code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
async def get_signed_url( self, *, agent_id: str, request_options: typing.Optional[RequestOptions] = None ) -> ConversationSignedUrlResponseModel: """ Get a signed url to start a conversation with an agent with an agent that requires authorization Parameters ---------- agent_id : str The id of the agent you're taking the action on. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- ConversationSignedUrlResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.conversations.get_signed_url( agent_id="21m00Tcm4TlvDq8ikWAM", ) asyncio.run(main()) """ _response = await self._raw_client.get_signed_url(agent_id=agent_id, request_options=request_options) return _response.data
Get a signed url to start a conversation with an agent with an agent that requires authorization Parameters ---------- agent_id : str The id of the agent you're taking the action on. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- ConversationSignedUrlResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.conversations.get_signed_url( agent_id="21m00Tcm4TlvDq8ikWAM", ) asyncio.run(main())
get_signed_url
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/conversations/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/conversations/client.py
MIT
async def list( self, *, cursor: typing.Optional[str] = None, agent_id: typing.Optional[str] = None, call_successful: typing.Optional[EvaluationSuccessResult] = None, call_start_before_unix: typing.Optional[int] = None, call_start_after_unix: typing.Optional[int] = None, page_size: typing.Optional[int] = None, request_options: typing.Optional[RequestOptions] = None, ) -> GetConversationsPageResponseModel: """ Get all conversations of agents that user owns. With option to restrict to a specific agent. Parameters ---------- cursor : typing.Optional[str] Used for fetching next page. Cursor is returned in the response. agent_id : typing.Optional[str] The id of the agent you're taking the action on. call_successful : typing.Optional[EvaluationSuccessResult] The result of the success evaluation call_start_before_unix : typing.Optional[int] Unix timestamp (in seconds) to filter conversations up to this start date. call_start_after_unix : typing.Optional[int] Unix timestamp (in seconds) to filter conversations after to this start date. page_size : typing.Optional[int] How many conversations to return at maximum. Can not exceed 100, defaults to 30. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- GetConversationsPageResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.conversations.list() asyncio.run(main()) """ _response = await self._raw_client.list( cursor=cursor, agent_id=agent_id, call_successful=call_successful, call_start_before_unix=call_start_before_unix, call_start_after_unix=call_start_after_unix, page_size=page_size, request_options=request_options, ) return _response.data
Get all conversations of agents that user owns. With option to restrict to a specific agent. Parameters ---------- cursor : typing.Optional[str] Used for fetching next page. Cursor is returned in the response. agent_id : typing.Optional[str] The id of the agent you're taking the action on. call_successful : typing.Optional[EvaluationSuccessResult] The result of the success evaluation call_start_before_unix : typing.Optional[int] Unix timestamp (in seconds) to filter conversations up to this start date. call_start_after_unix : typing.Optional[int] Unix timestamp (in seconds) to filter conversations after to this start date. page_size : typing.Optional[int] How many conversations to return at maximum. Can not exceed 100, defaults to 30. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- GetConversationsPageResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.conversations.list() asyncio.run(main())
list
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/conversations/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/conversations/client.py
MIT
async def get( self, conversation_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> GetConversationResponseModel: """ Get the details of a particular conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- GetConversationResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.conversations.get( conversation_id="123", ) asyncio.run(main()) """ _response = await self._raw_client.get(conversation_id, request_options=request_options) return _response.data
Get the details of a particular conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- GetConversationResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.conversations.get( conversation_id="123", ) asyncio.run(main())
get
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/conversations/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/conversations/client.py
MIT
async def delete( self, conversation_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> typing.Optional[typing.Any]: """ Delete a particular conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- typing.Optional[typing.Any] Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.conversations.delete( conversation_id="21m00Tcm4TlvDq8ikWAM", ) asyncio.run(main()) """ _response = await self._raw_client.delete(conversation_id, request_options=request_options) return _response.data
Delete a particular conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- typing.Optional[typing.Any] Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.conversations.delete( conversation_id="21m00Tcm4TlvDq8ikWAM", ) asyncio.run(main())
delete
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/conversations/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/conversations/client.py
MIT
def get_signed_url( self, *, agent_id: str, request_options: typing.Optional[RequestOptions] = None ) -> HttpResponse[ConversationSignedUrlResponseModel]: """ Get a signed url to start a conversation with an agent with an agent that requires authorization Parameters ---------- agent_id : str The id of the agent you're taking the action on. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[ConversationSignedUrlResponseModel] Successful Response """ _response = self._client_wrapper.httpx_client.request( "v1/convai/conversation/get-signed-url", base_url=self._client_wrapper.get_environment().base, method="GET", params={ "agent_id": agent_id, }, request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( ConversationSignedUrlResponseModel, construct_type( type_=ConversationSignedUrlResponseModel, # type: ignore object_=_response.json(), ), ) return HttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Get a signed url to start a conversation with an agent with an agent that requires authorization Parameters ---------- agent_id : str The id of the agent you're taking the action on. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[ConversationSignedUrlResponseModel] Successful Response
get_signed_url
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/conversations/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/conversations/raw_client.py
MIT
def list( self, *, cursor: typing.Optional[str] = None, agent_id: typing.Optional[str] = None, call_successful: typing.Optional[EvaluationSuccessResult] = None, call_start_before_unix: typing.Optional[int] = None, call_start_after_unix: typing.Optional[int] = None, page_size: typing.Optional[int] = None, request_options: typing.Optional[RequestOptions] = None, ) -> HttpResponse[GetConversationsPageResponseModel]: """ Get all conversations of agents that user owns. With option to restrict to a specific agent. Parameters ---------- cursor : typing.Optional[str] Used for fetching next page. Cursor is returned in the response. agent_id : typing.Optional[str] The id of the agent you're taking the action on. call_successful : typing.Optional[EvaluationSuccessResult] The result of the success evaluation call_start_before_unix : typing.Optional[int] Unix timestamp (in seconds) to filter conversations up to this start date. call_start_after_unix : typing.Optional[int] Unix timestamp (in seconds) to filter conversations after to this start date. page_size : typing.Optional[int] How many conversations to return at maximum. Can not exceed 100, defaults to 30. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[GetConversationsPageResponseModel] Successful Response """ _response = self._client_wrapper.httpx_client.request( "v1/convai/conversations", base_url=self._client_wrapper.get_environment().base, method="GET", params={ "cursor": cursor, "agent_id": agent_id, "call_successful": call_successful, "call_start_before_unix": call_start_before_unix, "call_start_after_unix": call_start_after_unix, "page_size": page_size, }, request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( GetConversationsPageResponseModel, construct_type( type_=GetConversationsPageResponseModel, # type: ignore object_=_response.json(), ), ) return HttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Get all conversations of agents that user owns. With option to restrict to a specific agent. Parameters ---------- cursor : typing.Optional[str] Used for fetching next page. Cursor is returned in the response. agent_id : typing.Optional[str] The id of the agent you're taking the action on. call_successful : typing.Optional[EvaluationSuccessResult] The result of the success evaluation call_start_before_unix : typing.Optional[int] Unix timestamp (in seconds) to filter conversations up to this start date. call_start_after_unix : typing.Optional[int] Unix timestamp (in seconds) to filter conversations after to this start date. page_size : typing.Optional[int] How many conversations to return at maximum. Can not exceed 100, defaults to 30. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[GetConversationsPageResponseModel] Successful Response
list
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/conversations/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/conversations/raw_client.py
MIT
def get( self, conversation_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> HttpResponse[GetConversationResponseModel]: """ Get the details of a particular conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[GetConversationResponseModel] Successful Response """ _response = self._client_wrapper.httpx_client.request( f"v1/convai/conversations/{jsonable_encoder(conversation_id)}", base_url=self._client_wrapper.get_environment().base, method="GET", request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( GetConversationResponseModel, construct_type( type_=GetConversationResponseModel, # type: ignore object_=_response.json(), ), ) return HttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Get the details of a particular conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[GetConversationResponseModel] Successful Response
get
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/conversations/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/conversations/raw_client.py
MIT
def delete( self, conversation_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> HttpResponse[typing.Optional[typing.Any]]: """ Delete a particular conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[typing.Optional[typing.Any]] Successful Response """ _response = self._client_wrapper.httpx_client.request( f"v1/convai/conversations/{jsonable_encoder(conversation_id)}", base_url=self._client_wrapper.get_environment().base, method="DELETE", request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( typing.Optional[typing.Any], construct_type( type_=typing.Optional[typing.Any], # type: ignore object_=_response.json(), ), ) return HttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Delete a particular conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[typing.Optional[typing.Any]] Successful Response
delete
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/conversations/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/conversations/raw_client.py
MIT
async def get_signed_url( self, *, agent_id: str, request_options: typing.Optional[RequestOptions] = None ) -> AsyncHttpResponse[ConversationSignedUrlResponseModel]: """ Get a signed url to start a conversation with an agent with an agent that requires authorization Parameters ---------- agent_id : str The id of the agent you're taking the action on. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[ConversationSignedUrlResponseModel] Successful Response """ _response = await self._client_wrapper.httpx_client.request( "v1/convai/conversation/get-signed-url", base_url=self._client_wrapper.get_environment().base, method="GET", params={ "agent_id": agent_id, }, request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( ConversationSignedUrlResponseModel, construct_type( type_=ConversationSignedUrlResponseModel, # type: ignore object_=_response.json(), ), ) return AsyncHttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Get a signed url to start a conversation with an agent with an agent that requires authorization Parameters ---------- agent_id : str The id of the agent you're taking the action on. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[ConversationSignedUrlResponseModel] Successful Response
get_signed_url
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/conversations/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/conversations/raw_client.py
MIT
async def list( self, *, cursor: typing.Optional[str] = None, agent_id: typing.Optional[str] = None, call_successful: typing.Optional[EvaluationSuccessResult] = None, call_start_before_unix: typing.Optional[int] = None, call_start_after_unix: typing.Optional[int] = None, page_size: typing.Optional[int] = None, request_options: typing.Optional[RequestOptions] = None, ) -> AsyncHttpResponse[GetConversationsPageResponseModel]: """ Get all conversations of agents that user owns. With option to restrict to a specific agent. Parameters ---------- cursor : typing.Optional[str] Used for fetching next page. Cursor is returned in the response. agent_id : typing.Optional[str] The id of the agent you're taking the action on. call_successful : typing.Optional[EvaluationSuccessResult] The result of the success evaluation call_start_before_unix : typing.Optional[int] Unix timestamp (in seconds) to filter conversations up to this start date. call_start_after_unix : typing.Optional[int] Unix timestamp (in seconds) to filter conversations after to this start date. page_size : typing.Optional[int] How many conversations to return at maximum. Can not exceed 100, defaults to 30. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[GetConversationsPageResponseModel] Successful Response """ _response = await self._client_wrapper.httpx_client.request( "v1/convai/conversations", base_url=self._client_wrapper.get_environment().base, method="GET", params={ "cursor": cursor, "agent_id": agent_id, "call_successful": call_successful, "call_start_before_unix": call_start_before_unix, "call_start_after_unix": call_start_after_unix, "page_size": page_size, }, request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( GetConversationsPageResponseModel, construct_type( type_=GetConversationsPageResponseModel, # type: ignore object_=_response.json(), ), ) return AsyncHttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Get all conversations of agents that user owns. With option to restrict to a specific agent. Parameters ---------- cursor : typing.Optional[str] Used for fetching next page. Cursor is returned in the response. agent_id : typing.Optional[str] The id of the agent you're taking the action on. call_successful : typing.Optional[EvaluationSuccessResult] The result of the success evaluation call_start_before_unix : typing.Optional[int] Unix timestamp (in seconds) to filter conversations up to this start date. call_start_after_unix : typing.Optional[int] Unix timestamp (in seconds) to filter conversations after to this start date. page_size : typing.Optional[int] How many conversations to return at maximum. Can not exceed 100, defaults to 30. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[GetConversationsPageResponseModel] Successful Response
list
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/conversations/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/conversations/raw_client.py
MIT
async def get( self, conversation_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> AsyncHttpResponse[GetConversationResponseModel]: """ Get the details of a particular conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[GetConversationResponseModel] Successful Response """ _response = await self._client_wrapper.httpx_client.request( f"v1/convai/conversations/{jsonable_encoder(conversation_id)}", base_url=self._client_wrapper.get_environment().base, method="GET", request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( GetConversationResponseModel, construct_type( type_=GetConversationResponseModel, # type: ignore object_=_response.json(), ), ) return AsyncHttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Get the details of a particular conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[GetConversationResponseModel] Successful Response
get
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/conversations/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/conversations/raw_client.py
MIT
async def delete( self, conversation_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> AsyncHttpResponse[typing.Optional[typing.Any]]: """ Delete a particular conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[typing.Optional[typing.Any]] Successful Response """ _response = await self._client_wrapper.httpx_client.request( f"v1/convai/conversations/{jsonable_encoder(conversation_id)}", base_url=self._client_wrapper.get_environment().base, method="DELETE", request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( typing.Optional[typing.Any], construct_type( type_=typing.Optional[typing.Any], # type: ignore object_=_response.json(), ), ) return AsyncHttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Delete a particular conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[typing.Optional[typing.Any]] Successful Response
delete
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/conversations/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/conversations/raw_client.py
MIT
def get( self, conversation_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> typing.Iterator[bytes]: """ Get the audio recording of a particular conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. request_options : typing.Optional[RequestOptions] Request-specific configuration. You can pass in configuration such as `chunk_size`, and more to customize the request and response. Returns ------- typing.Iterator[bytes] Successful Response """ with self._raw_client.get(conversation_id, request_options=request_options) as r: yield from r.data
Get the audio recording of a particular conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. request_options : typing.Optional[RequestOptions] Request-specific configuration. You can pass in configuration such as `chunk_size`, and more to customize the request and response. Returns ------- typing.Iterator[bytes] Successful Response
get
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/conversations/audio/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/conversations/audio/client.py
MIT
async def get( self, conversation_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> typing.AsyncIterator[bytes]: """ Get the audio recording of a particular conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. request_options : typing.Optional[RequestOptions] Request-specific configuration. You can pass in configuration such as `chunk_size`, and more to customize the request and response. Returns ------- typing.AsyncIterator[bytes] Successful Response """ async with self._raw_client.get(conversation_id, request_options=request_options) as r: async for _chunk in r.data: yield _chunk
Get the audio recording of a particular conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. request_options : typing.Optional[RequestOptions] Request-specific configuration. You can pass in configuration such as `chunk_size`, and more to customize the request and response. Returns ------- typing.AsyncIterator[bytes] Successful Response
get
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/conversations/audio/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/conversations/audio/client.py
MIT
def get( self, conversation_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> typing.Iterator[HttpResponse[typing.Iterator[bytes]]]: """ Get the audio recording of a particular conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. request_options : typing.Optional[RequestOptions] Request-specific configuration. You can pass in configuration such as `chunk_size`, and more to customize the request and response. Returns ------- typing.Iterator[HttpResponse[typing.Iterator[bytes]]] Successful Response """ with self._client_wrapper.httpx_client.stream( f"v1/convai/conversations/{jsonable_encoder(conversation_id)}/audio", base_url=self._client_wrapper.get_environment().base, method="GET", request_options=request_options, ) as _response: def _stream() -> HttpResponse[typing.Iterator[bytes]]: try: if 200 <= _response.status_code < 300: _chunk_size = request_options.get("chunk_size", 1024) if request_options is not None else 1024 return HttpResponse( response=_response, data=(_chunk for _chunk in _response.iter_bytes(chunk_size=_chunk_size)) ) _response.read() if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError( status_code=_response.status_code, headers=dict(_response.headers), body=_response.text ) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json) yield _stream()
Get the audio recording of a particular conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. request_options : typing.Optional[RequestOptions] Request-specific configuration. You can pass in configuration such as `chunk_size`, and more to customize the request and response. Returns ------- typing.Iterator[HttpResponse[typing.Iterator[bytes]]] Successful Response
get
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/conversations/audio/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/conversations/audio/raw_client.py
MIT
async def get( self, conversation_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> typing.AsyncIterator[AsyncHttpResponse[typing.AsyncIterator[bytes]]]: """ Get the audio recording of a particular conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. request_options : typing.Optional[RequestOptions] Request-specific configuration. You can pass in configuration such as `chunk_size`, and more to customize the request and response. Returns ------- typing.AsyncIterator[AsyncHttpResponse[typing.AsyncIterator[bytes]]] Successful Response """ async with self._client_wrapper.httpx_client.stream( f"v1/convai/conversations/{jsonable_encoder(conversation_id)}/audio", base_url=self._client_wrapper.get_environment().base, method="GET", request_options=request_options, ) as _response: async def _stream() -> AsyncHttpResponse[typing.AsyncIterator[bytes]]: try: if 200 <= _response.status_code < 300: _chunk_size = request_options.get("chunk_size", 1024) if request_options is not None else 1024 return AsyncHttpResponse( response=_response, data=(_chunk async for _chunk in _response.aiter_bytes(chunk_size=_chunk_size)), ) await _response.aread() if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError( status_code=_response.status_code, headers=dict(_response.headers), body=_response.text ) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json) yield await _stream()
Get the audio recording of a particular conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. request_options : typing.Optional[RequestOptions] Request-specific configuration. You can pass in configuration such as `chunk_size`, and more to customize the request and response. Returns ------- typing.AsyncIterator[AsyncHttpResponse[typing.AsyncIterator[bytes]]] Successful Response
get
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/conversations/audio/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/conversations/audio/raw_client.py
MIT
def create( self, conversation_id: str, *, feedback: UserFeedbackScore, request_options: typing.Optional[RequestOptions] = None, ) -> typing.Optional[typing.Any]: """ Send the feedback for the given conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. feedback : UserFeedbackScore Either 'like' or 'dislike' to indicate the feedback for the conversation. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- typing.Optional[typing.Any] Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.conversations.feedback.create( conversation_id="21m00Tcm4TlvDq8ikWAM", feedback="like", ) """ _response = self._raw_client.create(conversation_id, feedback=feedback, request_options=request_options) return _response.data
Send the feedback for the given conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. feedback : UserFeedbackScore Either 'like' or 'dislike' to indicate the feedback for the conversation. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- typing.Optional[typing.Any] Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.conversations.feedback.create( conversation_id="21m00Tcm4TlvDq8ikWAM", feedback="like", )
create
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/conversations/feedback/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/conversations/feedback/client.py
MIT
async def create( self, conversation_id: str, *, feedback: UserFeedbackScore, request_options: typing.Optional[RequestOptions] = None, ) -> typing.Optional[typing.Any]: """ Send the feedback for the given conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. feedback : UserFeedbackScore Either 'like' or 'dislike' to indicate the feedback for the conversation. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- typing.Optional[typing.Any] Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.conversations.feedback.create( conversation_id="21m00Tcm4TlvDq8ikWAM", feedback="like", ) asyncio.run(main()) """ _response = await self._raw_client.create(conversation_id, feedback=feedback, request_options=request_options) return _response.data
Send the feedback for the given conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. feedback : UserFeedbackScore Either 'like' or 'dislike' to indicate the feedback for the conversation. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- typing.Optional[typing.Any] Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.conversations.feedback.create( conversation_id="21m00Tcm4TlvDq8ikWAM", feedback="like", ) asyncio.run(main())
create
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/conversations/feedback/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/conversations/feedback/client.py
MIT
def create( self, conversation_id: str, *, feedback: UserFeedbackScore, request_options: typing.Optional[RequestOptions] = None, ) -> HttpResponse[typing.Optional[typing.Any]]: """ Send the feedback for the given conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. feedback : UserFeedbackScore Either 'like' or 'dislike' to indicate the feedback for the conversation. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[typing.Optional[typing.Any]] Successful Response """ _response = self._client_wrapper.httpx_client.request( f"v1/convai/conversations/{jsonable_encoder(conversation_id)}/feedback", base_url=self._client_wrapper.get_environment().base, method="POST", json={ "feedback": feedback, }, headers={ "content-type": "application/json", }, request_options=request_options, omit=OMIT, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( typing.Optional[typing.Any], construct_type( type_=typing.Optional[typing.Any], # type: ignore object_=_response.json(), ), ) return HttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Send the feedback for the given conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. feedback : UserFeedbackScore Either 'like' or 'dislike' to indicate the feedback for the conversation. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[typing.Optional[typing.Any]] Successful Response
create
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/conversations/feedback/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/conversations/feedback/raw_client.py
MIT
async def create( self, conversation_id: str, *, feedback: UserFeedbackScore, request_options: typing.Optional[RequestOptions] = None, ) -> AsyncHttpResponse[typing.Optional[typing.Any]]: """ Send the feedback for the given conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. feedback : UserFeedbackScore Either 'like' or 'dislike' to indicate the feedback for the conversation. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[typing.Optional[typing.Any]] Successful Response """ _response = await self._client_wrapper.httpx_client.request( f"v1/convai/conversations/{jsonable_encoder(conversation_id)}/feedback", base_url=self._client_wrapper.get_environment().base, method="POST", json={ "feedback": feedback, }, headers={ "content-type": "application/json", }, request_options=request_options, omit=OMIT, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( typing.Optional[typing.Any], construct_type( type_=typing.Optional[typing.Any], # type: ignore object_=_response.json(), ), ) return AsyncHttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Send the feedback for the given conversation Parameters ---------- conversation_id : str The id of the conversation you're taking the action on. feedback : UserFeedbackScore Either 'like' or 'dislike' to indicate the feedback for the conversation. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[typing.Optional[typing.Any]] Successful Response
create
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/conversations/feedback/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/conversations/feedback/raw_client.py
MIT
def get( self, *, request_options: typing.Optional[RequestOptions] = None ) -> GetConvAiDashboardSettingsResponseModel: """ Retrieve Convai dashboard settings for the workspace Parameters ---------- request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- GetConvAiDashboardSettingsResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.dashboard.settings.get() """ _response = self._raw_client.get(request_options=request_options) return _response.data
Retrieve Convai dashboard settings for the workspace Parameters ---------- request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- GetConvAiDashboardSettingsResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.dashboard.settings.get()
get
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/dashboard/settings/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/dashboard/settings/client.py
MIT
def update( self, *, charts: typing.Optional[typing.Sequence[PatchConvAiDashboardSettingsRequestChartsItem]] = OMIT, request_options: typing.Optional[RequestOptions] = None, ) -> GetConvAiDashboardSettingsResponseModel: """ Update Convai dashboard settings for the workspace Parameters ---------- charts : typing.Optional[typing.Sequence[PatchConvAiDashboardSettingsRequestChartsItem]] request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- GetConvAiDashboardSettingsResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.dashboard.settings.update() """ _response = self._raw_client.update(charts=charts, request_options=request_options) return _response.data
Update Convai dashboard settings for the workspace Parameters ---------- charts : typing.Optional[typing.Sequence[PatchConvAiDashboardSettingsRequestChartsItem]] request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- GetConvAiDashboardSettingsResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.dashboard.settings.update()
update
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/dashboard/settings/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/dashboard/settings/client.py
MIT
async def get( self, *, request_options: typing.Optional[RequestOptions] = None ) -> GetConvAiDashboardSettingsResponseModel: """ Retrieve Convai dashboard settings for the workspace Parameters ---------- request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- GetConvAiDashboardSettingsResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.dashboard.settings.get() asyncio.run(main()) """ _response = await self._raw_client.get(request_options=request_options) return _response.data
Retrieve Convai dashboard settings for the workspace Parameters ---------- request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- GetConvAiDashboardSettingsResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.dashboard.settings.get() asyncio.run(main())
get
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/dashboard/settings/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/dashboard/settings/client.py
MIT
async def update( self, *, charts: typing.Optional[typing.Sequence[PatchConvAiDashboardSettingsRequestChartsItem]] = OMIT, request_options: typing.Optional[RequestOptions] = None, ) -> GetConvAiDashboardSettingsResponseModel: """ Update Convai dashboard settings for the workspace Parameters ---------- charts : typing.Optional[typing.Sequence[PatchConvAiDashboardSettingsRequestChartsItem]] request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- GetConvAiDashboardSettingsResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.dashboard.settings.update() asyncio.run(main()) """ _response = await self._raw_client.update(charts=charts, request_options=request_options) return _response.data
Update Convai dashboard settings for the workspace Parameters ---------- charts : typing.Optional[typing.Sequence[PatchConvAiDashboardSettingsRequestChartsItem]] request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- GetConvAiDashboardSettingsResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.dashboard.settings.update() asyncio.run(main())
update
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/dashboard/settings/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/dashboard/settings/client.py
MIT
def get( self, *, request_options: typing.Optional[RequestOptions] = None ) -> HttpResponse[GetConvAiDashboardSettingsResponseModel]: """ Retrieve Convai dashboard settings for the workspace Parameters ---------- request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[GetConvAiDashboardSettingsResponseModel] Successful Response """ _response = self._client_wrapper.httpx_client.request( "v1/convai/settings/dashboard", base_url=self._client_wrapper.get_environment().base, method="GET", request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( GetConvAiDashboardSettingsResponseModel, construct_type( type_=GetConvAiDashboardSettingsResponseModel, # type: ignore object_=_response.json(), ), ) return HttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Retrieve Convai dashboard settings for the workspace Parameters ---------- request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[GetConvAiDashboardSettingsResponseModel] Successful Response
get
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/dashboard/settings/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/dashboard/settings/raw_client.py
MIT
def update( self, *, charts: typing.Optional[typing.Sequence[PatchConvAiDashboardSettingsRequestChartsItem]] = OMIT, request_options: typing.Optional[RequestOptions] = None, ) -> HttpResponse[GetConvAiDashboardSettingsResponseModel]: """ Update Convai dashboard settings for the workspace Parameters ---------- charts : typing.Optional[typing.Sequence[PatchConvAiDashboardSettingsRequestChartsItem]] request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[GetConvAiDashboardSettingsResponseModel] Successful Response """ _response = self._client_wrapper.httpx_client.request( "v1/convai/settings/dashboard", base_url=self._client_wrapper.get_environment().base, method="PATCH", json={ "charts": convert_and_respect_annotation_metadata( object_=charts, annotation=typing.Sequence[PatchConvAiDashboardSettingsRequestChartsItem], direction="write", ), }, headers={ "content-type": "application/json", }, request_options=request_options, omit=OMIT, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( GetConvAiDashboardSettingsResponseModel, construct_type( type_=GetConvAiDashboardSettingsResponseModel, # type: ignore object_=_response.json(), ), ) return HttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Update Convai dashboard settings for the workspace Parameters ---------- charts : typing.Optional[typing.Sequence[PatchConvAiDashboardSettingsRequestChartsItem]] request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[GetConvAiDashboardSettingsResponseModel] Successful Response
update
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/dashboard/settings/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/dashboard/settings/raw_client.py
MIT
async def get( self, *, request_options: typing.Optional[RequestOptions] = None ) -> AsyncHttpResponse[GetConvAiDashboardSettingsResponseModel]: """ Retrieve Convai dashboard settings for the workspace Parameters ---------- request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[GetConvAiDashboardSettingsResponseModel] Successful Response """ _response = await self._client_wrapper.httpx_client.request( "v1/convai/settings/dashboard", base_url=self._client_wrapper.get_environment().base, method="GET", request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( GetConvAiDashboardSettingsResponseModel, construct_type( type_=GetConvAiDashboardSettingsResponseModel, # type: ignore object_=_response.json(), ), ) return AsyncHttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Retrieve Convai dashboard settings for the workspace Parameters ---------- request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[GetConvAiDashboardSettingsResponseModel] Successful Response
get
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/dashboard/settings/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/dashboard/settings/raw_client.py
MIT
async def update( self, *, charts: typing.Optional[typing.Sequence[PatchConvAiDashboardSettingsRequestChartsItem]] = OMIT, request_options: typing.Optional[RequestOptions] = None, ) -> AsyncHttpResponse[GetConvAiDashboardSettingsResponseModel]: """ Update Convai dashboard settings for the workspace Parameters ---------- charts : typing.Optional[typing.Sequence[PatchConvAiDashboardSettingsRequestChartsItem]] request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[GetConvAiDashboardSettingsResponseModel] Successful Response """ _response = await self._client_wrapper.httpx_client.request( "v1/convai/settings/dashboard", base_url=self._client_wrapper.get_environment().base, method="PATCH", json={ "charts": convert_and_respect_annotation_metadata( object_=charts, annotation=typing.Sequence[PatchConvAiDashboardSettingsRequestChartsItem], direction="write", ), }, headers={ "content-type": "application/json", }, request_options=request_options, omit=OMIT, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( GetConvAiDashboardSettingsResponseModel, construct_type( type_=GetConvAiDashboardSettingsResponseModel, # type: ignore object_=_response.json(), ), ) return AsyncHttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Update Convai dashboard settings for the workspace Parameters ---------- charts : typing.Optional[typing.Sequence[PatchConvAiDashboardSettingsRequestChartsItem]] request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[GetConvAiDashboardSettingsResponseModel] Successful Response
update
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/dashboard/settings/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/dashboard/settings/raw_client.py
MIT
def list( self, *, cursor: typing.Optional[str] = None, page_size: typing.Optional[int] = None, search: typing.Optional[str] = None, show_only_owned_documents: typing.Optional[bool] = None, types: typing.Optional[ typing.Union[KnowledgeBaseDocumentType, typing.Sequence[KnowledgeBaseDocumentType]] ] = None, use_typesense: typing.Optional[bool] = None, request_options: typing.Optional[RequestOptions] = None, ) -> GetKnowledgeBaseListResponseModel: """ Get a list of available knowledge base documents Parameters ---------- cursor : typing.Optional[str] Used for fetching next page. Cursor is returned in the response. page_size : typing.Optional[int] How many documents to return at maximum. Can not exceed 100, defaults to 30. search : typing.Optional[str] If specified, the endpoint returns only such knowledge base documents whose names start with this string. show_only_owned_documents : typing.Optional[bool] If set to true, the endpoint will return only documents owned by you (and not shared from somebody else). types : typing.Optional[typing.Union[KnowledgeBaseDocumentType, typing.Sequence[KnowledgeBaseDocumentType]]] If present, the endpoint will return only documents of the given types. use_typesense : typing.Optional[bool] If set to true, the endpoint will use typesense DB to search for the documents). request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- GetKnowledgeBaseListResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.knowledge_base.list() """ _response = self._raw_client.list( cursor=cursor, page_size=page_size, search=search, show_only_owned_documents=show_only_owned_documents, types=types, use_typesense=use_typesense, request_options=request_options, ) return _response.data
Get a list of available knowledge base documents Parameters ---------- cursor : typing.Optional[str] Used for fetching next page. Cursor is returned in the response. page_size : typing.Optional[int] How many documents to return at maximum. Can not exceed 100, defaults to 30. search : typing.Optional[str] If specified, the endpoint returns only such knowledge base documents whose names start with this string. show_only_owned_documents : typing.Optional[bool] If set to true, the endpoint will return only documents owned by you (and not shared from somebody else). types : typing.Optional[typing.Union[KnowledgeBaseDocumentType, typing.Sequence[KnowledgeBaseDocumentType]]] If present, the endpoint will return only documents of the given types. use_typesense : typing.Optional[bool] If set to true, the endpoint will use typesense DB to search for the documents). request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- GetKnowledgeBaseListResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.knowledge_base.list()
list
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/client.py
MIT
async def list( self, *, cursor: typing.Optional[str] = None, page_size: typing.Optional[int] = None, search: typing.Optional[str] = None, show_only_owned_documents: typing.Optional[bool] = None, types: typing.Optional[ typing.Union[KnowledgeBaseDocumentType, typing.Sequence[KnowledgeBaseDocumentType]] ] = None, use_typesense: typing.Optional[bool] = None, request_options: typing.Optional[RequestOptions] = None, ) -> GetKnowledgeBaseListResponseModel: """ Get a list of available knowledge base documents Parameters ---------- cursor : typing.Optional[str] Used for fetching next page. Cursor is returned in the response. page_size : typing.Optional[int] How many documents to return at maximum. Can not exceed 100, defaults to 30. search : typing.Optional[str] If specified, the endpoint returns only such knowledge base documents whose names start with this string. show_only_owned_documents : typing.Optional[bool] If set to true, the endpoint will return only documents owned by you (and not shared from somebody else). types : typing.Optional[typing.Union[KnowledgeBaseDocumentType, typing.Sequence[KnowledgeBaseDocumentType]]] If present, the endpoint will return only documents of the given types. use_typesense : typing.Optional[bool] If set to true, the endpoint will use typesense DB to search for the documents). request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- GetKnowledgeBaseListResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.knowledge_base.list() asyncio.run(main()) """ _response = await self._raw_client.list( cursor=cursor, page_size=page_size, search=search, show_only_owned_documents=show_only_owned_documents, types=types, use_typesense=use_typesense, request_options=request_options, ) return _response.data
Get a list of available knowledge base documents Parameters ---------- cursor : typing.Optional[str] Used for fetching next page. Cursor is returned in the response. page_size : typing.Optional[int] How many documents to return at maximum. Can not exceed 100, defaults to 30. search : typing.Optional[str] If specified, the endpoint returns only such knowledge base documents whose names start with this string. show_only_owned_documents : typing.Optional[bool] If set to true, the endpoint will return only documents owned by you (and not shared from somebody else). types : typing.Optional[typing.Union[KnowledgeBaseDocumentType, typing.Sequence[KnowledgeBaseDocumentType]]] If present, the endpoint will return only documents of the given types. use_typesense : typing.Optional[bool] If set to true, the endpoint will use typesense DB to search for the documents). request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- GetKnowledgeBaseListResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.knowledge_base.list() asyncio.run(main())
list
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/client.py
MIT
def list( self, *, cursor: typing.Optional[str] = None, page_size: typing.Optional[int] = None, search: typing.Optional[str] = None, show_only_owned_documents: typing.Optional[bool] = None, types: typing.Optional[ typing.Union[KnowledgeBaseDocumentType, typing.Sequence[KnowledgeBaseDocumentType]] ] = None, use_typesense: typing.Optional[bool] = None, request_options: typing.Optional[RequestOptions] = None, ) -> HttpResponse[GetKnowledgeBaseListResponseModel]: """ Get a list of available knowledge base documents Parameters ---------- cursor : typing.Optional[str] Used for fetching next page. Cursor is returned in the response. page_size : typing.Optional[int] How many documents to return at maximum. Can not exceed 100, defaults to 30. search : typing.Optional[str] If specified, the endpoint returns only such knowledge base documents whose names start with this string. show_only_owned_documents : typing.Optional[bool] If set to true, the endpoint will return only documents owned by you (and not shared from somebody else). types : typing.Optional[typing.Union[KnowledgeBaseDocumentType, typing.Sequence[KnowledgeBaseDocumentType]]] If present, the endpoint will return only documents of the given types. use_typesense : typing.Optional[bool] If set to true, the endpoint will use typesense DB to search for the documents). request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[GetKnowledgeBaseListResponseModel] Successful Response """ _response = self._client_wrapper.httpx_client.request( "v1/convai/knowledge-base", base_url=self._client_wrapper.get_environment().base, method="GET", params={ "cursor": cursor, "page_size": page_size, "search": search, "show_only_owned_documents": show_only_owned_documents, "types": types, "use_typesense": use_typesense, }, request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( GetKnowledgeBaseListResponseModel, construct_type( type_=GetKnowledgeBaseListResponseModel, # type: ignore object_=_response.json(), ), ) return HttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Get a list of available knowledge base documents Parameters ---------- cursor : typing.Optional[str] Used for fetching next page. Cursor is returned in the response. page_size : typing.Optional[int] How many documents to return at maximum. Can not exceed 100, defaults to 30. search : typing.Optional[str] If specified, the endpoint returns only such knowledge base documents whose names start with this string. show_only_owned_documents : typing.Optional[bool] If set to true, the endpoint will return only documents owned by you (and not shared from somebody else). types : typing.Optional[typing.Union[KnowledgeBaseDocumentType, typing.Sequence[KnowledgeBaseDocumentType]]] If present, the endpoint will return only documents of the given types. use_typesense : typing.Optional[bool] If set to true, the endpoint will use typesense DB to search for the documents). request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[GetKnowledgeBaseListResponseModel] Successful Response
list
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/raw_client.py
MIT
async def list( self, *, cursor: typing.Optional[str] = None, page_size: typing.Optional[int] = None, search: typing.Optional[str] = None, show_only_owned_documents: typing.Optional[bool] = None, types: typing.Optional[ typing.Union[KnowledgeBaseDocumentType, typing.Sequence[KnowledgeBaseDocumentType]] ] = None, use_typesense: typing.Optional[bool] = None, request_options: typing.Optional[RequestOptions] = None, ) -> AsyncHttpResponse[GetKnowledgeBaseListResponseModel]: """ Get a list of available knowledge base documents Parameters ---------- cursor : typing.Optional[str] Used for fetching next page. Cursor is returned in the response. page_size : typing.Optional[int] How many documents to return at maximum. Can not exceed 100, defaults to 30. search : typing.Optional[str] If specified, the endpoint returns only such knowledge base documents whose names start with this string. show_only_owned_documents : typing.Optional[bool] If set to true, the endpoint will return only documents owned by you (and not shared from somebody else). types : typing.Optional[typing.Union[KnowledgeBaseDocumentType, typing.Sequence[KnowledgeBaseDocumentType]]] If present, the endpoint will return only documents of the given types. use_typesense : typing.Optional[bool] If set to true, the endpoint will use typesense DB to search for the documents). request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[GetKnowledgeBaseListResponseModel] Successful Response """ _response = await self._client_wrapper.httpx_client.request( "v1/convai/knowledge-base", base_url=self._client_wrapper.get_environment().base, method="GET", params={ "cursor": cursor, "page_size": page_size, "search": search, "show_only_owned_documents": show_only_owned_documents, "types": types, "use_typesense": use_typesense, }, request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( GetKnowledgeBaseListResponseModel, construct_type( type_=GetKnowledgeBaseListResponseModel, # type: ignore object_=_response.json(), ), ) return AsyncHttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Get a list of available knowledge base documents Parameters ---------- cursor : typing.Optional[str] Used for fetching next page. Cursor is returned in the response. page_size : typing.Optional[int] How many documents to return at maximum. Can not exceed 100, defaults to 30. search : typing.Optional[str] If specified, the endpoint returns only such knowledge base documents whose names start with this string. show_only_owned_documents : typing.Optional[bool] If set to true, the endpoint will return only documents owned by you (and not shared from somebody else). types : typing.Optional[typing.Union[KnowledgeBaseDocumentType, typing.Sequence[KnowledgeBaseDocumentType]]] If present, the endpoint will return only documents of the given types. use_typesense : typing.Optional[bool] If set to true, the endpoint will use typesense DB to search for the documents). request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[GetKnowledgeBaseListResponseModel] Successful Response
list
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/raw_client.py
MIT
def compute_rag_index( self, documentation_id: str, *, model: EmbeddingModelEnum, request_options: typing.Optional[RequestOptions] = None, ) -> RagDocumentIndexResponseModel: """ In case the document is not RAG indexed, it triggers rag indexing task, otherwise it just returns the current status. Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. model : EmbeddingModelEnum request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- RagDocumentIndexResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.knowledge_base.document.compute_rag_index( documentation_id="21m00Tcm4TlvDq8ikWAM", model="e5_mistral_7b_instruct", ) """ _response = self._raw_client.compute_rag_index(documentation_id, model=model, request_options=request_options) return _response.data
In case the document is not RAG indexed, it triggers rag indexing task, otherwise it just returns the current status. Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. model : EmbeddingModelEnum request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- RagDocumentIndexResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.knowledge_base.document.compute_rag_index( documentation_id="21m00Tcm4TlvDq8ikWAM", model="e5_mistral_7b_instruct", )
compute_rag_index
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/document/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/document/client.py
MIT
async def compute_rag_index( self, documentation_id: str, *, model: EmbeddingModelEnum, request_options: typing.Optional[RequestOptions] = None, ) -> RagDocumentIndexResponseModel: """ In case the document is not RAG indexed, it triggers rag indexing task, otherwise it just returns the current status. Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. model : EmbeddingModelEnum request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- RagDocumentIndexResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.knowledge_base.document.compute_rag_index( documentation_id="21m00Tcm4TlvDq8ikWAM", model="e5_mistral_7b_instruct", ) asyncio.run(main()) """ _response = await self._raw_client.compute_rag_index( documentation_id, model=model, request_options=request_options ) return _response.data
In case the document is not RAG indexed, it triggers rag indexing task, otherwise it just returns the current status. Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. model : EmbeddingModelEnum request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- RagDocumentIndexResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.knowledge_base.document.compute_rag_index( documentation_id="21m00Tcm4TlvDq8ikWAM", model="e5_mistral_7b_instruct", ) asyncio.run(main())
compute_rag_index
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/document/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/document/client.py
MIT
def compute_rag_index( self, documentation_id: str, *, model: EmbeddingModelEnum, request_options: typing.Optional[RequestOptions] = None, ) -> HttpResponse[RagDocumentIndexResponseModel]: """ In case the document is not RAG indexed, it triggers rag indexing task, otherwise it just returns the current status. Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. model : EmbeddingModelEnum request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[RagDocumentIndexResponseModel] Successful Response """ _response = self._client_wrapper.httpx_client.request( f"v1/convai/knowledge-base/{jsonable_encoder(documentation_id)}/rag-index", base_url=self._client_wrapper.get_environment().base, method="POST", json={ "model": model, }, headers={ "content-type": "application/json", }, request_options=request_options, omit=OMIT, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( RagDocumentIndexResponseModel, construct_type( type_=RagDocumentIndexResponseModel, # type: ignore object_=_response.json(), ), ) return HttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
In case the document is not RAG indexed, it triggers rag indexing task, otherwise it just returns the current status. Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. model : EmbeddingModelEnum request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[RagDocumentIndexResponseModel] Successful Response
compute_rag_index
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/document/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/document/raw_client.py
MIT
async def compute_rag_index( self, documentation_id: str, *, model: EmbeddingModelEnum, request_options: typing.Optional[RequestOptions] = None, ) -> AsyncHttpResponse[RagDocumentIndexResponseModel]: """ In case the document is not RAG indexed, it triggers rag indexing task, otherwise it just returns the current status. Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. model : EmbeddingModelEnum request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[RagDocumentIndexResponseModel] Successful Response """ _response = await self._client_wrapper.httpx_client.request( f"v1/convai/knowledge-base/{jsonable_encoder(documentation_id)}/rag-index", base_url=self._client_wrapper.get_environment().base, method="POST", json={ "model": model, }, headers={ "content-type": "application/json", }, request_options=request_options, omit=OMIT, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( RagDocumentIndexResponseModel, construct_type( type_=RagDocumentIndexResponseModel, # type: ignore object_=_response.json(), ), ) return AsyncHttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
In case the document is not RAG indexed, it triggers rag indexing task, otherwise it just returns the current status. Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. model : EmbeddingModelEnum request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[RagDocumentIndexResponseModel] Successful Response
compute_rag_index
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/document/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/document/raw_client.py
MIT
def create_from_url( self, *, url: str, name: typing.Optional[str] = OMIT, request_options: typing.Optional[RequestOptions] = None ) -> AddKnowledgeBaseResponseModel: """ Create a knowledge base document generated by scraping the given webpage. Parameters ---------- url : str URL to a page of documentation that the agent will have access to in order to interact with users. name : typing.Optional[str] A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AddKnowledgeBaseResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.knowledge_base.documents.create_from_url( url="url", ) """ _response = self._raw_client.create_from_url(url=url, name=name, request_options=request_options) return _response.data
Create a knowledge base document generated by scraping the given webpage. Parameters ---------- url : str URL to a page of documentation that the agent will have access to in order to interact with users. name : typing.Optional[str] A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AddKnowledgeBaseResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.knowledge_base.documents.create_from_url( url="url", )
create_from_url
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
MIT
def create_from_file( self, *, file: core.File, name: typing.Optional[str] = OMIT, request_options: typing.Optional[RequestOptions] = None, ) -> AddKnowledgeBaseResponseModel: """ Create a knowledge base document generated form the uploaded file. Parameters ---------- file : core.File See core.File for more documentation name : typing.Optional[str] A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AddKnowledgeBaseResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.knowledge_base.documents.create_from_file() """ _response = self._raw_client.create_from_file(file=file, name=name, request_options=request_options) return _response.data
Create a knowledge base document generated form the uploaded file. Parameters ---------- file : core.File See core.File for more documentation name : typing.Optional[str] A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AddKnowledgeBaseResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.knowledge_base.documents.create_from_file()
create_from_file
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
MIT
def create_from_text( self, *, text: str, name: typing.Optional[str] = OMIT, request_options: typing.Optional[RequestOptions] = None ) -> AddKnowledgeBaseResponseModel: """ Create a knowledge base document containing the provided text. Parameters ---------- text : str Text content to be added to the knowledge base. name : typing.Optional[str] A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AddKnowledgeBaseResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.knowledge_base.documents.create_from_text( text="text", ) """ _response = self._raw_client.create_from_text(text=text, name=name, request_options=request_options) return _response.data
Create a knowledge base document containing the provided text. Parameters ---------- text : str Text content to be added to the knowledge base. name : typing.Optional[str] A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AddKnowledgeBaseResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.knowledge_base.documents.create_from_text( text="text", )
create_from_text
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
MIT
def get( self, documentation_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> DocumentsGetResponse: """ Get details about a specific documentation making up the agent's knowledge base Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- DocumentsGetResponse Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.knowledge_base.documents.get( documentation_id="21m00Tcm4TlvDq8ikWAM", ) """ _response = self._raw_client.get(documentation_id, request_options=request_options) return _response.data
Get details about a specific documentation making up the agent's knowledge base Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- DocumentsGetResponse Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.knowledge_base.documents.get( documentation_id="21m00Tcm4TlvDq8ikWAM", )
get
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
MIT
def delete( self, documentation_id: str, *, force: typing.Optional[bool] = None, request_options: typing.Optional[RequestOptions] = None, ) -> typing.Optional[typing.Any]: """ Delete a document from the knowledge base Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. force : typing.Optional[bool] If set to true, the document will be deleted regardless of whether it is used by any agents and it will be deleted from the dependent agents. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- typing.Optional[typing.Any] Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.knowledge_base.documents.delete( documentation_id="21m00Tcm4TlvDq8ikWAM", ) """ _response = self._raw_client.delete(documentation_id, force=force, request_options=request_options) return _response.data
Delete a document from the knowledge base Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. force : typing.Optional[bool] If set to true, the document will be deleted regardless of whether it is used by any agents and it will be deleted from the dependent agents. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- typing.Optional[typing.Any] Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.knowledge_base.documents.delete( documentation_id="21m00Tcm4TlvDq8ikWAM", )
delete
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
MIT
def update( self, documentation_id: str, *, name: str, request_options: typing.Optional[RequestOptions] = None ) -> DocumentsUpdateResponse: """ Update the name of a document Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. name : str A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- DocumentsUpdateResponse Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.knowledge_base.documents.update( documentation_id="21m00Tcm4TlvDq8ikWAM", name="name", ) """ _response = self._raw_client.update(documentation_id, name=name, request_options=request_options) return _response.data
Update the name of a document Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. name : str A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- DocumentsUpdateResponse Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.knowledge_base.documents.update( documentation_id="21m00Tcm4TlvDq8ikWAM", name="name", )
update
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
MIT
def get_agents( self, documentation_id: str, *, cursor: typing.Optional[str] = None, page_size: typing.Optional[int] = None, request_options: typing.Optional[RequestOptions] = None, ) -> GetKnowledgeBaseDependentAgentsResponseModel: """ Get a list of agents depending on this knowledge base document Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. cursor : typing.Optional[str] Used for fetching next page. Cursor is returned in the response. page_size : typing.Optional[int] How many documents to return at maximum. Can not exceed 100, defaults to 30. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- GetKnowledgeBaseDependentAgentsResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.knowledge_base.documents.get_agents( documentation_id="21m00Tcm4TlvDq8ikWAM", ) """ _response = self._raw_client.get_agents( documentation_id, cursor=cursor, page_size=page_size, request_options=request_options ) return _response.data
Get a list of agents depending on this knowledge base document Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. cursor : typing.Optional[str] Used for fetching next page. Cursor is returned in the response. page_size : typing.Optional[int] How many documents to return at maximum. Can not exceed 100, defaults to 30. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- GetKnowledgeBaseDependentAgentsResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.knowledge_base.documents.get_agents( documentation_id="21m00Tcm4TlvDq8ikWAM", )
get_agents
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
MIT
async def create_from_url( self, *, url: str, name: typing.Optional[str] = OMIT, request_options: typing.Optional[RequestOptions] = None ) -> AddKnowledgeBaseResponseModel: """ Create a knowledge base document generated by scraping the given webpage. Parameters ---------- url : str URL to a page of documentation that the agent will have access to in order to interact with users. name : typing.Optional[str] A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AddKnowledgeBaseResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.knowledge_base.documents.create_from_url( url="url", ) asyncio.run(main()) """ _response = await self._raw_client.create_from_url(url=url, name=name, request_options=request_options) return _response.data
Create a knowledge base document generated by scraping the given webpage. Parameters ---------- url : str URL to a page of documentation that the agent will have access to in order to interact with users. name : typing.Optional[str] A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AddKnowledgeBaseResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.knowledge_base.documents.create_from_url( url="url", ) asyncio.run(main())
create_from_url
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
MIT
async def create_from_file( self, *, file: core.File, name: typing.Optional[str] = OMIT, request_options: typing.Optional[RequestOptions] = None, ) -> AddKnowledgeBaseResponseModel: """ Create a knowledge base document generated form the uploaded file. Parameters ---------- file : core.File See core.File for more documentation name : typing.Optional[str] A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AddKnowledgeBaseResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.knowledge_base.documents.create_from_file() asyncio.run(main()) """ _response = await self._raw_client.create_from_file(file=file, name=name, request_options=request_options) return _response.data
Create a knowledge base document generated form the uploaded file. Parameters ---------- file : core.File See core.File for more documentation name : typing.Optional[str] A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AddKnowledgeBaseResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.knowledge_base.documents.create_from_file() asyncio.run(main())
create_from_file
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
MIT
async def create_from_text( self, *, text: str, name: typing.Optional[str] = OMIT, request_options: typing.Optional[RequestOptions] = None ) -> AddKnowledgeBaseResponseModel: """ Create a knowledge base document containing the provided text. Parameters ---------- text : str Text content to be added to the knowledge base. name : typing.Optional[str] A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AddKnowledgeBaseResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.knowledge_base.documents.create_from_text( text="text", ) asyncio.run(main()) """ _response = await self._raw_client.create_from_text(text=text, name=name, request_options=request_options) return _response.data
Create a knowledge base document containing the provided text. Parameters ---------- text : str Text content to be added to the knowledge base. name : typing.Optional[str] A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AddKnowledgeBaseResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.knowledge_base.documents.create_from_text( text="text", ) asyncio.run(main())
create_from_text
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
MIT
async def get( self, documentation_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> DocumentsGetResponse: """ Get details about a specific documentation making up the agent's knowledge base Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- DocumentsGetResponse Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.knowledge_base.documents.get( documentation_id="21m00Tcm4TlvDq8ikWAM", ) asyncio.run(main()) """ _response = await self._raw_client.get(documentation_id, request_options=request_options) return _response.data
Get details about a specific documentation making up the agent's knowledge base Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- DocumentsGetResponse Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.knowledge_base.documents.get( documentation_id="21m00Tcm4TlvDq8ikWAM", ) asyncio.run(main())
get
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
MIT
async def delete( self, documentation_id: str, *, force: typing.Optional[bool] = None, request_options: typing.Optional[RequestOptions] = None, ) -> typing.Optional[typing.Any]: """ Delete a document from the knowledge base Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. force : typing.Optional[bool] If set to true, the document will be deleted regardless of whether it is used by any agents and it will be deleted from the dependent agents. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- typing.Optional[typing.Any] Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.knowledge_base.documents.delete( documentation_id="21m00Tcm4TlvDq8ikWAM", ) asyncio.run(main()) """ _response = await self._raw_client.delete(documentation_id, force=force, request_options=request_options) return _response.data
Delete a document from the knowledge base Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. force : typing.Optional[bool] If set to true, the document will be deleted regardless of whether it is used by any agents and it will be deleted from the dependent agents. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- typing.Optional[typing.Any] Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.knowledge_base.documents.delete( documentation_id="21m00Tcm4TlvDq8ikWAM", ) asyncio.run(main())
delete
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
MIT
async def update( self, documentation_id: str, *, name: str, request_options: typing.Optional[RequestOptions] = None ) -> DocumentsUpdateResponse: """ Update the name of a document Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. name : str A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- DocumentsUpdateResponse Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.knowledge_base.documents.update( documentation_id="21m00Tcm4TlvDq8ikWAM", name="name", ) asyncio.run(main()) """ _response = await self._raw_client.update(documentation_id, name=name, request_options=request_options) return _response.data
Update the name of a document Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. name : str A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- DocumentsUpdateResponse Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.knowledge_base.documents.update( documentation_id="21m00Tcm4TlvDq8ikWAM", name="name", ) asyncio.run(main())
update
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
MIT
async def get_agents( self, documentation_id: str, *, cursor: typing.Optional[str] = None, page_size: typing.Optional[int] = None, request_options: typing.Optional[RequestOptions] = None, ) -> GetKnowledgeBaseDependentAgentsResponseModel: """ Get a list of agents depending on this knowledge base document Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. cursor : typing.Optional[str] Used for fetching next page. Cursor is returned in the response. page_size : typing.Optional[int] How many documents to return at maximum. Can not exceed 100, defaults to 30. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- GetKnowledgeBaseDependentAgentsResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.knowledge_base.documents.get_agents( documentation_id="21m00Tcm4TlvDq8ikWAM", ) asyncio.run(main()) """ _response = await self._raw_client.get_agents( documentation_id, cursor=cursor, page_size=page_size, request_options=request_options ) return _response.data
Get a list of agents depending on this knowledge base document Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. cursor : typing.Optional[str] Used for fetching next page. Cursor is returned in the response. page_size : typing.Optional[int] How many documents to return at maximum. Can not exceed 100, defaults to 30. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- GetKnowledgeBaseDependentAgentsResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.knowledge_base.documents.get_agents( documentation_id="21m00Tcm4TlvDq8ikWAM", ) asyncio.run(main())
get_agents
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
MIT
async def get_content( self, documentation_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> None: """ Get the entire content of a document from the knowledge base Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- None Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.knowledge_base.documents.get_content( documentation_id="21m00Tcm4TlvDq8ikWAM", ) asyncio.run(main()) """ _response = await self._raw_client.get_content(documentation_id, request_options=request_options) return _response.data
Get the entire content of a document from the knowledge base Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- None Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.knowledge_base.documents.get_content( documentation_id="21m00Tcm4TlvDq8ikWAM", ) asyncio.run(main())
get_content
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/client.py
MIT
def create_from_url( self, *, url: str, name: typing.Optional[str] = OMIT, request_options: typing.Optional[RequestOptions] = None ) -> HttpResponse[AddKnowledgeBaseResponseModel]: """ Create a knowledge base document generated by scraping the given webpage. Parameters ---------- url : str URL to a page of documentation that the agent will have access to in order to interact with users. name : typing.Optional[str] A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[AddKnowledgeBaseResponseModel] Successful Response """ _response = self._client_wrapper.httpx_client.request( "v1/convai/knowledge-base/url", base_url=self._client_wrapper.get_environment().base, method="POST", json={ "url": url, "name": name, }, headers={ "content-type": "application/json", }, request_options=request_options, omit=OMIT, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( AddKnowledgeBaseResponseModel, construct_type( type_=AddKnowledgeBaseResponseModel, # type: ignore object_=_response.json(), ), ) return HttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Create a knowledge base document generated by scraping the given webpage. Parameters ---------- url : str URL to a page of documentation that the agent will have access to in order to interact with users. name : typing.Optional[str] A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[AddKnowledgeBaseResponseModel] Successful Response
create_from_url
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
MIT
def create_from_file( self, *, file: core.File, name: typing.Optional[str] = OMIT, request_options: typing.Optional[RequestOptions] = None, ) -> HttpResponse[AddKnowledgeBaseResponseModel]: """ Create a knowledge base document generated form the uploaded file. Parameters ---------- file : core.File See core.File for more documentation name : typing.Optional[str] A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[AddKnowledgeBaseResponseModel] Successful Response """ _response = self._client_wrapper.httpx_client.request( "v1/convai/knowledge-base/file", base_url=self._client_wrapper.get_environment().base, method="POST", data={ "name": name, }, files={ "file": file, }, request_options=request_options, omit=OMIT, force_multipart=True, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( AddKnowledgeBaseResponseModel, construct_type( type_=AddKnowledgeBaseResponseModel, # type: ignore object_=_response.json(), ), ) return HttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Create a knowledge base document generated form the uploaded file. Parameters ---------- file : core.File See core.File for more documentation name : typing.Optional[str] A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[AddKnowledgeBaseResponseModel] Successful Response
create_from_file
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
MIT
def create_from_text( self, *, text: str, name: typing.Optional[str] = OMIT, request_options: typing.Optional[RequestOptions] = None ) -> HttpResponse[AddKnowledgeBaseResponseModel]: """ Create a knowledge base document containing the provided text. Parameters ---------- text : str Text content to be added to the knowledge base. name : typing.Optional[str] A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[AddKnowledgeBaseResponseModel] Successful Response """ _response = self._client_wrapper.httpx_client.request( "v1/convai/knowledge-base/text", base_url=self._client_wrapper.get_environment().base, method="POST", json={ "text": text, "name": name, }, headers={ "content-type": "application/json", }, request_options=request_options, omit=OMIT, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( AddKnowledgeBaseResponseModel, construct_type( type_=AddKnowledgeBaseResponseModel, # type: ignore object_=_response.json(), ), ) return HttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Create a knowledge base document containing the provided text. Parameters ---------- text : str Text content to be added to the knowledge base. name : typing.Optional[str] A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[AddKnowledgeBaseResponseModel] Successful Response
create_from_text
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
MIT
def get( self, documentation_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> HttpResponse[DocumentsGetResponse]: """ Get details about a specific documentation making up the agent's knowledge base Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[DocumentsGetResponse] Successful Response """ _response = self._client_wrapper.httpx_client.request( f"v1/convai/knowledge-base/{jsonable_encoder(documentation_id)}", base_url=self._client_wrapper.get_environment().base, method="GET", request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( DocumentsGetResponse, construct_type( type_=DocumentsGetResponse, # type: ignore object_=_response.json(), ), ) return HttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Get details about a specific documentation making up the agent's knowledge base Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[DocumentsGetResponse] Successful Response
get
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
MIT
def delete( self, documentation_id: str, *, force: typing.Optional[bool] = None, request_options: typing.Optional[RequestOptions] = None, ) -> HttpResponse[typing.Optional[typing.Any]]: """ Delete a document from the knowledge base Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. force : typing.Optional[bool] If set to true, the document will be deleted regardless of whether it is used by any agents and it will be deleted from the dependent agents. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[typing.Optional[typing.Any]] Successful Response """ _response = self._client_wrapper.httpx_client.request( f"v1/convai/knowledge-base/{jsonable_encoder(documentation_id)}", base_url=self._client_wrapper.get_environment().base, method="DELETE", params={ "force": force, }, request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( typing.Optional[typing.Any], construct_type( type_=typing.Optional[typing.Any], # type: ignore object_=_response.json(), ), ) return HttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Delete a document from the knowledge base Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. force : typing.Optional[bool] If set to true, the document will be deleted regardless of whether it is used by any agents and it will be deleted from the dependent agents. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[typing.Optional[typing.Any]] Successful Response
delete
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
MIT
def update( self, documentation_id: str, *, name: str, request_options: typing.Optional[RequestOptions] = None ) -> HttpResponse[DocumentsUpdateResponse]: """ Update the name of a document Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. name : str A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[DocumentsUpdateResponse] Successful Response """ _response = self._client_wrapper.httpx_client.request( f"v1/convai/knowledge-base/{jsonable_encoder(documentation_id)}", base_url=self._client_wrapper.get_environment().base, method="PATCH", json={ "name": name, }, headers={ "content-type": "application/json", }, request_options=request_options, omit=OMIT, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( DocumentsUpdateResponse, construct_type( type_=DocumentsUpdateResponse, # type: ignore object_=_response.json(), ), ) return HttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Update the name of a document Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. name : str A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[DocumentsUpdateResponse] Successful Response
update
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
MIT
def get_agents( self, documentation_id: str, *, cursor: typing.Optional[str] = None, page_size: typing.Optional[int] = None, request_options: typing.Optional[RequestOptions] = None, ) -> HttpResponse[GetKnowledgeBaseDependentAgentsResponseModel]: """ Get a list of agents depending on this knowledge base document Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. cursor : typing.Optional[str] Used for fetching next page. Cursor is returned in the response. page_size : typing.Optional[int] How many documents to return at maximum. Can not exceed 100, defaults to 30. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[GetKnowledgeBaseDependentAgentsResponseModel] Successful Response """ _response = self._client_wrapper.httpx_client.request( f"v1/convai/knowledge-base/{jsonable_encoder(documentation_id)}/dependent-agents", base_url=self._client_wrapper.get_environment().base, method="GET", params={ "cursor": cursor, "page_size": page_size, }, request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( GetKnowledgeBaseDependentAgentsResponseModel, construct_type( type_=GetKnowledgeBaseDependentAgentsResponseModel, # type: ignore object_=_response.json(), ), ) return HttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Get a list of agents depending on this knowledge base document Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. cursor : typing.Optional[str] Used for fetching next page. Cursor is returned in the response. page_size : typing.Optional[int] How many documents to return at maximum. Can not exceed 100, defaults to 30. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[GetKnowledgeBaseDependentAgentsResponseModel] Successful Response
get_agents
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
MIT
def get_content( self, documentation_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> HttpResponse[None]: """ Get the entire content of a document from the knowledge base Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[None] """ _response = self._client_wrapper.httpx_client.request( f"v1/convai/knowledge-base/{jsonable_encoder(documentation_id)}/content", base_url=self._client_wrapper.get_environment().base, method="GET", request_options=request_options, ) try: if 200 <= _response.status_code < 300: return HttpResponse(response=_response, data=None) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Get the entire content of a document from the knowledge base Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[None]
get_content
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
MIT
async def create_from_url( self, *, url: str, name: typing.Optional[str] = OMIT, request_options: typing.Optional[RequestOptions] = None ) -> AsyncHttpResponse[AddKnowledgeBaseResponseModel]: """ Create a knowledge base document generated by scraping the given webpage. Parameters ---------- url : str URL to a page of documentation that the agent will have access to in order to interact with users. name : typing.Optional[str] A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[AddKnowledgeBaseResponseModel] Successful Response """ _response = await self._client_wrapper.httpx_client.request( "v1/convai/knowledge-base/url", base_url=self._client_wrapper.get_environment().base, method="POST", json={ "url": url, "name": name, }, headers={ "content-type": "application/json", }, request_options=request_options, omit=OMIT, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( AddKnowledgeBaseResponseModel, construct_type( type_=AddKnowledgeBaseResponseModel, # type: ignore object_=_response.json(), ), ) return AsyncHttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Create a knowledge base document generated by scraping the given webpage. Parameters ---------- url : str URL to a page of documentation that the agent will have access to in order to interact with users. name : typing.Optional[str] A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[AddKnowledgeBaseResponseModel] Successful Response
create_from_url
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
MIT
async def create_from_file( self, *, file: core.File, name: typing.Optional[str] = OMIT, request_options: typing.Optional[RequestOptions] = None, ) -> AsyncHttpResponse[AddKnowledgeBaseResponseModel]: """ Create a knowledge base document generated form the uploaded file. Parameters ---------- file : core.File See core.File for more documentation name : typing.Optional[str] A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[AddKnowledgeBaseResponseModel] Successful Response """ _response = await self._client_wrapper.httpx_client.request( "v1/convai/knowledge-base/file", base_url=self._client_wrapper.get_environment().base, method="POST", data={ "name": name, }, files={ "file": file, }, request_options=request_options, omit=OMIT, force_multipart=True, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( AddKnowledgeBaseResponseModel, construct_type( type_=AddKnowledgeBaseResponseModel, # type: ignore object_=_response.json(), ), ) return AsyncHttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Create a knowledge base document generated form the uploaded file. Parameters ---------- file : core.File See core.File for more documentation name : typing.Optional[str] A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[AddKnowledgeBaseResponseModel] Successful Response
create_from_file
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
MIT
async def create_from_text( self, *, text: str, name: typing.Optional[str] = OMIT, request_options: typing.Optional[RequestOptions] = None ) -> AsyncHttpResponse[AddKnowledgeBaseResponseModel]: """ Create a knowledge base document containing the provided text. Parameters ---------- text : str Text content to be added to the knowledge base. name : typing.Optional[str] A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[AddKnowledgeBaseResponseModel] Successful Response """ _response = await self._client_wrapper.httpx_client.request( "v1/convai/knowledge-base/text", base_url=self._client_wrapper.get_environment().base, method="POST", json={ "text": text, "name": name, }, headers={ "content-type": "application/json", }, request_options=request_options, omit=OMIT, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( AddKnowledgeBaseResponseModel, construct_type( type_=AddKnowledgeBaseResponseModel, # type: ignore object_=_response.json(), ), ) return AsyncHttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Create a knowledge base document containing the provided text. Parameters ---------- text : str Text content to be added to the knowledge base. name : typing.Optional[str] A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[AddKnowledgeBaseResponseModel] Successful Response
create_from_text
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
MIT
async def get( self, documentation_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> AsyncHttpResponse[DocumentsGetResponse]: """ Get details about a specific documentation making up the agent's knowledge base Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[DocumentsGetResponse] Successful Response """ _response = await self._client_wrapper.httpx_client.request( f"v1/convai/knowledge-base/{jsonable_encoder(documentation_id)}", base_url=self._client_wrapper.get_environment().base, method="GET", request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( DocumentsGetResponse, construct_type( type_=DocumentsGetResponse, # type: ignore object_=_response.json(), ), ) return AsyncHttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Get details about a specific documentation making up the agent's knowledge base Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[DocumentsGetResponse] Successful Response
get
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
MIT
async def delete( self, documentation_id: str, *, force: typing.Optional[bool] = None, request_options: typing.Optional[RequestOptions] = None, ) -> AsyncHttpResponse[typing.Optional[typing.Any]]: """ Delete a document from the knowledge base Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. force : typing.Optional[bool] If set to true, the document will be deleted regardless of whether it is used by any agents and it will be deleted from the dependent agents. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[typing.Optional[typing.Any]] Successful Response """ _response = await self._client_wrapper.httpx_client.request( f"v1/convai/knowledge-base/{jsonable_encoder(documentation_id)}", base_url=self._client_wrapper.get_environment().base, method="DELETE", params={ "force": force, }, request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( typing.Optional[typing.Any], construct_type( type_=typing.Optional[typing.Any], # type: ignore object_=_response.json(), ), ) return AsyncHttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Delete a document from the knowledge base Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. force : typing.Optional[bool] If set to true, the document will be deleted regardless of whether it is used by any agents and it will be deleted from the dependent agents. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[typing.Optional[typing.Any]] Successful Response
delete
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
MIT
async def update( self, documentation_id: str, *, name: str, request_options: typing.Optional[RequestOptions] = None ) -> AsyncHttpResponse[DocumentsUpdateResponse]: """ Update the name of a document Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. name : str A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[DocumentsUpdateResponse] Successful Response """ _response = await self._client_wrapper.httpx_client.request( f"v1/convai/knowledge-base/{jsonable_encoder(documentation_id)}", base_url=self._client_wrapper.get_environment().base, method="PATCH", json={ "name": name, }, headers={ "content-type": "application/json", }, request_options=request_options, omit=OMIT, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( DocumentsUpdateResponse, construct_type( type_=DocumentsUpdateResponse, # type: ignore object_=_response.json(), ), ) return AsyncHttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Update the name of a document Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. name : str A custom, human-readable name for the document. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[DocumentsUpdateResponse] Successful Response
update
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
MIT
async def get_agents( self, documentation_id: str, *, cursor: typing.Optional[str] = None, page_size: typing.Optional[int] = None, request_options: typing.Optional[RequestOptions] = None, ) -> AsyncHttpResponse[GetKnowledgeBaseDependentAgentsResponseModel]: """ Get a list of agents depending on this knowledge base document Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. cursor : typing.Optional[str] Used for fetching next page. Cursor is returned in the response. page_size : typing.Optional[int] How many documents to return at maximum. Can not exceed 100, defaults to 30. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[GetKnowledgeBaseDependentAgentsResponseModel] Successful Response """ _response = await self._client_wrapper.httpx_client.request( f"v1/convai/knowledge-base/{jsonable_encoder(documentation_id)}/dependent-agents", base_url=self._client_wrapper.get_environment().base, method="GET", params={ "cursor": cursor, "page_size": page_size, }, request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( GetKnowledgeBaseDependentAgentsResponseModel, construct_type( type_=GetKnowledgeBaseDependentAgentsResponseModel, # type: ignore object_=_response.json(), ), ) return AsyncHttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Get a list of agents depending on this knowledge base document Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. cursor : typing.Optional[str] Used for fetching next page. Cursor is returned in the response. page_size : typing.Optional[int] How many documents to return at maximum. Can not exceed 100, defaults to 30. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[GetKnowledgeBaseDependentAgentsResponseModel] Successful Response
get_agents
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
MIT
async def get_content( self, documentation_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> AsyncHttpResponse[None]: """ Get the entire content of a document from the knowledge base Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[None] """ _response = await self._client_wrapper.httpx_client.request( f"v1/convai/knowledge-base/{jsonable_encoder(documentation_id)}/content", base_url=self._client_wrapper.get_environment().base, method="GET", request_options=request_options, ) try: if 200 <= _response.status_code < 300: return AsyncHttpResponse(response=_response, data=None) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Get the entire content of a document from the knowledge base Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[None]
get_content
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/raw_client.py
MIT
def get( self, documentation_id: str, chunk_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> KnowledgeBaseDocumentChunkResponseModel: """ Get details about a specific documentation part used by RAG. Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. chunk_id : str The id of a document RAG chunk from the knowledge base. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- KnowledgeBaseDocumentChunkResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.knowledge_base.documents.chunk.get( documentation_id="21m00Tcm4TlvDq8ikWAM", chunk_id="chunk_id", ) """ _response = self._raw_client.get(documentation_id, chunk_id, request_options=request_options) return _response.data
Get details about a specific documentation part used by RAG. Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. chunk_id : str The id of a document RAG chunk from the knowledge base. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- KnowledgeBaseDocumentChunkResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.knowledge_base.documents.chunk.get( documentation_id="21m00Tcm4TlvDq8ikWAM", chunk_id="chunk_id", )
get
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/chunk/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/chunk/client.py
MIT
async def get( self, documentation_id: str, chunk_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> KnowledgeBaseDocumentChunkResponseModel: """ Get details about a specific documentation part used by RAG. Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. chunk_id : str The id of a document RAG chunk from the knowledge base. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- KnowledgeBaseDocumentChunkResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.knowledge_base.documents.chunk.get( documentation_id="21m00Tcm4TlvDq8ikWAM", chunk_id="chunk_id", ) asyncio.run(main()) """ _response = await self._raw_client.get(documentation_id, chunk_id, request_options=request_options) return _response.data
Get details about a specific documentation part used by RAG. Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. chunk_id : str The id of a document RAG chunk from the knowledge base. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- KnowledgeBaseDocumentChunkResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.knowledge_base.documents.chunk.get( documentation_id="21m00Tcm4TlvDq8ikWAM", chunk_id="chunk_id", ) asyncio.run(main())
get
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/chunk/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/chunk/client.py
MIT
def get( self, documentation_id: str, chunk_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> HttpResponse[KnowledgeBaseDocumentChunkResponseModel]: """ Get details about a specific documentation part used by RAG. Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. chunk_id : str The id of a document RAG chunk from the knowledge base. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[KnowledgeBaseDocumentChunkResponseModel] Successful Response """ _response = self._client_wrapper.httpx_client.request( f"v1/convai/knowledge-base/{jsonable_encoder(documentation_id)}/chunk/{jsonable_encoder(chunk_id)}", base_url=self._client_wrapper.get_environment().base, method="GET", request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( KnowledgeBaseDocumentChunkResponseModel, construct_type( type_=KnowledgeBaseDocumentChunkResponseModel, # type: ignore object_=_response.json(), ), ) return HttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Get details about a specific documentation part used by RAG. Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. chunk_id : str The id of a document RAG chunk from the knowledge base. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[KnowledgeBaseDocumentChunkResponseModel] Successful Response
get
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/chunk/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/chunk/raw_client.py
MIT
async def get( self, documentation_id: str, chunk_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> AsyncHttpResponse[KnowledgeBaseDocumentChunkResponseModel]: """ Get details about a specific documentation part used by RAG. Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. chunk_id : str The id of a document RAG chunk from the knowledge base. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[KnowledgeBaseDocumentChunkResponseModel] Successful Response """ _response = await self._client_wrapper.httpx_client.request( f"v1/convai/knowledge-base/{jsonable_encoder(documentation_id)}/chunk/{jsonable_encoder(chunk_id)}", base_url=self._client_wrapper.get_environment().base, method="GET", request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( KnowledgeBaseDocumentChunkResponseModel, construct_type( type_=KnowledgeBaseDocumentChunkResponseModel, # type: ignore object_=_response.json(), ), ) return AsyncHttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Get details about a specific documentation part used by RAG. Parameters ---------- documentation_id : str The id of a document from the knowledge base. This is returned on document addition. chunk_id : str The id of a document RAG chunk from the knowledge base. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[KnowledgeBaseDocumentChunkResponseModel] Successful Response
get
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/knowledge_base/documents/chunk/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/knowledge_base/documents/chunk/raw_client.py
MIT
def calculate( self, *, prompt_length: int, number_of_pages: int, rag_enabled: bool, request_options: typing.Optional[RequestOptions] = None, ) -> LlmUsageCalculatorResponseModel: """ Returns a list of LLM models and the expected cost for using them based on the provided values. Parameters ---------- prompt_length : int Length of the prompt in characters. number_of_pages : int Pages of content in PDF documents or URLs in the agent's knowledge base. rag_enabled : bool Whether RAG is enabled. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- LlmUsageCalculatorResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.llm_usage.calculate( prompt_length=1, number_of_pages=1, rag_enabled=True, ) """ _response = self._raw_client.calculate( prompt_length=prompt_length, number_of_pages=number_of_pages, rag_enabled=rag_enabled, request_options=request_options, ) return _response.data
Returns a list of LLM models and the expected cost for using them based on the provided values. Parameters ---------- prompt_length : int Length of the prompt in characters. number_of_pages : int Pages of content in PDF documents or URLs in the agent's knowledge base. rag_enabled : bool Whether RAG is enabled. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- LlmUsageCalculatorResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.llm_usage.calculate( prompt_length=1, number_of_pages=1, rag_enabled=True, )
calculate
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/llm_usage/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/llm_usage/client.py
MIT
async def calculate( self, *, prompt_length: int, number_of_pages: int, rag_enabled: bool, request_options: typing.Optional[RequestOptions] = None, ) -> LlmUsageCalculatorResponseModel: """ Returns a list of LLM models and the expected cost for using them based on the provided values. Parameters ---------- prompt_length : int Length of the prompt in characters. number_of_pages : int Pages of content in PDF documents or URLs in the agent's knowledge base. rag_enabled : bool Whether RAG is enabled. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- LlmUsageCalculatorResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.llm_usage.calculate( prompt_length=1, number_of_pages=1, rag_enabled=True, ) asyncio.run(main()) """ _response = await self._raw_client.calculate( prompt_length=prompt_length, number_of_pages=number_of_pages, rag_enabled=rag_enabled, request_options=request_options, ) return _response.data
Returns a list of LLM models and the expected cost for using them based on the provided values. Parameters ---------- prompt_length : int Length of the prompt in characters. number_of_pages : int Pages of content in PDF documents or URLs in the agent's knowledge base. rag_enabled : bool Whether RAG is enabled. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- LlmUsageCalculatorResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.llm_usage.calculate( prompt_length=1, number_of_pages=1, rag_enabled=True, ) asyncio.run(main())
calculate
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/llm_usage/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/llm_usage/client.py
MIT
def calculate( self, *, prompt_length: int, number_of_pages: int, rag_enabled: bool, request_options: typing.Optional[RequestOptions] = None, ) -> HttpResponse[LlmUsageCalculatorResponseModel]: """ Returns a list of LLM models and the expected cost for using them based on the provided values. Parameters ---------- prompt_length : int Length of the prompt in characters. number_of_pages : int Pages of content in PDF documents or URLs in the agent's knowledge base. rag_enabled : bool Whether RAG is enabled. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[LlmUsageCalculatorResponseModel] Successful Response """ _response = self._client_wrapper.httpx_client.request( "v1/convai/llm-usage/calculate", base_url=self._client_wrapper.get_environment().base, method="POST", json={ "prompt_length": prompt_length, "number_of_pages": number_of_pages, "rag_enabled": rag_enabled, }, headers={ "content-type": "application/json", }, request_options=request_options, omit=OMIT, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( LlmUsageCalculatorResponseModel, construct_type( type_=LlmUsageCalculatorResponseModel, # type: ignore object_=_response.json(), ), ) return HttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Returns a list of LLM models and the expected cost for using them based on the provided values. Parameters ---------- prompt_length : int Length of the prompt in characters. number_of_pages : int Pages of content in PDF documents or URLs in the agent's knowledge base. rag_enabled : bool Whether RAG is enabled. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[LlmUsageCalculatorResponseModel] Successful Response
calculate
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/llm_usage/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/llm_usage/raw_client.py
MIT
async def calculate( self, *, prompt_length: int, number_of_pages: int, rag_enabled: bool, request_options: typing.Optional[RequestOptions] = None, ) -> AsyncHttpResponse[LlmUsageCalculatorResponseModel]: """ Returns a list of LLM models and the expected cost for using them based on the provided values. Parameters ---------- prompt_length : int Length of the prompt in characters. number_of_pages : int Pages of content in PDF documents or URLs in the agent's knowledge base. rag_enabled : bool Whether RAG is enabled. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[LlmUsageCalculatorResponseModel] Successful Response """ _response = await self._client_wrapper.httpx_client.request( "v1/convai/llm-usage/calculate", base_url=self._client_wrapper.get_environment().base, method="POST", json={ "prompt_length": prompt_length, "number_of_pages": number_of_pages, "rag_enabled": rag_enabled, }, headers={ "content-type": "application/json", }, request_options=request_options, omit=OMIT, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( LlmUsageCalculatorResponseModel, construct_type( type_=LlmUsageCalculatorResponseModel, # type: ignore object_=_response.json(), ), ) return AsyncHttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Returns a list of LLM models and the expected cost for using them based on the provided values. Parameters ---------- prompt_length : int Length of the prompt in characters. number_of_pages : int Pages of content in PDF documents or URLs in the agent's knowledge base. rag_enabled : bool Whether RAG is enabled. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[LlmUsageCalculatorResponseModel] Successful Response
calculate
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/llm_usage/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/llm_usage/raw_client.py
MIT
def create( self, *, request: PhoneNumbersCreateRequestBody, request_options: typing.Optional[RequestOptions] = None ) -> CreatePhoneNumberResponseModel: """ Import Phone Number from provider configuration (Twilio or SIP trunk) Parameters ---------- request : PhoneNumbersCreateRequestBody request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- CreatePhoneNumberResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs from elevenlabs.conversational_ai.phone_numbers import ( PhoneNumbersCreateRequestBody_Twilio, ) client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.phone_numbers.create( request=PhoneNumbersCreateRequestBody_Twilio( phone_number="phone_number", label="label", sid="sid", token="token", ), ) """ _response = self._raw_client.create(request=request, request_options=request_options) return _response.data
Import Phone Number from provider configuration (Twilio or SIP trunk) Parameters ---------- request : PhoneNumbersCreateRequestBody request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- CreatePhoneNumberResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs from elevenlabs.conversational_ai.phone_numbers import ( PhoneNumbersCreateRequestBody_Twilio, ) client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.phone_numbers.create( request=PhoneNumbersCreateRequestBody_Twilio( phone_number="phone_number", label="label", sid="sid", token="token", ), )
create
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/phone_numbers/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/phone_numbers/client.py
MIT
def get( self, phone_number_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> PhoneNumbersGetResponse: """ Retrieve Phone Number details by ID Parameters ---------- phone_number_id : str The id of an agent. This is returned on agent creation. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- PhoneNumbersGetResponse Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.phone_numbers.get( phone_number_id="TeaqRRdTcIfIu2i7BYfT", ) """ _response = self._raw_client.get(phone_number_id, request_options=request_options) return _response.data
Retrieve Phone Number details by ID Parameters ---------- phone_number_id : str The id of an agent. This is returned on agent creation. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- PhoneNumbersGetResponse Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.phone_numbers.get( phone_number_id="TeaqRRdTcIfIu2i7BYfT", )
get
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/phone_numbers/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/phone_numbers/client.py
MIT
def delete( self, phone_number_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> typing.Optional[typing.Any]: """ Delete Phone Number by ID Parameters ---------- phone_number_id : str The id of an agent. This is returned on agent creation. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- typing.Optional[typing.Any] Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.phone_numbers.delete( phone_number_id="TeaqRRdTcIfIu2i7BYfT", ) """ _response = self._raw_client.delete(phone_number_id, request_options=request_options) return _response.data
Delete Phone Number by ID Parameters ---------- phone_number_id : str The id of an agent. This is returned on agent creation. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- typing.Optional[typing.Any] Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.phone_numbers.delete( phone_number_id="TeaqRRdTcIfIu2i7BYfT", )
delete
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/phone_numbers/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/phone_numbers/client.py
MIT
def update( self, phone_number_id: str, *, agent_id: typing.Optional[str] = OMIT, request_options: typing.Optional[RequestOptions] = None, ) -> PhoneNumbersUpdateResponse: """ Update Phone Number details by ID Parameters ---------- phone_number_id : str The id of an agent. This is returned on agent creation. agent_id : typing.Optional[str] request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- PhoneNumbersUpdateResponse Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.phone_numbers.update( phone_number_id="TeaqRRdTcIfIu2i7BYfT", ) """ _response = self._raw_client.update(phone_number_id, agent_id=agent_id, request_options=request_options) return _response.data
Update Phone Number details by ID Parameters ---------- phone_number_id : str The id of an agent. This is returned on agent creation. agent_id : typing.Optional[str] request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- PhoneNumbersUpdateResponse Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.phone_numbers.update( phone_number_id="TeaqRRdTcIfIu2i7BYfT", )
update
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/phone_numbers/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/phone_numbers/client.py
MIT
def list( self, *, request_options: typing.Optional[RequestOptions] = None ) -> typing.List[PhoneNumbersListResponseItem]: """ Retrieve all Phone Numbers Parameters ---------- request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- typing.List[PhoneNumbersListResponseItem] Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.phone_numbers.list() """ _response = self._raw_client.list(request_options=request_options) return _response.data
Retrieve all Phone Numbers Parameters ---------- request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- typing.List[PhoneNumbersListResponseItem] Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.phone_numbers.list()
list
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/phone_numbers/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/phone_numbers/client.py
MIT
async def create( self, *, request: PhoneNumbersCreateRequestBody, request_options: typing.Optional[RequestOptions] = None ) -> CreatePhoneNumberResponseModel: """ Import Phone Number from provider configuration (Twilio or SIP trunk) Parameters ---------- request : PhoneNumbersCreateRequestBody request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- CreatePhoneNumberResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs from elevenlabs.conversational_ai.phone_numbers import ( PhoneNumbersCreateRequestBody_Twilio, ) client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.phone_numbers.create( request=PhoneNumbersCreateRequestBody_Twilio( phone_number="phone_number", label="label", sid="sid", token="token", ), ) asyncio.run(main()) """ _response = await self._raw_client.create(request=request, request_options=request_options) return _response.data
Import Phone Number from provider configuration (Twilio or SIP trunk) Parameters ---------- request : PhoneNumbersCreateRequestBody request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- CreatePhoneNumberResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs from elevenlabs.conversational_ai.phone_numbers import ( PhoneNumbersCreateRequestBody_Twilio, ) client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.phone_numbers.create( request=PhoneNumbersCreateRequestBody_Twilio( phone_number="phone_number", label="label", sid="sid", token="token", ), ) asyncio.run(main())
create
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/phone_numbers/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/phone_numbers/client.py
MIT
async def get( self, phone_number_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> PhoneNumbersGetResponse: """ Retrieve Phone Number details by ID Parameters ---------- phone_number_id : str The id of an agent. This is returned on agent creation. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- PhoneNumbersGetResponse Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.phone_numbers.get( phone_number_id="TeaqRRdTcIfIu2i7BYfT", ) asyncio.run(main()) """ _response = await self._raw_client.get(phone_number_id, request_options=request_options) return _response.data
Retrieve Phone Number details by ID Parameters ---------- phone_number_id : str The id of an agent. This is returned on agent creation. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- PhoneNumbersGetResponse Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.phone_numbers.get( phone_number_id="TeaqRRdTcIfIu2i7BYfT", ) asyncio.run(main())
get
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/phone_numbers/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/phone_numbers/client.py
MIT
async def delete( self, phone_number_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> typing.Optional[typing.Any]: """ Delete Phone Number by ID Parameters ---------- phone_number_id : str The id of an agent. This is returned on agent creation. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- typing.Optional[typing.Any] Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.phone_numbers.delete( phone_number_id="TeaqRRdTcIfIu2i7BYfT", ) asyncio.run(main()) """ _response = await self._raw_client.delete(phone_number_id, request_options=request_options) return _response.data
Delete Phone Number by ID Parameters ---------- phone_number_id : str The id of an agent. This is returned on agent creation. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- typing.Optional[typing.Any] Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.phone_numbers.delete( phone_number_id="TeaqRRdTcIfIu2i7BYfT", ) asyncio.run(main())
delete
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/phone_numbers/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/phone_numbers/client.py
MIT
async def update( self, phone_number_id: str, *, agent_id: typing.Optional[str] = OMIT, request_options: typing.Optional[RequestOptions] = None, ) -> PhoneNumbersUpdateResponse: """ Update Phone Number details by ID Parameters ---------- phone_number_id : str The id of an agent. This is returned on agent creation. agent_id : typing.Optional[str] request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- PhoneNumbersUpdateResponse Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.phone_numbers.update( phone_number_id="TeaqRRdTcIfIu2i7BYfT", ) asyncio.run(main()) """ _response = await self._raw_client.update(phone_number_id, agent_id=agent_id, request_options=request_options) return _response.data
Update Phone Number details by ID Parameters ---------- phone_number_id : str The id of an agent. This is returned on agent creation. agent_id : typing.Optional[str] request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- PhoneNumbersUpdateResponse Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.phone_numbers.update( phone_number_id="TeaqRRdTcIfIu2i7BYfT", ) asyncio.run(main())
update
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/phone_numbers/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/phone_numbers/client.py
MIT
async def list( self, *, request_options: typing.Optional[RequestOptions] = None ) -> typing.List[PhoneNumbersListResponseItem]: """ Retrieve all Phone Numbers Parameters ---------- request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- typing.List[PhoneNumbersListResponseItem] Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.phone_numbers.list() asyncio.run(main()) """ _response = await self._raw_client.list(request_options=request_options) return _response.data
Retrieve all Phone Numbers Parameters ---------- request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- typing.List[PhoneNumbersListResponseItem] Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.phone_numbers.list() asyncio.run(main())
list
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/phone_numbers/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/phone_numbers/client.py
MIT
def create( self, *, request: PhoneNumbersCreateRequestBody, request_options: typing.Optional[RequestOptions] = None ) -> HttpResponse[CreatePhoneNumberResponseModel]: """ Import Phone Number from provider configuration (Twilio or SIP trunk) Parameters ---------- request : PhoneNumbersCreateRequestBody request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[CreatePhoneNumberResponseModel] Successful Response """ _response = self._client_wrapper.httpx_client.request( "v1/convai/phone-numbers/create", base_url=self._client_wrapper.get_environment().base, method="POST", json=convert_and_respect_annotation_metadata( object_=request, annotation=PhoneNumbersCreateRequestBody, direction="write" ), headers={ "content-type": "application/json", }, request_options=request_options, omit=OMIT, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( CreatePhoneNumberResponseModel, construct_type( type_=CreatePhoneNumberResponseModel, # type: ignore object_=_response.json(), ), ) return HttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Import Phone Number from provider configuration (Twilio or SIP trunk) Parameters ---------- request : PhoneNumbersCreateRequestBody request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[CreatePhoneNumberResponseModel] Successful Response
create
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/phone_numbers/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/phone_numbers/raw_client.py
MIT
def get( self, phone_number_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> HttpResponse[PhoneNumbersGetResponse]: """ Retrieve Phone Number details by ID Parameters ---------- phone_number_id : str The id of an agent. This is returned on agent creation. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[PhoneNumbersGetResponse] Successful Response """ _response = self._client_wrapper.httpx_client.request( f"v1/convai/phone-numbers/{jsonable_encoder(phone_number_id)}", base_url=self._client_wrapper.get_environment().base, method="GET", request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( PhoneNumbersGetResponse, construct_type( type_=PhoneNumbersGetResponse, # type: ignore object_=_response.json(), ), ) return HttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Retrieve Phone Number details by ID Parameters ---------- phone_number_id : str The id of an agent. This is returned on agent creation. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[PhoneNumbersGetResponse] Successful Response
get
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/phone_numbers/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/phone_numbers/raw_client.py
MIT
def delete( self, phone_number_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> HttpResponse[typing.Optional[typing.Any]]: """ Delete Phone Number by ID Parameters ---------- phone_number_id : str The id of an agent. This is returned on agent creation. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[typing.Optional[typing.Any]] Successful Response """ _response = self._client_wrapper.httpx_client.request( f"v1/convai/phone-numbers/{jsonable_encoder(phone_number_id)}", base_url=self._client_wrapper.get_environment().base, method="DELETE", request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( typing.Optional[typing.Any], construct_type( type_=typing.Optional[typing.Any], # type: ignore object_=_response.json(), ), ) return HttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Delete Phone Number by ID Parameters ---------- phone_number_id : str The id of an agent. This is returned on agent creation. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[typing.Optional[typing.Any]] Successful Response
delete
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/phone_numbers/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/phone_numbers/raw_client.py
MIT
def update( self, phone_number_id: str, *, agent_id: typing.Optional[str] = OMIT, request_options: typing.Optional[RequestOptions] = None, ) -> HttpResponse[PhoneNumbersUpdateResponse]: """ Update Phone Number details by ID Parameters ---------- phone_number_id : str The id of an agent. This is returned on agent creation. agent_id : typing.Optional[str] request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[PhoneNumbersUpdateResponse] Successful Response """ _response = self._client_wrapper.httpx_client.request( f"v1/convai/phone-numbers/{jsonable_encoder(phone_number_id)}", base_url=self._client_wrapper.get_environment().base, method="PATCH", json={ "agent_id": agent_id, }, headers={ "content-type": "application/json", }, request_options=request_options, omit=OMIT, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( PhoneNumbersUpdateResponse, construct_type( type_=PhoneNumbersUpdateResponse, # type: ignore object_=_response.json(), ), ) return HttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Update Phone Number details by ID Parameters ---------- phone_number_id : str The id of an agent. This is returned on agent creation. agent_id : typing.Optional[str] request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[PhoneNumbersUpdateResponse] Successful Response
update
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/phone_numbers/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/phone_numbers/raw_client.py
MIT
def list( self, *, request_options: typing.Optional[RequestOptions] = None ) -> HttpResponse[typing.List[PhoneNumbersListResponseItem]]: """ Retrieve all Phone Numbers Parameters ---------- request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[typing.List[PhoneNumbersListResponseItem]] Successful Response """ _response = self._client_wrapper.httpx_client.request( "v1/convai/phone-numbers/", base_url=self._client_wrapper.get_environment().base, method="GET", request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( typing.List[PhoneNumbersListResponseItem], construct_type( type_=typing.List[PhoneNumbersListResponseItem], # type: ignore object_=_response.json(), ), ) return HttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Retrieve all Phone Numbers Parameters ---------- request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[typing.List[PhoneNumbersListResponseItem]] Successful Response
list
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/phone_numbers/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/phone_numbers/raw_client.py
MIT
async def create( self, *, request: PhoneNumbersCreateRequestBody, request_options: typing.Optional[RequestOptions] = None ) -> AsyncHttpResponse[CreatePhoneNumberResponseModel]: """ Import Phone Number from provider configuration (Twilio or SIP trunk) Parameters ---------- request : PhoneNumbersCreateRequestBody request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[CreatePhoneNumberResponseModel] Successful Response """ _response = await self._client_wrapper.httpx_client.request( "v1/convai/phone-numbers/create", base_url=self._client_wrapper.get_environment().base, method="POST", json=convert_and_respect_annotation_metadata( object_=request, annotation=PhoneNumbersCreateRequestBody, direction="write" ), headers={ "content-type": "application/json", }, request_options=request_options, omit=OMIT, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( CreatePhoneNumberResponseModel, construct_type( type_=CreatePhoneNumberResponseModel, # type: ignore object_=_response.json(), ), ) return AsyncHttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Import Phone Number from provider configuration (Twilio or SIP trunk) Parameters ---------- request : PhoneNumbersCreateRequestBody request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[CreatePhoneNumberResponseModel] Successful Response
create
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/phone_numbers/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/phone_numbers/raw_client.py
MIT
async def get( self, phone_number_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> AsyncHttpResponse[PhoneNumbersGetResponse]: """ Retrieve Phone Number details by ID Parameters ---------- phone_number_id : str The id of an agent. This is returned on agent creation. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[PhoneNumbersGetResponse] Successful Response """ _response = await self._client_wrapper.httpx_client.request( f"v1/convai/phone-numbers/{jsonable_encoder(phone_number_id)}", base_url=self._client_wrapper.get_environment().base, method="GET", request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( PhoneNumbersGetResponse, construct_type( type_=PhoneNumbersGetResponse, # type: ignore object_=_response.json(), ), ) return AsyncHttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Retrieve Phone Number details by ID Parameters ---------- phone_number_id : str The id of an agent. This is returned on agent creation. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[PhoneNumbersGetResponse] Successful Response
get
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/phone_numbers/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/phone_numbers/raw_client.py
MIT
async def delete( self, phone_number_id: str, *, request_options: typing.Optional[RequestOptions] = None ) -> AsyncHttpResponse[typing.Optional[typing.Any]]: """ Delete Phone Number by ID Parameters ---------- phone_number_id : str The id of an agent. This is returned on agent creation. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[typing.Optional[typing.Any]] Successful Response """ _response = await self._client_wrapper.httpx_client.request( f"v1/convai/phone-numbers/{jsonable_encoder(phone_number_id)}", base_url=self._client_wrapper.get_environment().base, method="DELETE", request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( typing.Optional[typing.Any], construct_type( type_=typing.Optional[typing.Any], # type: ignore object_=_response.json(), ), ) return AsyncHttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Delete Phone Number by ID Parameters ---------- phone_number_id : str The id of an agent. This is returned on agent creation. request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[typing.Optional[typing.Any]] Successful Response
delete
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/phone_numbers/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/phone_numbers/raw_client.py
MIT
async def update( self, phone_number_id: str, *, agent_id: typing.Optional[str] = OMIT, request_options: typing.Optional[RequestOptions] = None, ) -> AsyncHttpResponse[PhoneNumbersUpdateResponse]: """ Update Phone Number details by ID Parameters ---------- phone_number_id : str The id of an agent. This is returned on agent creation. agent_id : typing.Optional[str] request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[PhoneNumbersUpdateResponse] Successful Response """ _response = await self._client_wrapper.httpx_client.request( f"v1/convai/phone-numbers/{jsonable_encoder(phone_number_id)}", base_url=self._client_wrapper.get_environment().base, method="PATCH", json={ "agent_id": agent_id, }, headers={ "content-type": "application/json", }, request_options=request_options, omit=OMIT, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( PhoneNumbersUpdateResponse, construct_type( type_=PhoneNumbersUpdateResponse, # type: ignore object_=_response.json(), ), ) return AsyncHttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Update Phone Number details by ID Parameters ---------- phone_number_id : str The id of an agent. This is returned on agent creation. agent_id : typing.Optional[str] request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[PhoneNumbersUpdateResponse] Successful Response
update
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/phone_numbers/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/phone_numbers/raw_client.py
MIT
async def list( self, *, request_options: typing.Optional[RequestOptions] = None ) -> AsyncHttpResponse[typing.List[PhoneNumbersListResponseItem]]: """ Retrieve all Phone Numbers Parameters ---------- request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[typing.List[PhoneNumbersListResponseItem]] Successful Response """ _response = await self._client_wrapper.httpx_client.request( "v1/convai/phone-numbers/", base_url=self._client_wrapper.get_environment().base, method="GET", request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( typing.List[PhoneNumbersListResponseItem], construct_type( type_=typing.List[PhoneNumbersListResponseItem], # type: ignore object_=_response.json(), ), ) return AsyncHttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Retrieve all Phone Numbers Parameters ---------- request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- AsyncHttpResponse[typing.List[PhoneNumbersListResponseItem]] Successful Response
list
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/phone_numbers/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/phone_numbers/raw_client.py
MIT
def create( self, *, name: str, value: str, request_options: typing.Optional[RequestOptions] = None ) -> PostWorkspaceSecretResponseModel: """ Create a new secret for the workspace Parameters ---------- name : str value : str request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- PostWorkspaceSecretResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.secrets.create( name="name", value="value", ) """ _response = self._raw_client.create(name=name, value=value, request_options=request_options) return _response.data
Create a new secret for the workspace Parameters ---------- name : str value : str request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- PostWorkspaceSecretResponseModel Successful Response Examples -------- from elevenlabs import ElevenLabs client = ElevenLabs( api_key="YOUR_API_KEY", ) client.conversational_ai.secrets.create( name="name", value="value", )
create
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/secrets/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/secrets/client.py
MIT
async def list( self, *, request_options: typing.Optional[RequestOptions] = None ) -> GetWorkspaceSecretsResponseModel: """ Get all workspace secrets for the user Parameters ---------- request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- GetWorkspaceSecretsResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.secrets.list() asyncio.run(main()) """ _response = await self._raw_client.list(request_options=request_options) return _response.data
Get all workspace secrets for the user Parameters ---------- request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- GetWorkspaceSecretsResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.secrets.list() asyncio.run(main())
list
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/secrets/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/secrets/client.py
MIT
async def create( self, *, name: str, value: str, request_options: typing.Optional[RequestOptions] = None ) -> PostWorkspaceSecretResponseModel: """ Create a new secret for the workspace Parameters ---------- name : str value : str request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- PostWorkspaceSecretResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.secrets.create( name="name", value="value", ) asyncio.run(main()) """ _response = await self._raw_client.create(name=name, value=value, request_options=request_options) return _response.data
Create a new secret for the workspace Parameters ---------- name : str value : str request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- PostWorkspaceSecretResponseModel Successful Response Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.secrets.create( name="name", value="value", ) asyncio.run(main())
create
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/secrets/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/secrets/client.py
MIT
async def delete(self, secret_id: str, *, request_options: typing.Optional[RequestOptions] = None) -> None: """ Delete a workspace secret if it's not in use Parameters ---------- secret_id : str request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- None Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.secrets.delete( secret_id="secret_id", ) asyncio.run(main()) """ _response = await self._raw_client.delete(secret_id, request_options=request_options) return _response.data
Delete a workspace secret if it's not in use Parameters ---------- secret_id : str request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- None Examples -------- import asyncio from elevenlabs import AsyncElevenLabs client = AsyncElevenLabs( api_key="YOUR_API_KEY", ) async def main() -> None: await client.conversational_ai.secrets.delete( secret_id="secret_id", ) asyncio.run(main())
delete
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/secrets/client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/secrets/client.py
MIT
def list( self, *, request_options: typing.Optional[RequestOptions] = None ) -> HttpResponse[GetWorkspaceSecretsResponseModel]: """ Get all workspace secrets for the user Parameters ---------- request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[GetWorkspaceSecretsResponseModel] Successful Response """ _response = self._client_wrapper.httpx_client.request( "v1/convai/secrets", base_url=self._client_wrapper.get_environment().base, method="GET", request_options=request_options, ) try: if 200 <= _response.status_code < 300: _data = typing.cast( GetWorkspaceSecretsResponseModel, construct_type( type_=GetWorkspaceSecretsResponseModel, # type: ignore object_=_response.json(), ), ) return HttpResponse(response=_response, data=_data) if _response.status_code == 422: raise UnprocessableEntityError( headers=dict(_response.headers), body=typing.cast( HttpValidationError, construct_type( type_=HttpValidationError, # type: ignore object_=_response.json(), ), ), ) _response_json = _response.json() except JSONDecodeError: raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text) raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
Get all workspace secrets for the user Parameters ---------- request_options : typing.Optional[RequestOptions] Request-specific configuration. Returns ------- HttpResponse[GetWorkspaceSecretsResponseModel] Successful Response
list
python
elevenlabs/elevenlabs-python
src/elevenlabs/conversational_ai/secrets/raw_client.py
https://github.com/elevenlabs/elevenlabs-python/blob/master/src/elevenlabs/conversational_ai/secrets/raw_client.py
MIT