code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def return_task(self, task, status=STATUS_WAITING): """ Return a task to status. Always using in error handling. Args: task ([type]): [description] status (str, optional): STATUS_WAITING, STATUS_RUNNING, STATUS_DONE, STATUS_PART_DONE. Defaults to STATUS_WAITING. """ if status is None: status = TaskManager.STATUS_WAITING update_dict = {"$set": {"status": status}} self.task_pool.update_one({"_id": task["_id"]}, update_dict)
Return a task to status. Always using in error handling. Args: task ([type]): [description] status (str, optional): STATUS_WAITING, STATUS_RUNNING, STATUS_DONE, STATUS_PART_DONE. Defaults to STATUS_WAITING.
return_task
python
microsoft/qlib
qlib/workflow/task/manage.py
https://github.com/microsoft/qlib/blob/master/qlib/workflow/task/manage.py
MIT
def remove(self, query={}): """ Remove the task using query Parameters ---------- query: dict the dict of query """ query = query.copy() query = self._decode_query(query) self.task_pool.delete_many(query)
Remove the task using query Parameters ---------- query: dict the dict of query
remove
python
microsoft/qlib
qlib/workflow/task/manage.py
https://github.com/microsoft/qlib/blob/master/qlib/workflow/task/manage.py
MIT
def task_stat(self, query={}) -> dict: """ Count the tasks in every status. Args: query (dict, optional): the query dict. Defaults to {}. Returns: dict """ query = query.copy() query = self._decode_query(query) tasks = self.query(query=query, decode=False) status_stat = {} for t in tasks: status_stat[t["status"]] = status_stat.get(t["status"], 0) + 1 return status_stat
Count the tasks in every status. Args: query (dict, optional): the query dict. Defaults to {}. Returns: dict
task_stat
python
microsoft/qlib
qlib/workflow/task/manage.py
https://github.com/microsoft/qlib/blob/master/qlib/workflow/task/manage.py
MIT
def reset_waiting(self, query={}): """ Reset all running task into waiting status. Can be used when some running task exit unexpected. Args: query (dict, optional): the query dict. Defaults to {}. """ query = query.copy() # default query if "status" not in query: query["status"] = self.STATUS_RUNNING return self.reset_status(query=query, status=self.STATUS_WAITING)
Reset all running task into waiting status. Can be used when some running task exit unexpected. Args: query (dict, optional): the query dict. Defaults to {}.
reset_waiting
python
microsoft/qlib
qlib/workflow/task/manage.py
https://github.com/microsoft/qlib/blob/master/qlib/workflow/task/manage.py
MIT
def prioritize(self, task, priority: int): """ Set priority for task Parameters ---------- task : dict The task query from the database priority : int the target priority """ update_dict = {"$set": {"priority": priority}} self.task_pool.update_one({"_id": task["_id"]}, update_dict)
Set priority for task Parameters ---------- task : dict The task query from the database priority : int the target priority
prioritize
python
microsoft/qlib
qlib/workflow/task/manage.py
https://github.com/microsoft/qlib/blob/master/qlib/workflow/task/manage.py
MIT
def wait(self, query={}): """ When multiprocessing, the main progress may fetch nothing from TaskManager because there are still some running tasks. So main progress should wait until all tasks are trained well by other progress or machines. Args: query (dict, optional): the query dict. Defaults to {}. """ task_stat = self.task_stat(query) total = self._get_total(task_stat) last_undone_n = self._get_undone_n(task_stat) if last_undone_n == 0: return self.logger.warning(f"Waiting for {last_undone_n} undone tasks. Please make sure they are running.") with tqdm(total=total, initial=total - last_undone_n) as pbar: while True: time.sleep(10) undone_n = self._get_undone_n(self.task_stat(query)) pbar.update(last_undone_n - undone_n) last_undone_n = undone_n if undone_n == 0: break
When multiprocessing, the main progress may fetch nothing from TaskManager because there are still some running tasks. So main progress should wait until all tasks are trained well by other progress or machines. Args: query (dict, optional): the query dict. Defaults to {}.
wait
python
microsoft/qlib
qlib/workflow/task/manage.py
https://github.com/microsoft/qlib/blob/master/qlib/workflow/task/manage.py
MIT
def get_mongodb() -> Database: """ Get database in MongoDB, which means you need to declare the address and the name of a database at first. For example: Using qlib.init(): .. code-block:: python mongo_conf = { "task_url": task_url, # your MongoDB url "task_db_name": task_db_name, # database name } qlib.init(..., mongo=mongo_conf) After qlib.init(): .. code-block:: python C["mongo"] = { "task_url" : "mongodb://localhost:27017/", "task_db_name" : "rolling_db" } Returns: Database: the Database instance """ try: cfg = C["mongo"] except KeyError: get_module_logger("task").error("Please configure `C['mongo']` before using TaskManager") raise get_module_logger("task").info(f"mongo config:{cfg}") client = MongoClient(cfg["task_url"]) return client.get_database(name=cfg["task_db_name"])
Get database in MongoDB, which means you need to declare the address and the name of a database at first. For example: Using qlib.init(): .. code-block:: python mongo_conf = { "task_url": task_url, # your MongoDB url "task_db_name": task_db_name, # database name } qlib.init(..., mongo=mongo_conf) After qlib.init(): .. code-block:: python C["mongo"] = { "task_url" : "mongodb://localhost:27017/", "task_db_name" : "rolling_db" } Returns: Database: the Database instance
get_mongodb
python
microsoft/qlib
qlib/workflow/task/utils.py
https://github.com/microsoft/qlib/blob/master/qlib/workflow/task/utils.py
MIT
def list_recorders(experiment, rec_filter_func=None): """ List all recorders which can pass the filter in an experiment. Args: experiment (str or Experiment): the name of an Experiment or an instance rec_filter_func (Callable, optional): return True to retain the given recorder. Defaults to None. Returns: dict: a dict {rid: recorder} after filtering. """ if isinstance(experiment, str): experiment = R.get_exp(experiment_name=experiment) recs = experiment.list_recorders() recs_flt = {} for rid, rec in recs.items(): if rec_filter_func is None or rec_filter_func(rec): recs_flt[rid] = rec return recs_flt
List all recorders which can pass the filter in an experiment. Args: experiment (str or Experiment): the name of an Experiment or an instance rec_filter_func (Callable, optional): return True to retain the given recorder. Defaults to None. Returns: dict: a dict {rid: recorder} after filtering.
list_recorders
python
microsoft/qlib
qlib/workflow/task/utils.py
https://github.com/microsoft/qlib/blob/master/qlib/workflow/task/utils.py
MIT
def get(self, idx: int): """ Get datetime by index. Parameters ---------- idx : int index of the calendar """ if idx is None or idx >= len(self.cals): return None return self.cals[idx]
Get datetime by index. Parameters ---------- idx : int index of the calendar
get
python
microsoft/qlib
qlib/workflow/task/utils.py
https://github.com/microsoft/qlib/blob/master/qlib/workflow/task/utils.py
MIT
def align_idx(self, time_point, tp_type="start") -> int: """ Align the index of time_point in the calendar. Parameters ---------- time_point tp_type : str Returns ------- index : int """ if time_point is None: # `None` indicates unbounded index/boarder return None time_point = pd.Timestamp(time_point) if tp_type == "start": idx = bisect.bisect_left(self.cals, time_point) elif tp_type == "end": idx = bisect.bisect_right(self.cals, time_point) - 1 else: raise NotImplementedError(f"This type of input is not supported") return idx
Align the index of time_point in the calendar. Parameters ---------- time_point tp_type : str Returns ------- index : int
align_idx
python
microsoft/qlib
qlib/workflow/task/utils.py
https://github.com/microsoft/qlib/blob/master/qlib/workflow/task/utils.py
MIT
def align_time(self, time_point, tp_type="start") -> pd.Timestamp: """ Align time_point to trade date of calendar Args: time_point Time point tp_type : str time point type (`"start"`, `"end"`) Returns: pd.Timestamp """ if time_point is None: return None return self.cals[self.align_idx(time_point, tp_type=tp_type)]
Align time_point to trade date of calendar Args: time_point Time point tp_type : str time point type (`"start"`, `"end"`) Returns: pd.Timestamp
align_time
python
microsoft/qlib
qlib/workflow/task/utils.py
https://github.com/microsoft/qlib/blob/master/qlib/workflow/task/utils.py
MIT
def align_seg(self, segment: Union[dict, tuple]) -> Union[dict, tuple]: """ Align the given date to the trade date for example: .. code-block:: python input: {'train': ('2008-01-01', '2014-12-31'), 'valid': ('2015-01-01', '2016-12-31'), 'test': ('2017-01-01', '2020-08-01')} output: {'train': (Timestamp('2008-01-02 00:00:00'), Timestamp('2014-12-31 00:00:00')), 'valid': (Timestamp('2015-01-05 00:00:00'), Timestamp('2016-12-30 00:00:00')), 'test': (Timestamp('2017-01-03 00:00:00'), Timestamp('2020-07-31 00:00:00'))} Parameters ---------- segment Returns ------- Union[dict, tuple]: the start and end trade date (pd.Timestamp) between the given start and end date. """ if isinstance(segment, dict): return {k: self.align_seg(seg) for k, seg in segment.items()} elif isinstance(segment, (tuple, list)): return self.align_time(segment[0], tp_type="start"), self.align_time(segment[1], tp_type="end") else: raise NotImplementedError(f"This type of input is not supported")
Align the given date to the trade date for example: .. code-block:: python input: {'train': ('2008-01-01', '2014-12-31'), 'valid': ('2015-01-01', '2016-12-31'), 'test': ('2017-01-01', '2020-08-01')} output: {'train': (Timestamp('2008-01-02 00:00:00'), Timestamp('2014-12-31 00:00:00')), 'valid': (Timestamp('2015-01-05 00:00:00'), Timestamp('2016-12-30 00:00:00')), 'test': (Timestamp('2017-01-03 00:00:00'), Timestamp('2020-07-31 00:00:00'))} Parameters ---------- segment Returns ------- Union[dict, tuple]: the start and end trade date (pd.Timestamp) between the given start and end date.
align_seg
python
microsoft/qlib
qlib/workflow/task/utils.py
https://github.com/microsoft/qlib/blob/master/qlib/workflow/task/utils.py
MIT
def truncate(self, segment: tuple, test_start, days: int) -> tuple: """ Truncate the segment based on the test_start date Parameters ---------- segment : tuple time segment test_start days : int The trading days to be truncated the data in this segment may need 'days' data `days` are based on the `test_start`. For example, if the label contains the information of 2 days in the near future, the prediction horizon 1 day. (e.g. the prediction target is `Ref($close, -2)/Ref($close, -1) - 1`) the days should be 2 + 1 == 3 days. Returns --------- tuple: new segment """ test_idx = self.align_idx(test_start) if isinstance(segment, tuple): new_seg = [] for time_point in segment: tp_idx = min(self.align_idx(time_point), test_idx - days) assert tp_idx > 0 new_seg.append(self.get(tp_idx)) return tuple(new_seg) else: raise NotImplementedError(f"This type of input is not supported")
Truncate the segment based on the test_start date Parameters ---------- segment : tuple time segment test_start days : int The trading days to be truncated the data in this segment may need 'days' data `days` are based on the `test_start`. For example, if the label contains the information of 2 days in the near future, the prediction horizon 1 day. (e.g. the prediction target is `Ref($close, -2)/Ref($close, -1) - 1`) the days should be 2 + 1 == 3 days. Returns --------- tuple: new segment
truncate
python
microsoft/qlib
qlib/workflow/task/utils.py
https://github.com/microsoft/qlib/blob/master/qlib/workflow/task/utils.py
MIT
def shift(self, seg: tuple, step: int, rtype=SHIFT_SD) -> tuple: """ Shift the datetime of segment If there are None (which indicates unbounded index) in the segment, this method will return None. Parameters ---------- seg : datetime segment step : int rolling step rtype : str rolling type ("sliding" or "expanding") Returns -------- tuple: new segment Raises ------ KeyError: shift will raise error if the index(both start and end) is out of self.cal """ if isinstance(seg, tuple): start_idx, end_idx = self.align_idx(seg[0], tp_type="start"), self.align_idx(seg[1], tp_type="end") if rtype == self.SHIFT_SD: start_idx = self._add_step(start_idx, step) end_idx = self._add_step(end_idx, step) elif rtype == self.SHIFT_EX: end_idx = self._add_step(end_idx, step) else: raise NotImplementedError(f"This type of input is not supported") if start_idx is not None and start_idx > len(self.cals): raise KeyError("The segment is out of valid calendar") return self.get(start_idx), self.get(end_idx) else: raise NotImplementedError(f"This type of input is not supported")
Shift the datetime of segment If there are None (which indicates unbounded index) in the segment, this method will return None. Parameters ---------- seg : datetime segment step : int rolling step rtype : str rolling type ("sliding" or "expanding") Returns -------- tuple: new segment Raises ------ KeyError: shift will raise error if the index(both start and end) is out of self.cal
shift
python
microsoft/qlib
qlib/workflow/task/utils.py
https://github.com/microsoft/qlib/blob/master/qlib/workflow/task/utils.py
MIT
def replace_task_handler_with_cache(task: dict, cache_dir: Union[str, Path] = ".") -> dict: """ Replace the handler in task with a cache handler. It will automatically cache the file and save it in cache_dir. >>> import qlib >>> qlib.auto_init() >>> import datetime >>> # it is simplified task >>> task = {"dataset": {"kwargs":{'handler': {'class': 'Alpha158', 'module_path': 'qlib.contrib.data.handler', 'kwargs': {'start_time': datetime.date(2008, 1, 1), 'end_time': datetime.date(2020, 8, 1), 'fit_start_time': datetime.date(2008, 1, 1), 'fit_end_time': datetime.date(2014, 12, 31), 'instruments': 'CSI300'}}}}} >>> new_task = replace_task_handler_with_cache(task) >>> print(new_task) {'dataset': {'kwargs': {'handler': 'file...Alpha158.3584f5f8b4.pkl'}}} """ cache_dir = Path(cache_dir) task = deepcopy(task) handler = task["dataset"]["kwargs"]["handler"] if isinstance(handler, dict): hash = hash_args(handler) h_path = cache_dir / f"{handler['class']}.{hash[:10]}.pkl" if not h_path.exists(): h = init_instance_by_config(handler) h.to_pickle(h_path, dump_all=True) task["dataset"]["kwargs"]["handler"] = f"file://{h_path}" return task
Replace the handler in task with a cache handler. It will automatically cache the file and save it in cache_dir. >>> import qlib >>> qlib.auto_init() >>> import datetime >>> # it is simplified task >>> task = {"dataset": {"kwargs":{'handler': {'class': 'Alpha158', 'module_path': 'qlib.contrib.data.handler', 'kwargs': {'start_time': datetime.date(2008, 1, 1), 'end_time': datetime.date(2020, 8, 1), 'fit_start_time': datetime.date(2008, 1, 1), 'fit_end_time': datetime.date(2014, 12, 31), 'instruments': 'CSI300'}}}}} >>> new_task = replace_task_handler_with_cache(task) >>> print(new_task) {'dataset': {'kwargs': {'handler': 'file...Alpha158.3584f5f8b4.pkl'}}}
replace_task_handler_with_cache
python
microsoft/qlib
qlib/workflow/task/utils.py
https://github.com/microsoft/qlib/blob/master/qlib/workflow/task/utils.py
MIT
def __init__( self, qlib_dir: str, csv_path: str, check_fields: str = None, freq: str = "day", symbol_field_name: str = "symbol", date_field_name: str = "date", file_suffix: str = ".csv", max_workers: int = 16, ): """ Parameters ---------- qlib_dir : str qlib dir csv_path : str origin csv path check_fields : str, optional check fields, by default None, check qlib_dir/features/<first_dir>/*.<freq>.bin freq : str, optional freq, value from ["day", "1m"] symbol_field_name: str, optional symbol field name, by default "symbol" date_field_name: str, optional date field name, by default "date" file_suffix: str, optional csv file suffix, by default ".csv" max_workers: int, optional max workers, by default 16 """ self.qlib_dir = Path(qlib_dir).expanduser() bin_path_list = list(self.qlib_dir.joinpath("features").iterdir()) self.qlib_symbols = sorted(map(lambda x: x.name.lower(), bin_path_list)) qlib.init( provider_uri=str(self.qlib_dir.resolve()), mount_path=str(self.qlib_dir.resolve()), auto_mount=False, redis_port=-1, ) csv_path = Path(csv_path).expanduser() self.csv_files = sorted(csv_path.glob(f"*{file_suffix}") if csv_path.is_dir() else [csv_path]) if check_fields is None: check_fields = list(map(lambda x: x.name.split(".")[0], bin_path_list[0].glob(f"*.bin"))) else: check_fields = check_fields.split(",") if isinstance(check_fields, str) else check_fields self.check_fields = list(map(lambda x: x.strip(), check_fields)) self.qlib_fields = list(map(lambda x: f"${x}", self.check_fields)) self.max_workers = max_workers self.symbol_field_name = symbol_field_name self.date_field_name = date_field_name self.freq = freq self.file_suffix = file_suffix
Parameters ---------- qlib_dir : str qlib dir csv_path : str origin csv path check_fields : str, optional check fields, by default None, check qlib_dir/features/<first_dir>/*.<freq>.bin freq : str, optional freq, value from ["day", "1m"] symbol_field_name: str, optional symbol field name, by default "symbol" date_field_name: str, optional date field name, by default "date" file_suffix: str, optional csv file suffix, by default ".csv" max_workers: int, optional max workers, by default 16
__init__
python
microsoft/qlib
scripts/check_dump_bin.py
https://github.com/microsoft/qlib/blob/master/scripts/check_dump_bin.py
MIT
def check(self): """Check whether the bin file after ``dump_bin.py`` is executed is consistent with the original csv file data""" logger.info("start check......") error_list = [] not_in_features = [] compare_false = [] with tqdm(total=len(self.csv_files)) as p_bar: with ProcessPoolExecutor(max_workers=self.max_workers) as executor: for file_path, _check_res in zip(self.csv_files, executor.map(self._compare, self.csv_files)): symbol = file_path.name.strip(self.file_suffix) if _check_res == self.NOT_IN_FEATURES: not_in_features.append(symbol) elif _check_res == self.COMPARE_ERROR: error_list.append(symbol) elif _check_res == self.COMPARE_FALSE: compare_false.append(symbol) p_bar.update() logger.info("end of check......") if error_list: logger.warning(f"compare error: {error_list}") if not_in_features: logger.warning(f"not in features: {not_in_features}") if compare_false: logger.warning(f"compare False: {compare_false}") logger.info( f"total {len(self.csv_files)}, {len(error_list)} errors, {len(not_in_features)} not in features, {len(compare_false)} compare false" )
Check whether the bin file after ``dump_bin.py`` is executed is consistent with the original csv file data
check
python
microsoft/qlib
scripts/check_dump_bin.py
https://github.com/microsoft/qlib/blob/master/scripts/check_dump_bin.py
MIT
def _dump_pit( self, file_path: str, interval: str = "quarterly", overwrite: bool = False, ): """ dump data as the following format: `/path/to/<field>.data` [date, period, value, _next] [date, period, value, _next] [...] `/path/to/<field>.index` [first_year, index, index, ...] `<field.data>` contains the data as the point-in-time (PIT) order: `value` of `period` is published at `date`, and its successive revised value can be found at `_next` (linked list). `<field>.index` contains the index of value for each period (quarter or year). To save disk space, we only store the `first_year` as its followings periods can be easily infered. Parameters ---------- symbol: str stock symbol interval: str data interval overwrite: bool whether overwrite existing data or update only """ symbol = self.get_symbol_from_file(file_path) df = self.get_source_data(file_path) if df.empty: logger.warning(f"{symbol} file is empty") return for field in self.get_dump_fields(df): df_sub = df.query(f'{self.field_column_name}=="{field}"').sort_values(self.date_column_name) if df_sub.empty: logger.warning(f"field {field} of {symbol} is empty") continue data_file, index_file = self.get_filenames(symbol, field, interval) ## calculate first & last period start_year = df_sub[self.period_column_name].min() end_year = df_sub[self.period_column_name].max() if interval == self.INTERVAL_quarterly: start_year //= 100 end_year //= 100 # adjust `first_year` if existing data found if not overwrite and index_file.exists(): with open(index_file, "rb") as fi: (first_year,) = struct.unpack(self.PERIOD_DTYPE, fi.read(self.PERIOD_DTYPE_SIZE)) n_years = len(fi.read()) // self.INDEX_DTYPE_SIZE if interval == self.INTERVAL_quarterly: n_years //= 4 start_year = first_year + n_years else: with open(index_file, "wb") as f: f.write(struct.pack(self.PERIOD_DTYPE, start_year)) first_year = start_year # if data already exists, continue to the next field if start_year > end_year: logger.warning(f"{symbol}-{field} data already exists, continue to the next field") continue # dump index filled with NA with open(index_file, "ab") as fi: for year in range(start_year, end_year + 1): if interval == self.INTERVAL_quarterly: fi.write(struct.pack(self.INDEX_DTYPE * 4, *[self.NA_INDEX] * 4)) else: fi.write(struct.pack(self.INDEX_DTYPE, self.NA_INDEX)) # if data already exists, remove overlapped data if not overwrite and data_file.exists(): with open(data_file, "rb") as fd: fd.seek(-self.DATA_DTYPE_SIZE, 2) last_date, _, _, _ = struct.unpack(self.DATA_DTYPE, fd.read()) df_sub = df_sub.query(f"{self.date_column_name}>{last_date}") # otherwise, # 1) truncate existing file or create a new file with `wb+` if overwrite, # 2) or append existing file or create a new file with `ab+` if not overwrite else: with open(data_file, "wb+" if overwrite else "ab+"): pass with open(data_file, "rb+") as fd, open(index_file, "rb+") as fi: # update index if needed for i, row in df_sub.iterrows(): # get index offset = get_period_offset(first_year, row.period, interval == self.INTERVAL_quarterly) fi.seek(self.PERIOD_DTYPE_SIZE + self.INDEX_DTYPE_SIZE * offset) (cur_index,) = struct.unpack(self.INDEX_DTYPE, fi.read(self.INDEX_DTYPE_SIZE)) # Case I: new data => update `_next` with current index if cur_index == self.NA_INDEX: fi.seek(self.PERIOD_DTYPE_SIZE + self.INDEX_DTYPE_SIZE * offset) fi.write(struct.pack(self.INDEX_DTYPE, fd.tell())) # Case II: previous data exists => find and update the last `_next` else: _cur_fd = fd.tell() prev_index = self.NA_INDEX while cur_index != self.NA_INDEX: # NOTE: first iter always != NA_INDEX fd.seek(cur_index + self.DATA_DTYPE_SIZE - self.INDEX_DTYPE_SIZE) prev_index = cur_index (cur_index,) = struct.unpack(self.INDEX_DTYPE, fd.read(self.INDEX_DTYPE_SIZE)) fd.seek(prev_index + self.DATA_DTYPE_SIZE - self.INDEX_DTYPE_SIZE) fd.write(struct.pack(self.INDEX_DTYPE, _cur_fd)) # NOTE: add _next pointer fd.seek(_cur_fd) # dump data fd.write(struct.pack(self.DATA_DTYPE, row.date, row.period, row.value, self.NA_INDEX))
dump data as the following format: `/path/to/<field>.data` [date, period, value, _next] [date, period, value, _next] [...] `/path/to/<field>.index` [first_year, index, index, ...] `<field.data>` contains the data as the point-in-time (PIT) order: `value` of `period` is published at `date`, and its successive revised value can be found at `_next` (linked list). `<field>.index` contains the index of value for each period (quarter or year). To save disk space, we only store the `first_year` as its followings periods can be easily infered. Parameters ---------- symbol: str stock symbol interval: str data interval overwrite: bool whether overwrite existing data or update only
_dump_pit
python
microsoft/qlib
scripts/dump_pit.py
https://github.com/microsoft/qlib/blob/master/scripts/dump_pit.py
MIT
def get_data( self, symbol: str, interval: str, start_datetime: pd.Timestamp, end_datetime: pd.Timestamp ) -> pd.DataFrame: """get data with symbol Parameters ---------- symbol: str interval: str value from [1min, 1d] start_datetime: pd.Timestamp end_datetime: pd.Timestamp Returns --------- pd.DataFrame, "symbol" and "date"in pd.columns """ raise NotImplementedError("rewrite get_timezone")
get data with symbol Parameters ---------- symbol: str interval: str value from [1min, 1d] start_datetime: pd.Timestamp end_datetime: pd.Timestamp Returns --------- pd.DataFrame, "symbol" and "date"in pd.columns
get_data
python
microsoft/qlib
scripts/data_collector/base.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/base.py
MIT
def save_instrument(self, symbol, df: pd.DataFrame): """save instrument data to file Parameters ---------- symbol: str instrument code df : pd.DataFrame df.columns must contain "symbol" and "datetime" """ if df is None or df.empty: logger.warning(f"{symbol} is empty") return symbol = self.normalize_symbol(symbol) symbol = code_to_fname(symbol) instrument_path = self.save_dir.joinpath(f"{symbol}.csv") df["symbol"] = symbol if instrument_path.exists(): _old_df = pd.read_csv(instrument_path) df = pd.concat([_old_df, df], sort=False) df.to_csv(instrument_path, index=False)
save instrument data to file Parameters ---------- symbol: str instrument code df : pd.DataFrame df.columns must contain "symbol" and "datetime"
save_instrument
python
microsoft/qlib
scripts/data_collector/base.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/base.py
MIT
def __init__(self, date_field_name: str = "date", symbol_field_name: str = "symbol", **kwargs): """ Parameters ---------- date_field_name: str date field name, default is date symbol_field_name: str symbol field name, default is symbol """ self._date_field_name = date_field_name self._symbol_field_name = symbol_field_name self.kwargs = kwargs self._calendar_list = self._get_calendar_list()
Parameters ---------- date_field_name: str date field name, default is date symbol_field_name: str symbol field name, default is symbol
__init__
python
microsoft/qlib
scripts/data_collector/base.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/base.py
MIT
def __init__( self, source_dir: [str, Path], target_dir: [str, Path], normalize_class: Type[BaseNormalize], max_workers: int = 16, date_field_name: str = "date", symbol_field_name: str = "symbol", **kwargs, ): """ Parameters ---------- source_dir: str or Path The directory where the raw data collected from the Internet is saved target_dir: str or Path Directory for normalize data normalize_class: Type[YahooNormalize] normalize class max_workers: int Concurrent number, default is 16 date_field_name: str date field name, default is date symbol_field_name: str symbol field name, default is symbol """ if not (source_dir and target_dir): raise ValueError("source_dir and target_dir cannot be None") self._source_dir = Path(source_dir).expanduser() self._target_dir = Path(target_dir).expanduser() self._target_dir.mkdir(parents=True, exist_ok=True) self._date_field_name = date_field_name self._symbol_field_name = symbol_field_name self._end_date = kwargs.get("end_date", None) self._max_workers = max_workers self._normalize_obj = normalize_class( date_field_name=date_field_name, symbol_field_name=symbol_field_name, **kwargs )
Parameters ---------- source_dir: str or Path The directory where the raw data collected from the Internet is saved target_dir: str or Path Directory for normalize data normalize_class: Type[YahooNormalize] normalize class max_workers: int Concurrent number, default is 16 date_field_name: str date field name, default is date symbol_field_name: str symbol field name, default is symbol
__init__
python
microsoft/qlib
scripts/data_collector/base.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/base.py
MIT
def __init__(self, source_dir=None, normalize_dir=None, max_workers=1, interval="1d"): """ Parameters ---------- source_dir: str The directory where the raw data collected from the Internet is saved, default "Path(__file__).parent/source" normalize_dir: str Directory for normalize data, default "Path(__file__).parent/normalize" max_workers: int Concurrent number, default is 1; Concurrent number, default is 1; when collecting data, it is recommended that max_workers be set to 1 interval: str freq, value from [1min, 1d], default 1d """ if source_dir is None: source_dir = Path(self.default_base_dir).joinpath("source") self.source_dir = Path(source_dir).expanduser().resolve() self.source_dir.mkdir(parents=True, exist_ok=True) if normalize_dir is None: normalize_dir = Path(self.default_base_dir).joinpath("normalize") self.normalize_dir = Path(normalize_dir).expanduser().resolve() self.normalize_dir.mkdir(parents=True, exist_ok=True) self._cur_module = importlib.import_module("collector") self.max_workers = max_workers self.interval = interval
Parameters ---------- source_dir: str The directory where the raw data collected from the Internet is saved, default "Path(__file__).parent/source" normalize_dir: str Directory for normalize data, default "Path(__file__).parent/normalize" max_workers: int Concurrent number, default is 1; Concurrent number, default is 1; when collecting data, it is recommended that max_workers be set to 1 interval: str freq, value from [1min, 1d], default 1d
__init__
python
microsoft/qlib
scripts/data_collector/base.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/base.py
MIT
def normalize_data(self, date_field_name: str = "date", symbol_field_name: str = "symbol", **kwargs): """normalize data Parameters ---------- date_field_name: str date field name, default date symbol_field_name: str symbol field name, default symbol Examples --------- $ python collector.py normalize_data --source_dir ~/.qlib/instrument_data/source --normalize_dir ~/.qlib/instrument_data/normalize --region CN --interval 1d """ _class = getattr(self._cur_module, self.normalize_class_name) yc = Normalize( source_dir=self.source_dir, target_dir=self.normalize_dir, normalize_class=_class, max_workers=self.max_workers, date_field_name=date_field_name, symbol_field_name=symbol_field_name, **kwargs, ) yc.normalize()
normalize data Parameters ---------- date_field_name: str date field name, default date symbol_field_name: str symbol field name, default symbol Examples --------- $ python collector.py normalize_data --source_dir ~/.qlib/instrument_data/source --normalize_dir ~/.qlib/instrument_data/normalize --region CN --interval 1d
normalize_data
python
microsoft/qlib
scripts/data_collector/base.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/base.py
MIT
def __init__(self, qlib_dir: Union[str, Path], start_date: str = None, end_date: str = None): """ Parameters ---------- qlib_dir: qlib data directory start_date start date end_date end date """ self.qlib_dir = Path(qlib_dir).expanduser().absolute() self.calendar_path = self.qlib_dir.joinpath("calendars/day.txt") self.future_path = self.qlib_dir.joinpath("calendars/day_future.txt") self._calendar_list = self.calendar_list _latest_date = self._calendar_list[-1] self.start_date = _latest_date if start_date is None else pd.Timestamp(start_date) self.end_date = _latest_date + pd.Timedelta(days=365 * 2) if end_date is None else pd.Timestamp(end_date)
Parameters ---------- qlib_dir: qlib data directory start_date start date end_date end date
__init__
python
microsoft/qlib
scripts/data_collector/future_calendar_collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/future_calendar_collector.py
MIT
def run(qlib_dir: Union[str, Path], region: str = "cn", start_date: str = None, end_date: str = None): """Collect future calendar(day) Parameters ---------- qlib_dir: qlib data directory region: cn/CN or us/US start_date start date end_date end date Examples ------- # get cn future calendar $ python future_calendar_collector.py --qlib_data_1d_dir <user data dir> --region cn """ logger.info(f"collector future calendar: region={region}") _cur_module = importlib.import_module("future_calendar_collector") _class = getattr(_cur_module, f"CollectorFutureCalendar{region.upper()}") collector = _class(qlib_dir=qlib_dir, start_date=start_date, end_date=end_date) collector.write_calendar(collector.collector())
Collect future calendar(day) Parameters ---------- qlib_dir: qlib data directory region: cn/CN or us/US start_date start date end_date end date Examples ------- # get cn future calendar $ python future_calendar_collector.py --qlib_data_1d_dir <user data dir> --region cn
run
python
microsoft/qlib
scripts/data_collector/future_calendar_collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/future_calendar_collector.py
MIT
def __init__( self, index_name: str, qlib_dir: [str, Path] = None, freq: str = "day", request_retry: int = 5, retry_sleep: int = 3, ): """ Parameters ---------- index_name: str index name qlib_dir: str qlib directory, by default Path(__file__).resolve().parent.joinpath("qlib_data") freq: str freq, value from ["day", "1min"] request_retry: int request retry, by default 5 retry_sleep: int request sleep, by default 3 """ self.index_name = index_name if qlib_dir is None: qlib_dir = Path(__file__).resolve().parent.joinpath("qlib_data") self.instruments_dir = Path(qlib_dir).expanduser().resolve().joinpath("instruments") self.instruments_dir.mkdir(exist_ok=True, parents=True) self.cache_dir = Path(f"~/.cache/qlib/index/{self.index_name}").expanduser().resolve() self.cache_dir.mkdir(exist_ok=True, parents=True) self._request_retry = request_retry self._retry_sleep = retry_sleep self.freq = freq
Parameters ---------- index_name: str index name qlib_dir: str qlib directory, by default Path(__file__).resolve().parent.joinpath("qlib_data") freq: str freq, value from ["day", "1min"] request_retry: int request retry, by default 5 retry_sleep: int request sleep, by default 3
__init__
python
microsoft/qlib
scripts/data_collector/index.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/index.py
MIT
def save_new_companies(self): """save new companies Examples ------- $ python collector.py save_new_companies --index_name CSI300 --qlib_dir ~/.qlib/qlib_data/cn_data """ df = self.get_new_companies() if df is None or df.empty: raise ValueError(f"get new companies error: {self.index_name}") df = df.drop_duplicates([self.SYMBOL_FIELD_NAME]) df.loc[:, self.INSTRUMENTS_COLUMNS].to_csv( self.instruments_dir.joinpath(f"{self.index_name.lower()}_only_new.txt"), sep="\t", index=False, header=None )
save new companies Examples ------- $ python collector.py save_new_companies --index_name CSI300 --qlib_dir ~/.qlib/qlib_data/cn_data
save_new_companies
python
microsoft/qlib
scripts/data_collector/index.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/index.py
MIT
def get_changes_with_history_companies(self, history_companies: pd.DataFrame) -> pd.DataFrame: """get changes with history companies Parameters ---------- history_companies : pd.DataFrame symbol date SH600000 2020-11-11 dtypes: symbol: str date: pd.Timestamp Return -------- pd.DataFrame: symbol date type SH600000 2019-11-11 add SH600000 2020-11-10 remove dtypes: symbol: str date: pd.Timestamp type: str, value from ["add", "remove"] """ logger.info("parse changes from history companies......") last_code = [] result_df_list = [] _columns = [self.DATE_FIELD_NAME, self.SYMBOL_FIELD_NAME, self.CHANGE_TYPE_FIELD] for _trading_date in tqdm(sorted(history_companies[self.DATE_FIELD_NAME].unique(), reverse=True)): _currenet_code = history_companies[history_companies[self.DATE_FIELD_NAME] == _trading_date][ self.SYMBOL_FIELD_NAME ].tolist() if last_code: add_code = list(set(last_code) - set(_currenet_code)) remote_code = list(set(_currenet_code) - set(last_code)) for _code in add_code: result_df_list.append( pd.DataFrame( [[get_trading_date_by_shift(self.calendar_list, _trading_date, 1), _code, self.ADD]], columns=_columns, ) ) for _code in remote_code: result_df_list.append( pd.DataFrame( [[get_trading_date_by_shift(self.calendar_list, _trading_date, 0), _code, self.REMOVE]], columns=_columns, ) ) last_code = _currenet_code df = pd.concat(result_df_list) logger.info("end of parse changes from history companies.") return df
get changes with history companies Parameters ---------- history_companies : pd.DataFrame symbol date SH600000 2020-11-11 dtypes: symbol: str date: pd.Timestamp Return -------- pd.DataFrame: symbol date type SH600000 2019-11-11 add SH600000 2020-11-10 remove dtypes: symbol: str date: pd.Timestamp type: str, value from ["add", "remove"]
get_changes_with_history_companies
python
microsoft/qlib
scripts/data_collector/index.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/index.py
MIT
def parse_instruments(self): """parse instruments, eg: csi300.txt Examples ------- $ python collector.py parse_instruments --index_name CSI300 --qlib_dir ~/.qlib/qlib_data/cn_data """ logger.info(f"start parse {self.index_name.lower()} companies.....") instruments_columns = [self.SYMBOL_FIELD_NAME, self.START_DATE_FIELD, self.END_DATE_FIELD] changers_df = self.get_changes() new_df = self.get_new_companies() if new_df is None or new_df.empty: raise ValueError(f"get new companies error: {self.index_name}") new_df = new_df.copy() logger.info("parse history companies by changes......") for _row in tqdm(changers_df.sort_values(self.DATE_FIELD_NAME, ascending=False).itertuples(index=False)): if _row.type == self.ADD: min_end_date = new_df.loc[new_df[self.SYMBOL_FIELD_NAME] == _row.symbol, self.END_DATE_FIELD].min() new_df.loc[ (new_df[self.END_DATE_FIELD] == min_end_date) & (new_df[self.SYMBOL_FIELD_NAME] == _row.symbol), self.START_DATE_FIELD, ] = _row.date else: _tmp_df = pd.DataFrame([[_row.symbol, self.bench_start_date, _row.date]], columns=instruments_columns) new_df = pd.concat([new_df, _tmp_df], sort=False) inst_df = new_df.loc[:, instruments_columns] _inst_prefix = self.INST_PREFIX.strip() if _inst_prefix: inst_df["save_inst"] = inst_df[self.SYMBOL_FIELD_NAME].apply(lambda x: f"{_inst_prefix}{x}") inst_df = self.format_datetime(inst_df) inst_df.to_csv( self.instruments_dir.joinpath(f"{self.index_name.lower()}.txt"), sep="\t", index=False, header=None ) logger.info(f"parse {self.index_name.lower()} companies finished.")
parse instruments, eg: csi300.txt Examples ------- $ python collector.py parse_instruments --index_name CSI300 --qlib_dir ~/.qlib/qlib_data/cn_data
parse_instruments
python
microsoft/qlib
scripts/data_collector/index.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/index.py
MIT
def get_calendar_list(bench_code="CSI300") -> List[pd.Timestamp]: """get SH/SZ history calendar list Parameters ---------- bench_code: str value from ["CSI300", "CSI500", "ALL", "US_ALL"] Returns ------- history calendar list """ logger.info(f"get calendar list: {bench_code}......") def _get_calendar(url): _value_list = requests.get(url, timeout=None).json()["data"]["klines"] return sorted(map(lambda x: pd.Timestamp(x.split(",")[0]), _value_list)) calendar = _CALENDAR_MAP.get(bench_code, None) if calendar is None: if bench_code.startswith("US_") or bench_code.startswith("IN_") or bench_code.startswith("BR_"): print(Ticker(CALENDAR_BENCH_URL_MAP[bench_code])) print(Ticker(CALENDAR_BENCH_URL_MAP[bench_code]).history(interval="1d", period="max")) df = Ticker(CALENDAR_BENCH_URL_MAP[bench_code]).history(interval="1d", period="max") calendar = df.index.get_level_values(level="date").map(pd.Timestamp).unique().tolist() else: if bench_code.upper() == "ALL": @deco_retry def _get_calendar(month): _cal = [] try: resp = requests.get( SZSE_CALENDAR_URL.format(month=month, random=random.random), timeout=None ).json() for _r in resp["data"]: if int(_r["jybz"]): _cal.append(pd.Timestamp(_r["jyrq"])) except Exception as e: raise ValueError(f"{month}-->{e}") from e return _cal month_range = pd.date_range(start="2000-01", end=pd.Timestamp.now() + pd.Timedelta(days=31), freq="M") calendar = [] for _m in month_range: cal = _get_calendar(_m.strftime("%Y-%m")) if cal: calendar += cal calendar = list(filter(lambda x: x <= pd.Timestamp.now(), calendar)) else: calendar = _get_calendar(CALENDAR_BENCH_URL_MAP[bench_code]) _CALENDAR_MAP[bench_code] = calendar logger.info(f"end of get calendar list: {bench_code}.") return calendar
get SH/SZ history calendar list Parameters ---------- bench_code: str value from ["CSI300", "CSI500", "ALL", "US_ALL"] Returns ------- history calendar list
get_calendar_list
python
microsoft/qlib
scripts/data_collector/utils.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/utils.py
MIT
def get_calendar_list_by_ratio( source_dir: [str, Path], date_field_name: str = "date", threshold: float = 0.5, minimum_count: int = 10, max_workers: int = 16, ) -> list: """get calendar list by selecting the date when few funds trade in this day Parameters ---------- source_dir: str or Path The directory where the raw data collected from the Internet is saved date_field_name: str date field name, default is date threshold: float threshold to exclude some days when few funds trade in this day, default 0.5 minimum_count: int minimum count of funds should trade in one day max_workers: int Concurrent number, default is 16 Returns ------- history calendar list """ logger.info(f"get calendar list from {source_dir} by threshold = {threshold}......") source_dir = Path(source_dir).expanduser() file_list = list(source_dir.glob("*.csv")) _number_all_funds = len(file_list) logger.info(f"count how many funds trade in this day......") _dict_count_trade = dict() # dict{date:count} _fun = partial(return_date_list, date_field_name) all_oldest_list = [] with tqdm(total=_number_all_funds) as p_bar: with ProcessPoolExecutor(max_workers=max_workers) as executor: for date_list in executor.map(_fun, file_list): if date_list: all_oldest_list.append(date_list[0]) for date in date_list: if date not in _dict_count_trade: _dict_count_trade[date] = 0 _dict_count_trade[date] += 1 p_bar.update() logger.info(f"count how many funds have founded in this day......") _dict_count_founding = {date: _number_all_funds for date in _dict_count_trade} # dict{date:count} with tqdm(total=_number_all_funds) as p_bar: for oldest_date in all_oldest_list: for date in _dict_count_founding.keys(): if date < oldest_date: _dict_count_founding[date] -= 1 calendar = [ date for date, count in _dict_count_trade.items() if count >= max(int(count * threshold), minimum_count) ] return calendar
get calendar list by selecting the date when few funds trade in this day Parameters ---------- source_dir: str or Path The directory where the raw data collected from the Internet is saved date_field_name: str date field name, default is date threshold: float threshold to exclude some days when few funds trade in this day, default 0.5 minimum_count: int minimum count of funds should trade in one day max_workers: int Concurrent number, default is 16 Returns ------- history calendar list
get_calendar_list_by_ratio
python
microsoft/qlib
scripts/data_collector/utils.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/utils.py
MIT
def get_hs_stock_symbols() -> list: """get SH/SZ stock symbols Returns ------- stock symbols """ global _HS_SYMBOLS # pylint: disable=W0603 def _get_symbol(): """ Get the stock pool from a web page and process it into the format required by yahooquery. Format of data retrieved from the web page: 600519, 000001 The data format required by yahooquery: 600519.ss, 000001.sz Returns ------- set: Returns the set of symbol codes. Examples: ------- {600000.ss, 600001.ss, 600002.ss, 600003.ss, ...} """ # url = "http://99.push2.eastmoney.com/api/qt/clist/get?pn=1&pz=10000&po=1&np=1&fs=m:0+t:6,m:0+t:80,m:1+t:2,m:1+t:23,m:0+t:81+s:2048&fields=f12" base_url = "http://99.push2.eastmoney.com/api/qt/clist/get" params = { "pn": 1, # page number "pz": 100, # page size, default to 100 "po": 1, "np": 1, "fs": "m:0+t:6,m:0+t:80,m:1+t:2,m:1+t:23,m:0+t:81+s:2048", "fields": "f12", } _symbols = [] page = 1 while True: params["pn"] = page try: resp = requests.get(base_url, params=params, timeout=None) resp.raise_for_status() data = resp.json() # Check if response contains valid data if not data or "data" not in data or not data["data"] or "diff" not in data["data"]: logger.warning(f"Invalid response structure on page {page}") break # fetch the current page data current_symbols = [_v["f12"] for _v in data["data"]["diff"]] if not current_symbols: # It's the last page if there is no data in current page logger.info(f"Last page reached: {page - 1}") break _symbols.extend(current_symbols) # show progress logger.info( f"Page {page}: fetch {len(current_symbols)} stocks:[{current_symbols[0]} ... {current_symbols[-1]}]" ) page += 1 # sleep time to avoid overloading the server time.sleep(0.5) except requests.exceptions.HTTPError as e: raise requests.exceptions.HTTPError( f"Request to {base_url} failed with status code {resp.status_code}" ) from e except Exception as e: logger.warning("An error occurred while extracting data from the response.") raise if len(_symbols) < 3900: raise ValueError("The complete list of stocks is not available.") # Add suffix after the stock code to conform to yahooquery standard, otherwise the data will not be fetched. _symbols = [ _symbol + ".ss" if _symbol.startswith("6") else _symbol + ".sz" if _symbol.startswith(("0", "3")) else None for _symbol in _symbols ] _symbols = [_symbol for _symbol in _symbols if _symbol is not None] return set(_symbols) if _HS_SYMBOLS is None: symbols = set() _retry = 60 # It may take multiple times to get the complete while len(symbols) < MINIMUM_SYMBOLS_NUM: symbols |= _get_symbol() time.sleep(3) symbol_cache_path = Path("~/.cache/hs_symbols_cache.pkl").expanduser().resolve() symbol_cache_path.parent.mkdir(parents=True, exist_ok=True) if symbol_cache_path.exists(): with symbol_cache_path.open("rb") as fp: cache_symbols = pickle.load(fp) symbols |= cache_symbols with symbol_cache_path.open("wb") as fp: pickle.dump(symbols, fp) _HS_SYMBOLS = sorted(list(symbols)) return _HS_SYMBOLS
get SH/SZ stock symbols Returns ------- stock symbols
get_hs_stock_symbols
python
microsoft/qlib
scripts/data_collector/utils.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/utils.py
MIT
def _get_symbol(): """ Get the stock pool from a web page and process it into the format required by yahooquery. Format of data retrieved from the web page: 600519, 000001 The data format required by yahooquery: 600519.ss, 000001.sz Returns ------- set: Returns the set of symbol codes. Examples: ------- {600000.ss, 600001.ss, 600002.ss, 600003.ss, ...} """ # url = "http://99.push2.eastmoney.com/api/qt/clist/get?pn=1&pz=10000&po=1&np=1&fs=m:0+t:6,m:0+t:80,m:1+t:2,m:1+t:23,m:0+t:81+s:2048&fields=f12" base_url = "http://99.push2.eastmoney.com/api/qt/clist/get" params = { "pn": 1, # page number "pz": 100, # page size, default to 100 "po": 1, "np": 1, "fs": "m:0+t:6,m:0+t:80,m:1+t:2,m:1+t:23,m:0+t:81+s:2048", "fields": "f12", } _symbols = [] page = 1 while True: params["pn"] = page try: resp = requests.get(base_url, params=params, timeout=None) resp.raise_for_status() data = resp.json() # Check if response contains valid data if not data or "data" not in data or not data["data"] or "diff" not in data["data"]: logger.warning(f"Invalid response structure on page {page}") break # fetch the current page data current_symbols = [_v["f12"] for _v in data["data"]["diff"]] if not current_symbols: # It's the last page if there is no data in current page logger.info(f"Last page reached: {page - 1}") break _symbols.extend(current_symbols) # show progress logger.info( f"Page {page}: fetch {len(current_symbols)} stocks:[{current_symbols[0]} ... {current_symbols[-1]}]" ) page += 1 # sleep time to avoid overloading the server time.sleep(0.5) except requests.exceptions.HTTPError as e: raise requests.exceptions.HTTPError( f"Request to {base_url} failed with status code {resp.status_code}" ) from e except Exception as e: logger.warning("An error occurred while extracting data from the response.") raise if len(_symbols) < 3900: raise ValueError("The complete list of stocks is not available.") # Add suffix after the stock code to conform to yahooquery standard, otherwise the data will not be fetched. _symbols = [ _symbol + ".ss" if _symbol.startswith("6") else _symbol + ".sz" if _symbol.startswith(("0", "3")) else None for _symbol in _symbols ] _symbols = [_symbol for _symbol in _symbols if _symbol is not None] return set(_symbols)
Get the stock pool from a web page and process it into the format required by yahooquery. Format of data retrieved from the web page: 600519, 000001 The data format required by yahooquery: 600519.ss, 000001.sz Returns ------- set: Returns the set of symbol codes. Examples: ------- {600000.ss, 600001.ss, 600002.ss, 600003.ss, ...}
_get_symbol
python
microsoft/qlib
scripts/data_collector/utils.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/utils.py
MIT
def get_us_stock_symbols(qlib_data_path: [str, Path] = None) -> list: """get US stock symbols Returns ------- stock symbols """ global _US_SYMBOLS # pylint: disable=W0603 @deco_retry def _get_eastmoney(): url = "http://4.push2.eastmoney.com/api/qt/clist/get?pn=1&pz=10000&fs=m:105,m:106,m:107&fields=f12" resp = requests.get(url, timeout=None) if resp.status_code != 200: raise ValueError("request error") try: _symbols = [_v["f12"].replace("_", "-P") for _v in resp.json()["data"]["diff"].values()] except Exception as e: logger.warning(f"request error: {e}") raise if len(_symbols) < 8000: raise ValueError("request error") return _symbols @deco_retry def _get_nasdaq(): _res_symbols = [] for _name in ["otherlisted", "nasdaqtraded"]: url = f"ftp://ftp.nasdaqtrader.com/SymbolDirectory/{_name}.txt" df = pd.read_csv(url, sep="|") df = df.rename(columns={"ACT Symbol": "Symbol"}) _symbols = df["Symbol"].dropna() _symbols = _symbols.str.replace("$", "-P", regex=False) _symbols = _symbols.str.replace(".W", "-WT", regex=False) _symbols = _symbols.str.replace(".U", "-UN", regex=False) _symbols = _symbols.str.replace(".R", "-RI", regex=False) _symbols = _symbols.str.replace(".", "-", regex=False) _res_symbols += _symbols.unique().tolist() return _res_symbols @deco_retry def _get_nyse(): url = "https://www.nyse.com/api/quotes/filter" _parms = { "instrumentType": "EQUITY", "pageNumber": 1, "sortColumn": "NORMALIZED_TICKER", "sortOrder": "ASC", "maxResultsPerPage": 10000, "filterToken": "", } resp = requests.post(url, json=_parms, timeout=None) if resp.status_code != 200: raise ValueError("request error") try: _symbols = [_v["symbolTicker"].replace("-", "-P") for _v in resp.json()] except Exception as e: logger.warning(f"request error: {e}") _symbols = [] return _symbols if _US_SYMBOLS is None: _all_symbols = _get_eastmoney() + _get_nasdaq() + _get_nyse() if qlib_data_path is not None: for _index in ["nasdaq100", "sp500"]: ins_df = pd.read_csv( Path(qlib_data_path).joinpath(f"instruments/{_index}.txt"), sep="\t", names=["symbol", "start_date", "end_date"], ) _all_symbols += ins_df["symbol"].unique().tolist() def _format(s_): s_ = s_.replace(".", "-") s_ = s_.strip("$") s_ = s_.strip("*") return s_ _US_SYMBOLS = sorted(set(map(_format, filter(lambda x: len(x) < 8 and not x.endswith("WS"), _all_symbols)))) return _US_SYMBOLS
get US stock symbols Returns ------- stock symbols
get_us_stock_symbols
python
microsoft/qlib
scripts/data_collector/utils.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/utils.py
MIT
def get_in_stock_symbols(qlib_data_path: [str, Path] = None) -> list: """get IN stock symbols Returns ------- stock symbols """ global _IN_SYMBOLS # pylint: disable=W0603 @deco_retry def _get_nifty(): url = f"https://www1.nseindia.com/content/equities/EQUITY_L.csv" df = pd.read_csv(url) df = df.rename(columns={"SYMBOL": "Symbol"}) df["Symbol"] = df["Symbol"] + ".NS" _symbols = df["Symbol"].dropna() _symbols = _symbols.unique().tolist() return _symbols if _IN_SYMBOLS is None: _all_symbols = _get_nifty() if qlib_data_path is not None: for _index in ["nifty"]: ins_df = pd.read_csv( Path(qlib_data_path).joinpath(f"instruments/{_index}.txt"), sep="\t", names=["symbol", "start_date", "end_date"], ) _all_symbols += ins_df["symbol"].unique().tolist() def _format(s_): s_ = s_.replace(".", "-") s_ = s_.strip("$") s_ = s_.strip("*") return s_ _IN_SYMBOLS = sorted(set(_all_symbols)) return _IN_SYMBOLS
get IN stock symbols Returns ------- stock symbols
get_in_stock_symbols
python
microsoft/qlib
scripts/data_collector/utils.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/utils.py
MIT
def get_br_stock_symbols(qlib_data_path: [str, Path] = None) -> list: """get Brazil(B3) stock symbols Returns ------- B3 stock symbols """ global _BR_SYMBOLS # pylint: disable=W0603 @deco_retry def _get_ibovespa(): _symbols = [] url = "https://www.fundamentus.com.br/detalhes.php?papel=" # Request agent = {"User-Agent": "Mozilla/5.0"} page = requests.get(url, headers=agent, timeout=None) # BeautifulSoup soup = BeautifulSoup(page.content, "html.parser") tbody = soup.find("tbody") children = tbody.findChildren("a", recursive=True) for child in children: _symbols.append(str(child).rsplit('"', maxsplit=1)[-1].split(">")[1].split("<")[0]) return _symbols if _BR_SYMBOLS is None: _all_symbols = _get_ibovespa() if qlib_data_path is not None: for _index in ["ibov"]: ins_df = pd.read_csv( Path(qlib_data_path).joinpath(f"instruments/{_index}.txt"), sep="\t", names=["symbol", "start_date", "end_date"], ) _all_symbols += ins_df["symbol"].unique().tolist() def _format(s_): s_ = s_.strip() s_ = s_.strip("$") s_ = s_.strip("*") s_ = s_ + ".SA" return s_ _BR_SYMBOLS = sorted(set(map(_format, _all_symbols))) return _BR_SYMBOLS
get Brazil(B3) stock symbols Returns ------- B3 stock symbols
get_br_stock_symbols
python
microsoft/qlib
scripts/data_collector/utils.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/utils.py
MIT
def symbol_suffix_to_prefix(symbol: str, capital: bool = True) -> str: """symbol suffix to prefix Parameters ---------- symbol: str symbol capital : bool by default True Returns ------- """ code, exchange = symbol.split(".") if exchange.lower() in ["sh", "ss"]: res = f"sh{code}" else: res = f"{exchange}{code}" return res.upper() if capital else res.lower()
symbol suffix to prefix Parameters ---------- symbol: str symbol capital : bool by default True Returns -------
symbol_suffix_to_prefix
python
microsoft/qlib
scripts/data_collector/utils.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/utils.py
MIT
def symbol_prefix_to_sufix(symbol: str, capital: bool = True) -> str: """symbol prefix to sufix Parameters ---------- symbol: str symbol capital : bool by default True Returns ------- """ res = f"{symbol[:-2]}.{symbol[-2:]}" return res.upper() if capital else res.lower()
symbol prefix to sufix Parameters ---------- symbol: str symbol capital : bool by default True Returns -------
symbol_prefix_to_sufix
python
microsoft/qlib
scripts/data_collector/utils.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/utils.py
MIT
def get_trading_date_by_shift(trading_list: list, trading_date: pd.Timestamp, shift: int = 1): """get trading date by shift Parameters ---------- trading_list: list trading calendar list shift : int shift, default is 1 trading_date : pd.Timestamp trading date Returns ------- """ trading_date = pd.Timestamp(trading_date) left_index = bisect.bisect_left(trading_list, trading_date) try: res = trading_list[left_index + shift] except IndexError: res = trading_date return res
get trading date by shift Parameters ---------- trading_list: list trading calendar list shift : int shift, default is 1 trading_date : pd.Timestamp trading date Returns -------
get_trading_date_by_shift
python
microsoft/qlib
scripts/data_collector/utils.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/utils.py
MIT
def generate_minutes_calendar_from_daily( calendars: Iterable, freq: str = "1min", am_range: Tuple[str, str] = ("09:30:00", "11:29:00"), pm_range: Tuple[str, str] = ("13:00:00", "14:59:00"), ) -> pd.Index: """generate minutes calendar Parameters ---------- calendars: Iterable daily calendar freq: str by default 1min am_range: Tuple[str, str] AM Time Range, by default China-Stock: ("09:30:00", "11:29:00") pm_range: Tuple[str, str] PM Time Range, by default China-Stock: ("13:00:00", "14:59:00") """ daily_format: str = "%Y-%m-%d" res = [] for _day in calendars: for _range in [am_range, pm_range]: res.append( pd.date_range( f"{pd.Timestamp(_day).strftime(daily_format)} {_range[0]}", f"{pd.Timestamp(_day).strftime(daily_format)} {_range[1]}", freq=freq, ) ) return pd.Index(sorted(set(np.hstack(res))))
generate minutes calendar Parameters ---------- calendars: Iterable daily calendar freq: str by default 1min am_range: Tuple[str, str] AM Time Range, by default China-Stock: ("09:30:00", "11:29:00") pm_range: Tuple[str, str] PM Time Range, by default China-Stock: ("13:00:00", "14:59:00")
generate_minutes_calendar_from_daily
python
microsoft/qlib
scripts/data_collector/utils.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/utils.py
MIT
def get_instruments( qlib_dir: str, index_name: str, method: str = "parse_instruments", freq: str = "day", request_retry: int = 5, retry_sleep: int = 3, market_index: str = "cn_index", ): """ Parameters ---------- qlib_dir: str qlib data dir, default "Path(__file__).parent/qlib_data" index_name: str index name, value from ["csi100", "csi300"] method: str method, value from ["parse_instruments", "save_new_companies"] freq: str freq, value from ["day", "1min"] request_retry: int request retry, by default 5 retry_sleep: int request sleep, by default 3 market_index: str Where the files to obtain the index are located, for example data_collector.cn_index.collector Examples ------- # parse instruments $ python collector.py --index_name CSI300 --qlib_dir ~/.qlib/qlib_data/cn_data --method parse_instruments # parse new companies $ python collector.py --index_name CSI300 --qlib_dir ~/.qlib/qlib_data/cn_data --method save_new_companies """ _cur_module = importlib.import_module("data_collector.{}.collector".format(market_index)) obj = getattr(_cur_module, f"{index_name.upper()}Index")( qlib_dir=qlib_dir, index_name=index_name, freq=freq, request_retry=request_retry, retry_sleep=retry_sleep ) getattr(obj, method)()
Parameters ---------- qlib_dir: str qlib data dir, default "Path(__file__).parent/qlib_data" index_name: str index name, value from ["csi100", "csi300"] method: str method, value from ["parse_instruments", "save_new_companies"] freq: str freq, value from ["day", "1min"] request_retry: int request retry, by default 5 retry_sleep: int request sleep, by default 3 market_index: str Where the files to obtain the index are located, for example data_collector.cn_index.collector Examples ------- # parse instruments $ python collector.py --index_name CSI300 --qlib_dir ~/.qlib/qlib_data/cn_data --method parse_instruments # parse new companies $ python collector.py --index_name CSI300 --qlib_dir ~/.qlib/qlib_data/cn_data --method save_new_companies
get_instruments
python
microsoft/qlib
scripts/data_collector/utils.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/utils.py
MIT
def get_1d_data( _date_field_name: str, _symbol_field_name: str, symbol: str, start: str, end: str, _1d_data_all: pd.DataFrame, ) -> pd.DataFrame: """get 1d data Returns ------ data_1d: pd.DataFrame data_1d.columns = [_date_field_name, _symbol_field_name, "paused", "volume", "factor", "close"] """ _all_1d_data = _get_all_1d_data(_date_field_name, _symbol_field_name, _1d_data_all) return _all_1d_data[ (_all_1d_data[_symbol_field_name] == symbol.upper()) & (_all_1d_data[_date_field_name] >= pd.Timestamp(start)) & (_all_1d_data[_date_field_name] < pd.Timestamp(end)) ]
get 1d data Returns ------ data_1d: pd.DataFrame data_1d.columns = [_date_field_name, _symbol_field_name, "paused", "volume", "factor", "close"]
get_1d_data
python
microsoft/qlib
scripts/data_collector/utils.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/utils.py
MIT
def calc_adjusted_price( df: pd.DataFrame, _1d_data_all: pd.DataFrame, _date_field_name: str, _symbol_field_name: str, frequence: str, consistent_1d: bool = True, calc_paused: bool = True, ) -> pd.DataFrame: """calc adjusted price This method does 4 things. 1. Adds the `paused` field. - The added paused field comes from the paused field of the 1d data. 2. Aligns the time of the 1d data. 3. The data is reweighted. - The reweighting method: - volume / factor - open * factor - high * factor - low * factor - close * factor 4. Called `calc_paused_num` method to add the `paused_num` field. - The `paused_num` is the number of consecutive days of trading suspension. """ # TODO: using daily data factor if df.empty: return df df = df.copy() df.drop_duplicates(subset=_date_field_name, inplace=True) df.sort_values(_date_field_name, inplace=True) symbol = df.iloc[0][_symbol_field_name] df[_date_field_name] = pd.to_datetime(df[_date_field_name]) # get 1d data from qlib _start = pd.Timestamp(df[_date_field_name].min()).strftime("%Y-%m-%d") _end = (pd.Timestamp(df[_date_field_name].max()) + pd.Timedelta(days=1)).strftime("%Y-%m-%d") data_1d: pd.DataFrame = get_1d_data(_date_field_name, _symbol_field_name, symbol, _start, _end, _1d_data_all) data_1d = data_1d.copy() if data_1d is None or data_1d.empty: df["factor"] = 1 / df.loc[df["close"].first_valid_index()]["close"] # TODO: np.nan or 1 or 0 df["paused"] = np.nan else: # NOTE: volume is np.nan or volume <= 0, paused = 1 # FIXME: find a more accurate data source data_1d["paused"] = 0 data_1d.loc[(data_1d["volume"].isna()) | (data_1d["volume"] <= 0), "paused"] = 1 data_1d = data_1d.set_index(_date_field_name) # add factor from 1d data # NOTE: 1d data info: # - Close price adjusted for splits. Adjusted close price adjusted for both dividends and splits. # - data_1d.adjclose: Adjusted close price adjusted for both dividends and splits. # - data_1d.close: `data_1d.adjclose / (close for the first trading day that is not np.nan)` def _calc_factor(df_1d: pd.DataFrame): try: _date = pd.Timestamp(pd.Timestamp(df_1d[_date_field_name].iloc[0]).date()) df_1d["factor"] = data_1d.loc[_date]["close"] / df_1d.loc[df_1d["close"].last_valid_index()]["close"] df_1d["paused"] = data_1d.loc[_date]["paused"] except Exception: df_1d["factor"] = np.nan df_1d["paused"] = np.nan return df_1d df = df.groupby([df[_date_field_name].dt.date], group_keys=False).apply(_calc_factor) if consistent_1d: # the date sequence is consistent with 1d df.set_index(_date_field_name, inplace=True) df = df.reindex( generate_minutes_calendar_from_daily( calendars=pd.to_datetime(data_1d.reset_index()[_date_field_name].drop_duplicates()), freq=frequence, am_range=("09:30:00", "11:29:00"), pm_range=("13:00:00", "14:59:00"), ) ) df[_symbol_field_name] = df.loc[df[_symbol_field_name].first_valid_index()][_symbol_field_name] df.index.names = [_date_field_name] df.reset_index(inplace=True) for _col in ["open", "close", "high", "low", "volume"]: if _col not in df.columns: continue if _col == "volume": df[_col] = df[_col] / df["factor"] else: df[_col] = df[_col] * df["factor"] if calc_paused: df = calc_paused_num(df, _date_field_name, _symbol_field_name) return df
calc adjusted price This method does 4 things. 1. Adds the `paused` field. - The added paused field comes from the paused field of the 1d data. 2. Aligns the time of the 1d data. 3. The data is reweighted. - The reweighting method: - volume / factor - open * factor - high * factor - low * factor - close * factor 4. Called `calc_paused_num` method to add the `paused_num` field. - The `paused_num` is the number of consecutive days of trading suspension.
calc_adjusted_price
python
microsoft/qlib
scripts/data_collector/utils.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/utils.py
MIT
def calc_paused_num(df: pd.DataFrame, _date_field_name, _symbol_field_name): """calc paused num This method adds the paused_num field - The `paused_num` is the number of consecutive days of trading suspension. """ _symbol = df.iloc[0][_symbol_field_name] df = df.copy() df["_tmp_date"] = df[_date_field_name].apply(lambda x: pd.Timestamp(x).date()) # remove data that starts and ends with `np.nan` all day all_data = [] # Record the number of consecutive trading days where the whole day is nan, to remove the last trading day where the whole day is nan all_nan_nums = 0 # Record the number of consecutive occurrences of trading days that are not nan throughout the day not_nan_nums = 0 for _date, _df in df.groupby("_tmp_date", group_keys=False): _df["paused"] = 0 if not _df.loc[_df["volume"] < 0].empty: logger.warning(f"volume < 0, will fill np.nan: {_date} {_symbol}") _df.loc[_df["volume"] < 0, "volume"] = np.nan check_fields = set(_df.columns) - { "_tmp_date", "paused", "factor", _date_field_name, _symbol_field_name, } if _df.loc[:, list(check_fields)].isna().values.all() or (_df["volume"] == 0).all(): all_nan_nums += 1 not_nan_nums = 0 _df["paused"] = 1 if all_data: _df["paused_num"] = not_nan_nums all_data.append(_df) else: all_nan_nums = 0 not_nan_nums += 1 _df["paused_num"] = not_nan_nums all_data.append(_df) all_data = all_data[: len(all_data) - all_nan_nums] if all_data: df = pd.concat(all_data, sort=False) else: logger.warning(f"data is empty: {_symbol}") df = pd.DataFrame() return df del df["_tmp_date"] return df
calc paused num This method adds the paused_num field - The `paused_num` is the number of consecutive days of trading suspension.
calc_paused_num
python
microsoft/qlib
scripts/data_collector/utils.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/utils.py
MIT
def __init__( self, qlib_data_1d_dir: [str, Path], date_field_name: str = "date", symbol_field_name: str = "symbol", **kwargs ): """ Parameters ---------- qlib_data_1d_dir: str, Path the qlib data to be updated for yahoo, usually from: Normalised to 5min using local 1d data date_field_name: str date field name, default is date symbol_field_name: str symbol field name, default is symbol """ bs.login() qlib.init(provider_uri=qlib_data_1d_dir) self.all_1d_data = D.features(D.instruments("all"), ["$paused", "$volume", "$factor", "$close"], freq="day") super(BaostockNormalizeHS3005min, self).__init__(date_field_name, symbol_field_name)
Parameters ---------- qlib_data_1d_dir: str, Path the qlib data to be updated for yahoo, usually from: Normalised to 5min using local 1d data date_field_name: str date field name, default is date symbol_field_name: str symbol field name, default is symbol
__init__
python
microsoft/qlib
scripts/data_collector/baostock_5min/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/baostock_5min/collector.py
MIT
def __init__(self, source_dir=None, normalize_dir=None, max_workers=1, interval="5min", region="HS300"): """ Changed the default value of: scripts.data_collector.base.BaseRun. """ super().__init__(source_dir, normalize_dir, max_workers, interval) self.region = region
Changed the default value of: scripts.data_collector.base.BaseRun.
__init__
python
microsoft/qlib
scripts/data_collector/baostock_5min/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/baostock_5min/collector.py
MIT
def download_data( self, max_collector_count=2, delay=0.5, start=None, end=None, check_data_length=None, limit_nums=None, ): """download data from Baostock Notes ----- check_data_length, example: hs300 5min, a week: 4 * 60 * 5 Examples --------- # get hs300 5min data $ python collector.py download_data --source_dir ~/.qlib/stock_data/source/hs300_5min_original --start 2022-01-01 --end 2022-01-30 --interval 5min --region HS300 """ super(Run, self).download_data(max_collector_count, delay, start, end, check_data_length, limit_nums)
download data from Baostock Notes ----- check_data_length, example: hs300 5min, a week: 4 * 60 * 5 Examples --------- # get hs300 5min data $ python collector.py download_data --source_dir ~/.qlib/stock_data/source/hs300_5min_original --start 2022-01-01 --end 2022-01-30 --interval 5min --region HS300
download_data
python
microsoft/qlib
scripts/data_collector/baostock_5min/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/baostock_5min/collector.py
MIT
def normalize_data( self, date_field_name: str = "date", symbol_field_name: str = "symbol", end_date: str = None, qlib_data_1d_dir: str = None, ): """normalize data Attention --------- qlib_data_1d_dir cannot be None, normalize 5min needs to use 1d data; qlib_data_1d can be obtained like this: $ python scripts/get_data.py qlib_data --target_dir ~/.qlib/qlib_data/cn_data --interval 1d --region cn --version v3 or: download 1d data, reference: https://github.com/microsoft/qlib/tree/main/scripts/data_collector/yahoo#1d-from-yahoo Examples --------- $ python collector.py normalize_data --qlib_data_1d_dir ~/.qlib/qlib_data/cn_data --source_dir ~/.qlib/stock_data/source/hs300_5min_original --normalize_dir ~/.qlib/stock_data/source/hs300_5min_nor --region HS300 --interval 5min """ if qlib_data_1d_dir is None or not Path(qlib_data_1d_dir).expanduser().exists(): raise ValueError( "If normalize 5min, the qlib_data_1d_dir parameter must be set: --qlib_data_1d_dir <user qlib 1d data >, Reference: https://github.com/microsoft/qlib/tree/main/scripts/data_collector/yahoo#automatic-update-of-daily-frequency-datafrom-yahoo-finance" ) super(Run, self).normalize_data( date_field_name, symbol_field_name, end_date=end_date, qlib_data_1d_dir=qlib_data_1d_dir )
normalize data Attention --------- qlib_data_1d_dir cannot be None, normalize 5min needs to use 1d data; qlib_data_1d can be obtained like this: $ python scripts/get_data.py qlib_data --target_dir ~/.qlib/qlib_data/cn_data --interval 1d --region cn --version v3 or: download 1d data, reference: https://github.com/microsoft/qlib/tree/main/scripts/data_collector/yahoo#1d-from-yahoo Examples --------- $ python collector.py normalize_data --qlib_data_1d_dir ~/.qlib/qlib_data/cn_data --source_dir ~/.qlib/stock_data/source/hs300_5min_original --normalize_dir ~/.qlib/stock_data/source/hs300_5min_nor --region HS300 --interval 5min
normalize_data
python
microsoft/qlib
scripts/data_collector/baostock_5min/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/baostock_5min/collector.py
MIT
def get_current_4_month_period(self, current_month: int): """ This function is used to calculated what is the current four month period for the current month. For example, If the current month is August 8, its four month period is 2Q. OBS: In english Q is used to represent *quarter* which means a three month period. However, in portuguese we use Q to represent a four month period. In other words, Jan, Feb, Mar, Apr: 1Q May, Jun, Jul, Aug: 2Q Sep, Oct, Nov, Dez: 3Q Parameters ---------- month : int Current month (1 <= month <= 12) Returns ------- current_4m_period:str Current Four Month Period (1Q or 2Q or 3Q) """ if current_month < 5: return "1Q" if current_month < 9: return "2Q" if current_month <= 12: return "3Q" else: return -1
This function is used to calculated what is the current four month period for the current month. For example, If the current month is August 8, its four month period is 2Q. OBS: In english Q is used to represent *quarter* which means a three month period. However, in portuguese we use Q to represent a four month period. In other words, Jan, Feb, Mar, Apr: 1Q May, Jun, Jul, Aug: 2Q Sep, Oct, Nov, Dez: 3Q Parameters ---------- month : int Current month (1 <= month <= 12) Returns ------- current_4m_period:str Current Four Month Period (1Q or 2Q or 3Q)
get_current_4_month_period
python
microsoft/qlib
scripts/data_collector/br_index/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/br_index/collector.py
MIT
def get_four_month_period(self): """ The ibovespa index is updated every four months. Therefore, we will represent each time period as 2003_1Q which means 2003 first four mount period (Jan, Feb, Mar, Apr) """ four_months_period = ["1Q", "2Q", "3Q"] init_year = 2003 now = datetime.datetime.now() current_year = now.year current_month = now.month for year in [item for item in range(init_year, current_year)]: # pylint: disable=R1721 for el in four_months_period: self.years_4_month_periods.append(str(year) + "_" + el) # For current year the logic must be a little different current_4_month_period = self.get_current_4_month_period(current_month) for i in range(int(current_4_month_period[0])): self.years_4_month_periods.append(str(current_year) + "_" + str(i + 1) + "Q") return self.years_4_month_periods
The ibovespa index is updated every four months. Therefore, we will represent each time period as 2003_1Q which means 2003 first four mount period (Jan, Feb, Mar, Apr)
get_four_month_period
python
microsoft/qlib
scripts/data_collector/br_index/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/br_index/collector.py
MIT
def format_datetime(self, inst_df: pd.DataFrame) -> pd.DataFrame: """formatting the datetime in an instrument Parameters ---------- inst_df: pd.DataFrame inst_df.columns = [self.SYMBOL_FIELD_NAME, self.START_DATE_FIELD, self.END_DATE_FIELD] Returns ------- inst_df: pd.DataFrame """ logger.info("Formatting Datetime") if self.freq != "day": inst_df[self.END_DATE_FIELD] = inst_df[self.END_DATE_FIELD].apply( lambda x: (pd.Timestamp(x) + pd.Timedelta(hours=23, minutes=59)).strftime("%Y-%m-%d %H:%M:%S") ) else: inst_df[self.START_DATE_FIELD] = inst_df[self.START_DATE_FIELD].apply( lambda x: (pd.Timestamp(x)).strftime("%Y-%m-%d") ) inst_df[self.END_DATE_FIELD] = inst_df[self.END_DATE_FIELD].apply( lambda x: (pd.Timestamp(x)).strftime("%Y-%m-%d") ) return inst_df
formatting the datetime in an instrument Parameters ---------- inst_df: pd.DataFrame inst_df.columns = [self.SYMBOL_FIELD_NAME, self.START_DATE_FIELD, self.END_DATE_FIELD] Returns ------- inst_df: pd.DataFrame
format_datetime
python
microsoft/qlib
scripts/data_collector/br_index/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/br_index/collector.py
MIT
def format_quarter(self, cell: str): """ Parameters ---------- cell: str It must be on the format 2003_1Q --> years_4_month_periods Returns ---------- date: str Returns date in format 2003-03-01 """ cell_split = cell.split("_") return cell_split[0] + "-" + quarter_dict[cell_split[1]]
Parameters ---------- cell: str It must be on the format 2003_1Q --> years_4_month_periods Returns ---------- date: str Returns date in format 2003-03-01
format_quarter
python
microsoft/qlib
scripts/data_collector/br_index/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/br_index/collector.py
MIT
def get_changes(self): """ Access the index historic composition and compare it quarter by quarter and year by year in order to generate a file that keeps track of which stocks have been removed and which have been added. The Dataframe used as reference will provided the index composition for each year an quarter: pd.DataFrame: symbol SH600000 SH600001 . . . Parameters ---------- self: is used to represent the instance of the class. Returns ---------- pd.DataFrame: symbol date type SH600000 2019-11-11 add SH600001 2020-11-10 remove dtypes: symbol: str date: pd.Timestamp type: str, value from ["add", "remove"] """ logger.info("Getting companies changes in {} index ...".format(self.index_name)) try: df_changes_list = [] for i in tqdm(range(len(self.years_4_month_periods) - 1)): df = pd.read_csv( self.ibov_index_composition.format(self.years_4_month_periods[i]), on_bad_lines="skip" )["symbol"] df_ = pd.read_csv( self.ibov_index_composition.format(self.years_4_month_periods[i + 1]), on_bad_lines="skip" )["symbol"] ## Remove Dataframe remove_date = ( self.years_4_month_periods[i].split("_")[0] + "-" + quarter_dict[self.years_4_month_periods[i].split("_")[1]] ) list_remove = list(df[~df.isin(df_)]) df_removed = pd.DataFrame( { "date": len(list_remove) * [remove_date], "type": len(list_remove) * ["remove"], "symbol": list_remove, } ) ## Add Dataframe add_date = ( self.years_4_month_periods[i + 1].split("_")[0] + "-" + quarter_dict[self.years_4_month_periods[i + 1].split("_")[1]] ) list_add = list(df_[~df_.isin(df)]) df_added = pd.DataFrame( {"date": len(list_add) * [add_date], "type": len(list_add) * ["add"], "symbol": list_add} ) df_changes_list.append(pd.concat([df_added, df_removed], sort=False)) df = pd.concat(df_changes_list).reset_index(drop=True) df["symbol"] = df["symbol"].astype(str) + ".SA" return df except Exception as E: logger.error("An error occured while downloading 2008 index composition - {}".format(E))
Access the index historic composition and compare it quarter by quarter and year by year in order to generate a file that keeps track of which stocks have been removed and which have been added. The Dataframe used as reference will provided the index composition for each year an quarter: pd.DataFrame: symbol SH600000 SH600001 . . . Parameters ---------- self: is used to represent the instance of the class. Returns ---------- pd.DataFrame: symbol date type SH600000 2019-11-11 add SH600001 2020-11-10 remove dtypes: symbol: str date: pd.Timestamp type: str, value from ["add", "remove"]
get_changes
python
microsoft/qlib
scripts/data_collector/br_index/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/br_index/collector.py
MIT
def get_new_companies(self): """ Get latest index composition. The repo indicated on README has implemented a script to get the latest index composition from B3 website using selenium. Therefore, this method will download the file containing such composition Parameters ---------- self: is used to represent the instance of the class. Returns ---------- pd.DataFrame: symbol start_date end_date RRRP3 2020-11-13 2022-03-02 ALPA4 2008-01-02 2022-03-02 dtypes: symbol: str start_date: pd.Timestamp end_date: pd.Timestamp """ logger.info("Getting new companies in {} index ...".format(self.index_name)) try: ## Get index composition df_index = pd.read_csv( self.ibov_index_composition.format(self.year + "_" + self.current_4_month_period), on_bad_lines="skip" ) df_date_first_added = pd.read_csv( self.ibov_index_composition.format("date_first_added_" + self.year + "_" + self.current_4_month_period), on_bad_lines="skip", ) df = df_index.merge(df_date_first_added, on="symbol")[["symbol", "Date First Added"]] df[self.START_DATE_FIELD] = df["Date First Added"].map(self.format_quarter) # end_date will be our current quarter + 1, since the IBOV index updates itself every quarter df[self.END_DATE_FIELD] = self.year + "-" + quarter_dict[self.current_4_month_period] df = df[["symbol", self.START_DATE_FIELD, self.END_DATE_FIELD]] df["symbol"] = df["symbol"].astype(str) + ".SA" return df except Exception as E: logger.error("An error occured while getting new companies - {}".format(E))
Get latest index composition. The repo indicated on README has implemented a script to get the latest index composition from B3 website using selenium. Therefore, this method will download the file containing such composition Parameters ---------- self: is used to represent the instance of the class. Returns ---------- pd.DataFrame: symbol start_date end_date RRRP3 2020-11-13 2022-03-02 ALPA4 2008-01-02 2022-03-02 dtypes: symbol: str start_date: pd.Timestamp end_date: pd.Timestamp
get_new_companies
python
microsoft/qlib
scripts/data_collector/br_index/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/br_index/collector.py
MIT
def calendar_list(self) -> List[pd.Timestamp]: """get history trading date Returns ------- calendar list """ _calendar = getattr(self, "_calendar_list", None) if not _calendar: _calendar = get_calendar_list(bench_code=self.index_name.upper()) setattr(self, "_calendar_list", _calendar) return _calendar
get history trading date Returns ------- calendar list
calendar_list
python
microsoft/qlib
scripts/data_collector/cn_index/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/cn_index/collector.py
MIT
def format_datetime(self, inst_df: pd.DataFrame) -> pd.DataFrame: """formatting the datetime in an instrument Parameters ---------- inst_df: pd.DataFrame inst_df.columns = [self.SYMBOL_FIELD_NAME, self.START_DATE_FIELD, self.END_DATE_FIELD] Returns ------- """ if self.freq != "day": inst_df[self.START_DATE_FIELD] = inst_df[self.START_DATE_FIELD].apply( lambda x: (pd.Timestamp(x) + pd.Timedelta(hours=9, minutes=30)).strftime("%Y-%m-%d %H:%M:%S") ) inst_df[self.END_DATE_FIELD] = inst_df[self.END_DATE_FIELD].apply( lambda x: (pd.Timestamp(x) + pd.Timedelta(hours=15, minutes=0)).strftime("%Y-%m-%d %H:%M:%S") ) return inst_df
formatting the datetime in an instrument Parameters ---------- inst_df: pd.DataFrame inst_df.columns = [self.SYMBOL_FIELD_NAME, self.START_DATE_FIELD, self.END_DATE_FIELD] Returns -------
format_datetime
python
microsoft/qlib
scripts/data_collector/cn_index/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/cn_index/collector.py
MIT
def get_changes(self) -> pd.DataFrame: """get companies changes Returns ------- pd.DataFrame: symbol date type SH600000 2019-11-11 add SH600000 2020-11-10 remove dtypes: symbol: str date: pd.Timestamp type: str, value from ["add", "remove"] """ logger.info("get companies changes......") res = [] for _url in self._get_change_notices_url(): _df = self._read_change_from_url(_url) if not _df.empty: res.append(_df) logger.info("get companies changes finish") return pd.concat(res, sort=False)
get companies changes Returns ------- pd.DataFrame: symbol date type SH600000 2019-11-11 add SH600000 2020-11-10 remove dtypes: symbol: str date: pd.Timestamp type: str, value from ["add", "remove"]
get_changes
python
microsoft/qlib
scripts/data_collector/cn_index/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/cn_index/collector.py
MIT
def normalize_symbol(symbol: str) -> str: """ Parameters ---------- symbol: str symbol Returns ------- symbol """ symbol = f"{int(symbol):06}" return f"SH{symbol}" if symbol.startswith("60") or symbol.startswith("688") else f"SZ{symbol}"
Parameters ---------- symbol: str symbol Returns ------- symbol
normalize_symbol
python
microsoft/qlib
scripts/data_collector/cn_index/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/cn_index/collector.py
MIT
def get_new_companies(self) -> pd.DataFrame: """ Returns ------- pd.DataFrame: symbol start_date end_date SH600000 2000-01-01 2099-12-31 dtypes: symbol: str start_date: pd.Timestamp end_date: pd.Timestamp """ logger.info("get new companies......") context = retry_request(self.new_companies_url).content with self.cache_dir.joinpath( f"{self.index_name.lower()}_new_companies.{self.new_companies_url.split('.')[-1]}" ).open("wb") as fp: fp.write(context) _io = BytesIO(context) df = pd.read_excel(_io) df = df.iloc[:, [0, 4]] df.columns = [self.END_DATE_FIELD, self.SYMBOL_FIELD_NAME] df[self.SYMBOL_FIELD_NAME] = df[self.SYMBOL_FIELD_NAME].map(self.normalize_symbol) df[self.END_DATE_FIELD] = pd.to_datetime(df[self.END_DATE_FIELD].astype(str)) df[self.START_DATE_FIELD] = self.bench_start_date logger.info("end of get new companies.") return df
Returns ------- pd.DataFrame: symbol start_date end_date SH600000 2000-01-01 2099-12-31 dtypes: symbol: str start_date: pd.Timestamp end_date: pd.Timestamp
get_new_companies
python
microsoft/qlib
scripts/data_collector/cn_index/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/cn_index/collector.py
MIT
def get_history_companies(self) -> pd.DataFrame: """ Returns ------- pd.DataFrame: symbol date type SH600000 2019-11-11 add SH600000 2020-11-10 remove dtypes: symbol: str date: pd.Timestamp type: str, value from ["add", "remove"] """ bs.login() today = pd.Timestamp.now() date_range = pd.DataFrame(pd.date_range(start="2007-01-15", end=today, freq="7D"))[0].dt.date ret_list = [] for date in tqdm(date_range, desc="Download CSI500"): result = self.get_data_from_baostock(date) ret_list.append(result[["date", "symbol"]]) bs.logout() return pd.concat(ret_list, sort=False)
Returns ------- pd.DataFrame: symbol date type SH600000 2019-11-11 add SH600000 2020-11-10 remove dtypes: symbol: str date: pd.Timestamp type: str, value from ["add", "remove"]
get_history_companies
python
microsoft/qlib
scripts/data_collector/cn_index/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/cn_index/collector.py
MIT
def get_new_companies(self) -> pd.DataFrame: """ Returns ------- pd.DataFrame: symbol start_date end_date SH600000 2000-01-01 2099-12-31 dtypes: symbol: str start_date: pd.Timestamp end_date: pd.Timestamp """ logger.info("get new companies......") today = pd.Timestamp.now().normalize() bs.login() result = self.get_data_from_baostock(today.strftime("%Y-%m-%d")) bs.logout() df = result[["date", "symbol"]] df.columns = [self.END_DATE_FIELD, self.SYMBOL_FIELD_NAME] df[self.END_DATE_FIELD] = today df[self.START_DATE_FIELD] = self.bench_start_date logger.info("end of get new companies.") return df
Returns ------- pd.DataFrame: symbol start_date end_date SH600000 2000-01-01 2099-12-31 dtypes: symbol: str start_date: pd.Timestamp end_date: pd.Timestamp
get_new_companies
python
microsoft/qlib
scripts/data_collector/cn_index/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/cn_index/collector.py
MIT
def fill_1min_using_1d( data_1min_dir: [str, Path], qlib_data_1d_dir: [str, Path], max_workers: int = 16, date_field_name: str = "date", symbol_field_name: str = "symbol", ): """Use 1d data to fill in the missing symbols relative to 1min Parameters ---------- data_1min_dir: str 1min data dir qlib_data_1d_dir: str 1d qlib data(bin data) dir, from: https://qlib.readthedocs.io/en/latest/component/data.html#converting-csv-format-into-qlib-format max_workers: int ThreadPoolExecutor(max_workers), by default 16 date_field_name: str date field name, by default date symbol_field_name: str symbol field name, by default symbol """ data_1min_dir = Path(data_1min_dir).expanduser().resolve() qlib_data_1d_dir = Path(qlib_data_1d_dir).expanduser().resolve() min_date, max_date = get_date_range(data_1min_dir, max_workers, date_field_name) symbols_1min = get_symbols(data_1min_dir) qlib.init(provider_uri=str(qlib_data_1d_dir)) data_1d = D.features(D.instruments("all"), ["$close"], min_date, max_date, freq="day") miss_symbols = set(data_1d.index.get_level_values(level="instrument").unique()) - set(symbols_1min) if not miss_symbols: logger.warning("More symbols in 1min than 1d, no padding required") return logger.info(f"miss_symbols {len(miss_symbols)}: {miss_symbols}") tmp_df = pd.read_csv(list(data_1min_dir.glob("*.csv"))[0]) columns = tmp_df.columns _si = tmp_df[symbol_field_name].first_valid_index() is_lower = tmp_df.loc[_si][symbol_field_name].islower() for symbol in tqdm(miss_symbols): if is_lower: symbol = symbol.lower() index_1d = data_1d.loc(axis=0)[symbol.upper()].index index_1min = generate_minutes_calendar_from_daily(index_1d) index_1min.name = date_field_name _df = pd.DataFrame(columns=columns, index=index_1min) if date_field_name in _df.columns: del _df[date_field_name] _df.reset_index(inplace=True) _df[symbol_field_name] = symbol _df["paused_num"] = 0 _df.to_csv(data_1min_dir.joinpath(f"{symbol}.csv"), index=False)
Use 1d data to fill in the missing symbols relative to 1min Parameters ---------- data_1min_dir: str 1min data dir qlib_data_1d_dir: str 1d qlib data(bin data) dir, from: https://qlib.readthedocs.io/en/latest/component/data.html#converting-csv-format-into-qlib-format max_workers: int ThreadPoolExecutor(max_workers), by default 16 date_field_name: str date field name, by default date symbol_field_name: str symbol field name, by default symbol
fill_1min_using_1d
python
microsoft/qlib
scripts/data_collector/contrib/fill_cn_1min_data/fill_cn_1min_data.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/contrib/fill_cn_1min_data/fill_cn_1min_data.py
MIT
def future_calendar_collector(qlib_dir: [str, Path], freq: str = "day"): """get future calendar Parameters ---------- qlib_dir: str or Path qlib data directory freq: str value from ["day", "1min"], by default day """ qlib_dir = Path(qlib_dir).expanduser().resolve() if not qlib_dir.exists(): raise FileNotFoundError(str(qlib_dir)) lg = bs.login() if lg.error_code != "0": logger.error(f"login error: {lg.error_msg}") return # read daily calendar daily_calendar = read_calendar_from_qlib(qlib_dir) end_year = pd.Timestamp.now().year if daily_calendar.empty: start_year = pd.Timestamp.now().year else: start_year = pd.Timestamp(daily_calendar.iloc[-1, 0]).year rs = bs.query_trade_dates(start_date=pd.Timestamp(f"{start_year}-01-01"), end_date=f"{end_year}-12-31") data_list = [] while (rs.error_code == "0") & rs.next(): _row_data = rs.get_row_data() if int(_row_data[1]) == 1: data_list.append(_row_data[0]) data_list = sorted(data_list) date_list = generate_qlib_calendar(data_list, freq=freq) date_list = sorted(set(daily_calendar.loc[:, 0].values.tolist() + date_list)) write_calendar_to_qlib(qlib_dir, date_list, freq=freq) bs.logout() logger.info(f"get trading dates success: {start_year}-01-01 to {end_year}-12-31")
get future calendar Parameters ---------- qlib_dir: str or Path qlib data directory freq: str value from ["day", "1min"], by default day
future_calendar_collector
python
microsoft/qlib
scripts/data_collector/contrib/future_trading_date_collector/future_trading_date_collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/contrib/future_trading_date_collector/future_trading_date_collector.py
MIT
def get_cg_crypto_symbols(qlib_data_path: [str, Path] = None) -> list: """get crypto symbols in coingecko Returns ------- crypto symbols in given exchanges list of coingecko """ global _CG_CRYPTO_SYMBOLS # pylint: disable=W0603 @deco_retry def _get_coingecko(): try: cg = CoinGeckoAPI() resp = pd.DataFrame(cg.get_coins_markets(vs_currency="usd")) except Exception as e: raise ValueError("request error") from e try: _symbols = resp["id"].to_list() except Exception as e: logger.warning(f"request error: {e}") raise return _symbols if _CG_CRYPTO_SYMBOLS is None: _all_symbols = _get_coingecko() _CG_CRYPTO_SYMBOLS = sorted(set(_all_symbols)) return _CG_CRYPTO_SYMBOLS
get crypto symbols in coingecko Returns ------- crypto symbols in given exchanges list of coingecko
get_cg_crypto_symbols
python
microsoft/qlib
scripts/data_collector/crypto/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/crypto/collector.py
MIT
def __init__(self, source_dir=None, normalize_dir=None, max_workers=4, interval="1d", region=REGION_CN): """ Parameters ---------- source_dir: str The directory where the raw data collected from the Internet is saved, default "Path(__file__).parent/source" normalize_dir: str Directory for normalize data, default "Path(__file__).parent/normalize" max_workers: int Concurrent number, default is 4 interval: str freq, value from [1min, 1d], default 1d region: str region, value from ["CN"], default "CN" """ super().__init__(source_dir, normalize_dir, max_workers, interval) self.region = region
Parameters ---------- source_dir: str The directory where the raw data collected from the Internet is saved, default "Path(__file__).parent/source" normalize_dir: str Directory for normalize data, default "Path(__file__).parent/normalize" max_workers: int Concurrent number, default is 4 interval: str freq, value from [1min, 1d], default 1d region: str region, value from ["CN"], default "CN"
__init__
python
microsoft/qlib
scripts/data_collector/fund/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/fund/collector.py
MIT
def format_datetime(self, inst_df: pd.DataFrame) -> pd.DataFrame: """formatting the datetime in an instrument Parameters ---------- inst_df: pd.DataFrame inst_df.columns = [self.SYMBOL_FIELD_NAME, self.START_DATE_FIELD, self.END_DATE_FIELD] Returns ------- """ if self.freq != "day": inst_df[self.END_DATE_FIELD] = inst_df[self.END_DATE_FIELD].apply( lambda x: (pd.Timestamp(x) + pd.Timedelta(hours=23, minutes=59)).strftime("%Y-%m-%d %H:%M:%S") ) return inst_df
formatting the datetime in an instrument Parameters ---------- inst_df: pd.DataFrame inst_df.columns = [self.SYMBOL_FIELD_NAME, self.START_DATE_FIELD, self.END_DATE_FIELD] Returns -------
format_datetime
python
microsoft/qlib
scripts/data_collector/us_index/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/us_index/collector.py
MIT
def calendar_list(self) -> List[pd.Timestamp]: """get history trading date Returns ------- calendar list """ _calendar_list = getattr(self, "_calendar_list", None) if _calendar_list is None: _calendar_list = list(filter(lambda x: x >= self.bench_start_date, get_calendar_list("US_ALL"))) setattr(self, "_calendar_list", _calendar_list) return _calendar_list
get history trading date Returns ------- calendar list
calendar_list
python
microsoft/qlib
scripts/data_collector/us_index/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/us_index/collector.py
MIT
def _get_first_close(self, df: pd.DataFrame) -> float: """get first close value Notes ----- For incremental updates(append) to Yahoo 1D data, user need to use a close that is not 0 on the first trading day of the existing data """ df = df.loc[df["close"].first_valid_index() :] _close = df["close"].iloc[0] return _close
get first close value Notes ----- For incremental updates(append) to Yahoo 1D data, user need to use a close that is not 0 on the first trading day of the existing data
_get_first_close
python
microsoft/qlib
scripts/data_collector/yahoo/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/yahoo/collector.py
MIT
def _manual_adj_data(self, df: pd.DataFrame) -> pd.DataFrame: """manual adjust data: All fields (except change) are standardized according to the close of the first day""" if df.empty: return df df = df.copy() df.sort_values(self._date_field_name, inplace=True) df = df.set_index(self._date_field_name) _close = self._get_first_close(df) for _col in df.columns: # NOTE: retain original adjclose, required for incremental updates if _col in [self._symbol_field_name, "adjclose", "change"]: continue if _col == "volume": df[_col] = df[_col] * _close else: df[_col] = df[_col] / _close return df.reset_index()
manual adjust data: All fields (except change) are standardized according to the close of the first day
_manual_adj_data
python
microsoft/qlib
scripts/data_collector/yahoo/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/yahoo/collector.py
MIT
def __init__( self, old_qlib_data_dir: [str, Path], date_field_name: str = "date", symbol_field_name: str = "symbol", **kwargs ): """ Parameters ---------- old_qlib_data_dir: str, Path the qlib data to be updated for yahoo, usually from: https://github.com/microsoft/qlib/tree/main/scripts#download-cn-data date_field_name: str date field name, default is date symbol_field_name: str symbol field name, default is symbol """ super(YahooNormalize1dExtend, self).__init__(date_field_name, symbol_field_name) self.column_list = ["open", "high", "low", "close", "volume", "factor", "change"] self.old_qlib_data = self._get_old_data(old_qlib_data_dir)
Parameters ---------- old_qlib_data_dir: str, Path the qlib data to be updated for yahoo, usually from: https://github.com/microsoft/qlib/tree/main/scripts#download-cn-data date_field_name: str date field name, default is date symbol_field_name: str symbol field name, default is symbol
__init__
python
microsoft/qlib
scripts/data_collector/yahoo/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/yahoo/collector.py
MIT
def __init__( self, qlib_data_1d_dir: [str, Path], date_field_name: str = "date", symbol_field_name: str = "symbol", **kwargs ): """ Parameters ---------- qlib_data_1d_dir: str, Path the qlib data to be updated for yahoo, usually from: Normalised to 1min using local 1d data date_field_name: str date field name, default is date symbol_field_name: str symbol field name, default is symbol """ super(YahooNormalize1min, self).__init__(date_field_name, symbol_field_name) qlib.init(provider_uri=qlib_data_1d_dir) self.all_1d_data = D.features(D.instruments("all"), ["$paused", "$volume", "$factor", "$close"], freq="day")
Parameters ---------- qlib_data_1d_dir: str, Path the qlib data to be updated for yahoo, usually from: Normalised to 1min using local 1d data date_field_name: str date field name, default is date symbol_field_name: str symbol field name, default is symbol
__init__
python
microsoft/qlib
scripts/data_collector/yahoo/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/yahoo/collector.py
MIT
def __init__(self, source_dir=None, normalize_dir=None, max_workers=1, interval="1d", region=REGION_CN): """ Parameters ---------- source_dir: str The directory where the raw data collected from the Internet is saved, default "Path(__file__).parent/source" normalize_dir: str Directory for normalize data, default "Path(__file__).parent/normalize" max_workers: int Concurrent number, default is 1; when collecting data, it is recommended that max_workers be set to 1 interval: str freq, value from [1min, 1d], default 1d region: str region, value from ["CN", "US", "BR"], default "CN" """ super().__init__(source_dir, normalize_dir, max_workers, interval) self.region = region
Parameters ---------- source_dir: str The directory where the raw data collected from the Internet is saved, default "Path(__file__).parent/source" normalize_dir: str Directory for normalize data, default "Path(__file__).parent/normalize" max_workers: int Concurrent number, default is 1; when collecting data, it is recommended that max_workers be set to 1 interval: str freq, value from [1min, 1d], default 1d region: str region, value from ["CN", "US", "BR"], default "CN"
__init__
python
microsoft/qlib
scripts/data_collector/yahoo/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/yahoo/collector.py
MIT
def normalize_data( self, date_field_name: str = "date", symbol_field_name: str = "symbol", end_date: str = None, qlib_data_1d_dir: str = None, ): """normalize data Parameters ---------- date_field_name: str date field name, default date symbol_field_name: str symbol field name, default symbol end_date: str if not None, normalize the last date saved (including end_date); if None, it will ignore this parameter; by default None qlib_data_1d_dir: str if interval==1min, qlib_data_1d_dir cannot be None, normalize 1min needs to use 1d data; qlib_data_1d can be obtained like this: $ python scripts/get_data.py qlib_data --target_dir <qlib_data_1d_dir> --interval 1d $ python scripts/data_collector/yahoo/collector.py update_data_to_bin --qlib_data_1d_dir <qlib_data_1d_dir> --trading_date 2021-06-01 or: download 1d data, reference: https://github.com/microsoft/qlib/tree/main/scripts/data_collector/yahoo#1d-from-yahoo Examples --------- $ python collector.py normalize_data --source_dir ~/.qlib/stock_data/source --normalize_dir ~/.qlib/stock_data/normalize --region cn --interval 1d $ python collector.py normalize_data --qlib_data_1d_dir ~/.qlib/qlib_data/cn_data --source_dir ~/.qlib/stock_data/source_cn_1min --normalize_dir ~/.qlib/stock_data/normalize_cn_1min --region CN --interval 1min """ if self.interval.lower() == "1min": if qlib_data_1d_dir is None or not Path(qlib_data_1d_dir).expanduser().exists(): raise ValueError( "If normalize 1min, the qlib_data_1d_dir parameter must be set: --qlib_data_1d_dir <user qlib 1d data >, Reference: https://github.com/microsoft/qlib/tree/main/scripts/data_collector/yahoo#automatic-update-of-daily-frequency-datafrom-yahoo-finance" ) super(Run, self).normalize_data( date_field_name, symbol_field_name, end_date=end_date, qlib_data_1d_dir=qlib_data_1d_dir )
normalize data Parameters ---------- date_field_name: str date field name, default date symbol_field_name: str symbol field name, default symbol end_date: str if not None, normalize the last date saved (including end_date); if None, it will ignore this parameter; by default None qlib_data_1d_dir: str if interval==1min, qlib_data_1d_dir cannot be None, normalize 1min needs to use 1d data; qlib_data_1d can be obtained like this: $ python scripts/get_data.py qlib_data --target_dir <qlib_data_1d_dir> --interval 1d $ python scripts/data_collector/yahoo/collector.py update_data_to_bin --qlib_data_1d_dir <qlib_data_1d_dir> --trading_date 2021-06-01 or: download 1d data, reference: https://github.com/microsoft/qlib/tree/main/scripts/data_collector/yahoo#1d-from-yahoo Examples --------- $ python collector.py normalize_data --source_dir ~/.qlib/stock_data/source --normalize_dir ~/.qlib/stock_data/normalize --region cn --interval 1d $ python collector.py normalize_data --qlib_data_1d_dir ~/.qlib/qlib_data/cn_data --source_dir ~/.qlib/stock_data/source_cn_1min --normalize_dir ~/.qlib/stock_data/normalize_cn_1min --region CN --interval 1min
normalize_data
python
microsoft/qlib
scripts/data_collector/yahoo/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/yahoo/collector.py
MIT
def normalize_data_1d_extend( self, old_qlib_data_dir, date_field_name: str = "date", symbol_field_name: str = "symbol" ): """normalize data extend; extending yahoo qlib data(from: https://github.com/microsoft/qlib/tree/main/scripts#download-cn-data) Notes ----- Steps to extend yahoo qlib data: 1. download qlib data: https://github.com/microsoft/qlib/tree/main/scripts#download-cn-data; save to <dir1> 2. collector source data: https://github.com/microsoft/qlib/tree/main/scripts/data_collector/yahoo#collector-data; save to <dir2> 3. normalize new source data(from step 2): python scripts/data_collector/yahoo/collector.py normalize_data_1d_extend --old_qlib_dir <dir1> --source_dir <dir2> --normalize_dir <dir3> --region CN --interval 1d 4. dump data: python scripts/dump_bin.py dump_update --csv_path <dir3> --qlib_dir <dir1> --freq day --date_field_name date --symbol_field_name symbol --exclude_fields symbol,date 5. update instrument(eg. csi300): python python scripts/data_collector/cn_index/collector.py --index_name CSI300 --qlib_dir <dir1> --method parse_instruments Parameters ---------- old_qlib_data_dir: str the qlib data to be updated for yahoo, usually from: https://github.com/microsoft/qlib/tree/main/scripts#download-cn-data date_field_name: str date field name, default date symbol_field_name: str symbol field name, default symbol Examples --------- $ python collector.py normalize_data_1d_extend --old_qlib_dir ~/.qlib/qlib_data/cn_data --source_dir ~/.qlib/stock_data/source --normalize_dir ~/.qlib/stock_data/normalize --region CN --interval 1d """ _class = getattr(self._cur_module, f"{self.normalize_class_name}Extend") yc = Normalize( source_dir=self.source_dir, target_dir=self.normalize_dir, normalize_class=_class, max_workers=self.max_workers, date_field_name=date_field_name, symbol_field_name=symbol_field_name, old_qlib_data_dir=old_qlib_data_dir, ) yc.normalize()
normalize data extend; extending yahoo qlib data(from: https://github.com/microsoft/qlib/tree/main/scripts#download-cn-data) Notes ----- Steps to extend yahoo qlib data: 1. download qlib data: https://github.com/microsoft/qlib/tree/main/scripts#download-cn-data; save to <dir1> 2. collector source data: https://github.com/microsoft/qlib/tree/main/scripts/data_collector/yahoo#collector-data; save to <dir2> 3. normalize new source data(from step 2): python scripts/data_collector/yahoo/collector.py normalize_data_1d_extend --old_qlib_dir <dir1> --source_dir <dir2> --normalize_dir <dir3> --region CN --interval 1d 4. dump data: python scripts/dump_bin.py dump_update --csv_path <dir3> --qlib_dir <dir1> --freq day --date_field_name date --symbol_field_name symbol --exclude_fields symbol,date 5. update instrument(eg. csi300): python python scripts/data_collector/cn_index/collector.py --index_name CSI300 --qlib_dir <dir1> --method parse_instruments Parameters ---------- old_qlib_data_dir: str the qlib data to be updated for yahoo, usually from: https://github.com/microsoft/qlib/tree/main/scripts#download-cn-data date_field_name: str date field name, default date symbol_field_name: str symbol field name, default symbol Examples --------- $ python collector.py normalize_data_1d_extend --old_qlib_dir ~/.qlib/qlib_data/cn_data --source_dir ~/.qlib/stock_data/source --normalize_dir ~/.qlib/stock_data/normalize --region CN --interval 1d
normalize_data_1d_extend
python
microsoft/qlib
scripts/data_collector/yahoo/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/yahoo/collector.py
MIT
def update_data_to_bin( self, qlib_data_1d_dir: str, end_date: str = None, check_data_length: int = None, delay: float = 1, exists_skip: bool = False, ): """update yahoo data to bin Parameters ---------- qlib_data_1d_dir: str the qlib data to be updated for yahoo, usually from: https://github.com/microsoft/qlib/tree/main/scripts#download-cn-data end_date: str end datetime, default ``pd.Timestamp(trading_date + pd.Timedelta(days=1))``; open interval(excluding end) check_data_length: int check data length, if not None and greater than 0, each symbol will be considered complete if its data length is greater than or equal to this value, otherwise it will be fetched again, the maximum number of fetches being (max_collector_count). By default None. delay: float time.sleep(delay), default 1 exists_skip: bool exists skip, by default False Notes ----- If the data in qlib_data_dir is incomplete, np.nan will be populated to trading_date for the previous trading day Examples ------- $ python collector.py update_data_to_bin --qlib_data_1d_dir <user data dir> --trading_date <start date> --end_date <end date> """ if self.interval.lower() != "1d": logger.warning(f"currently supports 1d data updates: --interval 1d") # download qlib 1d data qlib_data_1d_dir = str(Path(qlib_data_1d_dir).expanduser().resolve()) if not exists_qlib_data(qlib_data_1d_dir): GetData().qlib_data( target_dir=qlib_data_1d_dir, interval=self.interval, region=self.region, exists_skip=exists_skip ) # start/end date calendar_df = pd.read_csv(Path(qlib_data_1d_dir).joinpath("calendars/day.txt")) trading_date = (pd.Timestamp(calendar_df.iloc[-1, 0]) - pd.Timedelta(days=1)).strftime("%Y-%m-%d") if end_date is None: end_date = (pd.Timestamp(trading_date) + pd.Timedelta(days=1)).strftime("%Y-%m-%d") # download data from yahoo # NOTE: when downloading data from YahooFinance, max_workers is recommended to be 1 self.download_data(delay=delay, start=trading_date, end=end_date, check_data_length=check_data_length) # NOTE: a larger max_workers setting here would be faster self.max_workers = ( max(multiprocessing.cpu_count() - 2, 1) if self.max_workers is None or self.max_workers <= 1 else self.max_workers ) # normalize data self.normalize_data_1d_extend(qlib_data_1d_dir) # dump bin _dump = DumpDataUpdate( csv_path=self.normalize_dir, qlib_dir=qlib_data_1d_dir, exclude_fields="symbol,date", max_workers=self.max_workers, ) _dump.dump() # parse index _region = self.region.lower() if _region not in ["cn", "us"]: logger.warning(f"Unsupported region: region={_region}, component downloads will be ignored") return index_list = ["CSI100", "CSI300"] if _region == "cn" else ["SP500", "NASDAQ100", "DJIA", "SP400"] get_instruments = getattr( importlib.import_module(f"data_collector.{_region}_index.collector"), "get_instruments" ) for _index in index_list: get_instruments(str(qlib_data_1d_dir), _index, market_index=f"{_region}_index")
update yahoo data to bin Parameters ---------- qlib_data_1d_dir: str the qlib data to be updated for yahoo, usually from: https://github.com/microsoft/qlib/tree/main/scripts#download-cn-data end_date: str end datetime, default ``pd.Timestamp(trading_date + pd.Timedelta(days=1))``; open interval(excluding end) check_data_length: int check data length, if not None and greater than 0, each symbol will be considered complete if its data length is greater than or equal to this value, otherwise it will be fetched again, the maximum number of fetches being (max_collector_count). By default None. delay: float time.sleep(delay), default 1 exists_skip: bool exists skip, by default False Notes ----- If the data in qlib_data_dir is incomplete, np.nan will be populated to trading_date for the previous trading day Examples ------- $ python collector.py update_data_to_bin --qlib_data_1d_dir <user data dir> --trading_date <start date> --end_date <end date>
update_data_to_bin
python
microsoft/qlib
scripts/data_collector/yahoo/collector.py
https://github.com/microsoft/qlib/blob/master/scripts/data_collector/yahoo/collector.py
MIT
def train(uri_path: str = None): """train model Returns ------- pred_score: pandas.DataFrame predict scores performance: dict model performance """ # model initialization model = init_instance_by_config(CSI300_GBDT_TASK["model"]) dataset = init_instance_by_config(CSI300_GBDT_TASK["dataset"]) # To test __repr__ print(dataset) print(R) # start exp with R.start(experiment_name="workflow", uri=uri_path): R.log_params(**flatten_dict(CSI300_GBDT_TASK)) model.fit(dataset) R.save_objects(trained_model=model) # prediction recorder = R.get_recorder() # To test __repr__ print(recorder) # To test get_local_dir print(recorder.get_local_dir()) rid = recorder.id sr = SignalRecord(model, dataset, recorder) sr.generate() pred_score = sr.load("pred.pkl") # calculate ic and ric sar = SigAnaRecord(recorder) sar.generate() ic = sar.load("ic.pkl") ric = sar.load("ric.pkl") uri_path = R.get_uri() return pred_score, {"ic": ic, "ric": ric}, rid, uri_path
train model Returns ------- pred_score: pandas.DataFrame predict scores performance: dict model performance
train
python
microsoft/qlib
tests/test_all_pipeline.py
https://github.com/microsoft/qlib/blob/master/tests/test_all_pipeline.py
MIT
def fake_experiment(): """A fake experiment workflow to test uri Returns ------- pass_or_not_for_default_uri: bool pass_or_not_for_current_uri: bool temporary_exp_dir: str """ # start exp default_uri = R.get_uri() current_uri = "file:./temp-test-exp-mag" with R.start(experiment_name="fake_workflow_for_expm", uri=current_uri): R.log_params(**flatten_dict(CSI300_GBDT_TASK)) current_uri_to_check = R.get_uri() default_uri_to_check = R.get_uri() return default_uri == default_uri_to_check, current_uri == current_uri_to_check, current_uri
A fake experiment workflow to test uri Returns ------- pass_or_not_for_default_uri: bool pass_or_not_for_current_uri: bool temporary_exp_dir: str
fake_experiment
python
microsoft/qlib
tests/test_all_pipeline.py
https://github.com/microsoft/qlib/blob/master/tests/test_all_pipeline.py
MIT
def backtest_analysis(pred, rid, uri_path: str = None): """backtest and analysis Parameters ---------- rid : str the id of the recorder to be used in this function uri_path: str mlflow uri path Returns ------- analysis : pandas.DataFrame the analysis result """ with R.uri_context(uri=uri_path): recorder = R.get_recorder(experiment_name="workflow", recorder_id=rid) dataset = init_instance_by_config(CSI300_GBDT_TASK["dataset"]) model = recorder.load_object("trained_model") port_analysis_config = { "executor": { "class": "SimulatorExecutor", "module_path": "qlib.backtest.executor", "kwargs": { "time_per_step": "day", "generate_portfolio_metrics": True, }, }, "strategy": { "class": "TopkDropoutStrategy", "module_path": "qlib.contrib.strategy.signal_strategy", "kwargs": { "signal": (model, dataset), "topk": 50, "n_drop": 5, }, }, "backtest": { "start_time": "2017-01-01", "end_time": "2020-08-01", "account": 100000000, "benchmark": CSI300_BENCH, "exchange_kwargs": { "freq": "day", "limit_threshold": 0.095, "deal_price": "close", "open_cost": 0.0005, "close_cost": 0.0015, "min_cost": 5, }, }, } # backtest par = PortAnaRecord(recorder, port_analysis_config, risk_analysis_freq="day") par.generate() analysis_df = par.load("port_analysis_1day.pkl") print(analysis_df) return analysis_df
backtest and analysis Parameters ---------- rid : str the id of the recorder to be used in this function uri_path: str mlflow uri path Returns ------- analysis : pandas.DataFrame the analysis result
backtest_analysis
python
microsoft/qlib
tests/test_all_pipeline.py
https://github.com/microsoft/qlib/blob/master/tests/test_all_pipeline.py
MIT
def test_TSDataSampler2(self): """ Extra test TSDataSampler to prevent incorrect filling of nan for the values at the front """ datetime_list = ["2000-01-31", "2000-02-29", "2000-03-31", "2000-04-30", "2000-05-31"] instruments = ["000001", "000002", "000003", "000004", "000005"] index = pd.MultiIndex.from_product( [pd.to_datetime(datetime_list), instruments], names=["datetime", "instrument"] ) data = np.random.randn(len(datetime_list) * len(instruments)) test_df = pd.DataFrame(data=data, index=index, columns=["factor"]) dataset = TSDataSampler(test_df, datetime_list[2], datetime_list[-1], step_len=3) print() print("--------------dataset[0]--------------") print(dataset[0]) print("--------------dataset[1]--------------") print(dataset[1]) for i in range(3): self.assertFalse(np.isnan(dataset[0][i])) self.assertFalse(np.isnan(dataset[1][i])) self.assertEqual(dataset[0][1], dataset[1][0]) self.assertEqual(dataset[0][2], dataset[1][1])
Extra test TSDataSampler to prevent incorrect filling of nan for the values at the front
test_TSDataSampler2
python
microsoft/qlib
tests/data_mid_layer_tests/test_dataset.py
https://github.com/microsoft/qlib/blob/master/tests/data_mid_layer_tests/test_dataset.py
MIT
def test_creating_client(self): """ Please refer to qlib/workflow/expm.py:MLflowExpManager._client we don't cache _client (this is helpful to reduce maintainance work when MLflowExpManager's uri is chagned) This implementation is based on the assumption creating a client is fast """ start = time.time() for i in range(10): _ = mlflow.tracking.MlflowClient(tracking_uri=str(self.TMP_PATH)) end = time.time() elapsed = end - start if platform.system() == "Linux": self.assertLess(elapsed, 1e-2) # it can be done in less than 10ms else: self.assertLess(elapsed, 2e-2) print(elapsed)
Please refer to qlib/workflow/expm.py:MLflowExpManager._client we don't cache _client (this is helpful to reduce maintainance work when MLflowExpManager's uri is chagned) This implementation is based on the assumption creating a client is fast
test_creating_client
python
microsoft/qlib
tests/dependency_tests/test_mlflow.py
https://github.com/microsoft/qlib/blob/master/tests/dependency_tests/test_mlflow.py
MIT
def test_multi_proc(self): """ For testing if it will raise error """ iter_n = 2 pool = Pool(iter_n) res = [] for _ in range(iter_n): res.append(pool.apply_async(get_features, (self.FIELDS,), {})) for r in res: print(r.get()) pool.close() pool.join()
For testing if it will raise error
test_multi_proc
python
microsoft/qlib
tests/misc/test_get_multi_proc.py
https://github.com/microsoft/qlib/blob/master/tests/misc/test_get_multi_proc.py
MIT
def cal_sam_minute(x: pd.Timestamp, sam_minutes: int, region: str): """ Sample raw calendar into calendar with sam_minutes freq, shift represents the shift minute the market time - open time of stock market is [9:30 - shift*pd.Timedelta(minutes=1)] - mid close time of stock market is [11:29 - shift*pd.Timedelta(minutes=1)] - mid open time of stock market is [13:00 - shift*pd.Timedelta(minutes=1)] - close time of stock market is [14:59 - shift*pd.Timedelta(minutes=1)] """ # TODO: actually, this version is much faster when no cache or optimization day_time = pd.Timestamp(x.date()) shift = C.min_data_shift region_time = REG_MAP[region] open_time = ( day_time + pd.Timedelta(hours=region_time[0].hour, minutes=region_time[0].minute) - shift * pd.Timedelta(minutes=1) ) close_time = ( day_time + pd.Timedelta(hours=region_time[-1].hour, minutes=region_time[-1].minute) - shift * pd.Timedelta(minutes=1) ) if region_time == CN_TIME: mid_close_time = ( day_time + pd.Timedelta(hours=region_time[1].hour, minutes=region_time[1].minute - 1) - shift * pd.Timedelta(minutes=1) ) mid_open_time = ( day_time + pd.Timedelta(hours=region_time[2].hour, minutes=region_time[2].minute) - shift * pd.Timedelta(minutes=1) ) else: mid_close_time = close_time mid_open_time = open_time if open_time <= x <= mid_close_time: minute_index = (x - open_time).seconds // 60 elif mid_open_time <= x <= close_time: minute_index = (x - mid_open_time).seconds // 60 + 120 else: raise ValueError("datetime of calendar is out of range") minute_index = minute_index // sam_minutes * sam_minutes if 0 <= minute_index < 120 or region_time != CN_TIME: return open_time + minute_index * pd.Timedelta(minutes=1) elif 120 <= minute_index < 240: return mid_open_time + (minute_index - 120) * pd.Timedelta(minutes=1) else: raise ValueError("calendar minute_index error, check `min_data_shift` in qlib.config.C")
Sample raw calendar into calendar with sam_minutes freq, shift represents the shift minute the market time - open time of stock market is [9:30 - shift*pd.Timedelta(minutes=1)] - mid close time of stock market is [11:29 - shift*pd.Timedelta(minutes=1)] - mid open time of stock market is [13:00 - shift*pd.Timedelta(minutes=1)] - close time of stock market is [14:59 - shift*pd.Timedelta(minutes=1)]
cal_sam_minute
python
microsoft/qlib
tests/misc/test_utils.py
https://github.com/microsoft/qlib/blob/master/tests/misc/test_utils.py
MIT
def test_update_pred(self): """ This test is for testing if it will raise error if the `to_date` is out of the boundary. """ task = copy.deepcopy(CSI300_GBDT_TASK) task["record"] = ["qlib.workflow.record_temp.SignalRecord"] exp_name = "online_srv_test" cal = D.calendar() latest_date = cal[-1] train_start = latest_date - pd.Timedelta(days=61) train_end = latest_date - pd.Timedelta(days=41) task["dataset"]["kwargs"]["segments"] = { "train": (train_start, train_end), "valid": (latest_date - pd.Timedelta(days=40), latest_date - pd.Timedelta(days=21)), "test": (latest_date - pd.Timedelta(days=20), latest_date), } task["dataset"]["kwargs"]["handler"]["kwargs"] = { "start_time": train_start, "end_time": latest_date, "fit_start_time": train_start, "fit_end_time": train_end, "instruments": "csi300", } rec = task_train(task, exp_name) pred = rec.load_object("pred.pkl") online_tool = OnlineToolR(exp_name) online_tool.reset_online_tag(rec) # set to online model online_tool.update_online_pred(to_date=latest_date + pd.Timedelta(days=10)) good_pred = rec.load_object("pred.pkl") mod_range = slice(latest_date - pd.Timedelta(days=20), latest_date - pd.Timedelta(days=10)) mod_range2 = slice(latest_date - pd.Timedelta(days=9), latest_date - pd.Timedelta(days=2)) mod_pred = good_pred.copy() mod_pred.loc[mod_range] = -1 mod_pred.loc[mod_range2] = -2 rec.save_objects(**{"pred.pkl": mod_pred}) online_tool.update_online_pred( to_date=latest_date - pd.Timedelta(days=10), from_date=latest_date - pd.Timedelta(days=20) ) updated_pred = rec.load_object("pred.pkl") # this range is not fixed self.assertTrue((updated_pred.loc[mod_range] == good_pred.loc[mod_range]).all().item()) # this range is fixed now self.assertTrue((updated_pred.loc[mod_range2] == -2).all().item())
This test is for testing if it will raise error if the `to_date` is out of the boundary.
test_update_pred
python
microsoft/qlib
tests/rolling_tests/test_update_pred.py
https://github.com/microsoft/qlib/blob/master/tests/rolling_tests/test_update_pred.py
MIT
def test_instrument_storage(self): """ The meaning of instrument, such as CSI500: CSI500 composition changes: date add remove 2005-01-01 SH600000 2005-01-01 SH600001 2005-01-01 SH600002 2005-02-01 SH600003 SH600000 2005-02-15 SH600000 SH600002 Calendar: pd.date_range(start="2020-01-01", stop="2020-03-01", freq="1D") Instrument: symbol start_time end_time SH600000 2005-01-01 2005-01-31 (2005-02-01 Last trading day) SH600000 2005-02-15 2005-03-01 SH600001 2005-01-01 2005-03-01 SH600002 2005-01-01 2005-02-14 (2005-02-15 Last trading day) SH600003 2005-02-01 2005-03-01 InstrumentStorage: { "SH600000": [(2005-01-01, 2005-01-31), (2005-02-15, 2005-03-01)], "SH600001": [(2005-01-01, 2005-03-01)], "SH600002": [(2005-01-01, 2005-02-14)], "SH600003": [(2005-02-01, 2005-03-01)], } """ instrument = InstrumentStorage(market="csi300", provider_uri=self.provider_uri, freq="day") for inst, spans in instrument.data.items(): assert isinstance(inst, str) and isinstance( spans, Iterable ), f"{instrument.__class__.__name__} value is not Iterable" for s_e in spans: assert ( isinstance(s_e, tuple) and len(s_e) == 2 ), f"{instrument.__class__.__name__}.__getitem__(k) TypeError" print(f"instrument['SH600000']: {instrument['SH600000']}") instrument = InstrumentStorage(market="csi300", provider_uri="not_found", freq="day") with self.assertRaises(ValueError): print(instrument.data) with self.assertRaises(ValueError): print(instrument["sSH600000"])
The meaning of instrument, such as CSI500: CSI500 composition changes: date add remove 2005-01-01 SH600000 2005-01-01 SH600001 2005-01-01 SH600002 2005-02-01 SH600003 SH600000 2005-02-15 SH600000 SH600002 Calendar: pd.date_range(start="2020-01-01", stop="2020-03-01", freq="1D") Instrument: symbol start_time end_time SH600000 2005-01-01 2005-01-31 (2005-02-01 Last trading day) SH600000 2005-02-15 2005-03-01 SH600001 2005-01-01 2005-03-01 SH600002 2005-01-01 2005-02-14 (2005-02-15 Last trading day) SH600003 2005-02-01 2005-03-01 InstrumentStorage: { "SH600000": [(2005-01-01, 2005-01-31), (2005-02-15, 2005-03-01)], "SH600001": [(2005-01-01, 2005-03-01)], "SH600002": [(2005-01-01, 2005-02-14)], "SH600003": [(2005-02-01, 2005-03-01)], }
test_instrument_storage
python
microsoft/qlib
tests/storage_tests/test_storage.py
https://github.com/microsoft/qlib/blob/master/tests/storage_tests/test_storage.py
MIT
def test_feature_storage(self): """ Calendar: pd.date_range(start="2005-01-01", stop="2005-03-01", freq="1D") Instrument: { "SH600000": [(2005-01-01, 2005-01-31), (2005-02-15, 2005-03-01)], "SH600001": [(2005-01-01, 2005-03-01)], "SH600002": [(2005-01-01, 2005-02-14)], "SH600003": [(2005-02-01, 2005-03-01)], } Feature: Stock data(close): 2005-01-01 ... 2005-02-01 ... 2005-02-14 2005-02-15 ... 2005-03-01 SH600000 1 ... 3 ... 4 5 6 SH600001 1 ... 4 ... 5 6 7 SH600002 1 ... 5 ... 6 nan nan SH600003 nan ... 1 ... 2 3 4 FeatureStorage(SH600000, close): [ (calendar.index("2005-01-01"), 1), ..., (calendar.index("2005-03-01"), 6) ] ====> [(0, 1), ..., (59, 6)] FeatureStorage(SH600002, close): [ (calendar.index("2005-01-01"), 1), ..., (calendar.index("2005-02-14"), 6) ] ===> [(0, 1), ..., (44, 6)] FeatureStorage(SH600003, close): [ (calendar.index("2005-02-01"), 1), ..., (calendar.index("2005-03-01"), 4) ] ===> [(31, 1), ..., (59, 4)] """ feature = FeatureStorage(instrument="SZ300677", field="close", freq="day", provider_uri=self.provider_uri) with self.assertRaises(IndexError): print(feature[0]) assert isinstance( feature[3049][1], (float, np.float32) ), f"{feature.__class__.__name__}.__getitem__(i: int) error" assert len(feature[3049:3052]) == 3, f"{feature.__class__.__name__}.__getitem__(s: slice) error" print(f"feature[3049: 3052]: \n{feature[3049: 3052]}") print(f"feature[:].tail(): \n{feature[:].tail()}") feature = FeatureStorage(instrument="SH600004", field="close", freq="day", provider_uri="not_fount") with self.assertRaises(ValueError): print(feature[0]) with self.assertRaises(ValueError): print(feature[:].empty) with self.assertRaises(ValueError): print(feature.data.empty)
Calendar: pd.date_range(start="2005-01-01", stop="2005-03-01", freq="1D") Instrument: { "SH600000": [(2005-01-01, 2005-01-31), (2005-02-15, 2005-03-01)], "SH600001": [(2005-01-01, 2005-03-01)], "SH600002": [(2005-01-01, 2005-02-14)], "SH600003": [(2005-02-01, 2005-03-01)], } Feature: Stock data(close): 2005-01-01 ... 2005-02-01 ... 2005-02-14 2005-02-15 ... 2005-03-01 SH600000 1 ... 3 ... 4 5 6 SH600001 1 ... 4 ... 5 6 7 SH600002 1 ... 5 ... 6 nan nan SH600003 nan ... 1 ... 2 3 4 FeatureStorage(SH600000, close): [ (calendar.index("2005-01-01"), 1), ..., (calendar.index("2005-03-01"), 6) ] ====> [(0, 1), ..., (59, 6)] FeatureStorage(SH600002, close): [ (calendar.index("2005-01-01"), 1), ..., (calendar.index("2005-02-14"), 6) ] ===> [(0, 1), ..., (44, 6)] FeatureStorage(SH600003, close): [ (calendar.index("2005-02-01"), 1), ..., (calendar.index("2005-03-01"), 4) ] ===> [(31, 1), ..., (59, 4)]
test_feature_storage
python
microsoft/qlib
tests/storage_tests/test_storage.py
https://github.com/microsoft/qlib/blob/master/tests/storage_tests/test_storage.py
MIT
def convert_realtime( self, voice_id: str, *, text: typing.Iterator[str], model_id: typing.Optional[str] = OMIT, output_format: typing.Optional[OutputFormat] = "mp3_44100_128", voice_settings: typing.Optional[VoiceSettings] = OMIT, request_options: typing.Optional[RequestOptions] = None, ) -> typing.Iterator[bytes]: """ Converts text into speech using a voice of your choice and returns audio. Parameters: - voice_id: str. Voice ID to be used, you can use https://api.elevenlabs.io/v1/voices to list all the available voices. - text: typing.Iterator[str]. The text that will get converted into speech. - model_id: typing.Optional[str]. Identifier of the model that will be used, you can query them using GET /v1/models. The model needs to have support for text to speech, you can check this using the can_do_text_to_speech property. - voice_settings: typing.Optional[VoiceSettings]. Voice settings overriding stored setttings for the given voice. They are applied only on the given request. - request_options: typing.Optional[RequestOptions]. Request-specific configuration. --- from elevenlabs import PronunciationDictionaryVersionLocator, VoiceSettings from elevenlabs.client import ElevenLabs def get_text() -> typing.Iterator[str]: yield "Hello, how are you?" yield "I am fine, thank you." client = ElevenLabs( api_key="YOUR_API_KEY", ) client.text_to_speech.convert_realtime( voice_id="string", text=get_text(), model_id="string", voice_settings=VoiceSettings( stability=1.1, similarity_boost=1.1, style=1.1, use_speaker_boost=True, ), ) """ with connect( urllib.parse.urljoin( self._ws_base_url, f"v1/text-to-speech/{jsonable_encoder(voice_id)}/stream-input?model_id={model_id}&output_format={output_format}" ), additional_headers=jsonable_encoder( remove_none_from_dict( { **self._client_wrapper.get_headers(), **(request_options.get("additional_headers", {}) if request_options is not None else {}), } ) ) ) as socket: try: socket.send(json.dumps( dict( text=" ", try_trigger_generation=True, voice_settings=voice_settings.dict() if voice_settings else None, generation_config=dict( chunk_length_schedule=[50], ), ) )) except websockets.exceptions.ConnectionClosedError as ce: raise ApiError(body=ce.reason, status_code=ce.code) try: for text_chunk in text_chunker(text): data = dict(text=text_chunk, try_trigger_generation=True) socket.send(json.dumps(data)) try: data = json.loads(socket.recv(1e-2)) if "audio" in data and data["audio"]: yield base64.b64decode(data["audio"]) # type: ignore except TimeoutError: pass socket.send(json.dumps(dict(text=""))) while True: data = json.loads(socket.recv()) if "audio" in data and data["audio"]: yield base64.b64decode(data["audio"]) # type: ignore except websockets.exceptions.ConnectionClosed as ce: if "message" in data: raise ApiError(body=data, status_code=ce.code) elif ce.code != 1000: raise ApiError(body=ce.reason, status_code=ce.code)
Converts text into speech using a voice of your choice and returns audio. Parameters: - voice_id: str. Voice ID to be used, you can use https://api.elevenlabs.io/v1/voices to list all the available voices. - text: typing.Iterator[str]. The text that will get converted into speech. - model_id: typing.Optional[str]. Identifier of the model that will be used, you can query them using GET /v1/models. The model needs to have support for text to speech, you can check this using the can_do_text_to_speech property. - voice_settings: typing.Optional[VoiceSettings]. Voice settings overriding stored setttings for the given voice. They are applied only on the given request. - request_options: typing.Optional[RequestOptions]. Request-specific configuration. --- from elevenlabs import PronunciationDictionaryVersionLocator, VoiceSettings from elevenlabs.client import ElevenLabs def get_text() -> typing.Iterator[str]: yield "Hello, how are you?" yield "I am fine, thank you." client = ElevenLabs( api_key="YOUR_API_KEY", ) client.text_to_speech.convert_realtime( voice_id="string", text=get_text(), model_id="string", voice_settings=VoiceSettings( stability=1.1, similarity_boost=1.1, style=1.1, use_speaker_boost=True, ), )
convert_realtime
python
elevenlabs/elevenlabs-python
src/elevenlabs/realtime_tts.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/realtime_tts.py
MIT
def construct_event(self, rawBody: str, sig_header: str, secret: str) -> Dict: """ Constructs a webhook event object from a payload and signature. Verifies the webhook signature to ensure the event came from ElevenLabs. Args: rawBody: The webhook request body. Must be the raw body, not a JSON object sig_header: The signature header from the request secret: Your webhook secret Returns: The verified webhook event Raises: BadRequestError: If the signature is invalid or missing """ if not sig_header: raise BadRequestError(body="Missing signature header") if not secret: raise BadRequestError(body="Webhook secret not configured") headers = sig_header.split(',') timestamp = None signature = None for header in headers: if header.startswith('t='): timestamp = header[2:] elif header.startswith('v0='): signature = header if not timestamp or not signature: raise BadRequestError(body="No signature hash found with expected scheme v0") # Validate timestamp req_timestamp = int(timestamp) * 1000 tolerance = int(time.time() * 1000) - 30 * 60 * 1000 if req_timestamp < tolerance: raise BadRequestError(body="Timestamp outside the tolerance zone") # Validate hash message = f"{timestamp}.{rawBody}" digest = "v0=" + hmac.new( secret.encode('utf-8'), message.encode('utf-8'), hashlib.sha256 ).hexdigest() if signature != digest: raise BadRequestError( body="Signature hash does not match the expected signature hash for payload" ) return json.loads(rawBody)
Constructs a webhook event object from a payload and signature. Verifies the webhook signature to ensure the event came from ElevenLabs. Args: rawBody: The webhook request body. Must be the raw body, not a JSON object sig_header: The signature header from the request secret: Your webhook secret Returns: The verified webhook event Raises: BadRequestError: If the signature is invalid or missing
construct_event
python
elevenlabs/elevenlabs-python
src/elevenlabs/webhooks.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/webhooks.py
MIT
def convert( self, *, audio: core.File, file_format: typing.Optional[AudioIsolationConvertRequestFileFormat] = OMIT, request_options: typing.Optional[RequestOptions] = None, ) -> typing.Iterator[bytes]: """ Removes background noise from audio. Parameters ---------- audio : core.File See core.File for more documentation file_format : typing.Optional[AudioIsolationConvertRequestFileFormat] The format of input audio. Options are 'pcm_s16le_16' or 'other' For `pcm_s16le_16`, the input audio must be 16-bit PCM at a 16kHz sample rate, single channel (mono), and little-endian byte order. Latency will be lower than with passing an encoded waveform. request_options : typing.Optional[RequestOptions] Request-specific configuration. You can pass in configuration such as `chunk_size`, and more to customize the request and response. Returns ------- typing.Iterator[bytes] Successful Response """ with self._raw_client.convert(audio=audio, file_format=file_format, request_options=request_options) as r: yield from r.data
Removes background noise from audio. Parameters ---------- audio : core.File See core.File for more documentation file_format : typing.Optional[AudioIsolationConvertRequestFileFormat] The format of input audio. Options are 'pcm_s16le_16' or 'other' For `pcm_s16le_16`, the input audio must be 16-bit PCM at a 16kHz sample rate, single channel (mono), and little-endian byte order. Latency will be lower than with passing an encoded waveform. request_options : typing.Optional[RequestOptions] Request-specific configuration. You can pass in configuration such as `chunk_size`, and more to customize the request and response. Returns ------- typing.Iterator[bytes] Successful Response
convert
python
elevenlabs/elevenlabs-python
src/elevenlabs/audio_isolation/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/audio_isolation/client.py
MIT
def stream( self, *, audio: core.File, file_format: typing.Optional[AudioIsolationStreamRequestFileFormat] = OMIT, request_options: typing.Optional[RequestOptions] = None, ) -> typing.Iterator[bytes]: """ Removes background noise from audio. Parameters ---------- audio : core.File See core.File for more documentation file_format : typing.Optional[AudioIsolationStreamRequestFileFormat] The format of input audio. Options are 'pcm_s16le_16' or 'other' For `pcm_s16le_16`, the input audio must be 16-bit PCM at a 16kHz sample rate, single channel (mono), and little-endian byte order. Latency will be lower than with passing an encoded waveform. request_options : typing.Optional[RequestOptions] Request-specific configuration. You can pass in configuration such as `chunk_size`, and more to customize the request and response. Returns ------- typing.Iterator[bytes] Successful Response """ with self._raw_client.stream(audio=audio, file_format=file_format, request_options=request_options) as r: yield from r.data
Removes background noise from audio. Parameters ---------- audio : core.File See core.File for more documentation file_format : typing.Optional[AudioIsolationStreamRequestFileFormat] The format of input audio. Options are 'pcm_s16le_16' or 'other' For `pcm_s16le_16`, the input audio must be 16-bit PCM at a 16kHz sample rate, single channel (mono), and little-endian byte order. Latency will be lower than with passing an encoded waveform. request_options : typing.Optional[RequestOptions] Request-specific configuration. You can pass in configuration such as `chunk_size`, and more to customize the request and response. Returns ------- typing.Iterator[bytes] Successful Response
stream
python
elevenlabs/elevenlabs-python
src/elevenlabs/audio_isolation/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/audio_isolation/client.py
MIT
async def convert( self, *, audio: core.File, file_format: typing.Optional[AudioIsolationConvertRequestFileFormat] = OMIT, request_options: typing.Optional[RequestOptions] = None, ) -> typing.AsyncIterator[bytes]: """ Removes background noise from audio. Parameters ---------- audio : core.File See core.File for more documentation file_format : typing.Optional[AudioIsolationConvertRequestFileFormat] The format of input audio. Options are 'pcm_s16le_16' or 'other' For `pcm_s16le_16`, the input audio must be 16-bit PCM at a 16kHz sample rate, single channel (mono), and little-endian byte order. Latency will be lower than with passing an encoded waveform. request_options : typing.Optional[RequestOptions] Request-specific configuration. You can pass in configuration such as `chunk_size`, and more to customize the request and response. Returns ------- typing.AsyncIterator[bytes] Successful Response """ async with self._raw_client.convert(audio=audio, file_format=file_format, request_options=request_options) as r: async for _chunk in r.data: yield _chunk
Removes background noise from audio. Parameters ---------- audio : core.File See core.File for more documentation file_format : typing.Optional[AudioIsolationConvertRequestFileFormat] The format of input audio. Options are 'pcm_s16le_16' or 'other' For `pcm_s16le_16`, the input audio must be 16-bit PCM at a 16kHz sample rate, single channel (mono), and little-endian byte order. Latency will be lower than with passing an encoded waveform. request_options : typing.Optional[RequestOptions] Request-specific configuration. You can pass in configuration such as `chunk_size`, and more to customize the request and response. Returns ------- typing.AsyncIterator[bytes] Successful Response
convert
python
elevenlabs/elevenlabs-python
src/elevenlabs/audio_isolation/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/audio_isolation/client.py
MIT
async def stream( self, *, audio: core.File, file_format: typing.Optional[AudioIsolationStreamRequestFileFormat] = OMIT, request_options: typing.Optional[RequestOptions] = None, ) -> typing.AsyncIterator[bytes]: """ Removes background noise from audio. Parameters ---------- audio : core.File See core.File for more documentation file_format : typing.Optional[AudioIsolationStreamRequestFileFormat] The format of input audio. Options are 'pcm_s16le_16' or 'other' For `pcm_s16le_16`, the input audio must be 16-bit PCM at a 16kHz sample rate, single channel (mono), and little-endian byte order. Latency will be lower than with passing an encoded waveform. request_options : typing.Optional[RequestOptions] Request-specific configuration. You can pass in configuration such as `chunk_size`, and more to customize the request and response. Returns ------- typing.AsyncIterator[bytes] Successful Response """ async with self._raw_client.stream(audio=audio, file_format=file_format, request_options=request_options) as r: async for _chunk in r.data: yield _chunk
Removes background noise from audio. Parameters ---------- audio : core.File See core.File for more documentation file_format : typing.Optional[AudioIsolationStreamRequestFileFormat] The format of input audio. Options are 'pcm_s16le_16' or 'other' For `pcm_s16le_16`, the input audio must be 16-bit PCM at a 16kHz sample rate, single channel (mono), and little-endian byte order. Latency will be lower than with passing an encoded waveform. request_options : typing.Optional[RequestOptions] Request-specific configuration. You can pass in configuration such as `chunk_size`, and more to customize the request and response. Returns ------- typing.AsyncIterator[bytes] Successful Response
stream
python
elevenlabs/elevenlabs-python
src/elevenlabs/audio_isolation/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/audio_isolation/client.py
MIT
def convert( self, *, audio: core.File, file_format: typing.Optional[AudioIsolationConvertRequestFileFormat] = OMIT, request_options: typing.Optional[RequestOptions] = None, ) -> typing.Iterator[HttpResponse[typing.Iterator[bytes]]]: """ Removes background noise from audio. Parameters ---------- audio : core.File See core.File for more documentation file_format : typing.Optional[AudioIsolationConvertRequestFileFormat] The format of input audio. Options are 'pcm_s16le_16' or 'other' For `pcm_s16le_16`, the input audio must be 16-bit PCM at a 16kHz sample rate, single channel (mono), and little-endian byte order. Latency will be lower than with passing an encoded waveform. request_options : typing.Optional[RequestOptions] Request-specific configuration. You can pass in configuration such as `chunk_size`, and more to customize the request and response. Returns ------- typing.Iterator[HttpResponse[typing.Iterator[bytes]]] Successful Response """ with self._client_wrapper.httpx_client.stream( "v1/audio-isolation", base_url=self._client_wrapper.get_environment().base, method="POST", data={ "file_format": file_format, }, files={ "audio": audio, }, request_options=request_options, omit=OMIT, force_multipart=True, ) as _response: def _stream() -> HttpResponse[typing.Iterator[bytes]]: try: if 200 <= _response.status_code < 300: _chunk_size = request_options.get("chunk_size", 1024) if request_options is not None else 1024 return HttpResponse( response=_response, data=(_chunk for _chunk in _response.iter_bytes(chunk_size=_chunk_size)) ) _response.read() if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError( status_code=_response.status_code, headers=dict(_response.headers), body=_response.text ) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json) yield _stream()
Removes background noise from audio. Parameters ---------- audio : core.File See core.File for more documentation file_format : typing.Optional[AudioIsolationConvertRequestFileFormat] The format of input audio. Options are 'pcm_s16le_16' or 'other' For `pcm_s16le_16`, the input audio must be 16-bit PCM at a 16kHz sample rate, single channel (mono), and little-endian byte order. Latency will be lower than with passing an encoded waveform. request_options : typing.Optional[RequestOptions] Request-specific configuration. You can pass in configuration such as `chunk_size`, and more to customize the request and response. Returns ------- typing.Iterator[HttpResponse[typing.Iterator[bytes]]] Successful Response
convert
python
elevenlabs/elevenlabs-python
src/elevenlabs/audio_isolation/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/audio_isolation/raw_client.py
MIT
def stream( self, *, audio: core.File, file_format: typing.Optional[AudioIsolationStreamRequestFileFormat] = OMIT, request_options: typing.Optional[RequestOptions] = None, ) -> typing.Iterator[HttpResponse[typing.Iterator[bytes]]]: """ Removes background noise from audio. Parameters ---------- audio : core.File See core.File for more documentation file_format : typing.Optional[AudioIsolationStreamRequestFileFormat] The format of input audio. Options are 'pcm_s16le_16' or 'other' For `pcm_s16le_16`, the input audio must be 16-bit PCM at a 16kHz sample rate, single channel (mono), and little-endian byte order. Latency will be lower than with passing an encoded waveform. request_options : typing.Optional[RequestOptions] Request-specific configuration. You can pass in configuration such as `chunk_size`, and more to customize the request and response. Returns ------- typing.Iterator[HttpResponse[typing.Iterator[bytes]]] Successful Response """ with self._client_wrapper.httpx_client.stream( "v1/audio-isolation/stream", base_url=self._client_wrapper.get_environment().base, method="POST", data={ "file_format": file_format, }, files={ "audio": audio, }, request_options=request_options, omit=OMIT, force_multipart=True, ) as _response: def _stream() -> HttpResponse[typing.Iterator[bytes]]: try: if 200 <= _response.status_code < 300: _chunk_size = request_options.get("chunk_size", 1024) if request_options is not None else 1024 return HttpResponse( response=_response, data=(_chunk for _chunk in _response.iter_bytes(chunk_size=_chunk_size)) ) _response.read() if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError( status_code=_response.status_code, headers=dict(_response.headers), body=_response.text ) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json) yield _stream()
Removes background noise from audio. Parameters ---------- audio : core.File See core.File for more documentation file_format : typing.Optional[AudioIsolationStreamRequestFileFormat] The format of input audio. Options are 'pcm_s16le_16' or 'other' For `pcm_s16le_16`, the input audio must be 16-bit PCM at a 16kHz sample rate, single channel (mono), and little-endian byte order. Latency will be lower than with passing an encoded waveform. request_options : typing.Optional[RequestOptions] Request-specific configuration. You can pass in configuration such as `chunk_size`, and more to customize the request and response. Returns ------- typing.Iterator[HttpResponse[typing.Iterator[bytes]]] Successful Response
stream
python
elevenlabs/elevenlabs-python
src/elevenlabs/audio_isolation/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/audio_isolation/raw_client.py
MIT
async def convert( self, *, audio: core.File, file_format: typing.Optional[AudioIsolationConvertRequestFileFormat] = OMIT, request_options: typing.Optional[RequestOptions] = None, ) -> typing.AsyncIterator[AsyncHttpResponse[typing.AsyncIterator[bytes]]]: """ Removes background noise from audio. Parameters ---------- audio : core.File See core.File for more documentation file_format : typing.Optional[AudioIsolationConvertRequestFileFormat] The format of input audio. Options are 'pcm_s16le_16' or 'other' For `pcm_s16le_16`, the input audio must be 16-bit PCM at a 16kHz sample rate, single channel (mono), and little-endian byte order. Latency will be lower than with passing an encoded waveform. request_options : typing.Optional[RequestOptions] Request-specific configuration. You can pass in configuration such as `chunk_size`, and more to customize the request and response. Returns ------- typing.AsyncIterator[AsyncHttpResponse[typing.AsyncIterator[bytes]]] Successful Response """ async with self._client_wrapper.httpx_client.stream( "v1/audio-isolation", base_url=self._client_wrapper.get_environment().base, method="POST", data={ "file_format": file_format, }, files={ "audio": audio, }, request_options=request_options, omit=OMIT, force_multipart=True, ) as _response: async def _stream() -> AsyncHttpResponse[typing.AsyncIterator[bytes]]: try: if 200 <= _response.status_code < 300: _chunk_size = request_options.get("chunk_size", 1024) if request_options is not None else 1024 return AsyncHttpResponse( response=_response, data=(_chunk async for _chunk in _response.aiter_bytes(chunk_size=_chunk_size)), ) await _response.aread() if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError( status_code=_response.status_code, headers=dict(_response.headers), body=_response.text ) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json) yield await _stream()
Removes background noise from audio. Parameters ---------- audio : core.File See core.File for more documentation file_format : typing.Optional[AudioIsolationConvertRequestFileFormat] The format of input audio. Options are 'pcm_s16le_16' or 'other' For `pcm_s16le_16`, the input audio must be 16-bit PCM at a 16kHz sample rate, single channel (mono), and little-endian byte order. Latency will be lower than with passing an encoded waveform. request_options : typing.Optional[RequestOptions] Request-specific configuration. You can pass in configuration such as `chunk_size`, and more to customize the request and response. Returns ------- typing.AsyncIterator[AsyncHttpResponse[typing.AsyncIterator[bytes]]] Successful Response
convert
python
elevenlabs/elevenlabs-python
src/elevenlabs/audio_isolation/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/audio_isolation/raw_client.py
MIT
async def stream( self, *, audio: core.File, file_format: typing.Optional[AudioIsolationStreamRequestFileFormat] = OMIT, request_options: typing.Optional[RequestOptions] = None, ) -> typing.AsyncIterator[AsyncHttpResponse[typing.AsyncIterator[bytes]]]: """ Removes background noise from audio. Parameters ---------- audio : core.File See core.File for more documentation file_format : typing.Optional[AudioIsolationStreamRequestFileFormat] The format of input audio. Options are 'pcm_s16le_16' or 'other' For `pcm_s16le_16`, the input audio must be 16-bit PCM at a 16kHz sample rate, single channel (mono), and little-endian byte order. Latency will be lower than with passing an encoded waveform. request_options : typing.Optional[RequestOptions] Request-specific configuration. You can pass in configuration such as `chunk_size`, and more to customize the request and response. Returns ------- typing.AsyncIterator[AsyncHttpResponse[typing.AsyncIterator[bytes]]] Successful Response """ async with self._client_wrapper.httpx_client.stream( "v1/audio-isolation/stream", base_url=self._client_wrapper.get_environment().base, method="POST", data={ "file_format": file_format, }, files={ "audio": audio, }, request_options=request_options, omit=OMIT, force_multipart=True, ) as _response: async def _stream() -> AsyncHttpResponse[typing.AsyncIterator[bytes]]: try: if 200 <= _response.status_code < 300: _chunk_size = request_options.get("chunk_size", 1024) if request_options is not None else 1024 return AsyncHttpResponse( response=_response, data=(_chunk async for _chunk in _response.aiter_bytes(chunk_size=_chunk_size)), ) await _response.aread() if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError( status_code=_response.status_code, headers=dict(_response.headers), body=_response.text ) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json) yield await _stream()
Removes background noise from audio. Parameters ---------- audio : core.File See core.File for more documentation file_format : typing.Optional[AudioIsolationStreamRequestFileFormat] The format of input audio. Options are 'pcm_s16le_16' or 'other' For `pcm_s16le_16`, the input audio must be 16-bit PCM at a 16kHz sample rate, single channel (mono), and little-endian byte order. Latency will be lower than with passing an encoded waveform. request_options : typing.Optional[RequestOptions] Request-specific configuration. You can pass in configuration such as `chunk_size`, and more to customize the request and response. Returns ------- typing.AsyncIterator[AsyncHttpResponse[typing.AsyncIterator[bytes]]] Successful Response
stream
python
elevenlabs/elevenlabs-python
src/elevenlabs/audio_isolation/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/audio_isolation/raw_client.py
MIT
def create( self, *, name: str, image: typing.Optional[str] = OMIT, author: typing.Optional[str] = OMIT, title: typing.Optional[str] = OMIT, small: typing.Optional[bool] = OMIT, text_color: typing.Optional[str] = OMIT, background_color: typing.Optional[str] = OMIT, sessionization: typing.Optional[int] = OMIT, voice_id: typing.Optional[str] = OMIT, model_id: typing.Optional[str] = OMIT, file: typing.Optional[core.File] = OMIT, auto_convert: typing.Optional[bool] = OMIT, request_options: typing.Optional[RequestOptions] = None, ) -> AudioNativeCreateProjectResponseModel: """ Creates Audio Native enabled project, optionally starts conversion and returns project ID and embeddable HTML snippet. Parameters ---------- name : str Project name. image : typing.Optional[str] (Deprecated) Image URL used in the player. If not provided, default image set in the Player settings is used. author : typing.Optional[str] Author used in the player and inserted at the start of the uploaded article. If not provided, the default author set in the Player settings is used. title : typing.Optional[str] Title used in the player and inserted at the top of the uploaded article. If not provided, the default title set in the Player settings is used. small : typing.Optional[bool] (Deprecated) Whether to use small player or not. If not provided, default value set in the Player settings is used. text_color : typing.Optional[str] Text color used in the player. If not provided, default text color set in the Player settings is used. background_color : typing.Optional[str] Background color used in the player. If not provided, default background color set in the Player settings is used. sessionization : typing.Optional[int] (Deprecated) Specifies for how many minutes to persist the session across page reloads. If not provided, default sessionization set in the Player settings is used. voice_id : typing.Optional[str] Voice ID used to voice the content. If not provided, default voice ID set in the Player settings is used. model_id : typing.Optional[str] TTS Model ID used in the player. If not provided, default model ID set in the Player settings is used. file : typing.Optional[core.File] See core.File for more documentation auto_convert : typing.Optional[bool] Whether to auto convert the project to audio or not. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AudioNativeCreateProjectResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.audio_native.create( name="name", ) """ _response = self._raw_client.create( name=name, image=image, author=author, title=title, small=small, text_color=text_color, background_color=background_color, sessionization=sessionization, voice_id=voice_id, model_id=model_id, file=file, auto_convert=auto_convert, request_options=request_options, ) return _response.data
Creates Audio Native enabled project, optionally starts conversion and returns project ID and embeddable HTML snippet. Parameters ---------- name : str Project name. image : typing.Optional[str] (Deprecated) Image URL used in the player. If not provided, default image set in the Player settings is used. author : typing.Optional[str] Author used in the player and inserted at the start of the uploaded article. If not provided, the default author set in the Player settings is used. title : typing.Optional[str] Title used in the player and inserted at the top of the uploaded article. If not provided, the default title set in the Player settings is used. small : typing.Optional[bool] (Deprecated) Whether to use small player or not. If not provided, default value set in the Player settings is used. text_color : typing.Optional[str] Text color used in the player. If not provided, default text color set in the Player settings is used. background_color : typing.Optional[str] Background color used in the player. If not provided, default background color set in the Player settings is used. sessionization : typing.Optional[int] (Deprecated) Specifies for how many minutes to persist the session across page reloads. If not provided, default sessionization set in the Player settings is used. voice_id : typing.Optional[str] Voice ID used to voice the content. If not provided, default voice ID set in the Player settings is used. model_id : typing.Optional[str] TTS Model ID used in the player. If not provided, default model ID set in the Player settings is used. file : typing.Optional[core.File] See core.File for more documentation auto_convert : typing.Optional[bool] Whether to auto convert the project to audio or not. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AudioNativeCreateProjectResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.audio_native.create( name="name", )
create
python
elevenlabs/elevenlabs-python
src/elevenlabs/audio_native/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/audio_native/client.py
MIT
def get_settings( self, project_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> GetAudioNativeProjectSettingsResponseModel: """ Get player settings for the specific project. Parameters ---------- project_id : str The ID of the Studio project. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- GetAudioNativeProjectSettingsResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.audio_native.get_settings( project_id="21m00Tcm4TlvDq8ikWAM", ) """ _response = self._raw_client.get_settings(project_id, request_options=request_options) return _response.data
Get player settings for the specific project. Parameters ---------- project_id : str The ID of the Studio project. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- GetAudioNativeProjectSettingsResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.audio_native.get_settings( project_id="21m00Tcm4TlvDq8ikWAM", )
get_settings
python
elevenlabs/elevenlabs-python
src/elevenlabs/audio_native/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/audio_native/client.py
MIT
def update( self, project_id: str, *, file: typing.Optional[core.File] = OMIT, auto_convert: typing.Optional[bool] = OMIT, auto_publish: typing.Optional[bool] = OMIT, request_options: typing.Optional[RequestOptions] = None, ) -> AudioNativeEditContentResponseModel: """ Updates content for the specific AudioNative Project. Parameters ---------- project_id : str The ID of the project to be used. You can use the [List projects](/docs/api-reference/studio/get-projects) endpoint to list all the available projects. file : typing.Optional[core.File] See core.File for more documentation auto_convert : typing.Optional[bool] Whether to auto convert the project to audio or not. auto_publish : typing.Optional[bool] Whether to auto publish the new project snapshot after it's converted. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AudioNativeEditContentResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.audio_native.update( project_id="21m00Tcm4TlvDq8ikWAM", ) """ _response = self._raw_client.update( project_id, file=file, auto_convert=auto_convert, auto_publish=auto_publish, request_options=request_options ) return _response.data
Updates content for the specific AudioNative Project. Parameters ---------- project_id : str The ID of the project to be used. You can use the [List projects](/docs/api-reference/studio/get-projects) endpoint to list all the available projects. file : typing.Optional[core.File] See core.File for more documentation auto_convert : typing.Optional[bool] Whether to auto convert the project to audio or not. auto_publish : typing.Optional[bool] Whether to auto publish the new project snapshot after it's converted. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AudioNativeEditContentResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.audio_native.update( project_id="21m00Tcm4TlvDq8ikWAM", )
update
python
elevenlabs/elevenlabs-python
src/elevenlabs/audio_native/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/audio_native/client.py
MIT
async def create( self, *, name: str, image: typing.Optional[str] = OMIT, author: typing.Optional[str] = OMIT, title: typing.Optional[str] = OMIT, small: typing.Optional[bool] = OMIT, text_color: typing.Optional[str] = OMIT, background_color: typing.Optional[str] = OMIT, sessionization: typing.Optional[int] = OMIT, voice_id: typing.Optional[str] = OMIT, model_id: typing.Optional[str] = OMIT, file: typing.Optional[core.File] = OMIT, auto_convert: typing.Optional[bool] = OMIT, request_options: typing.Optional[RequestOptions] = None, ) -> AudioNativeCreateProjectResponseModel: """ Creates Audio Native enabled project, optionally starts conversion and returns project ID and embeddable HTML snippet. Parameters ---------- name : str Project name. image : typing.Optional[str] (Deprecated) Image URL used in the player. If not provided, default image set in the Player settings is used. author : typing.Optional[str] Author used in the player and inserted at the start of the uploaded article. If not provided, the default author set in the Player settings is used. title : typing.Optional[str] Title used in the player and inserted at the top of the uploaded article. If not provided, the default title set in the Player settings is used. small : typing.Optional[bool] (Deprecated) Whether to use small player or not. If not provided, default value set in the Player settings is used. text_color : typing.Optional[str] Text color used in the player. If not provided, default text color set in the Player settings is used. background_color : typing.Optional[str] Background color used in the player. If not provided, default background color set in the Player settings is used. sessionization : typing.Optional[int] (Deprecated) Specifies for how many minutes to persist the session across page reloads. If not provided, default sessionization set in the Player settings is used. voice_id : typing.Optional[str] Voice ID used to voice the content. If not provided, default voice ID set in the Player settings is used. model_id : typing.Optional[str] TTS Model ID used in the player. If not provided, default model ID set in the Player settings is used. file : typing.Optional[core.File] See core.File for more documentation auto_convert : typing.Optional[bool] Whether to auto convert the project to audio or not. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AudioNativeCreateProjectResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.audio_native.create( name="name", ) asyncio.run(main()) """ _response = await self._raw_client.create( name=name, image=image, author=author, title=title, small=small, text_color=text_color, background_color=background_color, sessionization=sessionization, voice_id=voice_id, model_id=model_id, file=file, auto_convert=auto_convert, request_options=request_options, ) return _response.data
Creates Audio Native enabled project, optionally starts conversion and returns project ID and embeddable HTML snippet. Parameters ---------- name : str Project name. image : typing.Optional[str] (Deprecated) Image URL used in the player. If not provided, default image set in the Player settings is used. author : typing.Optional[str] Author used in the player and inserted at the start of the uploaded article. If not provided, the default author set in the Player settings is used. title : typing.Optional[str] Title used in the player and inserted at the top of the uploaded article. If not provided, the default title set in the Player settings is used. small : typing.Optional[bool] (Deprecated) Whether to use small player or not. If not provided, default value set in the Player settings is used. text_color : typing.Optional[str] Text color used in the player. If not provided, default text color set in the Player settings is used. background_color : typing.Optional[str] Background color used in the player. If not provided, default background color set in the Player settings is used. sessionization : typing.Optional[int] (Deprecated) Specifies for how many minutes to persist the session across page reloads. If not provided, default sessionization set in the Player settings is used. voice_id : typing.Optional[str] Voice ID used to voice the content. If not provided, default voice ID set in the Player settings is used. model_id : typing.Optional[str] TTS Model ID used in the player. If not provided, default model ID set in the Player settings is used. file : typing.Optional[core.File] See core.File for more documentation auto_convert : typing.Optional[bool] Whether to auto convert the project to audio or not. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AudioNativeCreateProjectResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.audio_native.create( name="name", ) asyncio.run(main())
create
python
elevenlabs/elevenlabs-python
src/elevenlabs/audio_native/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/audio_native/client.py
MIT