dict, pd.Series] the input data index : Union[list, pd.Index] the index of data. empty list indicates that auto filling the index to the length of data
__init__
python
microsoft/qlib
qlib/utils/index_data.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/index_data.py
MIT
def reindex(self, index: Index, fill_value=np.nan) -> SingleData: """reindex data and fill the missing value with np.nan. Parameters ---------- new_index : list new index fill_value: what value to fill if index is missing Returns ------- SingleData reindex data """ # TODO: This method can be more general if self.index == index: return self tmp_data = np.full(len(index), fill_value, dtype=np.float64) for index_id, index_item in enumerate(index): try: tmp_data[index_id] = self.loc[index_item] except KeyError: pass return SingleData(tmp_data, index)
reindex data and fill the missing value with np.nan. Parameters ---------- new_index : list new index fill_value: what value to fill if index is missing Returns ------- SingleData reindex data
reindex
python
microsoft/qlib
qlib/utils/index_data.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/index_data.py
MIT
def __init__( self, data: Union[int, float, np.number, list] = [], index: Union[List, pd.Index, Index] = [], columns: Union[List, pd.Index, Index] = [], ): """A data structure of index and numpy data. It's used to replace pd.DataFrame due to high-speed. Parameters ---------- data : Union[list, np.ndarray] the dim of data must be 2. index : Union[List, pd.Index, Index] the index of data. columns: Union[List, pd.Index, Index] the columns of data. """ if isinstance(data, pd.DataFrame): index, columns, data = data.index, data.columns, data.values super().__init__(data, index, columns) assert self.ndim == 2
A data structure of index and numpy data. It's used to replace pd.DataFrame due to high-speed. Parameters ---------- data : Union[list, np.ndarray] the dim of data must be 2. index : Union[List, pd.Index, Index] the index of data. columns: Union[List, pd.Index, Index] the columns of data.
__init__
python
microsoft/qlib
qlib/utils/index_data.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/index_data.py
MIT
def get_module_by_module_path(module_path: Union[str, ModuleType]): """Load module path :param module_path: :return: :raises: ModuleNotFoundError """ if module_path is None: raise ModuleNotFoundError("None is passed in as parameters as module_path") if isinstance(module_path, ModuleType): module = module_path else: if module_path.endswith(".py"): module_name = re.sub("^[^a-zA-Z_]+", "", re.sub("[^0-9a-zA-Z_]", "", module_path[:-3].replace("/", "_"))) module_spec = importlib.util.spec_from_file_location(module_name, module_path) module = importlib.util.module_from_spec(module_spec) sys.modules[module_name] = module module_spec.loader.exec_module(module) else: module = importlib.import_module(module_path) return module
Load module path :param module_path: :return: :raises: ModuleNotFoundError
get_module_by_module_path
python
microsoft/qlib
qlib/utils/mod.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/mod.py
MIT
def split_module_path(module_path: str) -> Tuple[str, str]: """ Parameters ---------- module_path : str e.g. "a.b.c.ClassName" Returns ------- Tuple[str, str] e.g. ("a.b.c", "ClassName") """ *m_path, cls = module_path.split(".") m_path = ".".join(m_path) return m_path, cls
Parameters ---------- module_path : str e.g. "a.b.c.ClassName" Returns ------- Tuple[str, str] e.g. ("a.b.c", "ClassName")
split_module_path
python
microsoft/qlib
qlib/utils/mod.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/mod.py
MIT
def get_callable_kwargs(config: InstConf, default_module: Union[str, ModuleType] = None) -> (type, dict): """ extract class/func and kwargs from config info Parameters ---------- config : [dict, str] similar to config please refer to the doc of init_instance_by_config default_module : Python module or str It should be a python module to load the class type This function will load class from the config['module_path'] first. If config['module_path'] doesn't exists, it will load the class from default_module. Returns ------- (type, dict): the class/func object and it's arguments. Raises ------ ModuleNotFoundError """ if isinstance(config, dict): key = "class" if "class" in config else "func" if isinstance(config[key], str): # 1) get module and class # - case 1): "a.b.c.ClassName" # - case 2): {"class": "ClassName", "module_path": "a.b.c"} m_path, cls = split_module_path(config[key]) if m_path == "": m_path = config.get("module_path", default_module) module = get_module_by_module_path(m_path) # 2) get callable _callable = getattr(module, cls) # may raise AttributeError else: _callable = config[key] # the class type itself is passed in kwargs = config.get("kwargs", {}) elif isinstance(config, str): # a.b.c.ClassName m_path, cls = split_module_path(config) module = get_module_by_module_path(default_module if m_path == "" else m_path) _callable = getattr(module, cls) kwargs = {} else: raise NotImplementedError(f"This type of input is not supported") return _callable, kwargs
extract class/func and kwargs from config info Parameters ---------- config : [dict, str] similar to config please refer to the doc of init_instance_by_config default_module : Python module or str It should be a python module to load the class type This function will load class from the config['module_path'] first. If config['module_path'] doesn't exists, it will load the class from default_module. Returns ------- (type, dict): the class/func object and it's arguments. Raises ------ ModuleNotFoundError
get_callable_kwargs
python
microsoft/qlib
qlib/utils/mod.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/mod.py
MIT
def init_instance_by_config( config: InstConf, default_module=None, accept_types: Union[type, Tuple[type]] = (), try_kwargs: Dict = {}, **kwargs, ) -> Any: """ get initialized instance with config Parameters ---------- config : InstConf default_module : Python module Optional. It should be a python module. NOTE: the "module_path" will be override by `module` arguments This function will load class from the config['module_path'] first. If config['module_path'] doesn't exists, it will load the class from default_module. accept_types: Union[type, Tuple[type]] Optional. If the config is a instance of specific type, return the config directly. This will be passed into the second parameter of isinstance. try_kwargs: Dict Try to pass in kwargs in `try_kwargs` when initialized the instance If error occurred, it will fail back to initialization without try_kwargs. Returns ------- object: An initialized object based on the config info """ if isinstance(config, accept_types): return config if isinstance(config, (str, Path)): if isinstance(config, str): # path like 'file:///<path to pickle file>/obj.pkl' pr = urlparse(config) if pr.scheme == "file": # To enable relative path like file://data/a/b/c.pkl. pr.netloc will be data path = pr.path if pr.netloc != "": path = path.lstrip("/") pr_path = os.path.join(pr.netloc, path) if bool(pr.path) else pr.netloc with open(os.path.normpath(pr_path), "rb") as f: return pickle.load(f) else: with config.open("rb") as f: return pickle.load(f) klass, cls_kwargs = get_callable_kwargs(config, default_module=default_module) try: return klass(**cls_kwargs, **try_kwargs, **kwargs) except (TypeError,): # TypeError for handling errors like # 1: `XXX() got multiple values for keyword argument 'YYY'` # 2: `XXX() got an unexpected keyword argument 'YYY' return klass(**cls_kwargs, **kwargs)
get initialized instance with config Parameters ---------- config : InstConf default_module : Python module Optional. It should be a python module. NOTE: the "module_path" will be override by `module` arguments This function will load class from the config['module_path'] first. If config['module_path'] doesn't exists, it will load the class from default_module. accept_types: Union[type, Tuple[type]] Optional. If the config is a instance of specific type, return the config directly. This will be passed into the second parameter of isinstance. try_kwargs: Dict Try to pass in kwargs in `try_kwargs` when initialized the instance If error occurred, it will fail back to initialization without try_kwargs. Returns ------- object: An initialized object based on the config info
init_instance_by_config
python
microsoft/qlib
qlib/utils/mod.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/mod.py
MIT
def class_casting(obj: object, cls: type): """ Python doesn't provide the downcasting mechanism. We use the trick here to downcast the class Parameters ---------- obj : object the object to be cast cls : type the target class type """ orig_cls = obj.__class__ obj.__class__ = cls yield obj.__class__ = orig_cls
Python doesn't provide the downcasting mechanism. We use the trick here to downcast the class Parameters ---------- obj : object the object to be cast cls : type the target class type
class_casting
python
microsoft/qlib
qlib/utils/mod.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/mod.py
MIT
def find_all_classes(module_path: Union[str, ModuleType], cls: type) -> List[type]: """ Find all the classes recursively that inherit from `cls` in a given module. - `cls` itself is also included >>> from qlib.data.dataset.handler import DataHandler >>> find_all_classes("qlib.contrib.data.handler", DataHandler) [<class 'qlib.contrib.data.handler.Alpha158'>, <class 'qlib.contrib.data.handler.Alpha158vwap'>, <class 'qlib.contrib.data.handler.Alpha360'>, <class 'qlib.contrib.data.handler.Alpha360vwap'>, <class 'qlib.data.dataset.handler.DataHandlerLP'>] TODO: - skip import error """ if isinstance(module_path, ModuleType): mod = module_path else: mod = importlib.import_module(module_path) cls_list = [] def _append_cls(obj): # Leverage the closure trick to reuse code if isinstance(obj, type) and issubclass(obj, cls) and cls not in cls_list: cls_list.append(obj) for attr in dir(mod): _append_cls(getattr(mod, attr)) if hasattr(mod, "__path__"): # if the model is a package for _, modname, _ in pkgutil.iter_modules(mod.__path__): sub_mod = importlib.import_module(f"{mod.__package__}.{modname}") for m_cls in find_all_classes(sub_mod, cls): _append_cls(m_cls) return cls_list
Find all the classes recursively that inherit from `cls` in a given module. - `cls` itself is also included >>> from qlib.data.dataset.handler import DataHandler >>> find_all_classes("qlib.contrib.data.handler", DataHandler) [<class 'qlib.contrib.data.handler.Alpha158'>, <class 'qlib.contrib.data.handler.Alpha158vwap'>, <class 'qlib.contrib.data.handler.Alpha360'>, <class 'qlib.contrib.data.handler.Alpha360vwap'>, <class 'qlib.data.dataset.handler.DataHandlerLP'>] TODO: - skip import error
find_all_classes
python
microsoft/qlib
qlib/utils/mod.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/mod.py
MIT
def datetime_groupby_apply( df, apply_func: Union[Callable, Text], axis=0, level="datetime", resample_rule="ME", n_jobs=-1 ): """datetime_groupby_apply This function will apply the `apply_func` on the datetime level index. Parameters ---------- df : DataFrame for processing apply_func : Union[Callable, Text] apply_func for processing the data if a string is given, then it is treated as naive pandas function axis : which axis is the datetime level located level : which level is the datetime level resample_rule : How to resample the data to calculating parallel n_jobs : n_jobs for joblib Returns: pd.DataFrame """ def _naive_group_apply(df): if isinstance(apply_func, str): return getattr(df.groupby(axis=axis, level=level, group_keys=False), apply_func)() return df.groupby(level=level, group_keys=False).apply(apply_func) if n_jobs != 1: dfs = ParallelExt(n_jobs=n_jobs)( delayed(_naive_group_apply)(sub_df) for idx, sub_df in df.resample(resample_rule, level=level) ) return pd.concat(dfs, axis=axis).sort_index() else: return _naive_group_apply(df)
datetime_groupby_apply This function will apply the `apply_func` on the datetime level index. Parameters ---------- df : DataFrame for processing apply_func : Union[Callable, Text] apply_func for processing the data if a string is given, then it is treated as naive pandas function axis : which axis is the datetime level located level : which level is the datetime level resample_rule : How to resample the data to calculating parallel n_jobs : n_jobs for joblib Returns: pd.DataFrame
datetime_groupby_apply
python
microsoft/qlib
qlib/utils/paral.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/paral.py
MIT
def _replace_and_get_dt(complex_iter): """_replace_and_get_dt. FIXME: this function may cause infinite loop when the complex data-structure contains loop-reference Parameters ---------- complex_iter : complex_iter """ if isinstance(complex_iter, DelayedTask): dt = complex_iter return dt, [dt] elif is_delayed_tuple(complex_iter): dt = DelayedTuple(complex_iter) return dt, [dt] elif isinstance(complex_iter, (list, tuple)): new_ci = [] dt_all = [] for item in complex_iter: new_item, dt_list = _replace_and_get_dt(item) new_ci.append(new_item) dt_all += dt_list return new_ci, dt_all elif isinstance(complex_iter, dict): new_ci = {} dt_all = [] for key, item in complex_iter.items(): new_item, dt_list = _replace_and_get_dt(item) new_ci[key] = new_item dt_all += dt_list return new_ci, dt_all else: return complex_iter, []
_replace_and_get_dt. FIXME: this function may cause infinite loop when the complex data-structure contains loop-reference Parameters ---------- complex_iter : complex_iter
_replace_and_get_dt
python
microsoft/qlib
qlib/utils/paral.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/paral.py
MIT
def _recover_dt(complex_iter): """_recover_dt. replace all the DelayedTask in the `complex_iter` with its `.res` value FIXME: this function may cause infinite loop when the complex data-structure contains loop-reference Parameters ---------- complex_iter : complex_iter """ if isinstance(complex_iter, DelayedTask): return complex_iter.get_replacement() elif isinstance(complex_iter, (list, tuple)): return [_recover_dt(item) for item in complex_iter] elif isinstance(complex_iter, dict): return {key: _recover_dt(item) for key, item in complex_iter.items()} else: return complex_iter
_recover_dt. replace all the DelayedTask in the `complex_iter` with its `.res` value FIXME: this function may cause infinite loop when the complex data-structure contains loop-reference Parameters ---------- complex_iter : complex_iter
_recover_dt
python
microsoft/qlib
qlib/utils/paral.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/paral.py
MIT
def complex_parallel(paral: Parallel, complex_iter): """complex_parallel. Find all the delayed function created by delayed in complex_iter, run them parallelly and then replace it with the result >>> from qlib.utils.paral import complex_parallel >>> from joblib import Parallel, delayed >>> complex_iter = {"a": delayed(sum)([1,2,3]), "b": [1, 2, delayed(sum)([10, 1])]} >>> complex_parallel(Parallel(), complex_iter) {'a': 6, 'b': [1, 2, 11]} Parameters ---------- paral : Parallel paral complex_iter : NOTE: only list, tuple and dict will be explored!!!! Returns ------- complex_iter whose delayed joblib tasks are replaced with its execution results. """ complex_iter, dt_all = _replace_and_get_dt(complex_iter) for res, dt in zip(paral(dt.get_delayed_tuple() for dt in dt_all), dt_all): dt.set_res(res) complex_iter = _recover_dt(complex_iter) return complex_iter
complex_parallel. Find all the delayed function created by delayed in complex_iter, run them parallelly and then replace it with the result >>> from qlib.utils.paral import complex_parallel >>> from joblib import Parallel, delayed >>> complex_iter = {"a": delayed(sum)([1,2,3]), "b": [1, 2, delayed(sum)([10, 1])]} >>> complex_parallel(Parallel(), complex_iter) {'a': 6, 'b': [1, 2, 11]} Parameters ---------- paral : Parallel paral complex_iter : NOTE: only list, tuple and dict will be explored!!!! Returns ------- complex_iter whose delayed joblib tasks are replaced with its execution results.
complex_parallel
python
microsoft/qlib
qlib/utils/paral.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/paral.py
MIT
def __init__(self, func: Callable, qlib_config: QlibConfig = None): """ Parameters ---------- func : Callable the function to be wrapped qlib_config : QlibConfig Qlib config for initialization in subprocess Returns ------- Callable """ self.func = func self.qlib_config = qlib_config
Parameters ---------- func : Callable the function to be wrapped qlib_config : QlibConfig Qlib config for initialization in subprocess Returns ------- Callable
__init__
python
microsoft/qlib
qlib/utils/paral.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/paral.py
MIT
def _func_mod(self, *args, **kwargs): """Modify the initial function by adding Qlib initialization""" if self.qlib_config is not None: C.register_from_C(self.qlib_config) return self.func(*args, **kwargs)
Modify the initial function by adding Qlib initialization
_func_mod
python
microsoft/qlib
qlib/utils/paral.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/paral.py
MIT
def resam_calendar( calendar_raw: np.ndarray, freq_raw: Union[str, Freq], freq_sam: Union[str, Freq], region: str = None ) -> np.ndarray: """ Resample the calendar with frequency freq_raw into the calendar with frequency freq_sam Assumption: - Fix length (240) of the calendar in each day. Parameters ---------- calendar_raw : np.ndarray The calendar with frequency freq_raw freq_raw : str Frequency of the raw calendar freq_sam : str Sample frequency region: str Region, for example, "cn", "us" Returns ------- np.ndarray The calendar with frequency freq_sam """ if region is None: region = C["region"] freq_raw = Freq(freq_raw) freq_sam = Freq(freq_sam) if not len(calendar_raw): return calendar_raw # if freq_sam is xminute, divide each trading day into several bars evenly if freq_sam.base == Freq.NORM_FREQ_MINUTE: if freq_raw.base != Freq.NORM_FREQ_MINUTE: raise ValueError("when sampling minute calendar, freq of raw calendar must be minute or min") else: if freq_raw.count > freq_sam.count: raise ValueError("raw freq must be higher than sampling freq") _calendar_minute = np.unique(list(map(lambda x: cal_sam_minute(x, freq_sam.count, region), calendar_raw))) return _calendar_minute # else, convert the raw calendar into day calendar, and divide the whole calendar into several bars evenly else: _calendar_day = np.unique(list(map(lambda x: pd.Timestamp(x.year, x.month, x.day, 0, 0, 0), calendar_raw))) if freq_sam.base == Freq.NORM_FREQ_DAY: return _calendar_day[:: freq_sam.count] elif freq_sam.base == Freq.NORM_FREQ_WEEK: _day_in_week = np.array(list(map(lambda x: x.dayofweek, _calendar_day))) _calendar_week = _calendar_day[np.ediff1d(_day_in_week, to_begin=-1) < 0] return _calendar_week[:: freq_sam.count] elif freq_sam.base == Freq.NORM_FREQ_MONTH: _day_in_month = np.array(list(map(lambda x: x.day, _calendar_day))) _calendar_month = _calendar_day[np.ediff1d(_day_in_month, to_begin=-1) < 0] return _calendar_month[:: freq_sam.count] else: raise ValueError("sampling freq must be xmin, xd, xw, xm")
Resample the calendar with frequency freq_raw into the calendar with frequency freq_sam Assumption: - Fix length (240) of the calendar in each day. Parameters ---------- calendar_raw : np.ndarray The calendar with frequency freq_raw freq_raw : str Frequency of the raw calendar freq_sam : str Sample frequency region: str Region, for example, "cn", "us" Returns ------- np.ndarray The calendar with frequency freq_sam
resam_calendar
python
microsoft/qlib
qlib/utils/resam.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/resam.py
MIT
def get_higher_eq_freq_feature(instruments, fields, start_time=None, end_time=None, freq="day", disk_cache=1): """get the feature with higher or equal frequency than `freq`. Returns ------- pd.DataFrame the feature with higher or equal frequency """ from ..data.data import D # pylint: disable=C0415 try: _result = D.features(instruments, fields, start_time, end_time, freq=freq, disk_cache=disk_cache) _freq = freq except (ValueError, KeyError) as value_key_e: _, norm_freq = Freq.parse(freq) if norm_freq in [Freq.NORM_FREQ_MONTH, Freq.NORM_FREQ_WEEK, Freq.NORM_FREQ_DAY]: try: _result = D.features(instruments, fields, start_time, end_time, freq="day", disk_cache=disk_cache) _freq = "day" except (ValueError, KeyError): _result = D.features(instruments, fields, start_time, end_time, freq="1min", disk_cache=disk_cache) _freq = "1min" elif norm_freq == Freq.NORM_FREQ_MINUTE: _result = D.features(instruments, fields, start_time, end_time, freq="1min", disk_cache=disk_cache) _freq = "1min" else: raise ValueError(f"freq {freq} is not supported") from value_key_e return _result, _freq
get the feature with higher or equal frequency than `freq`. Returns ------- pd.DataFrame the feature with higher or equal frequency
get_higher_eq_freq_feature
python
microsoft/qlib
qlib/utils/resam.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/resam.py
MIT
def resam_ts_data( ts_feature: Union[pd.DataFrame, pd.Series], start_time: Union[str, pd.Timestamp] = None, end_time: Union[str, pd.Timestamp] = None, method: Union[str, Callable] = "last", method_kwargs: dict = {}, ): """ Resample value from time-series data - If `feature` has MultiIndex[instrument, datetime], apply the `method` to each instruemnt data with datetime in [start_time, end_time] Example: .. code-block:: print(feature) $close $volume instrument datetime SH600000 2010-01-04 86.778313 16162960.0 2010-01-05 87.433578 28117442.0 2010-01-06 85.713585 23632884.0 2010-01-07 83.788803 20813402.0 2010-01-08 84.730675 16044853.0 SH600655 2010-01-04 2699.567383 158193.328125 2010-01-08 2612.359619 77501.406250 2010-01-11 2712.982422 160852.390625 2010-01-12 2788.688232 164587.937500 2010-01-13 2790.604004 145460.453125 print(resam_ts_data(feature, start_time="2010-01-04", end_time="2010-01-05", fields=["$close", "$volume"], method="last")) $close $volume instrument SH600000 87.433578 28117442.0 SH600655 2699.567383 158193.328125 - Else, the `feature` should have Index[datetime], just apply the `method` to `feature` directly Example: .. code-block:: print(feature) $close $volume datetime 2010-01-04 86.778313 16162960.0 2010-01-05 87.433578 28117442.0 2010-01-06 85.713585 23632884.0 2010-01-07 83.788803 20813402.0 2010-01-08 84.730675 16044853.0 print(resam_ts_data(feature, start_time="2010-01-04", end_time="2010-01-05", method="last")) $close 87.433578 $volume 28117442.0 print(resam_ts_data(feature['$close'], start_time="2010-01-04", end_time="2010-01-05", method="last")) 87.433578 Parameters ---------- ts_feature : Union[pd.DataFrame, pd.Series] Raw time-series feature to be resampled start_time : Union[str, pd.Timestamp], optional start sampling time, by default None end_time : Union[str, pd.Timestamp], optional end sampling time, by default None method : Union[str, Callable], optional sample method, apply method function to each stock series data, by default "last" - If type(method) is str or callable function, it should be an attribute of SeriesGroupBy or DataFrameGroupby, and applies groupy.method for the sliced time-series data - If method is None, do nothing for the sliced time-series data. method_kwargs : dict, optional arguments of method, by default {} Returns ------- The resampled DataFrame/Series/value, return None when the resampled data is empty. """ selector_datetime = slice(start_time, end_time) from ..data.dataset.utils import get_level_index # pylint: disable=C0415 feature = lazy_sort_index(ts_feature) datetime_level = get_level_index(feature, level="datetime") == 0 if datetime_level: feature = feature.loc[selector_datetime] else: feature = feature.loc(axis=0)[(slice(None), selector_datetime)] if feature.empty: return None if isinstance(feature.index, pd.MultiIndex): if callable(method): method_func = method return feature.groupby(level="instrument", group_keys=False).apply(method_func, **method_kwargs) elif isinstance(method, str): return getattr(feature.groupby(level="instrument", group_keys=False), method)(**method_kwargs) else: if callable(method): method_func = method return method_func(feature, **method_kwargs) elif isinstance(method, str): return getattr(feature, method)(**method_kwargs) return feature
Resample value from time-series data - If `feature` has MultiIndex[instrument, datetime], apply the `method` to each instruemnt data with datetime in [start_time, end_time] Example: .. code-block:: print(feature) $close $volume instrument datetime SH600000 2010-01-04 86.778313 16162960.0 2010-01-05 87.433578 28117442.0 2010-01-06 85.713585 23632884.0 2010-01-07 83.788803 20813402.0 2010-01-08 84.730675 16044853.0 SH600655 2010-01-04 2699.567383 158193.328125 2010-01-08 2612.359619 77501.406250 2010-01-11 2712.982422 160852.390625 2010-01-12 2788.688232 164587.937500 2010-01-13 2790.604004 145460.453125 print(resam_ts_data(feature, start_time="2010-01-04", end_time="2010-01-05", fields=["$close", "$volume"], method="last")) $close $volume instrument SH600000 87.433578 28117442.0 SH600655 2699.567383 158193.328125 - Else, the `feature` should have Index[datetime], just apply the `method` to `feature` directly Example: .. code-block:: print(feature) $close $volume datetime 2010-01-04 86.778313 16162960.0 2010-01-05 87.433578 28117442.0 2010-01-06 85.713585 23632884.0 2010-01-07 83.788803 20813402.0 2010-01-08 84.730675 16044853.0 print(resam_ts_data(feature, start_time="2010-01-04", end_time="2010-01-05", method="last")) $close 87.433578 $volume 28117442.0 print(resam_ts_data(feature['$close'], start_time="2010-01-04", end_time="2010-01-05", method="last")) 87.433578 Parameters ---------- ts_feature : Union[pd.DataFrame, pd.Series] Raw time-series feature to be resampled start_time : Union[str, pd.Timestamp], optional start sampling time, by default None end_time : Union[str, pd.Timestamp], optional end sampling time, by default None method : Union[str, Callable], optional sample method, apply method function to each stock series data, by default "last" - If type(method) is str or callable function, it should be an attribute of SeriesGroupBy or DataFrameGroupby, and applies groupy.method for the sliced time-series data - If method is None, do nothing for the sliced time-series data. method_kwargs : dict, optional arguments of method, by default {} Returns ------- The resampled DataFrame/Series/value, return None when the resampled data is empty.
resam_ts_data
python
microsoft/qlib
qlib/utils/resam.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/resam.py
MIT
def _ts_data_valid(ts_feature, last=False): """get the first/last not nan value of pd.Series|DataFrame with single level index""" if isinstance(ts_feature, pd.DataFrame): return ts_feature.apply(lambda column: get_valid_value(column, last=last)) elif isinstance(ts_feature, pd.Series): return get_valid_value(ts_feature, last=last) else: raise TypeError(f"ts_feature should be pd.DataFrame/Series, not {type(ts_feature)}")
get the first/last not nan value of pd.Series|DataFrame with single level index
_ts_data_valid
python
microsoft/qlib
qlib/utils/resam.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/resam.py
MIT
def _get_attr_list(self, attr_type: str) -> list: """ What attribute will not be in specific list Parameters ---------- attr_type : str "include" or "exclude" Returns ------- list: """ if hasattr(self, f"_{attr_type}"): res = getattr(self, f"_{attr_type}", []) else: res = getattr(self.__class__, f"{attr_type}_attr", []) if res is None: return [] return res
What attribute will not be in specific list Parameters ---------- attr_type : str "include" or "exclude" Returns ------- list:
_get_attr_list
python
microsoft/qlib
qlib/utils/serial.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/serial.py
MIT
def config(self, recursive=False, **kwargs): """ configure the serializable object Parameters ---------- kwargs may include following keys dump_all : bool will the object dump all object exclude : list What attribute will not be dumped include : list What attribute will be dumped recursive : bool will the configuration be recursive """ keys = {"dump_all", "exclude", "include"} for k, v in kwargs.items(): if k in keys: attr_name = f"_{k}" setattr(self, attr_name, v) else: raise KeyError(f"Unknown parameter: {k}") if recursive: for obj in self.__dict__.values(): # set flag to prevent endless loop self.__dict__[self.FLAG_KEY] = True if isinstance(obj, Serializable) and self.FLAG_KEY not in obj.__dict__: obj.config(recursive=True, **kwargs) del self.__dict__[self.FLAG_KEY]
configure the serializable object Parameters ---------- kwargs may include following keys dump_all : bool will the object dump all object exclude : list What attribute will not be dumped include : list What attribute will be dumped recursive : bool will the configuration be recursive
config
python
microsoft/qlib
qlib/utils/serial.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/serial.py
MIT
def to_pickle(self, path: Union[Path, str], **kwargs): """ Dump self to a pickle file. path (Union[Path, str]): the path to dump kwargs may include following keys dump_all : bool will the object dump all object exclude : list What attribute will not be dumped include : list What attribute will be dumped """ self.config(**kwargs) with Path(path).open("wb") as f: # pickle interface like backend; such as dill self.get_backend().dump(self, f, protocol=C.dump_protocol_version)
Dump self to a pickle file. path (Union[Path, str]): the path to dump kwargs may include following keys dump_all : bool will the object dump all object exclude : list What attribute will not be dumped include : list What attribute will be dumped
to_pickle
python
microsoft/qlib
qlib/utils/serial.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/serial.py
MIT
def load(cls, filepath): """ Load the serializable class from a filepath. Args: filepath (str): the path of file Raises: TypeError: the pickled file must be `type(cls)` Returns: `type(cls)`: the instance of `type(cls)` """ with open(filepath, "rb") as f: object = cls.get_backend().load(f) if isinstance(object, cls): return object else: raise TypeError(f"The instance of {type(object)} is not a valid `{type(cls)}`!")
Load the serializable class from a filepath. Args: filepath (str): the path of file Raises: TypeError: the pickled file must be `type(cls)` Returns: `type(cls)`: the instance of `type(cls)`
load
python
microsoft/qlib
qlib/utils/serial.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/serial.py
MIT
def get_backend(cls): """ Return the real backend of a Serializable class. The pickle_backend value can be "pickle" or "dill". Returns: module: pickle or dill module based on pickle_backend """ # NOTE: pickle interface like backend; such as dill if cls.pickle_backend == "pickle": return pickle elif cls.pickle_backend == "dill": return dill else: raise ValueError("Unknown pickle backend, please use 'pickle' or 'dill'.")
Return the real backend of a Serializable class. The pickle_backend value can be "pickle" or "dill". Returns: module: pickle or dill module based on pickle_backend
get_backend
python
microsoft/qlib
qlib/utils/serial.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/serial.py
MIT
def general_dump(obj, path: Union[Path, str]): """ A general dumping method for object Parameters ---------- obj : object the object to be dumped path : Union[Path, str] the target path the data will be dumped """ path = Path(path) if isinstance(obj, Serializable): obj.to_pickle(path) else: with path.open("wb") as f: pickle.dump(obj, f, protocol=C.dump_protocol_version)
A general dumping method for object Parameters ---------- obj : object the object to be dumped path : Union[Path, str] the target path the data will be dumped
general_dump
python
microsoft/qlib
qlib/utils/serial.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/serial.py
MIT
def get_min_cal(shift: int = 0, region: str = REG_CN) -> List[time]: """ get the minute level calendar in day period Parameters ---------- shift : int the shift direction would be like pandas shift. series.shift(1) will replace the value at `i`-th with the one at `i-1`-th region: str Region, for example, "cn", "us" Returns ------- List[time]: """ cal = [] if region == REG_CN: for ts in list( pd.date_range(CN_TIME[0], CN_TIME[1] - timedelta(minutes=1), freq="1min") - pd.Timedelta(minutes=shift) ) + list( pd.date_range(CN_TIME[2], CN_TIME[3] - timedelta(minutes=1), freq="1min") - pd.Timedelta(minutes=shift) ): cal.append(ts.time()) elif region == REG_TW: for ts in list( pd.date_range(TW_TIME[0], TW_TIME[1] - timedelta(minutes=1), freq="1min") - pd.Timedelta(minutes=shift) ): cal.append(ts.time()) elif region == REG_US: for ts in list( pd.date_range(US_TIME[0], US_TIME[1] - timedelta(minutes=1), freq="1min") - pd.Timedelta(minutes=shift) ): cal.append(ts.time()) else: raise ValueError(f"{region} is not supported") return cal
get the minute level calendar in day period Parameters ---------- shift : int the shift direction would be like pandas shift. series.shift(1) will replace the value at `i`-th with the one at `i-1`-th region: str Region, for example, "cn", "us" Returns ------- List[time]:
get_min_cal
python
microsoft/qlib
qlib/utils/time.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/time.py
MIT
def is_single_value(start_time, end_time, freq, region: str = REG_CN): """Is there only one piece of data for stock market. Parameters ---------- start_time : Union[pd.Timestamp, str] closed start time for data. end_time : Union[pd.Timestamp, str] closed end time for data. freq : region: str Region, for example, "cn", "us" Returns ------- bool True means one piece of data to obtain. """ if region == REG_CN: if end_time - start_time < freq: return True if start_time.hour == 11 and start_time.minute == 29 and start_time.second == 0: return True if start_time.hour == 14 and start_time.minute == 59 and start_time.second == 0: return True return False elif region == REG_TW: if end_time - start_time < freq: return True if start_time.hour == 13 and start_time.minute >= 25 and start_time.second == 0: return True return False elif region == REG_US: if end_time - start_time < freq: return True if start_time.hour == 15 and start_time.minute == 59 and start_time.second == 0: return True return False else: raise NotImplementedError(f"please implement the is_single_value func for {region}")
Is there only one piece of data for stock market. Parameters ---------- start_time : Union[pd.Timestamp, str] closed start time for data. end_time : Union[pd.Timestamp, str] closed end time for data. freq : region: str Region, for example, "cn", "us" Returns ------- bool True means one piece of data to obtain.
is_single_value
python
microsoft/qlib
qlib/utils/time.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/time.py
MIT
def parse(freq: str) -> Tuple[int, str]: """ Parse freq into a unified format Parameters ---------- freq : str Raw freq, supported freq should match the re '^([0-9]*)(month|mon|week|w|day|d|minute|min)$' Returns ------- freq: Tuple[int, str] Unified freq, including freq count and unified freq unit. The freq unit should be '[month|week|day|minute]'. Example: .. code-block:: print(Freq.parse("day")) (1, "day" ) print(Freq.parse("2mon")) (2, "month") print(Freq.parse("10w")) (10, "week") """ freq = freq.lower() match_obj = re.match("^([0-9]*)(month|mon|week|w|day|d|minute|min)$", freq) if match_obj is None: raise ValueError( "freq format is not supported, the freq should be like (n)month/mon, (n)week/w, (n)day/d, (n)minute/min" ) _count = int(match_obj.group(1)) if match_obj.group(1) else 1 _freq = match_obj.group(2) _freq_format_dict = { "month": Freq.NORM_FREQ_MONTH, "mon": Freq.NORM_FREQ_MONTH, "week": Freq.NORM_FREQ_WEEK, "w": Freq.NORM_FREQ_WEEK, "day": Freq.NORM_FREQ_DAY, "d": Freq.NORM_FREQ_DAY, "minute": Freq.NORM_FREQ_MINUTE, "min": Freq.NORM_FREQ_MINUTE, } return _count, _freq_format_dict[_freq]
Parse freq into a unified format Parameters ---------- freq : str Raw freq, supported freq should match the re '^([0-9]*)(month|mon|week|w|day|d|minute|min)$' Returns ------- freq: Tuple[int, str] Unified freq, including freq count and unified freq unit. The freq unit should be '[month|week|day|minute]'. Example: .. code-block:: print(Freq.parse("day")) (1, "day" ) print(Freq.parse("2mon")) (2, "month") print(Freq.parse("10w")) (10, "week")
parse
python
microsoft/qlib
qlib/utils/time.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/time.py
MIT
def get_min_delta(left_frq: str, right_freq: str): """Calculate freq delta Parameters ---------- left_frq: str right_freq: str Returns ------- """ minutes_map = { Freq.NORM_FREQ_MINUTE: 1, Freq.NORM_FREQ_DAY: 60 * 24, Freq.NORM_FREQ_WEEK: 7 * 60 * 24, Freq.NORM_FREQ_MONTH: 30 * 7 * 60 * 24, } left_freq = Freq(left_frq) left_minutes = left_freq.count * minutes_map[left_freq.base] right_freq = Freq(right_freq) right_minutes = right_freq.count * minutes_map[right_freq.base] return left_minutes - right_minutes
Calculate freq delta Parameters ---------- left_frq: str right_freq: str Returns -------
get_min_delta
python
microsoft/qlib
qlib/utils/time.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/time.py
MIT
def get_recent_freq(base_freq: Union[str, "Freq"], freq_list: List[Union[str, "Freq"]]) -> Optional["Freq"]: """Get the closest freq to base_freq from freq_list Parameters ---------- base_freq freq_list Returns ------- if the recent frequency is found Freq else: None """ base_freq = Freq(base_freq) # use the nearest freq greater than 0 min_freq = None for _freq in freq_list: _min_delta = Freq.get_min_delta(base_freq, _freq) if _min_delta < 0: continue if min_freq is None: min_freq = (_min_delta, str(_freq)) continue min_freq = min_freq if min_freq[0] <= _min_delta else (_min_delta, _freq) return min_freq[1] if min_freq else None
Get the closest freq to base_freq from freq_list Parameters ---------- base_freq freq_list Returns ------- if the recent frequency is found Freq else: None
get_recent_freq
python
microsoft/qlib
qlib/utils/time.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/time.py
MIT
def get_day_min_idx_range(start: str, end: str, freq: str, region: str) -> Tuple[int, int]: """ get the min-bar index in a day for a time range (both left and right is closed) given a fixed frequency Parameters ---------- start : str e.g. "9:30" end : str e.g. "14:30" freq : str "1min" Returns ------- Tuple[int, int]: The index of start and end in the calendar. Both left and right are **closed** """ start = pd.Timestamp(start).time() end = pd.Timestamp(end).time() freq = Freq(freq) in_day_cal = get_min_cal(region=region)[:: freq.count] left_idx = bisect.bisect_left(in_day_cal, start) right_idx = bisect.bisect_right(in_day_cal, end) - 1 return left_idx, right_idx
get the min-bar index in a day for a time range (both left and right is closed) given a fixed frequency Parameters ---------- start : str e.g. "9:30" end : str e.g. "14:30" freq : str "1min" Returns ------- Tuple[int, int]: The index of start and end in the calendar. Both left and right are **closed**
get_day_min_idx_range
python
microsoft/qlib
qlib/utils/time.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/time.py
MIT
def cal_sam_minute(x: pd.Timestamp, sam_minutes: int, region: str = REG_CN) -> pd.Timestamp: """ align the minute-level data to a down sampled calendar e.g. align 10:38 to 10:35 in 5 minute-level(10:30 in 10 minute-level) Parameters ---------- x : pd.Timestamp datetime to be aligned sam_minutes : int align to `sam_minutes` minute-level calendar region: str Region, for example, "cn", "us" Returns ------- pd.Timestamp: the datetime after aligned """ cal = get_min_cal(C.min_data_shift, region)[::sam_minutes] idx = bisect.bisect_right(cal, x.time()) - 1 _date, new_time = x.date(), cal[idx] return concat_date_time(_date, new_time)
align the minute-level data to a down sampled calendar e.g. align 10:38 to 10:35 in 5 minute-level(10:30 in 10 minute-level) Parameters ---------- x : pd.Timestamp datetime to be aligned sam_minutes : int align to `sam_minutes` minute-level calendar region: str Region, for example, "cn", "us" Returns ------- pd.Timestamp: the datetime after aligned
cal_sam_minute
python
microsoft/qlib
qlib/utils/time.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/time.py
MIT
def epsilon_change(date_time: pd.Timestamp, direction: str = "backward") -> pd.Timestamp: """ change the time by infinitely small quantity. Parameters ---------- date_time : pd.Timestamp the original time direction : str the direction the time are going to - "backward" for going to history - "forward" for going to the future Returns ------- pd.Timestamp: the shifted time """ if direction == "backward": return date_time - pd.Timedelta(seconds=1) elif direction == "forward": return date_time + pd.Timedelta(seconds=1) else: raise ValueError("Wrong input")
change the time by infinitely small quantity. Parameters ---------- date_time : pd.Timestamp the original time direction : str the direction the time are going to - "backward" for going to history - "forward" for going to the future Returns ------- pd.Timestamp: the shifted time
epsilon_change
python
microsoft/qlib
qlib/utils/time.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/time.py
MIT
def get_period_list(first: int, last: int, quarterly: bool) -> List[int]: """ This method will be used in PIT database. It return all the possible values between `first` and `end` (first and end is included) Parameters ---------- quarterly : bool will it return quarterly index or yearly index. Returns ------- List[int] the possible index between [first, last] """ if not quarterly: assert all(1900 <= x <= 2099 for x in (first, last)), "invalid arguments" return list(range(first, last + 1)) else: assert all(190000 <= x <= 209904 for x in (first, last)), "invalid arguments" res = [] for year in range(first // 100, last // 100 + 1): for q in range(1, 5): period = year * 100 + q if first <= period <= last: res.append(year * 100 + q) return res
This method will be used in PIT database. It return all the possible values between `first` and `end` (first and end is included) Parameters ---------- quarterly : bool will it return quarterly index or yearly index. Returns ------- List[int] the possible index between [first, last]
get_period_list
python
microsoft/qlib
qlib/utils/__init__.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/__init__.py
MIT
def read_period_data( index_path, data_path, period, cur_date_int: int, quarterly, last_period_index: int = None, ): """ At `cur_date`(e.g. 20190102), read the information at `period`(e.g. 201803). Only the updating info before cur_date or at cur_date will be used. Parameters ---------- period: int date period represented by interger, e.g. 201901 corresponds to the first quarter in 2019 cur_date_int: int date which represented by interger, e.g. 20190102 last_period_index: int it is a optional parameter; it is designed to avoid repeatedly access the .index data of PIT database when sequentially observing the data (Because the latest index of a specific period of data certainly appear in after the one in last observation). Returns ------- the query value and byte index the index value """ DATA_DTYPE = "".join( [ C.pit_record_type["date"], C.pit_record_type["period"], C.pit_record_type["value"], C.pit_record_type["index"], ] ) PERIOD_DTYPE = C.pit_record_type["period"] INDEX_DTYPE = C.pit_record_type["index"] NAN_VALUE = C.pit_record_nan["value"] NAN_INDEX = C.pit_record_nan["index"] # find the first index of linked revisions if last_period_index is None: with open(index_path, "rb") as fi: (first_year,) = struct.unpack(PERIOD_DTYPE, fi.read(struct.calcsize(PERIOD_DTYPE))) all_periods = np.fromfile(fi, dtype=INDEX_DTYPE) offset = get_period_offset(first_year, period, quarterly) _next = all_periods[offset] else: _next = last_period_index # load data following the `_next` link prev_value = NAN_VALUE prev_next = _next with open(data_path, "rb") as fd: while _next != NAN_INDEX: fd.seek(_next) date, period, value, new_next = struct.unpack(DATA_DTYPE, fd.read(struct.calcsize(DATA_DTYPE))) if date > cur_date_int: break prev_next = _next _next = new_next prev_value = value return prev_value, prev_next
At `cur_date`(e.g. 20190102), read the information at `period`(e.g. 201803). Only the updating info before cur_date or at cur_date will be used. Parameters ---------- period: int date period represented by interger, e.g. 201901 corresponds to the first quarter in 2019 cur_date_int: int date which represented by interger, e.g. 20190102 last_period_index: int it is a optional parameter; it is designed to avoid repeatedly access the .index data of PIT database when sequentially observing the data (Because the latest index of a specific period of data certainly appear in after the one in last observation). Returns ------- the query value and byte index the index value
read_period_data
python
microsoft/qlib
qlib/utils/__init__.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/__init__.py
MIT
def np_ffill(arr: np.array): """ forward fill a 1D numpy array Parameters ---------- arr : np.array Input numpy 1D array """ mask = np.isnan(arr.astype(float)) # np.isnan only works on np.float # get fill index idx = np.where(~mask, np.arange(mask.shape[0]), 0) np.maximum.accumulate(idx, out=idx) return arr[idx]
forward fill a 1D numpy array Parameters ---------- arr : np.array Input numpy 1D array
np_ffill
python
microsoft/qlib
qlib/utils/__init__.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/__init__.py
MIT
def lower_bound(data, val, level=0): """multi fields list lower bound. for single field list use `bisect.bisect_left` instead """ left = 0 right = len(data) while left < right: mid = (left + right) // 2 if val <= data[mid][level]: right = mid else: left = mid + 1 return left
multi fields list lower bound. for single field list use `bisect.bisect_left` instead
lower_bound
python
microsoft/qlib
qlib/utils/__init__.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/__init__.py
MIT
def upper_bound(data, val, level=0): """multi fields list upper bound. for single field list use `bisect.bisect_right` instead """ left = 0 right = len(data) while left < right: mid = (left + right) // 2 if val >= data[mid][level]: left = mid + 1 else: right = mid return left
multi fields list upper bound. for single field list use `bisect.bisect_right` instead
upper_bound
python
microsoft/qlib
qlib/utils/__init__.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/__init__.py
MIT
def compare_dict_value(src_data: dict, dst_data: dict): """Compare dict value :param src_data: :param dst_data: :return: """ class DateEncoder(json.JSONEncoder): # FIXME: This class can only be accurate to the day. If it is a minute, # there may be a bug def default(self, o): if isinstance(o, (datetime.datetime, datetime.date)): return o.strftime("%Y-%m-%d %H:%M:%S") return json.JSONEncoder.default(self, o) src_data = json.dumps(src_data, indent=4, sort_keys=True, cls=DateEncoder) dst_data = json.dumps(dst_data, indent=4, sort_keys=True, cls=DateEncoder) diff = difflib.ndiff(src_data, dst_data) changes = [line for line in diff if line.startswith("+ ") or line.startswith("- ")] return changes
Compare dict value :param src_data: :param dst_data: :return:
compare_dict_value
python
microsoft/qlib
qlib/utils/__init__.py
https://github.com/microsoft/qlib/blob/master/qlib/utils/__init__.py
MIT