code
stringlengths 66
870k
| docstring
stringlengths 19
26.7k
| func_name
stringlengths 1
138
| language
stringclasses 1
value | repo
stringlengths 7
68
| path
stringlengths 5
324
| url
stringlengths 46
389
| license
stringclasses 7
values |
---|---|---|---|---|---|---|---|
def cal_metric_at_ks(self, model_id, all_std_labels=None, all_preds=None, group=None, ks=[1, 3, 5, 10], label_type=None):
"""
Compute metric values with different cutoff values
:param model:
:param all_std_labels:
:param all_preds:
:param group:
:param ks:
:return:
"""
cnt = torch.zeros(1)
sum_ndcg_at_ks = torch.zeros(len(ks))
sum_nerr_at_ks = torch.zeros(len(ks))
sum_ap_at_ks = torch.zeros(len(ks))
sum_p_at_ks = torch.zeros(len(ks))
list_ndcg_at_ks_per_q = []
list_err_at_ks_per_q = []
list_ap_at_ks_per_q = []
list_p_at_ks_per_q = []
tor_all_std_labels, tor_all_preds = \
torch.from_numpy(all_std_labels.astype(np.float32)), torch.from_numpy(all_preds.astype(np.float32))
head = 0
if model_id.startswith('LightGBM'): group = group.astype(np.int).tolist()
for gr in group:
tor_per_query_std_labels = tor_all_std_labels[head:head+gr]
tor_per_query_preds = tor_all_preds[head:head+gr]
head += gr
_, tor_sorted_inds = torch.sort(tor_per_query_preds, descending=True)
batch_predict_rankings = tor_per_query_std_labels[tor_sorted_inds]
batch_ideal_rankings, _ = torch.sort(tor_per_query_std_labels, descending=True)
ndcg_at_ks = torch_ndcg_at_ks(batch_predict_rankings=batch_predict_rankings.view(1, -1),
batch_ideal_rankings=batch_ideal_rankings.view(1, -1), ks=ks, label_type=label_type)
ndcg_at_ks = torch.squeeze(ndcg_at_ks, dim=0)
list_ndcg_at_ks_per_q.append(ndcg_at_ks.numpy())
nerr_at_ks = torch_nerr_at_ks(batch_predict_rankings=batch_predict_rankings.view(1, -1),
batch_ideal_rankings=batch_ideal_rankings.view(1, -1), ks=ks, label_type=label_type)
nerr_at_ks = torch.squeeze(nerr_at_ks, dim=0)
list_err_at_ks_per_q.append(nerr_at_ks.numpy())
ap_at_ks = torch_ap_at_ks(batch_predict_rankings=batch_predict_rankings.view(1, -1),
batch_ideal_rankings=batch_ideal_rankings.view(1, -1), ks=ks)
ap_at_ks = torch.squeeze(ap_at_ks, dim=0)
list_ap_at_ks_per_q.append(ap_at_ks.numpy())
p_at_ks = torch_precision_at_ks(batch_predict_rankings=batch_predict_rankings.view(1, -1), ks=ks)
p_at_ks = torch.squeeze(p_at_ks, dim=0)
list_p_at_ks_per_q.append(p_at_ks.numpy())
sum_ndcg_at_ks = torch.add(sum_ndcg_at_ks, ndcg_at_ks)
sum_nerr_at_ks = torch.add(sum_nerr_at_ks, nerr_at_ks)
sum_ap_at_ks = torch.add(sum_ap_at_ks, ap_at_ks)
sum_p_at_ks = torch.add(sum_p_at_ks, p_at_ks)
cnt += 1
tor_avg_ndcg_at_ks = sum_ndcg_at_ks / cnt
avg_ndcg_at_ks = tor_avg_ndcg_at_ks.data.numpy()
tor_avg_nerr_at_ks = sum_nerr_at_ks / cnt
avg_nerr_at_ks = tor_avg_nerr_at_ks.data.numpy()
tor_avg_ap_at_ks = sum_ap_at_ks / cnt
avg_ap_at_ks = tor_avg_ap_at_ks.data.numpy()
tor_avg_p_at_ks = sum_p_at_ks / cnt
avg_p_at_ks = tor_avg_p_at_ks.data.numpy()
return avg_ndcg_at_ks, avg_nerr_at_ks, avg_ap_at_ks, avg_p_at_ks,\
list_ndcg_at_ks_per_q, list_err_at_ks_per_q, list_ap_at_ks_per_q, list_p_at_ks_per_q
|
Compute metric values with different cutoff values
:param model:
:param all_std_labels:
:param all_preds:
:param group:
:param ks:
:return:
|
cal_metric_at_ks
|
python
|
wildltr/ptranking
|
ptranking/ltr_tree/eval/ltr_tree.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_tree/eval/ltr_tree.py
|
MIT
|
def setup_eval(self, data_dict, eval_dict):
"""
Perform some checks, and revise some setting due to the debug mode
:param data_dict:
:param eval_dict:
:return:
"""
# required setting to be consistent with the dataset
if data_dict['data_id'] == 'Istella':
assert eval_dict['do_validation'] is not True # since there is no validation data
self.output_root = self.setup_output(data_dict=data_dict, eval_dict=eval_dict)
if not os.path.exists(self.output_root):
os.makedirs(self.output_root)
self.save_model_dir = self.output_root
if eval_dict['do_log']: sys.stdout = open(self.output_root + 'log.txt', "w")
|
Perform some checks, and revise some setting due to the debug mode
:param data_dict:
:param eval_dict:
:return:
|
setup_eval
|
python
|
wildltr/ptranking
|
ptranking/ltr_tree/eval/ltr_tree.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_tree/eval/ltr_tree.py
|
MIT
|
def update_save_model_dir(self, data_dict=None, fold_k=None):
"""
Update the directory for saving model file when there are multiple folds
:param data_dict:
:param fold_k:
:return:
"""
if data_dict['data_id'] in MSLETOR or data_dict['data_id'] in MSLRWEB:
self.save_model_dir = self.output_root + '-'.join(['Fold', str(fold_k)]) + '/'
if not os.path.exists(self.save_model_dir):
os.makedirs(self.save_model_dir)
|
Update the directory for saving model file when there are multiple folds
:param data_dict:
:param fold_k:
:return:
|
update_save_model_dir
|
python
|
wildltr/ptranking
|
ptranking/ltr_tree/eval/ltr_tree.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_tree/eval/ltr_tree.py
|
MIT
|
def kfold_cv_eval(self, data_dict=None, eval_dict=None, model_para_dict=None):
"""
Evaluation based on k-fold cross validation if multiple folds exist
:param data_dict:
:param eval_dict:
:param model_para_dict:
:return:
"""
self.display_information(data_dict=data_dict)
self.setup_eval(data_dict=data_dict, eval_dict=eval_dict)
model_id, data_id = self.model_parameter.model_id, data_dict['data_id']
fold_num = data_dict['fold_num'] # updated due to the debug mode
cutoffs, do_validation = eval_dict['cutoffs'], eval_dict['do_validation']
tree_ranker = globals()[model_id](model_para_dict)
time_begin = datetime.datetime.now() # timing
l2r_cv_avg_ndcg_scores = np.zeros(len(cutoffs)) # fold average
l2r_cv_avg_nerr_scores = np.zeros(len(cutoffs)) # fold average
l2r_cv_avg_ap_scores = np.zeros(len(cutoffs)) # fold average
l2r_cv_avg_p_scores = np.zeros(len(cutoffs)) # fold average
list_all_fold_ndcg_at_ks_per_q = []
list_all_fold_err_at_ks_per_q = []
list_all_fold_ap_at_ks_per_q = []
list_all_fold_p_at_ks_per_q = []
for fold_k in range(1, fold_num + 1):
# determine the file paths
file_train, file_vali, file_test = self.determine_files(data_dict=data_dict, fold_k=fold_k)
self.update_save_model_dir(data_dict=data_dict, fold_k=fold_k)
y_test, group_test, y_pred = tree_ranker.run(fold_k=fold_k, file_train=file_train, file_vali=file_vali,
file_test=file_test, data_dict=data_dict, eval_dict=eval_dict,
save_model_dir=self.save_model_dir)
fold_avg_ndcg_at_ks, fold_avg_nerr_at_ks, fold_avg_ap_at_ks, fold_avg_p_at_ks,\
list_ndcg_at_ks_per_q, list_err_at_ks_per_q, list_ap_at_ks_per_q, list_p_at_ks_per_q = \
self.cal_metric_at_ks(model_id=model_id, all_std_labels=y_test, all_preds=y_pred,
group=group_test, ks=cutoffs, label_type=data_dict['label_type'])
performance_list = [model_id] if data_id in YAHOO_LTR or data_id in ISTELLA_LTR else [model_id + ' Fold-' + str(fold_k)]
for i, co in enumerate(cutoffs):
print(fold_avg_ndcg_at_ks)
performance_list.append('\nnDCG@{}:{:.4f}'.format(co, fold_avg_ndcg_at_ks[i]))
for i, co in enumerate(cutoffs):
performance_list.append('\nnERR@{}:{:.4f}'.format(co, fold_avg_nerr_at_ks[i]))
for i, co in enumerate(cutoffs):
performance_list.append('\nMAP@{}:{:.4f}'.format(co, fold_avg_ap_at_ks[i]))
for i, co in enumerate(cutoffs):
performance_list.append('\nP@{}:{:.4f}'.format(co, fold_avg_p_at_ks[i]))
performance_str = '\t'.join(performance_list)
print('\n\t', performance_str)
l2r_cv_avg_ndcg_scores = np.add(l2r_cv_avg_ndcg_scores, fold_avg_ndcg_at_ks) # sum for later cv-performance
l2r_cv_avg_nerr_scores = np.add(l2r_cv_avg_nerr_scores, fold_avg_nerr_at_ks) # sum for later cv-performance
l2r_cv_avg_ap_scores = np.add(l2r_cv_avg_ap_scores, fold_avg_ap_at_ks) # sum for later cv-performance
l2r_cv_avg_p_scores = np.add(l2r_cv_avg_p_scores, fold_avg_p_at_ks) # sum for later cv-performance
list_all_fold_ndcg_at_ks_per_q.extend(list_ndcg_at_ks_per_q)
list_all_fold_err_at_ks_per_q.extend(list_err_at_ks_per_q)
list_all_fold_ap_at_ks_per_q.extend(list_ap_at_ks_per_q)
list_all_fold_p_at_ks_per_q.extend(list_p_at_ks_per_q)
time_end = datetime.datetime.now() # overall timing
elapsed_time_str = str(time_end - time_begin)
print('Elapsed time:\t', elapsed_time_str + "\n")
print() # begin to print either cv or average performance
l2r_cv_avg_ndcg_scores = np.divide(l2r_cv_avg_ndcg_scores, fold_num)
l2r_cv_avg_nerr_scores = np.divide(l2r_cv_avg_nerr_scores, fold_num)
l2r_cv_avg_ap_scores = np.divide(l2r_cv_avg_ap_scores, fold_num)
l2r_cv_avg_p_scores = np.divide(l2r_cv_avg_p_scores, fold_num)
if do_validation:
eval_prefix = str(fold_num)+'-fold cross validation scores:'
else:
eval_prefix = str(fold_num) + '-fold average scores:'
print(model_id, eval_prefix, self.result_to_str(list_scores=l2r_cv_avg_ndcg_scores, list_cutoffs=cutoffs, metric_str='nDCG'))
print(model_id, eval_prefix, self.result_to_str(list_scores=l2r_cv_avg_nerr_scores, list_cutoffs=cutoffs, metric_str='nERR'))
print(model_id, eval_prefix, self.result_to_str(list_scores=l2r_cv_avg_ap_scores, list_cutoffs=cutoffs, metric_str='MAP'))
print(model_id, eval_prefix, self.result_to_str(list_scores=l2r_cv_avg_p_scores, list_cutoffs=cutoffs, metric_str='P'))
all_fold_ndcg_at_ks_per_q = np.vstack(list_all_fold_ndcg_at_ks_per_q)
all_fold_err_at_ks_per_q = np.vstack(list_all_fold_err_at_ks_per_q)
all_fold_ap_at_ks_per_q = np.vstack(list_all_fold_ap_at_ks_per_q)
all_fold_p_at_ks_per_q = np.vstack(list_all_fold_p_at_ks_per_q)
pickle_save(all_fold_ndcg_at_ks_per_q, file=self.output_root + '_'.join([data_id, model_id, 'all_fold_ndcg_at_ks_per_q.np']))
pickle_save(all_fold_err_at_ks_per_q, file=self.output_root + '_'.join([data_id, model_id, 'all_fold_err_at_ks_per_q.np']))
pickle_save(all_fold_ap_at_ks_per_q, file=self.output_root + '_'.join([data_id, model_id, 'all_fold_ap_at_ks_per_q.np']))
pickle_save(all_fold_p_at_ks_per_q, file=self.output_root + '_'.join([data_id, model_id, 'all_fold_p_at_ks_per_q.np']))
return l2r_cv_avg_ndcg_scores, l2r_cv_avg_nerr_scores, l2r_cv_avg_ap_scores, l2r_cv_avg_p_scores
|
Evaluation based on k-fold cross validation if multiple folds exist
:param data_dict:
:param eval_dict:
:param model_para_dict:
:return:
|
kfold_cv_eval
|
python
|
wildltr/ptranking
|
ptranking/ltr_tree/eval/ltr_tree.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_tree/eval/ltr_tree.py
|
MIT
|
def point_run(self, debug=False, model_id=None, data_id=None, dir_data=None, dir_output=None):
"""
Perform one-time run based on given setting.
:param debug:
:param model_id:
:param data_id:
:param dir_data:
:param dir_output:
:return:
"""
self.set_eval_setting(debug=debug, dir_output=dir_output)
self.set_data_setting(debug=debug, data_id=data_id, dir_data=dir_data)
self.set_model_setting(debug=debug, model_id=model_id)
self.kfold_cv_eval(data_dict=self.get_default_data_setting(), eval_dict=self.get_default_eval_setting(),
model_para_dict=self.get_default_model_setting())
|
Perform one-time run based on given setting.
:param debug:
:param model_id:
:param data_id:
:param dir_data:
:param dir_output:
:return:
|
point_run
|
python
|
wildltr/ptranking
|
ptranking/ltr_tree/eval/ltr_tree.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_tree/eval/ltr_tree.py
|
MIT
|
def default_setting(self):
"""
A default setting for data loading when running lambdaMART
"""
scaler_id = None
unknown_as_zero = True if self.data_id in MSLETOR_SEMI else False # since lambdaMART is a supervised method
binary_rele = False # using the original values
train_presort, validation_presort, test_presort = False, False, False
train_rough_batch_size, validation_rough_batch_size, test_rough_batch_size = 1, 1, 1
scale_data, scaler_id, scaler_level = get_scaler_setting(data_id=self.data_id, scaler_id=scaler_id)
# more data settings that are rarely changed
self.data_dict = dict(data_id=self.data_id, dir_data=self.dir_data, min_docs=10, min_rele=1,
unknown_as_zero=unknown_as_zero, binary_rele=binary_rele, train_presort=train_presort,
validation_presort=validation_presort, test_presort=test_presort, train_rough_batch_size=train_rough_batch_size,
validation_rough_batch_size=validation_rough_batch_size, test_rough_batch_size=test_rough_batch_size,
scale_data=scale_data, scaler_id=scaler_id, scaler_level=scaler_level)
data_meta = get_data_meta(data_id=self.data_id) # add meta-information
self.data_dict.update(data_meta)
return self.data_dict
|
A default setting for data loading when running lambdaMART
|
default_setting
|
python
|
wildltr/ptranking
|
ptranking/ltr_tree/eval/tree_parameter.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_tree/eval/tree_parameter.py
|
MIT
|
def to_eval_setting_string(self, log=False):
"""
String identifier of eval-setting
:param log:
:return:
"""
eval_dict = self.eval_dict
s1, s2 = (':', '\n') if log else ('_', '_')
early_stop_or_boost_round, do_validation = eval_dict['early_stop_or_boost_round'], eval_dict['do_validation']
if do_validation:
eval_string = s1.join(['EarlyStop', str(early_stop_or_boost_round)])
else:
eval_string = s1.join(['BoostRound', str(early_stop_or_boost_round)])
return eval_string
|
String identifier of eval-setting
:param log:
:return:
|
to_eval_setting_string
|
python
|
wildltr/ptranking
|
ptranking/ltr_tree/eval/tree_parameter.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_tree/eval/tree_parameter.py
|
MIT
|
def default_para_dict(self):
"""
Default parameter setting for LambdaMART
:return:
"""
# for custom setting
#custom_dict = dict(custom=False, custom_obj_id='lambdarank', use_LGBMRanker=True) #
custom_dict = dict(custom=False, custom_obj_id=None)
# common setting when using in-built lightgbm's ranker
lightgbm_para_dict = {'boosting_type': 'gbdt', # ltr_gbdt, dart
'objective': 'lambdarank', # will be updated if performing customization
'metric': 'ndcg',
'learning_rate': 0.05,
'num_leaves': 400,
'num_trees': 1000,
'num_threads': 16,
'min_data_in_leaf': 50,
'min_sum_hessian_in_leaf': 200,
'eval_at': 5, # which matters much (early stopping), say setting as 5 is better than default
# 'lambdamart_norm':False,
# 'is_training_metric':True,
'verbosity': -1}
self.para_dict = dict(custom_dict=custom_dict, lightgbm_para_dict=lightgbm_para_dict)
return self.para_dict
|
Default parameter setting for LambdaMART
:return:
|
default_para_dict
|
python
|
wildltr/ptranking
|
ptranking/ltr_tree/lambdamart/lightgbm_lambdaMART.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_tree/lambdamart/lightgbm_lambdaMART.py
|
MIT
|
def to_para_string(self, log=False, given_para_dict=None):
"""
String identifier of parameters
:param log:
:param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search
:return:
"""
# using specified para-dict or inner para-dict
para_dict = given_para_dict if given_para_dict is not None else self.para_dict
lightgbm_para_dict = para_dict['lightgbm_para_dict']
s1, s2 = (':', '\n') if log else ('_', '_')
BT, metric, num_leaves, num_trees, min_data_in_leaf, min_sum_hessian_in_leaf, lr, eval_at = \
lightgbm_para_dict['boosting_type'], lightgbm_para_dict['metric'], lightgbm_para_dict['num_leaves'],\
lightgbm_para_dict['num_trees'], lightgbm_para_dict['min_data_in_leaf'],\
lightgbm_para_dict['min_sum_hessian_in_leaf'], lightgbm_para_dict['learning_rate'],\
lightgbm_para_dict['eval_at']
para_string = s2.join([s1.join(['BT', BT]), s1.join(['Metric', metric]),
s1.join(['Leaves', str(num_leaves)]), s1.join(['Trees', str(num_trees)]),
s1.join(['MiData', '{:,g}'.format(min_data_in_leaf)]),
s1.join(['MSH', '{:,g}'.format(min_sum_hessian_in_leaf)]),
s1.join(['LR', '{:,g}'.format(lr)]), s1.join(['EvalAt', str(eval_at)])
])
return para_string
|
String identifier of parameters
:param log:
:param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search
:return:
|
to_para_string
|
python
|
wildltr/ptranking
|
ptranking/ltr_tree/lambdamart/lightgbm_lambdaMART.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_tree/lambdamart/lightgbm_lambdaMART.py
|
MIT
|
def grid_search(self):
"""
Iterator of parameter settings for LambdaRank
"""
# for custom setting
#custom_dict = dict(custom=False, custom_obj_id='lambdarank', use_LGBMRanker=False)
custom_dict = dict(custom=False, custom_obj_id=None)
if self.use_json:
choice_BT = self.json_dict['BT']
choice_metric = self.json_dict['metric']
choice_leaves = self.json_dict['leaves']
choice_trees = self.json_dict['trees']
choice_MiData = self.json_dict['MiData']
choice_MSH = self.json_dict['MSH']
choice_LR = self.json_dict['LR']
eval_at = self.json_dict['eval_at']
else:
# common setting when using in-built lightgbm's ranker
choice_BT = ['gbdt'] if self.debug else ['gbdt']
choice_metric = ['ndcg'] if self.debug else ['ndcg']
choice_leaves = [400] if self.debug else [400]
choice_trees = [1000] if self.debug else [1000]
choice_MiData = [50] if self.debug else [50]
choice_MSH = [200] if self.debug else [200]
choice_LR = [0.05, 0.01] if self.debug else [0.05, 0.01]
eval_at = 5
for BT, metric, num_leaves, num_trees, min_data_in_leaf, min_sum_hessian_in_leaf, lr in product(choice_BT,
choice_metric, choice_leaves, choice_trees, choice_MiData, choice_MSH, choice_LR):
lightgbm_para_dict = {'boosting_type': BT, # ltr_gbdt, dart
'objective': 'lambdarank',
'metric': metric,
'learning_rate': lr,
'num_leaves': num_leaves,
'num_trees': num_trees,
'num_threads': 16,
'min_data_in_leaf': min_data_in_leaf,
'min_sum_hessian_in_leaf': min_sum_hessian_in_leaf,
# 'lambdamart_norm':False,
# 'is_training_metric':True,
'eval_at': eval_at, # which matters much (early stopping), say setting as 5 is better than default
#'max_bin': 64,
#'max_depth':4,
'verbosity': -1}
self.para_dict = dict(custom_dict=custom_dict, lightgbm_para_dict=lightgbm_para_dict)
yield self.para_dict
|
Iterator of parameter settings for LambdaRank
|
grid_search
|
python
|
wildltr/ptranking
|
ptranking/ltr_tree/lambdamart/lightgbm_lambdaMART.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_tree/lambdamart/lightgbm_lambdaMART.py
|
MIT
|
def triu_indice(k=1, pair_type='NoTies', labels=None):
'''
Get unique document pairs being consistent with the specified pair_type. This function is used to avoid duplicate computation.
All: pairs including both pairs of documents across different relevance levels and
pairs of documents having the same relevance level.
NoTies: the pairs consisting of two documents of the same relevance level are removed
No00: the pairs consisting of two non-relevant documents are removed
:param batch_mats: [batch, m, m]
:param k: the offset w.r.t. the diagonal line: k=0 means including the diagonal line, k=1 means upper triangular part without the diagonal line
:return:
'''
#assert pair_type in PAIR_TYPE
m = len(labels) # the number of documents
if pair_type == 'All':
row_inds, col_inds = np.triu_indices(m, k=k)
elif pair_type == 'No00':
row_inds, col_inds = np.triu_indices(m, k=k)
pairs = [e for e in zip(row_inds, col_inds) if not (0==labels[e[0]] and 0==labels[e[1]])] # remove pairs of 00 comparisons
row_inds = [e[0] for e in pairs]
col_inds = [e[1] for e in pairs]
elif pair_type == '00': # the pairs consisting of two non-relevant documents
row_inds, col_inds = np.triu_indices(m, k=k)
pairs = [e for e in zip(row_inds, col_inds) if (0 == labels[e[0]] and 0 == labels[e[1]])] # remove pairs of 00 comparisons
row_inds = [e[0] for e in pairs]
col_inds = [e[1] for e in pairs]
elif pair_type == 'NoTies':
row_inds, col_inds = np.triu_indices(m, k=k)
pairs = [e for e in zip(row_inds, col_inds) if labels[e[0]]!=labels[e[1]]] # remove pairs of documents of the same level
row_inds = [e[0] for e in pairs]
col_inds = [e[1] for e in pairs]
else:
raise NotImplementedError
return row_inds, col_inds
|
Get unique document pairs being consistent with the specified pair_type. This function is used to avoid duplicate computation.
All: pairs including both pairs of documents across different relevance levels and
pairs of documents having the same relevance level.
NoTies: the pairs consisting of two documents of the same relevance level are removed
No00: the pairs consisting of two non-relevant documents are removed
:param batch_mats: [batch, m, m]
:param k: the offset w.r.t. the diagonal line: k=0 means including the diagonal line, k=1 means upper triangular part without the diagonal line
:return:
|
triu_indice
|
python
|
wildltr/ptranking
|
ptranking/ltr_tree/util/lightgbm_util.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_tree/util/lightgbm_util.py
|
MIT
|
def get_delta_ndcg(ideally_sorted_labels, labels_sorted_via_preds):
'''
Delta-nDCG w.r.t. pairwise swapping of the currently predicted ranking
'''
idcg = ideal_dcg(ideally_sorted_labels) # ideal discount cumulative gains
gains = np.power(2.0, labels_sorted_via_preds) - 1.0
n_gains = gains / idcg # normalised gains
ng_diffs = np.expand_dims(n_gains, axis=1) - np.expand_dims(n_gains, axis=0)
ranks = np.arange(len(labels_sorted_via_preds)) + 1.0
dists = 1.0 / np.log2(ranks + 1.0) # discount co-efficients
dists_diffs = np.expand_dims(dists, axis=1) - np.expand_dims(dists, axis=0)
mat_delta_ndcg = np.abs(ng_diffs) * np.abs(dists_diffs) # absolute changes w.r.t. pairwise swapping
return mat_delta_ndcg
|
Delta-nDCG w.r.t. pairwise swapping of the currently predicted ranking
|
get_delta_ndcg
|
python
|
wildltr/ptranking
|
ptranking/ltr_tree/util/lightgbm_util.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_tree/util/lightgbm_util.py
|
MIT
|
def per_query_gradient_hessian_lambda(preds=None, labels=None, first_order=False, weighting=False, weighting_type='DeltaNDCG', pair_type='NoTies', epsilon=1.0):
'''
Compute the corresponding gradient & hessian
cf. LightGBM https://github.com/microsoft/LightGBM/blob/master/src/objective/rank_objective.hpp
cf. XGBoost https://github.com/dmlc/xgboost/blob/master/src/objective/rank_obj.cc
:param preds: 1-dimension predicted scores
:param labels: 1-dimension ground truth
:return:
'''
desc_inds = np.flip(np.argsort(preds)) # indice that sort the preds in a descending order
system_sorted_preds = preds[desc_inds]
labels_sorted_via_preds = labels[desc_inds]
row_inds, col_inds = triu_indice(labels=labels_sorted_via_preds, k=1, pair_type=pair_type)
# prediction difference
mat_s_ij = np.expand_dims(system_sorted_preds, axis=1) - np.expand_dims(system_sorted_preds, axis=0)
# S_ij in {-1, 0, 1} is the standard indicator
mat_S_ij = np.expand_dims(labels_sorted_via_preds, axis=1) - np.expand_dims(labels_sorted_via_preds, axis=0)
mat_S_ij = np.clip(mat_S_ij, a_min=-1.0, a_max=1.0)
num_docs, num_pairs = len(labels), len(row_inds)
if first_order:
grad = np.zeros((num_docs,))
else:
grad, hess = np.zeros((num_docs,)), np.zeros((num_docs,))
if weighting and weighting in WEIGHTING_TYPE:
if weighting_type == 'DeltaNDCG':
ideally_sorted_labels = np.flip(np.sort(labels))
mat_weights = get_delta_ndcg(ideally_sorted_labels=ideally_sorted_labels, labels_sorted_via_preds=labels_sorted_via_preds)
elif weighting_type == 'DeltaGain':
mat_weights = get_delta_gains(labels_sorted_via_preds=labels_sorted_via_preds)
for i in range(num_pairs): # iterate over pairs
r, c = row_inds[i], col_inds[i]
s_ij = mat_s_ij[r, c]
S_ij = mat_S_ij[r, c]
lambda_ij = epsilon*(sigmoid(s_ij, epsilon=epsilon) - 0.5*(1.0+S_ij)) # gradient w.r.t. s_i
if weighting and weighting in WEIGHTING_TYPE: lambda_ij *= mat_weights[r, c] # delta metric variance
lambda_ji = - lambda_ij # gradient w.r.t. s_j
grad[desc_inds[r]] += lambda_ij # desc_inds[r] denotes the original index of the document currently being at r-th position after a full-descending-ordering by predictions
grad[desc_inds[c]] += lambda_ji
if not first_order: # 2nd order hessian
lambda_ij_2order = np.power(epsilon, 2.0) * sigmoid(s_ij) * (1.0-sigmoid(s_ij))
lambda_ij_2order = np.maximum(lambda_ij_2order, 1e-16) # trick as XGBoost https://github.com/dmlc/xgboost/blob/master/src/objective/rank_obj.cc
if weighting and weighting in WEIGHTING_TYPE: lambda_ij_2order *= mat_weights[r, c]
lambda_ji_2order = -lambda_ij_2order
hess[desc_inds[r]] += lambda_ij_2order
hess[desc_inds[c]] += lambda_ji_2order
if first_order:
return grad, None
else:
return grad, hess
|
Compute the corresponding gradient & hessian
cf. LightGBM https://github.com/microsoft/LightGBM/blob/master/src/objective/rank_objective.hpp
cf. XGBoost https://github.com/dmlc/xgboost/blob/master/src/objective/rank_obj.cc
:param preds: 1-dimension predicted scores
:param labels: 1-dimension ground truth
:return:
|
per_query_gradient_hessian_lambda
|
python
|
wildltr/ptranking
|
ptranking/ltr_tree/util/lightgbm_util.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_tree/util/lightgbm_util.py
|
MIT
|
def lightgbm_custom_obj_ranknet(labels=None, preds=None, group=None):
"""
:param labels: numpy.ndarray of shape (size_data, )
:param preds:
:param group: # numpy.ndarray of shape (num_queries, )
:return:
"""
size_data = len(labels)
if FIRST_ORDER:
all_grad, all_hess = np.zeros((size_data,)), np.full((size_data,), fill_value=CONSTANT_HESSIAN)
else:
all_grad, all_hess = np.zeros((size_data,)), np.zeros((size_data,))
head = 0
for num_docs_per_query in group.astype(np.int):
labels_per_query = labels[head:head + num_docs_per_query]
preds_per_query = preds[head:head + num_docs_per_query]
grad_per_query, hess_per_query = per_query_gradient_hessian_lambda(preds=preds_per_query,
labels=labels_per_query, first_order=FIRST_ORDER, pair_type='All', epsilon=1.0, weighting=False)
all_grad[head:head + num_docs_per_query] = grad_per_query
if not FIRST_ORDER: all_hess[head:head + num_docs_per_query] = hess_per_query
head += num_docs_per_query
return all_grad, all_hess
|
:param labels: numpy.ndarray of shape (size_data, )
:param preds:
:param group: # numpy.ndarray of shape (num_queries, )
:return:
|
lightgbm_custom_obj_ranknet
|
python
|
wildltr/ptranking
|
ptranking/ltr_tree/util/lightgbm_util.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_tree/util/lightgbm_util.py
|
MIT
|
def lightgbm_custom_obj_ranknet_fobj(preds, train_data):
'''
The traditional ranknet
:param preds: numpy.ndarray of shape (size_data, )
:param train_data:
:return:
'''
all_labels = train_data.get_label() # numpy.ndarray of shape (size_data, )
group = train_data.get_group() # numpy.ndarray of shape (num_queries, )
size_data = len(all_labels)
if FIRST_ORDER:
all_grad, all_hess = np.zeros((size_data,)), np.full((size_data,), fill_value=CONSTANT_HESSIAN)
else:
all_grad, all_hess = np.zeros((size_data,)), np.zeros((size_data,))
head = 0
for num_docs_per_query in group.astype(np.int):
labels_per_query = all_labels[head:head + num_docs_per_query]
preds_per_query = preds[head:head + num_docs_per_query]
grad_per_query, hess_per_query = per_query_gradient_hessian_lambda(preds=preds_per_query,
labels=labels_per_query, first_order=FIRST_ORDER, pair_type='All', epsilon=1.0, weighting=False)
all_grad[head:head + num_docs_per_query] = grad_per_query
if not FIRST_ORDER: all_hess[head:head + num_docs_per_query] = hess_per_query
head += num_docs_per_query
return all_grad, all_hess
|
The traditional ranknet
:param preds: numpy.ndarray of shape (size_data, )
:param train_data:
:return:
|
lightgbm_custom_obj_ranknet_fobj
|
python
|
wildltr/ptranking
|
ptranking/ltr_tree/util/lightgbm_util.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_tree/util/lightgbm_util.py
|
MIT
|
def lightgbm_custom_obj_lambdarank(labels=None, preds=None, group=None):
"""
:param labels: numpy.ndarray of shape (size_data, )
:param preds:
:param group: numpy.ndarray of shape (num_queries, )
:return:
"""
size_data = len(labels)
if FIRST_ORDER:
all_grad, all_hess = np.zeros((size_data,)), np.full((size_data,), fill_value=CONSTANT_HESSIAN)
else:
all_grad, all_hess = np.zeros((size_data,)), np.zeros((size_data,))
head = 0
for num_docs_per_query in group.astype(np.int):
labels_per_query = labels[head:head + num_docs_per_query]
preds_per_query = preds[head:head + num_docs_per_query]
grad_per_query, hess_per_query = per_query_gradient_hessian_lambda(preds=preds_per_query,
labels=labels_per_query, first_order=FIRST_ORDER, pair_type='NoTies',
epsilon=1.0, weighting=True, weighting_type='DeltaNDCG')
all_grad[head:head + num_docs_per_query] = grad_per_query
if not FIRST_ORDER: all_hess[head:head + num_docs_per_query] = hess_per_query
head += num_docs_per_query
return all_grad, all_hess
|
:param labels: numpy.ndarray of shape (size_data, )
:param preds:
:param group: numpy.ndarray of shape (num_queries, )
:return:
|
lightgbm_custom_obj_lambdarank
|
python
|
wildltr/ptranking
|
ptranking/ltr_tree/util/lightgbm_util.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_tree/util/lightgbm_util.py
|
MIT
|
def lightgbm_custom_obj_lambdarank_fobj(preds, train_data):
'''
:param preds: numpy.ndarray of shape (size_data, )
:param train_data:
:return:
'''
all_labels = train_data.get_label() # numpy.ndarray of shape (size_data, )
group = train_data.get_group() # numpy.ndarray of shape (num_queries, )
size_data = len(all_labels)
if FIRST_ORDER:
all_grad, all_hess = np.zeros((size_data,)), np.full((size_data,), fill_value=CONSTANT_HESSIAN)
else:
all_grad, all_hess = np.zeros((size_data,)), np.zeros((size_data,))
head = 0
for num_docs_per_query in group.astype(np.int):
labels_per_query = all_labels[head:head + num_docs_per_query]
preds_per_query = preds[head:head + num_docs_per_query]
grad_per_query, hess_per_query = per_query_gradient_hessian_lambda(preds=preds_per_query,
labels=labels_per_query, first_order=FIRST_ORDER, pair_type='NoTies', epsilon=1.0,
weighting=True, weighting_type='DeltaNDCG')
all_grad[head:head + num_docs_per_query] = grad_per_query
if not FIRST_ORDER: all_hess[head:head + num_docs_per_query] = hess_per_query
head += num_docs_per_query
return all_grad, all_hess
|
:param preds: numpy.ndarray of shape (size_data, )
:param train_data:
:return:
|
lightgbm_custom_obj_lambdarank_fobj
|
python
|
wildltr/ptranking
|
ptranking/ltr_tree/util/lightgbm_util.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_tree/util/lightgbm_util.py
|
MIT
|
def per_query_gradient_hessian_listnet(preds=None, labels=None, gain_type='Power', first_order=False):
'''
Compute the corresponding gradient & hessian
cf. LightGBM https://github.com/microsoft/LightGBM/blob/master/src/objective/rank_objective.hpp
cf. XGBoost https://github.com/dmlc/xgboost/blob/master/src/objective/rank_obj.cc
:param preds: 1-dimension predicted scores
:param labels: 1-dimension ground truth
:return:
'''
assert gain_type in GAIN_TYPE
if 'Power' == gain_type:
gains = np.power(2.0, labels) - 1.0
elif 'Label' == gain_type:
gains = labels
p_pred, p_truth = _softmax(preds), _softmax(gains)
grad = p_pred - p_truth
hess = None if first_order else p_pred * (1.0-p_pred)
return grad, hess
|
Compute the corresponding gradient & hessian
cf. LightGBM https://github.com/microsoft/LightGBM/blob/master/src/objective/rank_objective.hpp
cf. XGBoost https://github.com/dmlc/xgboost/blob/master/src/objective/rank_obj.cc
:param preds: 1-dimension predicted scores
:param labels: 1-dimension ground truth
:return:
|
per_query_gradient_hessian_listnet
|
python
|
wildltr/ptranking
|
ptranking/ltr_tree/util/lightgbm_util.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_tree/util/lightgbm_util.py
|
MIT
|
def lightgbm_custom_obj_listnet(labels=None, preds=None, group=None):
"""
:param labels: numpy.ndarray of shape (size_data, )
:param preds: numpy.ndarray of shape (size_data, )
:param group: numpy.ndarray of shape (num_queries, )
:return:
"""
size_data = len(labels)
if FIRST_ORDER:
all_grad, all_hess = np.zeros((size_data,)), np.full((size_data,), fill_value=CONSTANT_HESSIAN)
else:
all_grad, all_hess = np.zeros((size_data,)), np.zeros((size_data,))
head = 0
for num_docs_per_query in group.astype(np.int):
labels_per_query = labels[head:head + num_docs_per_query]
preds_per_query = preds[head:head + num_docs_per_query]
grad_per_query, hess_per_query = per_query_gradient_hessian_listnet(preds=preds_per_query,
labels=labels_per_query, gain_type='Power', first_order=FIRST_ORDER)
all_grad[head:head + num_docs_per_query] = grad_per_query
if not FIRST_ORDER: all_hess[head:head + num_docs_per_query] = hess_per_query
head += num_docs_per_query
return all_grad, all_hess
|
:param labels: numpy.ndarray of shape (size_data, )
:param preds: numpy.ndarray of shape (size_data, )
:param group: numpy.ndarray of shape (num_queries, )
:return:
|
lightgbm_custom_obj_listnet
|
python
|
wildltr/ptranking
|
ptranking/ltr_tree/util/lightgbm_util.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_tree/util/lightgbm_util.py
|
MIT
|
def lightgbm_custom_obj_listnet_fobj(preds, train_data):
'''
:param preds: numpy.ndarray of shape (size_data, )
:param train_data:
:return:
'''
all_labels = train_data.get_label() # numpy.ndarray of shape (size_data, )
group = train_data.get_group() # numpy.ndarray of shape (num_queries, )
size_data = len(all_labels)
if FIRST_ORDER:
all_grad, all_hess = np.zeros((size_data,)), np.full((size_data,), fill_value=CONSTANT_HESSIAN)
else:
all_grad, all_hess = np.zeros((size_data,)), np.zeros((size_data,))
head = 0
for num_docs_per_query in group.astype(np.int):
labels_per_query = all_labels[head:head + num_docs_per_query]
preds_per_query = preds[head:head + num_docs_per_query]
grad_per_query, hess_per_query = per_query_gradient_hessian_listnet(preds=preds_per_query,
labels=labels_per_query, gain_type='Power', first_order=FIRST_ORDER) # Power, Label
all_grad[head:head + num_docs_per_query] = grad_per_query
if not FIRST_ORDER: all_hess[head:head + num_docs_per_query] = hess_per_query
head += num_docs_per_query
return all_grad, all_hess
|
:param preds: numpy.ndarray of shape (size_data, )
:param train_data:
:return:
|
lightgbm_custom_obj_listnet_fobj
|
python
|
wildltr/ptranking
|
ptranking/ltr_tree/util/lightgbm_util.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_tree/util/lightgbm_util.py
|
MIT
|
def get_delta_ndcg(batch_ideal_rankings, batch_predict_rankings, label_type=LABEL_TYPE.MultiLabel, device='cpu'):
'''
Delta-nDCG w.r.t. pairwise swapping of the currently predicted ltr_adhoc
:param batch_ideal_rankings: the standard labels sorted in a descending order
:param batch_predicted_rankings: the standard labels sorted based on the corresponding predictions
:return:
'''
# ideal discount cumulative gains
batch_idcgs = torch_dcg_at_k(batch_rankings=batch_ideal_rankings, label_type=label_type, device=device)
if LABEL_TYPE.MultiLabel == label_type:
batch_gains = torch.pow(2.0, batch_predict_rankings) - 1.0
elif LABEL_TYPE.Permutation == label_type:
batch_gains = batch_predict_rankings
else:
raise NotImplementedError
batch_n_gains = batch_gains / batch_idcgs # normalised gains
batch_ng_diffs = torch.unsqueeze(batch_n_gains, dim=2) - torch.unsqueeze(batch_n_gains, dim=1)
batch_std_ranks = torch.arange(batch_predict_rankings.size(1), dtype=torch.float, device=device)
batch_dists = 1.0 / torch.log2(batch_std_ranks + 2.0) # discount co-efficients
batch_dists = torch.unsqueeze(batch_dists, dim=0)
batch_dists_diffs = torch.unsqueeze(batch_dists, dim=2) - torch.unsqueeze(batch_dists, dim=1)
batch_delta_ndcg = torch.abs(batch_ng_diffs) * torch.abs(batch_dists_diffs) # absolute changes w.r.t. pairwise swapping
return batch_delta_ndcg
|
Delta-nDCG w.r.t. pairwise swapping of the currently predicted ltr_adhoc
:param batch_ideal_rankings: the standard labels sorted in a descending order
:param batch_predicted_rankings: the standard labels sorted based on the corresponding predictions
:return:
|
get_delta_ndcg
|
python
|
wildltr/ptranking
|
ptranking/metric/metric_utils.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/metric/metric_utils.py
|
MIT
|
def metric_results_to_string(list_scores=None, list_cutoffs=None, split_str=', ', metric='nDCG'):
"""
Convert metric results to a string representation
:param list_scores:
:param list_cutoffs:
:param split_str:
:return:
"""
list_str = []
for i in range(len(list_scores)):
list_str.append(metric + '@{}:{:.4f}'.format(list_cutoffs[i], list_scores[i]))
return split_str.join(list_str)
|
Convert metric results to a string representation
:param list_scores:
:param list_cutoffs:
:param split_str:
:return:
|
metric_results_to_string
|
python
|
wildltr/ptranking
|
ptranking/metric/metric_utils.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/metric/metric_utils.py
|
MIT
|
def torch_precision_at_k(batch_predict_rankings, k=None, device='cpu'):
''' Precision at k
:param batch_predict_rankings: [batch_size, ranking_size] each ranking consists of labels corresponding to the ranked predictions
:param k: cutoff value
'''
max_cutoff = batch_predict_rankings.size(1)
used_cutoff = min(max_cutoff, k)
batch_sys_sorted_labels = batch_predict_rankings[:, 0:used_cutoff]
batch_bi_sys_sorted_labels = torch.clamp(batch_sys_sorted_labels, min=0, max=1) # binary
batch_sys_cumsum_reles = torch.cumsum(batch_bi_sys_sorted_labels, dim=1)
batch_ranks = (torch.arange(used_cutoff, dtype=torch.float, device=device).expand_as(batch_sys_cumsum_reles) + 1.0)
batch_sys_rankwise_precision = batch_sys_cumsum_reles / batch_ranks
batch_sys_p_at_k = batch_sys_rankwise_precision[:, used_cutoff-1:used_cutoff]
return batch_sys_p_at_k
|
Precision at k
:param batch_predict_rankings: [batch_size, ranking_size] each ranking consists of labels corresponding to the ranked predictions
:param k: cutoff value
|
torch_precision_at_k
|
python
|
wildltr/ptranking
|
ptranking/metric/adhoc/adhoc_metric.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/metric/adhoc/adhoc_metric.py
|
MIT
|
def torch_precision_at_ks(batch_predict_rankings, ks=None, device='cpu'):
''' Precision at ks
:param batch_predict_rankings: [batch_size, ranking_size] each ranking consists of labels corresponding to the ranked predictions
:param ks: cutoff values
:return: [batch_size, len(ks)]
'''
valid_max_cutoff = batch_predict_rankings.size(1)
need_padding = True if valid_max_cutoff < max(ks) else False
used_ks = [k for k in ks if k <= valid_max_cutoff] if need_padding else ks
max_cutoff = max(used_ks)
inds = torch.from_numpy(np.asarray(used_ks) - 1)
batch_sys_sorted_labels = batch_predict_rankings[:, 0:max_cutoff]
batch_bi_sys_sorted_labels = torch.clamp(batch_sys_sorted_labels, min=0, max=1) # binary
batch_sys_cumsum_reles = torch.cumsum(batch_bi_sys_sorted_labels, dim=1)
batch_ranks = (torch.arange(max_cutoff, dtype=torch.float, device=device).expand_as(batch_sys_cumsum_reles) + 1.0)
batch_sys_rankwise_precision = batch_sys_cumsum_reles / batch_ranks
batch_sys_p_at_ks = batch_sys_rankwise_precision[:, inds]
if need_padding:
padded_p_at_ks = torch.zeros(batch_sys_sorted_labels.size(0), len(ks))
padded_p_at_ks[:, 0:len(used_ks)] = batch_sys_p_at_ks
return padded_p_at_ks
else:
return batch_sys_p_at_ks
|
Precision at ks
:param batch_predict_rankings: [batch_size, ranking_size] each ranking consists of labels corresponding to the ranked predictions
:param ks: cutoff values
:return: [batch_size, len(ks)]
|
torch_precision_at_ks
|
python
|
wildltr/ptranking
|
ptranking/metric/adhoc/adhoc_metric.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/metric/adhoc/adhoc_metric.py
|
MIT
|
def torch_ap_at_k(batch_predict_rankings, batch_ideal_rankings, k=None, device='cpu'):
'''
AP(average precision) at ks (i.e., different cutoff values)
:param batch_ideal_rankings: [batch_size, ranking_size] the ideal ltr_adhoc of labels
:param batch_predict_rankings: [batch_size, ranking_size] system's predicted ltr_adhoc of labels in a descending order
:param ks:
:return: [batch_size, len(ks)]
'''
max_cutoff = batch_predict_rankings.size(1)
used_cutoff = min(max_cutoff, k)
batch_sys_sorted_labels = batch_predict_rankings[:, 0:used_cutoff]
batch_bi_sys_sorted_labels = torch.clamp(batch_sys_sorted_labels, min=0, max=1) # binary
batch_sys_cumsum_reles = torch.cumsum(batch_bi_sys_sorted_labels, dim=1)
batch_ranks = (torch.arange(used_cutoff, dtype=torch.float, device=device).expand_as(batch_sys_cumsum_reles) + 1.0)
batch_sys_rankwise_precision = batch_sys_cumsum_reles / batch_ranks # rank-wise precision
batch_sys_cumsum_precision = torch.cumsum(batch_sys_rankwise_precision * batch_bi_sys_sorted_labels, dim=1) # exclude precisions of which the corresponding documents are not relevant
batch_std_cumsum_reles = torch.cumsum(batch_ideal_rankings, dim=1)
batch_sys_rankwise_ap = batch_sys_cumsum_precision / batch_std_cumsum_reles[:, 0:used_cutoff]
batch_sys_ap_at_k = batch_sys_rankwise_ap[:, used_cutoff-1:used_cutoff]
return batch_sys_ap_at_k
|
AP(average precision) at ks (i.e., different cutoff values)
:param batch_ideal_rankings: [batch_size, ranking_size] the ideal ltr_adhoc of labels
:param batch_predict_rankings: [batch_size, ranking_size] system's predicted ltr_adhoc of labels in a descending order
:param ks:
:return: [batch_size, len(ks)]
|
torch_ap_at_k
|
python
|
wildltr/ptranking
|
ptranking/metric/adhoc/adhoc_metric.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/metric/adhoc/adhoc_metric.py
|
MIT
|
def torch_ap_at_ks(batch_predict_rankings, batch_ideal_rankings, ks=None, device='cpu'):
'''
AP(average precision) at ks (i.e., different cutoff values)
:param batch_ideal_rankings: [batch_size, ranking_size] the ideal ltr_adhoc of labels
:param batch_predict_rankings: [batch_size, ranking_size] system's predicted ltr_adhoc of labels in a descending order
:param ks:
:return: [batch_size, len(ks)]
'''
valid_max_cutoff = batch_predict_rankings.size(1)
need_padding = True if valid_max_cutoff < max(ks) else False
used_ks = [k for k in ks if k <= valid_max_cutoff] if need_padding else ks
max_cutoff = max(used_ks)
inds = torch.from_numpy(np.asarray(used_ks) - 1)
batch_sys_sorted_labels = batch_predict_rankings[:, 0:max_cutoff]
batch_bi_sys_sorted_labels = torch.clamp(batch_sys_sorted_labels, min=0, max=1) # binary
batch_sys_cumsum_reles = torch.cumsum(batch_bi_sys_sorted_labels, dim=1)
batch_ranks = (torch.arange(max_cutoff, dtype=torch.float, device=device).expand_as(batch_sys_cumsum_reles) + 1.0)
batch_sys_rankwise_precision = batch_sys_cumsum_reles / batch_ranks # rank-wise precision
batch_sys_cumsum_precision = torch.cumsum(batch_sys_rankwise_precision * batch_bi_sys_sorted_labels, dim=1) # exclude precisions of which the corresponding documents are not relevant
batch_std_cumsum_reles = torch.cumsum(batch_ideal_rankings, dim=1)
batch_sys_rankwise_ap = batch_sys_cumsum_precision / batch_std_cumsum_reles[:, 0:max_cutoff]
batch_sys_ap_at_ks = batch_sys_rankwise_ap[:, inds]
if need_padding:
padded_ap_at_ks = torch.zeros(batch_sys_sorted_labels.size(0), len(ks))
padded_ap_at_ks[:, 0:len(used_ks)] = batch_sys_ap_at_ks
return padded_ap_at_ks
else:
return batch_sys_ap_at_ks
|
AP(average precision) at ks (i.e., different cutoff values)
:param batch_ideal_rankings: [batch_size, ranking_size] the ideal ltr_adhoc of labels
:param batch_predict_rankings: [batch_size, ranking_size] system's predicted ltr_adhoc of labels in a descending order
:param ks:
:return: [batch_size, len(ks)]
|
torch_ap_at_ks
|
python
|
wildltr/ptranking
|
ptranking/metric/adhoc/adhoc_metric.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/metric/adhoc/adhoc_metric.py
|
MIT
|
def torch_nerr_at_ks(batch_predict_rankings, batch_ideal_rankings, ks=None, device='cpu', label_type=LABEL_TYPE.MultiLabel, max_label=None):
'''
:param batch_predict_rankings: [batch_size, ranking_size] the standard labels sorted in descending order according to predicted relevance scores
:param ks:
:return: [batch_size, len(ks)]
'''
valid_max_cutoff = batch_predict_rankings.size(1)
need_padding = True if valid_max_cutoff < max(ks) else False
used_ks = [k for k in ks if k <= valid_max_cutoff] if need_padding else ks
if max_label is None:
max_label = torch.max(batch_ideal_rankings)
max_cutoff = max(used_ks)
inds = torch.from_numpy(np.asarray(used_ks) - 1)
if LABEL_TYPE.MultiLabel == label_type:
batch_sys_rankwise_err = torch_rankwise_err(batch_predict_rankings, max_label=max_label, k=max_cutoff, point=False, device=device)
batch_ideal_rankwise_err = torch_rankwise_err(batch_ideal_rankings, max_label=max_label, k=max_cutoff, point=False, device=device)
batch_rankwise_nerr = batch_sys_rankwise_err/batch_ideal_rankwise_err
batch_nerr_at_ks = batch_rankwise_nerr[:, inds]
if need_padding:
padded_nerr_at_ks = torch.zeros(batch_predict_rankings.size(0), len(ks))
padded_nerr_at_ks[:, 0:len(used_ks)] = batch_nerr_at_ks
return padded_nerr_at_ks
else:
return batch_nerr_at_ks
else:
raise NotImplementedError
|
:param batch_predict_rankings: [batch_size, ranking_size] the standard labels sorted in descending order according to predicted relevance scores
:param ks:
:return: [batch_size, len(ks)]
|
torch_nerr_at_ks
|
python
|
wildltr/ptranking
|
ptranking/metric/adhoc/adhoc_metric.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/metric/adhoc/adhoc_metric.py
|
MIT
|
def torch_dcg_at_k(batch_rankings, cutoff=None, label_type=LABEL_TYPE.MultiLabel, device='cpu'):
'''
ICML-nDCG, which places stronger emphasis on retrieving relevant documents
:param batch_rankings: [batch_size, ranking_size] rankings of labels (either standard or predicted by a system)
:param cutoff: the cutoff position
:param label_type: either the case of multi-level relevance or the case of listwise int-value, e.g., MQ2007-list
:return: [batch_size, 1] cumulative gains for each rank position
'''
if cutoff is None: # using whole list
cutoff = batch_rankings.size(1)
if LABEL_TYPE.MultiLabel == label_type: #the common case with multi-level labels
batch_numerators = torch.pow(2.0, batch_rankings[:, 0:cutoff]) - 1.0
elif LABEL_TYPE.Permutation == label_type: # the case like listwise ltr_adhoc, where the relevance is labeled as (n-rank_position)
batch_numerators = batch_rankings[:, 0:cutoff]
else:
raise NotImplementedError
# no expanding should also be OK due to the default broadcasting
batch_discounts = torch.log2(torch.arange(cutoff, dtype=torch.float, device=device).expand_as(batch_numerators) + 2.0)
batch_dcg_at_k = torch.sum(batch_numerators/batch_discounts, dim=1, keepdim=True)
return batch_dcg_at_k
|
ICML-nDCG, which places stronger emphasis on retrieving relevant documents
:param batch_rankings: [batch_size, ranking_size] rankings of labels (either standard or predicted by a system)
:param cutoff: the cutoff position
:param label_type: either the case of multi-level relevance or the case of listwise int-value, e.g., MQ2007-list
:return: [batch_size, 1] cumulative gains for each rank position
|
torch_dcg_at_k
|
python
|
wildltr/ptranking
|
ptranking/metric/adhoc/adhoc_metric.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/metric/adhoc/adhoc_metric.py
|
MIT
|
def torch_dcg_at_ks(batch_rankings, max_cutoff, label_type=LABEL_TYPE.MultiLabel, device='cpu'):
'''
:param batch_rankings: [batch_size, ranking_size] rankings of labels (either standard or predicted by a system)
:param max_cutoff: the maximum cutoff value
:param label_type: either the case of multi-level relevance or the case of listwise int-value, e.g., MQ2007-list
:return: [batch_size, max_cutoff] cumulative gains for each rank position
'''
if LABEL_TYPE.MultiLabel == label_type: # the common case with multi-level labels
batch_numerators = torch.pow(2.0, batch_rankings[:, 0:max_cutoff]) - 1.0
elif LABEL_TYPE.Permutation == label_type: # the case like listwise ltr_adhoc, where the relevance is labeled as (n-rank_position)
batch_numerators = batch_rankings[:, 0:max_cutoff]
else:
raise NotImplementedError
batch_discounts = torch.log2(torch.arange(max_cutoff, dtype=torch.float, device=device).expand_as(batch_numerators) + 2.0)
batch_dcg_at_ks = torch.cumsum(batch_numerators/batch_discounts, dim=1) # dcg w.r.t. each position
return batch_dcg_at_ks
|
:param batch_rankings: [batch_size, ranking_size] rankings of labels (either standard or predicted by a system)
:param max_cutoff: the maximum cutoff value
:param label_type: either the case of multi-level relevance or the case of listwise int-value, e.g., MQ2007-list
:return: [batch_size, max_cutoff] cumulative gains for each rank position
|
torch_dcg_at_ks
|
python
|
wildltr/ptranking
|
ptranking/metric/adhoc/adhoc_metric.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/metric/adhoc/adhoc_metric.py
|
MIT
|
def np_metric_at_ks(ranker=None, test_Qs=None, ks=[1, 5, 10], label_type=LABEL_TYPE.MultiLabel, max_rele_level=None, gpu=False, device=None):
'''
There is no check based on the assumption (say light_filtering() is called)
that each test instance Q includes at least k(k=max(ks)) documents, and at least one relevant document.
Or there will be errors.
'''
cnt = 0
sum_ndcg_at_ks = torch.zeros(len(ks))
sum_err_at_ks = torch.zeros(len(ks))
sum_ap_at_ks = torch.zeros(len(ks))
sum_p_at_ks = torch.zeros(len(ks))
list_ndcg_at_ks_per_q = []
list_err_at_ks_per_q = []
list_ap_at_ks_per_q = []
list_p_at_ks_per_q = []
for entry in test_Qs:
tor_test_ranking, tor_test_std_label_vec = entry[1], torch.squeeze(entry[2], dim=0) # remove the size 1 of dim=0 from loader itself
if gpu:
tor_rele_pred = ranker.predict(tor_test_ranking.to(device))
tor_rele_pred = torch.squeeze(tor_rele_pred)
tor_rele_pred = tor_rele_pred.cpu()
else:
tor_rele_pred = ranker.predict(tor_test_ranking)
tor_rele_pred = torch.squeeze(tor_rele_pred)
_, tor_sorted_inds = torch.sort(tor_rele_pred, descending=True)
sys_sorted_labels = tor_test_std_label_vec[tor_sorted_inds]
ideal_sorted_labels, _ = torch.sort(tor_test_std_label_vec, descending=True)
ndcg_at_ks_per_query = torch_ndcg_at_ks(sys_sorted_labels=sys_sorted_labels, ideal_sorted_labels=ideal_sorted_labels, ks=ks, label_type=label_type)
sum_ndcg_at_ks = torch.add(sum_ndcg_at_ks, ndcg_at_ks_per_query)
list_ndcg_at_ks_per_q.append(ndcg_at_ks_per_query.numpy())
err_at_ks_per_query = torch_nerr_at_ks(sys_sorted_labels, ideal_sorted_labels=ideal_sorted_labels, ks=ks, label_type=label_type)
sum_err_at_ks = torch.add(sum_err_at_ks, err_at_ks_per_query)
list_err_at_ks_per_q.append(err_at_ks_per_query.numpy())
ap_at_ks_per_query = torch_ap_at_ks(sys_sorted_labels=sys_sorted_labels, ideal_sorted_labels=ideal_sorted_labels, ks=ks)
sum_ap_at_ks = torch.add(sum_ap_at_ks, ap_at_ks_per_query)
list_ap_at_ks_per_q.append(ap_at_ks_per_query.numpy())
p_at_ks_per_query = torch_precision_at_ks(sys_sorted_labels=sys_sorted_labels, ks=ks)
sum_p_at_ks = torch.add(sum_p_at_ks, p_at_ks_per_query)
list_p_at_ks_per_q.append(p_at_ks_per_query.numpy())
cnt += 1
ndcg_at_ks = sum_ndcg_at_ks/cnt
err_at_ks = sum_err_at_ks/cnt
ap_at_ks = sum_ap_at_ks / cnt
p_at_ks = sum_p_at_ks/cnt
return ndcg_at_ks.numpy(), err_at_ks.numpy(), ap_at_ks.numpy(), p_at_ks.numpy(), list_ndcg_at_ks_per_q, list_err_at_ks_per_q, list_ap_at_ks_per_q, list_p_at_ks_per_q
|
There is no check based on the assumption (say light_filtering() is called)
that each test instance Q includes at least k(k=max(ks)) documents, and at least one relevant document.
Or there will be errors.
|
np_metric_at_ks
|
python
|
wildltr/ptranking
|
ptranking/metric/adhoc/adhoc_metric.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/metric/adhoc/adhoc_metric.py
|
MIT
|
def precision_as_opt_objective(top_k=None, batch_smooth_ranks=None, batch_std_labels=None,
presort=False, opt_ideal=False, device=None):
'''
Precision expectation maximization.
@param top_k: only use the top-k results if not None
@param batch_std_labels:
@param presort: whether the standard labels are already sorted in descending order or not
@param opt_ideal: optimise the ideal ranking or sort results each time
@return:
'''
'''
According to the derivation of differentiable ranks, they are inversely correlated w.r.t. the scoring function.
Thus should be used as the denominator. For being used as the numerator, i.e.,
{batch_precision = torch.sum(batch_ascend_expt_ranks/batch_natural_ranks*top_k_labels, dim=1)/k},
we need to revise the related formulations.
'''
ranking_size = batch_std_labels.size(1)
batch_bi_std_labels = torch.clamp(batch_std_labels, min=0, max=1) # use binary labels
# 1-dimension vector as batch via broadcasting
batch_natural_ranks = torch.arange(ranking_size, dtype=torch.float, device=device).view(1, -1) + 1.0
#batch_expt_ranks = get_expected_rank(batch_mus=batch_mus, batch_vars=batch_vars, batch_cocos=batch_cocos)
if opt_ideal: # TODO adding dynamic shuffle is better, otherwise it will always be one order
assert presort is True
if top_k is None: # using cutoff
batch_precision = torch.sum(batch_natural_ranks/batch_smooth_ranks*batch_bi_std_labels, dim=1)/ranking_size
else:
batch_precision = torch.sum(batch_natural_ranks[:, 0:top_k]/batch_smooth_ranks[:, 0:top_k]
*batch_bi_std_labels[:, 0:top_k], dim=1) / top_k
precision_loss = -torch.sum(batch_precision)
zero_metric_value = False # there should be no zero value due to pre-filtering, i.e., min_rele=1
return precision_loss, zero_metric_value
else: # recommended than opt_ideal, due to the nature of dynamic ranking
'''
Sort the predicted ranks in a ascending natural order (i.e., 1, 2, 3, ..., n),
the returned indices can be used to sort other vectors following the predicted order
'''
batch_ascend_expt_ranks, sort_indices = torch.sort(batch_smooth_ranks, dim=1, descending=False)
# sort labels according to the expected ranks
batch_sys_std_labels = torch.gather(batch_bi_std_labels, dim=1, index=sort_indices)
if top_k is None: # using cutoff
batch_precision = torch.sum(batch_natural_ranks / batch_ascend_expt_ranks * batch_sys_std_labels,
dim=1) / ranking_size
precision_loss = -torch.sum(batch_precision)
return precision_loss, False
else:
top_k_labels = batch_sys_std_labels[:, 0:top_k]
non_zero_inds = torch.nonzero(torch.sum(top_k_labels, dim=1))
zero_metric_value = False if non_zero_inds.size(0) > 0 else True
if zero_metric_value:
return None, zero_metric_value
else:
pos_inds = non_zero_inds[:, 0]
batch_precision = torch.sum(batch_natural_ranks[:, 0:top_k]
/ batch_ascend_expt_ranks[pos_inds, 0:top_k]
* top_k_labels[pos_inds, :], dim=1) / top_k
precision_loss = -torch.sum(batch_precision)
return precision_loss, zero_metric_value
|
Precision expectation maximization.
@param top_k: only use the top-k results if not None
@param batch_std_labels:
@param presort: whether the standard labels are already sorted in descending order or not
@param opt_ideal: optimise the ideal ranking or sort results each time
@return:
|
precision_as_opt_objective
|
python
|
wildltr/ptranking
|
ptranking/metric/smooth_metric/metric_as_opt_objective.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/metric/smooth_metric/metric_as_opt_objective.py
|
MIT
|
def get_delta_alpha_dcg(ideal_q_doc_rele_mat=None, sys_q_doc_rele_mat=None, alpha=0.5, device='cpu', normalization=True):
'''
Get the delta-nDCG w.r.t. pairwise swapping of the currently predicted order.
@param ideal_q_doc_rele_mat: the standard labels sorted in an ideal order
@param sys_q_doc_rele_mat: the standard labels sorted based on the corresponding predictions
@param alpha:
@param device:
@return:
'''
num_subtopics, ranking_size = sys_q_doc_rele_mat.size()
if normalization:
ideal_alpha_DCG = torch_alpha_dcg_at_k(sorted_q_doc_rele_mat=ideal_q_doc_rele_mat,
k=ranking_size, alpha=alpha, device=device)
prior_rele_mat = torch.zeros_like(sys_q_doc_rele_mat)
prior_rele_mat[:, 1:ranking_size] = sys_q_doc_rele_mat[:, 0:ranking_size - 1] # the times of being covered for 1st doc should be zero
prior_cover_cnts = torch.cumsum(prior_rele_mat, dim=1)
subtopic_user_focus = torch.pow((1.0 - alpha), prior_cover_cnts)
subtopic_gains = torch.pow(2.0, sys_q_doc_rele_mat) - 1.0
subtopic_gain_diffs = torch.unsqueeze(subtopic_gains, dim=2) - torch.unsqueeze(subtopic_gains, dim=1)
ranks = torch.arange(ranking_size, dtype=torch.float, device=device)
rank_discounts = 1.0 / torch.log2(ranks + 2.0) # discount co-efficients
subtopic_user_focus_1st = torch.unsqueeze(subtopic_user_focus, dim=2).expand(-1, -1, ranking_size)
rank_discounts_1st = rank_discounts.view(1, -1, 1)
subtopic_coffs_1st = rank_discounts_1st * subtopic_user_focus_1st
subtopic_user_focus_2nd = torch.unsqueeze(subtopic_user_focus, dim=1).expand(-1, ranking_size, -1)
rank_discounts_2nd = rank_discounts.view(1, 1, -1)
subtopic_coffs_2nd = rank_discounts_2nd * subtopic_user_focus_2nd
# absolute changes w.r.t. pairwise swapping
delta_alpha_DCG = torch.abs(torch.sum(subtopic_gain_diffs*subtopic_coffs_1st, dim=0) - torch.sum(subtopic_gain_diffs*subtopic_coffs_2nd, dim=0))
if normalization:
return delta_alpha_DCG/ideal_alpha_DCG
else:
return delta_alpha_DCG
|
Get the delta-nDCG w.r.t. pairwise swapping of the currently predicted order.
@param ideal_q_doc_rele_mat: the standard labels sorted in an ideal order
@param sys_q_doc_rele_mat: the standard labels sorted based on the corresponding predictions
@param alpha:
@param device:
@return:
|
get_delta_alpha_dcg
|
python
|
wildltr/ptranking
|
ptranking/metric/srd/diversity_metric.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/metric/srd/diversity_metric.py
|
MIT
|
def np_shuffle_ties(vec, descending=True):
'''
namely, randomly permuate ties
:param vec:
:param descending: the sorting order w.r.t. the input vec
:return:
'''
if len(vec.shape) > 1:
raise NotImplementedError
else:
length = vec.shape[0]
perm = np.random.permutation(length)
shuffled_vec = sorted(vec[perm], reverse=descending)
return shuffled_vec
|
namely, randomly permuate ties
:param vec:
:param descending: the sorting order w.r.t. the input vec
:return:
|
np_shuffle_ties
|
python
|
wildltr/ptranking
|
ptranking/utils/numpy/np_extensions.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/utils/numpy/np_extensions.py
|
MIT
|
def np_arg_shuffle_ties(vec, descending=True):
''' the same as np_shuffle_ties, but return the corresponding indice '''
if len(vec.shape) > 1:
raise NotImplementedError
else:
length = vec.shape[0]
perm = np.random.permutation(length)
if descending:
sorted_shuffled_vec_inds = np.argsort(-vec[perm])
else:
sorted_shuffled_vec_inds = np.argsort(vec[perm])
shuffle_ties_inds = perm[sorted_shuffled_vec_inds]
return shuffle_ties_inds
|
the same as np_shuffle_ties, but return the corresponding indice
|
np_arg_shuffle_ties
|
python
|
wildltr/ptranking
|
ptranking/utils/numpy/np_extensions.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/utils/numpy/np_extensions.py
|
MIT
|
def np_plackett_luce_sampling(items, probs, softmaxed=False):
'''
sample a ltr_adhoc based on the Plackett-Luce model
:param vec: a vector of values, the higher, the more possible the corresponding entry will be sampled
:return: the indice of the corresponding ltr_adhoc
'''
if softmaxed:
ranking = np.random.choice(items, size=len(probs), p=probs, replace=False)
else:
probs = np_softmax(probs)
ranking = np.random.choice(items, size=len(probs), p=probs, replace=False)
return ranking
|
sample a ltr_adhoc based on the Plackett-Luce model
:param vec: a vector of values, the higher, the more possible the corresponding entry will be sampled
:return: the indice of the corresponding ltr_adhoc
|
np_plackett_luce_sampling
|
python
|
wildltr/ptranking
|
ptranking/utils/numpy/np_extensions.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/utils/numpy/np_extensions.py
|
MIT
|
def shuffle_ties(vec, descending=True):
'''
namely, randomly permuate ties
:param vec:
:param descending: the sorting order w.r.t. the input vec
:return:
'''
if len(vec.size()) > 1:
raise NotImplementedError
else:
length = vec.size()[0]
perm = torch.randperm(length)
shuffled_vec, _ = torch.sort(vec[perm], descending=descending)
return shuffled_vec
|
namely, randomly permuate ties
:param vec:
:param descending: the sorting order w.r.t. the input vec
:return:
|
shuffle_ties
|
python
|
wildltr/ptranking
|
ptranking/utils/pytorch/pt_extensions.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/utils/pytorch/pt_extensions.py
|
MIT
|
def arg_shuffle_ties(vec, descending=True):
''' the same as shuffle_ties, but return the corresponding indice '''
if len(vec.size()) > 1:
raise NotImplementedError
else:
length = vec.size()[0]
perm = torch.randperm(length)
sorted_shuffled_vec_inds = torch.argsort(vec[perm], descending=descending)
shuffle_ties_inds = perm[sorted_shuffled_vec_inds]
return shuffle_ties_inds
|
the same as shuffle_ties, but return the corresponding indice
|
arg_shuffle_ties
|
python
|
wildltr/ptranking
|
ptranking/utils/pytorch/pt_extensions.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/utils/pytorch/pt_extensions.py
|
MIT
|
def plackett_luce_sampling(probs, softmaxed=False):
'''
sample a ltr_adhoc based on the Plackett-Luce model
:param vec: a vector of values, the higher, the more possible the corresponding entry will be sampled
:return: the indice of the corresponding ltr_adhoc
'''
if softmaxed:
inds = torch.multinomial(probs, probs.size()[0], replacement=False)
else:
probs = F.softmax(probs, dim=0)
inds = torch.multinomial(probs, probs.size()[0], replacement=False)
return inds
|
sample a ltr_adhoc based on the Plackett-Luce model
:param vec: a vector of values, the higher, the more possible the corresponding entry will be sampled
:return: the indice of the corresponding ltr_adhoc
|
plackett_luce_sampling
|
python
|
wildltr/ptranking
|
ptranking/utils/pytorch/pt_extensions.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/utils/pytorch/pt_extensions.py
|
MIT
|
def soft_rank_sampling(loc, covariance_matrix=None, inds_style=True, descending=True):
'''
:param loc: mean of the distribution
:param covariance_matrix: positive-definite covariance matrix
:param inds_style: true means the indice leading to the ltr_adhoc
:return:
'''
m = MultivariateNormal(loc, covariance_matrix)
vals = m.sample()
if inds_style:
sorted_inds = torch.argsort(vals, descending=descending)
return sorted_inds
else:
vals
|
:param loc: mean of the distribution
:param covariance_matrix: positive-definite covariance matrix
:param inds_style: true means the indice leading to the ltr_adhoc
:return:
|
soft_rank_sampling
|
python
|
wildltr/ptranking
|
ptranking/utils/pytorch/pt_extensions.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/utils/pytorch/pt_extensions.py
|
MIT
|
def forward(ctx, MU, sigma, gpu):
'''
:param ctx:
:param mu:
:param sigma: a float value
:return:
'''
#print('MU', MU)
tmp_MU = MU.detach()
tmp_MU = tmp_MU.view(1, -1)
np_MU = tmp_MU.cpu().numpy() if gpu else tmp_MU.numpy()
#print('np_MU', np_MU)
np_integrated_probs = [quad(lambda y: ONEOVERSQRT2PI * np.exp(-0.5 * (y-mu/sigma) ** 2) / sigma, 0, np.inf)[0] for mu in np.ravel(np_MU)]
#print('np_integrated_probs', np_integrated_probs)
integrated_probs = torch.as_tensor(np_integrated_probs, dtype=MU.dtype)
integrated_probs = integrated_probs.view(MU.size())
#print('integrated_probs', integrated_probs)
ctx.save_for_backward(MU, torch.tensor([sigma]))
return integrated_probs
|
:param ctx:
:param mu:
:param sigma: a float value
:return:
|
forward
|
python
|
wildltr/ptranking
|
ptranking/utils/pytorch/pt_extensions.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/utils/pytorch/pt_extensions.py
|
MIT
|
def sinkhorn_2D(x, num_iter=5):
'''
Sinkhorn (1964) showed that if X is a positive square matrix, there exist positive diagonal matrices D1 and D2 such that D1XD2 is doubly stochastic.
The method of proof is based on an iterative procedure of alternatively normalizing the rows and columns of X.
:param x: the given positive square matrix
'''
for i in range(num_iter):
x = torch.div(x, torch.sum(x, dim=1, keepdim=True))
x = torch.div(x, torch.sum(x, dim=0, keepdim=True))
return x
|
Sinkhorn (1964) showed that if X is a positive square matrix, there exist positive diagonal matrices D1 and D2 such that D1XD2 is doubly stochastic.
The method of proof is based on an iterative procedure of alternatively normalizing the rows and columns of X.
:param x: the given positive square matrix
|
sinkhorn_2D
|
python
|
wildltr/ptranking
|
ptranking/utils/pytorch/pt_extensions.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/utils/pytorch/pt_extensions.py
|
MIT
|
def logsumexp(inputs, dim=None, keepdim=False):
"""Numerically stable logsumexp.
Args:
inputs: A Variable with any shape.
dim: An integer.
keepdim: A boolean.
Returns:
Equivalent of log(sum(exp(inputs), dim=dim, keepdim=keepdim)).
"""
# For a 1-D array x (any array along a single dimension),
# log sum exp(x) = s + log sum exp(x - s)
# with s = max(x) being a common choice.
if dim is None:
inputs = inputs.view(-1)
dim = 0
s, _ = torch.max(inputs, dim=dim, keepdim=True)
outputs = s + (inputs - s).exp().sum(dim=dim, keepdim=True).log()
if not keepdim:
outputs = outputs.squeeze(dim)
return outputs
|
Numerically stable logsumexp.
Args:
inputs: A Variable with any shape.
dim: An integer.
keepdim: A boolean.
Returns:
Equivalent of log(sum(exp(inputs), dim=dim, keepdim=keepdim)).
|
logsumexp
|
python
|
wildltr/ptranking
|
ptranking/utils/pytorch/pt_extensions.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/utils/pytorch/pt_extensions.py
|
MIT
|
def sinkhorn_batch_(batch_x, num_iter=20, eps=1e-10, tau=0.05):
'''
Temperature (tau) -controlled Sinkhorn layer.
By a theorem by Sinkhorn and Knopp [1], a sufficiently well-behaved matrix with positive entries can be turned into a doubly-stochastic matrix
(i.e. its rows and columns add up to one) via the succesive row and column normalization.
-To ensure positivity, the effective input to sinkhorn has to be exp(log_alpha) (elementwise).
-However, for stability, sinkhorn works in the log-space. It is only at return time that entries are exponentiated.
[1] Sinkhorn, Richard and Knopp, Paul. Concerning nonnegative matrices and doubly stochastic matrices. Pacific Journal of Mathematics, 1967
:param batch_x: a batch of square matrices, the restriction of 'positive' w.r.t. batch_x is not needed, since the exp() is deployed here.
:param num_iter: number of sinkhorn iterations (in practice, as little as 20 iterations are needed to achieve decent convergence for N~100)
:return: A 3D tensor of close-to-doubly-stochastic matrices (2D tensors are converted to 3D tensors with batch_size equals to 1)
'''
if tau is not None:
batch_x = batch_x/tau # as tau approaches zero(positive), the result is more like a permutation matrix
for _ in range(num_iter):
batch_x = batch_x - logsumexp(batch_x, dim=2, keepdim=True) # row normalirzation
batch_x = batch_x - logsumexp(batch_x, dim=1, keepdim=True) # column normalization
if (batch_x != batch_x).sum() > 0 or (batch_x != batch_x).sum() > 0 or batch_x.max() > 1e9 or batch_x.max() > 1e9: # u!=u is a test for NaN...
break
return torch.exp(batch_x) + eps # add a small offset 'eps' in order to avoid numerical errors due to exp()
|
Temperature (tau) -controlled Sinkhorn layer.
By a theorem by Sinkhorn and Knopp [1], a sufficiently well-behaved matrix with positive entries can be turned into a doubly-stochastic matrix
(i.e. its rows and columns add up to one) via the succesive row and column normalization.
-To ensure positivity, the effective input to sinkhorn has to be exp(log_alpha) (elementwise).
-However, for stability, sinkhorn works in the log-space. It is only at return time that entries are exponentiated.
[1] Sinkhorn, Richard and Knopp, Paul. Concerning nonnegative matrices and doubly stochastic matrices. Pacific Journal of Mathematics, 1967
:param batch_x: a batch of square matrices, the restriction of 'positive' w.r.t. batch_x is not needed, since the exp() is deployed here.
:param num_iter: number of sinkhorn iterations (in practice, as little as 20 iterations are needed to achieve decent convergence for N~100)
:return: A 3D tensor of close-to-doubly-stochastic matrices (2D tensors are converted to 3D tensors with batch_size equals to 1)
|
sinkhorn_batch_
|
python
|
wildltr/ptranking
|
ptranking/utils/pytorch/pt_extensions.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/utils/pytorch/pt_extensions.py
|
MIT
|
def pl_normalize(batch_scores=None):
'''
Normalization based on the 'Plackett_Luce' model
:param batch_scores: [batch, ranking_size]
:return: the i-th entry represents the probability of being ranked at the i-th position
'''
m, _ = torch.max(batch_scores, dim=1, keepdim=True) # for higher stability
y = batch_scores - m
y = torch.exp(y)
y_cumsum_t2h = torch.flip(torch.cumsum(torch.flip(y, dim=1), dim=1), dim=1) # row-wise cumulative sum, from tail to head
batch_pros = torch.div(y, y_cumsum_t2h)
return batch_pros
|
Normalization based on the 'Plackett_Luce' model
:param batch_scores: [batch, ranking_size]
:return: the i-th entry represents the probability of being ranked at the i-th position
|
pl_normalize
|
python
|
wildltr/ptranking
|
ptranking/utils/pytorch/pt_extensions.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/utils/pytorch/pt_extensions.py
|
MIT
|
def get_doc_num(dataset):
''' compute the number of documents in a dataset '''
doc_num = 0
for qid, torch_batch_rankings, torch_batch_std_labels in dataset:
doc_num += torch_batch_std_labels.size(1)
return doc_num
|
compute the number of documents in a dataset
|
get_doc_num
|
python
|
wildltr/ptranking
|
testing/data/testing_data_utils.py
|
https://github.com/wildltr/ptranking/blob/master/testing/data/testing_data_utils.py
|
MIT
|
def get_min_max_docs(train_dataset, vali_dataset, test_dataset, semi_supervised=False):
''' get the minimum / maximum number of documents per query '''
min_doc = 10000000
max_doc = 0
sum_rele = 0
if semi_supervised:
sum_unknown = 0
for qid, torch_batch_rankings, torch_batch_std_labels in train_dataset:
#print('torch_batch_std_labels', torch_batch_std_labels.size())
doc_num = torch_batch_std_labels.size(1)
min_doc = min(doc_num, min_doc)
max_doc = max(max_doc, doc_num)
sum_rele += (torch_batch_std_labels>0).sum()
if semi_supervised:
sum_unknown += (torch_batch_std_labels<0).sum()
if vali_dataset is not None:
for qid, torch_batch_rankings, torch_batch_std_labels in vali_dataset:
doc_num = torch_batch_std_labels.size(1)
min_doc = min(doc_num, min_doc)
max_doc = max(max_doc, doc_num)
sum_rele += (torch_batch_std_labels>0).sum()
if semi_supervised:
sum_unknown += (torch_batch_std_labels < 0).sum()
for qid, torch_batch_rankings, torch_batch_std_labels in test_dataset:
doc_num = torch_batch_std_labels.size(1)
min_doc = min(doc_num, min_doc)
max_doc = max(max_doc, doc_num)
sum_rele += (torch_batch_std_labels>0).sum()
if semi_supervised:
sum_unknown += (torch_batch_std_labels<0).sum()
if semi_supervised:
return min_doc, max_doc, sum_rele.data.numpy(), sum_unknown.data.numpy()
else:
return min_doc, max_doc, sum_rele.data.numpy()
|
get the minimum / maximum number of documents per query
|
get_min_max_docs
|
python
|
wildltr/ptranking
|
testing/data/testing_data_utils.py
|
https://github.com/wildltr/ptranking/blob/master/testing/data/testing_data_utils.py
|
MIT
|
def get_min_max_feature(train_dataset, vali_dataset, test_dataset):
''' get the minimum / maximum feature values in a dataset '''
min_f = 0
max_f = 1000
for qid, torch_batch_rankings, torch_batch_std_labels in train_dataset:
mav = torch.max(torch_batch_rankings)
if torch.isinf(mav):
print(qid, mav)
else:
if mav > max_f: max_f = mav
miv = torch.min(torch_batch_rankings)
if miv < min_f: min_f = miv
print('train', min_f, '\t', max_f)
min_f = 0
max_f = 1000
for qid, torch_batch_rankings, torch_batch_std_labels in vali_dataset:
mav = torch.max(torch_batch_rankings)
if mav > max_f: max_f = mav
miv = torch.min(torch_batch_rankings)
if miv < min_f: min_f = miv
print('vali', min_f, '\t', max_f)
min_f = 0
max_f = 1000
for qid, torch_batch_rankings, torch_batch_std_labels in test_dataset:
mav = torch.max(torch_batch_rankings)
if mav > max_f: max_f = mav
miv = torch.min(torch_batch_rankings)
if miv < min_f: min_f = miv
print('test', min_f, '\t', max_f)
|
get the minimum / maximum feature values in a dataset
|
get_min_max_feature
|
python
|
wildltr/ptranking
|
testing/data/testing_data_utils.py
|
https://github.com/wildltr/ptranking/blob/master/testing/data/testing_data_utils.py
|
MIT
|
def check_dataset_statistics(data_id, dir_data, buffer=False):
'''
Get the basic statistics on the specified dataset
'''
if data_id in YAHOO_LTR:
data_prefix = dir_data + data_id.lower() + '.'
file_train, file_vali, file_test = data_prefix + 'train.txt', data_prefix + 'valid.txt', data_prefix + 'test.txt'
elif data_id in ISTELLA_LTR:
data_prefix = dir_data + data_id + '/'
if data_id == 'Istella_X' or data_id=='Istella_S':
file_train, file_vali, file_test = data_prefix + 'train.txt', data_prefix + 'vali.txt', data_prefix + 'test.txt'
else:
file_train, file_test = data_prefix + 'train.txt', data_prefix + 'test.txt'
else:
fold_k = 1
fold_k_dir = dir_data + 'Fold' + str(fold_k) + '/'
file_train, file_vali, file_test = fold_k_dir + 'train.txt', fold_k_dir + 'vali.txt', fold_k_dir + 'test.txt'
# common
if 'Istella' == data_id:
train_dataset = LTRDataset(split_type=SPLIT_TYPE.Train, file=file_train, data_id=data_id, shuffle=False, buffer=buffer)
test_dataset = LTRDataset(split_type=SPLIT_TYPE.Test, file=file_test, data_id=data_id, shuffle=False, buffer=buffer)
num_queries = train_dataset.__len__() + test_dataset.__len__()
print('Dataset:\t', data_id)
print('Total queries:\t', num_queries)
print('\tTrain:', train_dataset.__len__(), 'Test:', test_dataset.__len__())
num_docs = get_doc_num(train_dataset) + get_doc_num(test_dataset)
print('Total docs:\t', num_docs)
min_doc, max_doc, sum_rele = get_min_max_docs(train_dataset=train_dataset, vali_dataset=None, test_dataset=test_dataset)
data_meta = get_data_meta(data_id=data_id)
max_rele_label = data_meta['max_rele_level']
sum_bin_cnts = get_label_distribution(train_dataset=train_dataset, test_dataset=test_dataset,
semi_supervised=False, max_lavel=max_rele_label)
else:
train_dataset = LTRDataset(split_type=SPLIT_TYPE.Train, file=file_train, data_id=data_id, buffer=buffer)
vali_dataset = LTRDataset(split_type=SPLIT_TYPE.Validation, file=file_vali, data_id=data_id, buffer=buffer)
test_dataset = LTRDataset(split_type=SPLIT_TYPE.Test, file=file_test, data_id=data_id, buffer=buffer)
num_queries = train_dataset.__len__() + vali_dataset.__len__() + test_dataset.__len__()
print('Dataset:\t', data_id)
print('Total queries:\t', num_queries)
print('\tTrain:', train_dataset.__len__(), 'Vali:', vali_dataset.__len__(), 'Test:', test_dataset.__len__())
num_docs = get_doc_num(train_dataset) + get_doc_num(vali_dataset) + get_doc_num(test_dataset)
print('Total docs:\t', num_docs)
if data_id in MSLETOR_SEMI:
min_doc, max_doc, sum_rele, sum_unknown = \
get_min_max_docs(train_dataset=train_dataset, vali_dataset=vali_dataset, test_dataset=test_dataset, semi_supervised=True)
else:
min_doc, max_doc, sum_rele = get_min_max_docs(train_dataset=train_dataset, vali_dataset=vali_dataset, test_dataset=test_dataset)
data_meta = get_data_meta(data_id=data_id)
max_rele_label = data_meta['max_rele_level']
sum_bin_cnts = get_label_distribution(train_dataset=train_dataset, vali_dataset=vali_dataset,
test_dataset=test_dataset, semi_supervised=False, max_lavel=max_rele_label)
print('min, max documents per query', min_doc, max_doc)
print('total relevant documents', sum_rele)
print('avg rele documents per query', sum_rele * 1.0 / num_queries)
print('avg documents per query', num_docs * 1.0 / num_queries)
print('label distribution: ', sum_bin_cnts)
if data_id in MSLETOR_SEMI:
print('total unlabeled documents', sum_unknown)
#print()
#get_min_max_feature(train_dataset=train_dataset, vali_dataset=vali_dataset, test_dataset=test_dataset)
#==
|
Get the basic statistics on the specified dataset
|
check_dataset_statistics
|
python
|
wildltr/ptranking
|
testing/data/testing_data_utils.py
|
https://github.com/wildltr/ptranking/blob/master/testing/data/testing_data_utils.py
|
MIT
|
def test_ap():
''' todo-as-note: the denominator should be carefully checked when using AP@k '''
# here we assume that there five relevant documents, but the system just retrieves three of them
sys_sorted_labels = torch.Tensor([1.0, 0.0, 1.0, 0.0, 1.0])
std_sorted_labels = torch.Tensor([1.0, 1.0, 1.0, 1.0, 1.0])
ap_at_ks = torch_ap_at_ks(sys_sorted_labels.view(1, -1), std_sorted_labels.view(1, -1), ks=[1, 3, 5])
print(ap_at_ks.size(), ap_at_ks) # tensor([1.0000, 0.5556, 0.4533])
ap_at_k = torch_ap_at_k(sys_sorted_labels.view(1, -1), std_sorted_labels.view(1, -1), k=3)
print(ap_at_k.size(), ap_at_k) # tensor([1.0000, 0.5556, 0.4533])
sys_sorted_labels = torch.Tensor([1.0, 0.0, 1.0, 0.0, 1.0])
std_sorted_labels = torch.Tensor([1.0, 1.0, 1.0, 0.0, 0.0])
ap_at_ks = torch_ap_at_ks(sys_sorted_labels.view(1, -1), std_sorted_labels.view(1, -1), ks=[1, 3, 5])
print(ap_at_ks) # tensor([1.0000, 0.5556, 0.7556])
# here we assume that there four relevant documents, the system just retrieves four of them
sys_sorted_labels = torch.Tensor([1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0])
std_sorted_labels = torch.Tensor([1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0])
ap_at_ks = torch_ap_at_ks(sys_sorted_labels.view(1, -1), std_sorted_labels.view(1, -1), ks=[1, 2, 3, 5, 7])
print(ap_at_ks) # tensor([1.0000, 1.0000, 0.6667, 0.6875, 0.8304])
ap_at_k = torch_ap_at_k(sys_sorted_labels.view(1, -1), std_sorted_labels.view(1, -1), k=5)
print(ap_at_k) # tensor([1.0000, 1.0000, 0.6667, 0.6875, 0.8304])
print()
|
todo-as-note: the denominator should be carefully checked when using AP@k
|
test_ap
|
python
|
wildltr/ptranking
|
testing/metric/testing_metric.py
|
https://github.com/wildltr/ptranking/blob/master/testing/metric/testing_metric.py
|
MIT
|
def run(
self,
times=1,
models=None,
dataset="Alpha360",
universe="",
exclude=False,
qlib_uri: str = "git+https://github.com/microsoft/qlib#egg=pyqlib",
exp_folder_name: str = "run_all_model_records",
wait_before_rm_env: bool = False,
wait_when_err: bool = False,
):
"""
Please be aware that this function can only work under Linux. MacOS and Windows will be supported in the future.
Any PR to enhance this method is highly welcomed. Besides, this script doesn't support parallel running the same model
for multiple times, and this will be fixed in the future development.
Parameters:
-----------
times : int
determines how many times the model should be running.
models : str or list
determines the specific model or list of models to run or exclude.
exclude : boolean
determines whether the model being used is excluded or included.
dataset : str
determines the dataset to be used for each model.
universe : str
the stock universe of the dataset.
default "" indicates that
qlib_uri : str
the uri to install qlib with pip
it could be URI on the remote or local path (NOTE: the local path must be an absolute path)
exp_folder_name: str
the name of the experiment folder
wait_before_rm_env : bool
wait before remove environment.
wait_when_err : bool
wait when errors raised when executing commands
Usage:
-------
Here are some use cases of the function in the bash:
The run_all_models will decide which config to run based no `models` `dataset` `universe`
Example 1):
models="lightgbm", dataset="Alpha158", universe="" will result in running the following config
examples/benchmarks/LightGBM/workflow_config_lightgbm_Alpha158.yaml
models="lightgbm", dataset="Alpha158", universe="csi500" will result in running the following config
examples/benchmarks/LightGBM/workflow_config_lightgbm_Alpha158_csi500.yaml
.. code-block:: bash
# Case 1 - run all models multiple times
python run_all_model.py run 3
# Case 2 - run specific models multiple times
python run_all_model.py run 3 mlp
# Case 3 - run specific models multiple times with specific dataset
python run_all_model.py run 3 mlp Alpha158
# Case 4 - run other models except those are given as arguments for multiple times
python run_all_model.py run 3 [mlp,tft,lstm] --exclude=True
# Case 5 - run specific models for one time
python run_all_model.py run --models=[mlp,lightgbm]
# Case 6 - run other models except those are given as arguments for one time
python run_all_model.py run --models=[mlp,tft,sfm] --exclude=True
# Case 7 - run lightgbm model on csi500.
python run_all_model.py run 3 lightgbm Alpha158 csi500
"""
self._init_qlib(exp_folder_name)
# get all folders
folders = get_all_folders(models, exclude)
# init error messages:
errors = dict()
# run all the model for iterations
for fn in folders:
# get all files
sys.stderr.write("Retrieving files...\n")
yaml_path, req_path = get_all_files(folders[fn], dataset, universe=universe)
if yaml_path is None:
sys.stderr.write(f"There is no {dataset}.yaml file in {folders[fn]}")
continue
sys.stderr.write("\n")
# create env by anaconda
temp_dir, env_path, python_path, conda_activate = create_env()
# install requirements.txt
sys.stderr.write("Installing requirements.txt...\n")
with open(req_path) as f:
content = f.read()
if "torch" in content:
# automatically install pytorch according to nvidia's version
execute(
f"{python_path} -m pip install light-the-torch", wait_when_err=wait_when_err
) # for automatically installing torch according to the nvidia driver
execute(
f"{env_path / 'bin' / 'ltt'} install --install-cmd '{python_path} -m pip install {{packages}}' -- -r {req_path}",
wait_when_err=wait_when_err,
)
else:
execute(f"{python_path} -m pip install -r {req_path}", wait_when_err=wait_when_err)
sys.stderr.write("\n")
# read yaml, remove seed kwargs of model, and then save file in the temp_dir
yaml_path = gen_yaml_file_without_seed_kwargs(yaml_path, temp_dir)
# setup gpu for tft
if fn == "TFT":
execute(
f"conda install -y --prefix {env_path} anaconda cudatoolkit=10.0 && conda install -y --prefix {env_path} cudnn",
wait_when_err=wait_when_err,
)
sys.stderr.write("\n")
# install qlib
sys.stderr.write("Installing qlib...\n")
execute(f"{python_path} -m pip install --upgrade pip", wait_when_err=wait_when_err) # TODO: FIX ME!
execute(f"{python_path} -m pip install --upgrade cython", wait_when_err=wait_when_err) # TODO: FIX ME!
if fn == "TFT":
execute(
f"cd {env_path} && {python_path} -m pip install --upgrade --force-reinstall --ignore-installed PyYAML -e {qlib_uri}",
wait_when_err=wait_when_err,
) # TODO: FIX ME!
else:
execute(
f"cd {env_path} && {python_path} -m pip install --upgrade --force-reinstall -e {qlib_uri}",
wait_when_err=wait_when_err,
) # TODO: FIX ME!
sys.stderr.write("\n")
# run workflow_by_config for multiple times
for i in range(times):
sys.stderr.write(f"Running the model: {fn} for iteration {i+1}...\n")
errs = execute(
f"{python_path} {env_path / 'bin' / 'qrun'} {yaml_path} {fn} {exp_folder_name}",
wait_when_err=wait_when_err,
)
if errs is not None:
_errs = errors.get(fn, {})
_errs.update({i: errs})
errors[fn] = _errs
sys.stderr.write("\n")
# remove env
sys.stderr.write(f"Deleting the environment: {env_path}...\n")
if wait_before_rm_env:
input("Press Enter to Continue")
shutil.rmtree(env_path)
# print errors
sys.stderr.write(f"Here are some of the errors of the models...\n")
pprint(errors)
self._collect_results(exp_folder_name, dataset)
|
Please be aware that this function can only work under Linux. MacOS and Windows will be supported in the future.
Any PR to enhance this method is highly welcomed. Besides, this script doesn't support parallel running the same model
for multiple times, and this will be fixed in the future development.
Parameters:
-----------
times : int
determines how many times the model should be running.
models : str or list
determines the specific model or list of models to run or exclude.
exclude : boolean
determines whether the model being used is excluded or included.
dataset : str
determines the dataset to be used for each model.
universe : str
the stock universe of the dataset.
default "" indicates that
qlib_uri : str
the uri to install qlib with pip
it could be URI on the remote or local path (NOTE: the local path must be an absolute path)
exp_folder_name: str
the name of the experiment folder
wait_before_rm_env : bool
wait before remove environment.
wait_when_err : bool
wait when errors raised when executing commands
Usage:
-------
Here are some use cases of the function in the bash:
The run_all_models will decide which config to run based no `models` `dataset` `universe`
Example 1):
models="lightgbm", dataset="Alpha158", universe="" will result in running the following config
examples/benchmarks/LightGBM/workflow_config_lightgbm_Alpha158.yaml
models="lightgbm", dataset="Alpha158", universe="csi500" will result in running the following config
examples/benchmarks/LightGBM/workflow_config_lightgbm_Alpha158_csi500.yaml
.. code-block:: bash
# Case 1 - run all models multiple times
python run_all_model.py run 3
# Case 2 - run specific models multiple times
python run_all_model.py run 3 mlp
# Case 3 - run specific models multiple times with specific dataset
python run_all_model.py run 3 mlp Alpha158
# Case 4 - run other models except those are given as arguments for multiple times
python run_all_model.py run 3 [mlp,tft,lstm] --exclude=True
# Case 5 - run specific models for one time
python run_all_model.py run --models=[mlp,lightgbm]
# Case 6 - run other models except those are given as arguments for one time
python run_all_model.py run --models=[mlp,tft,sfm] --exclude=True
# Case 7 - run lightgbm model on csi500.
python run_all_model.py run 3 lightgbm Alpha158 csi500
|
run
|
python
|
microsoft/qlib
|
examples/run_all_model.py
|
https://github.com/microsoft/qlib/blob/master/examples/run_all_model.py
|
MIT
|
def process_qlib_data(df, dataset, fillna=False):
"""Prepare data to fit the TFT model.
Args:
df: Original DataFrame.
fillna: Whether to fill the data with the mean values.
Returns:
Transformed DataFrame.
"""
# Several features selected manually
feature_col = DATASET_SETTING[dataset]["feature_col"]
label_col = [DATASET_SETTING[dataset]["label_col"]]
temp_df = df.loc[:, feature_col + label_col]
if fillna:
temp_df = fill_test_na(temp_df)
temp_df = temp_df.swaplevel()
temp_df = temp_df.sort_index()
temp_df = temp_df.reset_index(level=0)
dates = pd.to_datetime(temp_df.index)
temp_df["date"] = dates
temp_df["day_of_week"] = dates.dayofweek
temp_df["month"] = dates.month
temp_df["year"] = dates.year
temp_df["const"] = 1.0
return temp_df
|
Prepare data to fit the TFT model.
Args:
df: Original DataFrame.
fillna: Whether to fill the data with the mean values.
Returns:
Transformed DataFrame.
|
process_qlib_data
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/tft.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/tft.py
|
MIT
|
def process_predicted(df, col_name):
"""Transform the TFT predicted data into Qlib format.
Args:
df: Original DataFrame.
fillna: New column name.
Returns:
Transformed DataFrame.
"""
df_res = df.copy()
df_res = df_res.rename(columns={"forecast_time": "datetime", "identifier": "instrument", "t+4": col_name})
df_res = df_res.set_index(["datetime", "instrument"]).sort_index()
df_res = df_res[[col_name]]
return df_res
|
Transform the TFT predicted data into Qlib format.
Args:
df: Original DataFrame.
fillna: New column name.
Returns:
Transformed DataFrame.
|
process_predicted
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/tft.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/tft.py
|
MIT
|
def to_pickle(self, path: Union[Path, str]):
"""
Tensorflow model can't be dumped directly.
So the data should be save separately
**TODO**: Please implement the function to load the files
Parameters
----------
path : Union[Path, str]
the target path to be dumped
"""
# FIXME: implementing saving tensorflow models
# save tensorflow model
# path = Path(path)
# path.mkdir(parents=True)
# self.model.save(path)
# save qlib model wrapper
drop_attrs = ["model", "tf_graph", "sess", "data_formatter"]
orig_attr = {}
for attr in drop_attrs:
orig_attr[attr] = getattr(self, attr)
setattr(self, attr, None)
super(TFTModel, self).to_pickle(path)
for attr in drop_attrs:
setattr(self, attr, orig_attr[attr])
|
Tensorflow model can't be dumped directly.
So the data should be save separately
**TODO**: Please implement the function to load the files
Parameters
----------
path : Union[Path, str]
the target path to be dumped
|
to_pickle
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/tft.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/tft.py
|
MIT
|
def get_column_definition(self):
"""Returns formatted column definition in order expected by the TFT."""
column_definition = self._column_definition
# Sanity checks first.
# Ensure only one ID and time column exist
def _check_single_column(input_type):
length = len([tup for tup in column_definition if tup[2] == input_type])
if length != 1:
raise ValueError("Illegal number of inputs ({}) of type {}".format(length, input_type))
_check_single_column(InputTypes.ID)
_check_single_column(InputTypes.TIME)
identifier = [tup for tup in column_definition if tup[2] == InputTypes.ID]
time = [tup for tup in column_definition if tup[2] == InputTypes.TIME]
real_inputs = [
tup
for tup in column_definition
if tup[1] == DataTypes.REAL_VALUED and tup[2] not in {InputTypes.ID, InputTypes.TIME}
]
categorical_inputs = [
tup
for tup in column_definition
if tup[1] == DataTypes.CATEGORICAL and tup[2] not in {InputTypes.ID, InputTypes.TIME}
]
return identifier + time + real_inputs + categorical_inputs
|
Returns formatted column definition in order expected by the TFT.
|
get_column_definition
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/data_formatters/base.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/data_formatters/base.py
|
MIT
|
def _get_tft_input_indices(self):
"""Returns the relevant indexes and input sizes required by TFT."""
# Functions
def _extract_tuples_from_data_type(data_type, defn):
return [tup for tup in defn if tup[1] == data_type and tup[2] not in {InputTypes.ID, InputTypes.TIME}]
def _get_locations(input_types, defn):
return [i for i, tup in enumerate(defn) if tup[2] in input_types]
# Start extraction
column_definition = [
tup for tup in self.get_column_definition() if tup[2] not in {InputTypes.ID, InputTypes.TIME}
]
categorical_inputs = _extract_tuples_from_data_type(DataTypes.CATEGORICAL, column_definition)
real_inputs = _extract_tuples_from_data_type(DataTypes.REAL_VALUED, column_definition)
locations = {
"input_size": len(self._get_input_columns()),
"output_size": len(_get_locations({InputTypes.TARGET}, column_definition)),
"category_counts": self.num_classes_per_cat_input,
"input_obs_loc": _get_locations({InputTypes.TARGET}, column_definition),
"static_input_loc": _get_locations({InputTypes.STATIC_INPUT}, column_definition),
"known_regular_inputs": _get_locations({InputTypes.STATIC_INPUT, InputTypes.KNOWN_INPUT}, real_inputs),
"known_categorical_inputs": _get_locations(
{InputTypes.STATIC_INPUT, InputTypes.KNOWN_INPUT}, categorical_inputs
),
}
return locations
|
Returns the relevant indexes and input sizes required by TFT.
|
_get_tft_input_indices
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/data_formatters/base.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/data_formatters/base.py
|
MIT
|
def get_experiment_params(self):
"""Returns fixed model parameters for experiments."""
required_keys = [
"total_time_steps",
"num_encoder_steps",
"num_epochs",
"early_stopping_patience",
"multiprocessing_workers",
]
fixed_params = self.get_fixed_params()
for k in required_keys:
if k not in fixed_params:
raise ValueError("Field {}".format(k) + " missing from fixed parameter definitions!")
fixed_params["column_definition"] = self.get_column_definition()
fixed_params.update(self._get_tft_input_indices())
return fixed_params
|
Returns fixed model parameters for experiments.
|
get_experiment_params
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/data_formatters/base.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/data_formatters/base.py
|
MIT
|
def split_data(self, df, valid_boundary=2016, test_boundary=2018):
"""Splits data frame into training-validation-test data frames.
This also calibrates scaling object, and transforms data for each split.
Args:
df: Source data frame to split.
valid_boundary: Starting year for validation data
test_boundary: Starting year for test data
Returns:
Tuple of transformed (train, valid, test) data.
"""
print("Formatting train-valid-test splits.")
index = df["year"]
train = df.loc[index < valid_boundary]
valid = df.loc[(index >= valid_boundary) & (index < test_boundary)]
test = df.loc[index >= test_boundary]
self.set_scalers(train)
return (self.transform_inputs(data) for data in [train, valid, test])
|
Splits data frame into training-validation-test data frames.
This also calibrates scaling object, and transforms data for each split.
Args:
df: Source data frame to split.
valid_boundary: Starting year for validation data
test_boundary: Starting year for test data
Returns:
Tuple of transformed (train, valid, test) data.
|
split_data
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/data_formatters/qlib_Alpha158.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/data_formatters/qlib_Alpha158.py
|
MIT
|
def set_scalers(self, df):
"""Calibrates scalers using the data supplied.
Args:
df: Data to use to calibrate scalers.
"""
print("Setting scalers with training data...")
column_definitions = self.get_column_definition()
id_column = utils.get_single_col_by_input_type(InputTypes.ID, column_definitions)
target_column = utils.get_single_col_by_input_type(InputTypes.TARGET, column_definitions)
# Extract identifiers in case required
self.identifiers = list(df[id_column].unique())
# Format real scalers
real_inputs = utils.extract_cols_from_data_type(
DataTypes.REAL_VALUED, column_definitions, {InputTypes.ID, InputTypes.TIME}
)
data = df[real_inputs].values
self._real_scalers = sklearn.preprocessing.StandardScaler().fit(data)
self._target_scaler = sklearn.preprocessing.StandardScaler().fit(
df[[target_column]].values
) # used for predictions
# Format categorical scalers
categorical_inputs = utils.extract_cols_from_data_type(
DataTypes.CATEGORICAL, column_definitions, {InputTypes.ID, InputTypes.TIME}
)
categorical_scalers = {}
num_classes = []
for col in categorical_inputs:
# Set all to str so that we don't have mixed integer/string columns
srs = df[col].apply(str)
categorical_scalers[col] = sklearn.preprocessing.LabelEncoder().fit(srs.values)
num_classes.append(srs.nunique())
# Set categorical scaler outputs
self._cat_scalers = categorical_scalers
self._num_classes_per_cat_input = num_classes
|
Calibrates scalers using the data supplied.
Args:
df: Data to use to calibrate scalers.
|
set_scalers
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/data_formatters/qlib_Alpha158.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/data_formatters/qlib_Alpha158.py
|
MIT
|
def transform_inputs(self, df):
"""Performs feature transformations.
This includes both feature engineering, preprocessing and normalisation.
Args:
df: Data frame to transform.
Returns:
Transformed data frame.
"""
output = df.copy()
if self._real_scalers is None and self._cat_scalers is None:
raise ValueError("Scalers have not been set!")
column_definitions = self.get_column_definition()
real_inputs = utils.extract_cols_from_data_type(
DataTypes.REAL_VALUED, column_definitions, {InputTypes.ID, InputTypes.TIME}
)
categorical_inputs = utils.extract_cols_from_data_type(
DataTypes.CATEGORICAL, column_definitions, {InputTypes.ID, InputTypes.TIME}
)
# Format real inputs
output[real_inputs] = self._real_scalers.transform(df[real_inputs].values)
# Format categorical inputs
for col in categorical_inputs:
string_df = df[col].apply(str)
output[col] = self._cat_scalers[col].transform(string_df)
return output
|
Performs feature transformations.
This includes both feature engineering, preprocessing and normalisation.
Args:
df: Data frame to transform.
Returns:
Transformed data frame.
|
transform_inputs
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/data_formatters/qlib_Alpha158.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/data_formatters/qlib_Alpha158.py
|
MIT
|
def format_predictions(self, predictions):
"""Reverts any normalisation to give predictions in original scale.
Args:
predictions: Dataframe of model predictions.
Returns:
Data frame of unnormalised predictions.
"""
output = predictions.copy()
column_names = predictions.columns
for col in column_names:
if col not in {"forecast_time", "identifier"}:
# Using [col] is for aligning with the format when fitting
output[col] = self._target_scaler.inverse_transform(predictions[[col]])
return output
|
Reverts any normalisation to give predictions in original scale.
Args:
predictions: Dataframe of model predictions.
Returns:
Data frame of unnormalised predictions.
|
format_predictions
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/data_formatters/qlib_Alpha158.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/data_formatters/qlib_Alpha158.py
|
MIT
|
def get_fixed_params(self):
"""Returns fixed model parameters for experiments."""
fixed_params = {
"total_time_steps": 6 + 6,
"num_encoder_steps": 6,
"num_epochs": 100,
"early_stopping_patience": 10,
"multiprocessing_workers": 5,
}
return fixed_params
|
Returns fixed model parameters for experiments.
|
get_fixed_params
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/data_formatters/qlib_Alpha158.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/data_formatters/qlib_Alpha158.py
|
MIT
|
def __init__(self, experiment="volatility", root_folder=None):
"""Creates configs based on default experiment chosen.
Args:
experiment: Name of experiment.
root_folder: Root folder to save all outputs of training.
"""
if experiment not in self.default_experiments:
raise ValueError("Unrecognised experiment={}".format(experiment))
# Defines all relevant paths
if root_folder is None:
root_folder = os.path.join(os.path.dirname(os.path.realpath(__file__)), "..", "outputs")
print("Using root folder {}".format(root_folder))
self.root_folder = root_folder
self.experiment = experiment
self.data_folder = os.path.join(root_folder, "data", experiment)
self.model_folder = os.path.join(root_folder, "saved_models", experiment)
self.results_folder = os.path.join(root_folder, "results", experiment)
# Creates folders if they don't exist
for relevant_directory in [self.root_folder, self.data_folder, self.model_folder, self.results_folder]:
if not os.path.exists(relevant_directory):
os.makedirs(relevant_directory)
|
Creates configs based on default experiment chosen.
Args:
experiment: Name of experiment.
root_folder: Root folder to save all outputs of training.
|
__init__
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/expt_settings/configs.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/expt_settings/configs.py
|
MIT
|
def make_data_formatter(self):
"""Gets a data formatter object for experiment.
Returns:
Default DataFormatter per experiment.
"""
data_formatter_class = {
"Alpha158": data_formatters.qlib_Alpha158.Alpha158Formatter,
}
return data_formatter_class[self.experiment]()
|
Gets a data formatter object for experiment.
Returns:
Default DataFormatter per experiment.
|
make_data_formatter
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/expt_settings/configs.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/expt_settings/configs.py
|
MIT
|
def __init__(self, param_ranges, fixed_params, model_folder, override_w_fixed_params=True):
"""Instantiates model.
Args:
param_ranges: Discrete hyperparameter range for random search.
fixed_params: Fixed model parameters per experiment.
model_folder: Folder to store optimisation artifacts.
override_w_fixed_params: Whether to override serialsed fixed model
parameters with new supplied values.
"""
self.param_ranges = param_ranges
self._max_tries = 1000
self.results = pd.DataFrame()
self.fixed_params = fixed_params
self.saved_params = pd.DataFrame()
self.best_score = np.Inf
self.optimal_name = ""
# Setup
# Create folder for saving if its not there
self.hyperparam_folder = model_folder
utils.create_folder_if_not_exist(self.hyperparam_folder)
self._override_w_fixed_params = override_w_fixed_params
|
Instantiates model.
Args:
param_ranges: Discrete hyperparameter range for random search.
fixed_params: Fixed model parameters per experiment.
model_folder: Folder to store optimisation artifacts.
override_w_fixed_params: Whether to override serialsed fixed model
parameters with new supplied values.
|
__init__
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/hyperparam_opt.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/hyperparam_opt.py
|
MIT
|
def load_results(self):
"""Loads results from previous hyperparameter optimisation.
Returns:
A boolean indicating if previous results can be loaded.
"""
print("Loading results from", self.hyperparam_folder)
results_file = os.path.join(self.hyperparam_folder, "results.csv")
params_file = os.path.join(self.hyperparam_folder, "params.csv")
if os.path.exists(results_file) and os.path.exists(params_file):
self.results = pd.read_csv(results_file, index_col=0)
self.saved_params = pd.read_csv(params_file, index_col=0)
if not self.results.empty:
self.results.at["loss"] = self.results.loc["loss"].apply(float)
self.best_score = self.results.loc["loss"].min()
is_optimal = self.results.loc["loss"] == self.best_score
self.optimal_name = self.results.T[is_optimal].index[0]
return True
return False
|
Loads results from previous hyperparameter optimisation.
Returns:
A boolean indicating if previous results can be loaded.
|
load_results
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/hyperparam_opt.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/hyperparam_opt.py
|
MIT
|
def _get_params_from_name(self, name):
"""Returns previously saved parameters given a key."""
params = self.saved_params
selected_params = dict(params[name])
if self._override_w_fixed_params:
for k in self.fixed_params:
selected_params[k] = self.fixed_params[k]
return selected_params
|
Returns previously saved parameters given a key.
|
_get_params_from_name
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/hyperparam_opt.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/hyperparam_opt.py
|
MIT
|
def clear(self):
"""Clears all previous results and saved parameters."""
shutil.rmtree(self.hyperparam_folder)
os.makedirs(self.hyperparam_folder)
self.results = pd.DataFrame()
self.saved_params = pd.DataFrame()
|
Clears all previous results and saved parameters.
|
clear
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/hyperparam_opt.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/hyperparam_opt.py
|
MIT
|
def _check_params(self, params):
"""Checks that parameter map is properly defined."""
valid_fields = list(self.param_ranges.keys()) + list(self.fixed_params.keys())
invalid_fields = [k for k in params if k not in valid_fields]
missing_fields = [k for k in valid_fields if k not in params]
if invalid_fields:
raise ValueError("Invalid Fields Found {} - Valid ones are {}".format(invalid_fields, valid_fields))
if missing_fields:
raise ValueError("Missing Fields Found {} - Valid ones are {}".format(missing_fields, valid_fields))
|
Checks that parameter map is properly defined.
|
_check_params
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/hyperparam_opt.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/hyperparam_opt.py
|
MIT
|
def _get_name(self, params):
"""Returns a unique key for the supplied set of params."""
self._check_params(params)
fields = list(params.keys())
fields.sort()
return "_".join([str(params[k]) for k in fields])
|
Returns a unique key for the supplied set of params.
|
_get_name
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/hyperparam_opt.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/hyperparam_opt.py
|
MIT
|
def get_next_parameters(self, ranges_to_skip=None):
"""Returns the next set of parameters to optimise.
Args:
ranges_to_skip: Explicitly defines a set of keys to skip.
"""
if ranges_to_skip is None:
ranges_to_skip = set(self.results.index)
if not isinstance(self.param_ranges, dict):
raise ValueError("Only works for random search!")
param_range_keys = list(self.param_ranges.keys())
param_range_keys.sort()
def _get_next():
"""Returns next hyperparameter set per try."""
parameters = {k: np.random.choice(self.param_ranges[k]) for k in param_range_keys}
# Adds fixed params
for k in self.fixed_params:
parameters[k] = self.fixed_params[k]
return parameters
for _ in range(self._max_tries):
parameters = _get_next()
name = self._get_name(parameters)
if name not in ranges_to_skip:
return parameters
raise ValueError("Exceeded max number of hyperparameter searches!!")
|
Returns the next set of parameters to optimise.
Args:
ranges_to_skip: Explicitly defines a set of keys to skip.
|
get_next_parameters
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/hyperparam_opt.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/hyperparam_opt.py
|
MIT
|
def _get_next():
"""Returns next hyperparameter set per try."""
parameters = {k: np.random.choice(self.param_ranges[k]) for k in param_range_keys}
# Adds fixed params
for k in self.fixed_params:
parameters[k] = self.fixed_params[k]
return parameters
|
Returns next hyperparameter set per try.
|
_get_next
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/hyperparam_opt.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/hyperparam_opt.py
|
MIT
|
def update_score(self, parameters, loss, model, info=""):
"""Updates the results from last optimisation run.
Args:
parameters: Hyperparameters used in optimisation.
loss: Validation loss obtained.
model: Model to serialised if required.
info: Any ancillary information to tag on to results.
Returns:
Boolean flag indicating if the model is the best seen so far.
"""
if np.isnan(loss):
loss = np.Inf
if not os.path.isdir(self.hyperparam_folder):
os.makedirs(self.hyperparam_folder)
name = self._get_name(parameters)
is_optimal = self.results.empty or loss < self.best_score
# save the first model
if is_optimal:
# Try saving first, before updating info
if model is not None:
print("Optimal model found, updating")
model.save(self.hyperparam_folder)
self.best_score = loss
self.optimal_name = name
self.results[name] = pd.Series({"loss": loss, "info": info})
self.saved_params[name] = pd.Series(parameters)
self.results.to_csv(os.path.join(self.hyperparam_folder, "results.csv"))
self.saved_params.to_csv(os.path.join(self.hyperparam_folder, "params.csv"))
return is_optimal
|
Updates the results from last optimisation run.
Args:
parameters: Hyperparameters used in optimisation.
loss: Validation loss obtained.
model: Model to serialised if required.
info: Any ancillary information to tag on to results.
Returns:
Boolean flag indicating if the model is the best seen so far.
|
update_score
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/hyperparam_opt.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/hyperparam_opt.py
|
MIT
|
def __init__(
self,
param_ranges,
fixed_params,
root_model_folder,
worker_number,
search_iterations=1000,
num_iterations_per_worker=5,
clear_serialised_params=False,
):
"""Instantiates optimisation manager.
This hyperparameter optimisation pre-generates #search_iterations
hyperparameter combinations and serialises them
at the start. At runtime, each worker goes through their own set of
parameter ranges. The pregeneration
allows for multiple workers to run in parallel on different machines without
resulting in parameter overlaps.
Args:
param_ranges: Discrete hyperparameter range for random search.
fixed_params: Fixed model parameters per experiment.
root_model_folder: Folder to store optimisation artifacts.
worker_number: Worker index defining which set of hyperparameters to
test.
search_iterations: Maximum number of random search iterations.
num_iterations_per_worker: How many iterations are handled per worker.
clear_serialised_params: Whether to regenerate hyperparameter
combinations.
"""
max_workers = int(np.ceil(search_iterations / num_iterations_per_worker))
# Sanity checks
if worker_number > max_workers:
raise ValueError(
"Worker number ({}) cannot be larger than the total number of workers!".format(max_workers)
)
if worker_number > search_iterations:
raise ValueError(
"Worker number ({}) cannot be larger than the max search iterations ({})!".format(
worker_number, search_iterations
)
)
print("*** Creating hyperparameter manager for worker {} ***".format(worker_number))
hyperparam_folder = os.path.join(root_model_folder, str(worker_number))
super().__init__(param_ranges, fixed_params, hyperparam_folder, override_w_fixed_params=True)
serialised_ranges_folder = os.path.join(root_model_folder, "hyperparams")
if clear_serialised_params:
print("Regenerating hyperparameter list")
if os.path.exists(serialised_ranges_folder):
shutil.rmtree(serialised_ranges_folder)
utils.create_folder_if_not_exist(serialised_ranges_folder)
self.serialised_ranges_path = os.path.join(serialised_ranges_folder, "ranges_{}.csv".format(search_iterations))
self.hyperparam_folder = hyperparam_folder # override
self.worker_num = worker_number
self.total_search_iterations = search_iterations
self.num_iterations_per_worker = num_iterations_per_worker
self.global_hyperparam_df = self.load_serialised_hyperparam_df()
self.worker_search_queue = self._get_worker_search_queue()
|
Instantiates optimisation manager.
This hyperparameter optimisation pre-generates #search_iterations
hyperparameter combinations and serialises them
at the start. At runtime, each worker goes through their own set of
parameter ranges. The pregeneration
allows for multiple workers to run in parallel on different machines without
resulting in parameter overlaps.
Args:
param_ranges: Discrete hyperparameter range for random search.
fixed_params: Fixed model parameters per experiment.
root_model_folder: Folder to store optimisation artifacts.
worker_number: Worker index defining which set of hyperparameters to
test.
search_iterations: Maximum number of random search iterations.
num_iterations_per_worker: How many iterations are handled per worker.
clear_serialised_params: Whether to regenerate hyperparameter
combinations.
|
__init__
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/hyperparam_opt.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/hyperparam_opt.py
|
MIT
|
def get_next_parameters(self):
"""Returns next dictionary of hyperparameters to optimise."""
param_name = self.worker_search_queue.pop()
params = self.global_hyperparam_df.loc[param_name, :].to_dict()
# Always override!
for k in self.fixed_params:
print("Overriding saved {}: {}".format(k, self.fixed_params[k]))
params[k] = self.fixed_params[k]
return params
|
Returns next dictionary of hyperparameters to optimise.
|
get_next_parameters
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/hyperparam_opt.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/hyperparam_opt.py
|
MIT
|
def load_serialised_hyperparam_df(self):
"""Loads serialsed hyperparameter ranges from file.
Returns:
DataFrame containing hyperparameter combinations.
"""
print(
"Loading params for {} search iterations form {}".format(
self.total_search_iterations, self.serialised_ranges_path
)
)
if os.path.exists(self.serialised_ranges_folder):
df = pd.read_csv(self.serialised_ranges_path, index_col=0)
else:
print("Unable to load - regenerating search ranges instead")
df = self.update_serialised_hyperparam_df()
return df
|
Loads serialsed hyperparameter ranges from file.
Returns:
DataFrame containing hyperparameter combinations.
|
load_serialised_hyperparam_df
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/hyperparam_opt.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/hyperparam_opt.py
|
MIT
|
def update_serialised_hyperparam_df(self):
"""Regenerates hyperparameter combinations and saves to file.
Returns:
DataFrame containing hyperparameter combinations.
"""
search_df = self._generate_full_hyperparam_df()
print(
"Serialising params for {} search iterations to {}".format(
self.total_search_iterations, self.serialised_ranges_path
)
)
search_df.to_csv(self.serialised_ranges_path)
return search_df
|
Regenerates hyperparameter combinations and saves to file.
Returns:
DataFrame containing hyperparameter combinations.
|
update_serialised_hyperparam_df
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/hyperparam_opt.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/hyperparam_opt.py
|
MIT
|
def _generate_full_hyperparam_df(self):
"""Generates actual hyperparameter combinations.
Returns:
DataFrame containing hyperparameter combinations.
"""
np.random.seed(131) # for reproducibility of hyperparam list
name_list = []
param_list = []
for _ in range(self.total_search_iterations):
params = super().get_next_parameters(name_list)
name = self._get_name(params)
name_list.append(name)
param_list.append(params)
full_search_df = pd.DataFrame(param_list, index=name_list)
return full_search_df
|
Generates actual hyperparameter combinations.
Returns:
DataFrame containing hyperparameter combinations.
|
_generate_full_hyperparam_df
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/hyperparam_opt.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/hyperparam_opt.py
|
MIT
|
def clear(self): # reset when cleared
"""Clears results for hyperparameter manager and resets."""
super().clear()
self.worker_search_queue = self._get_worker_search_queue()
|
Clears results for hyperparameter manager and resets.
|
clear
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/hyperparam_opt.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/hyperparam_opt.py
|
MIT
|
def load_results(self):
"""Load results from file and queue parameter combinations to try.
Returns:
Boolean indicating if results were successfully loaded.
"""
success = super().load_results()
if success:
self.worker_search_queue = self._get_worker_search_queue()
return success
|
Load results from file and queue parameter combinations to try.
Returns:
Boolean indicating if results were successfully loaded.
|
load_results
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/hyperparam_opt.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/hyperparam_opt.py
|
MIT
|
def _get_worker_search_queue(self):
"""Generates the queue of param combinations for current worker.
Returns:
Queue of hyperparameter combinations outstanding.
"""
global_df = self.assign_worker_numbers(self.global_hyperparam_df)
worker_df = global_df[global_df["worker"] == self.worker_num]
left_overs = [s for s in worker_df.index if s not in self.results.columns]
return Deque(left_overs)
|
Generates the queue of param combinations for current worker.
Returns:
Queue of hyperparameter combinations outstanding.
|
_get_worker_search_queue
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/hyperparam_opt.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/hyperparam_opt.py
|
MIT
|
def assign_worker_numbers(self, df):
"""Updates parameter combinations with the index of the worker used.
Args:
df: DataFrame of parameter combinations.
Returns:
Updated DataFrame with worker number.
"""
output = df.copy()
n = self.total_search_iterations
batch_size = self.num_iterations_per_worker
max_worker_num = int(np.ceil(n / batch_size))
worker_idx = np.concatenate([np.tile(i + 1, self.num_iterations_per_worker) for i in range(max_worker_num)])
output["worker"] = worker_idx[: len(output)]
return output
|
Updates parameter combinations with the index of the worker used.
Args:
df: DataFrame of parameter combinations.
Returns:
Updated DataFrame with worker number.
|
assign_worker_numbers
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/hyperparam_opt.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/hyperparam_opt.py
|
MIT
|
def linear_layer(size, activation=None, use_time_distributed=False, use_bias=True):
"""Returns simple Keras linear layer.
Args:
size: Output size
activation: Activation function to apply if required
use_time_distributed: Whether to apply layer across time
use_bias: Whether bias should be included in layer
"""
linear = tf.keras.layers.Dense(size, activation=activation, use_bias=use_bias)
if use_time_distributed:
linear = tf.keras.layers.TimeDistributed(linear)
return linear
|
Returns simple Keras linear layer.
Args:
size: Output size
activation: Activation function to apply if required
use_time_distributed: Whether to apply layer across time
use_bias: Whether bias should be included in layer
|
linear_layer
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/tft_model.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
|
MIT
|
def apply_mlp(
inputs, hidden_size, output_size, output_activation=None, hidden_activation="tanh", use_time_distributed=False
):
"""Applies simple feed-forward network to an input.
Args:
inputs: MLP inputs
hidden_size: Hidden state size
output_size: Output size of MLP
output_activation: Activation function to apply on output
hidden_activation: Activation function to apply on input
use_time_distributed: Whether to apply across time
Returns:
Tensor for MLP outputs.
"""
if use_time_distributed:
hidden = tf.keras.layers.TimeDistributed(tf.keras.layers.Dense(hidden_size, activation=hidden_activation))(
inputs
)
return tf.keras.layers.TimeDistributed(tf.keras.layers.Dense(output_size, activation=output_activation))(hidden)
else:
hidden = tf.keras.layers.Dense(hidden_size, activation=hidden_activation)(inputs)
return tf.keras.layers.Dense(output_size, activation=output_activation)(hidden)
|
Applies simple feed-forward network to an input.
Args:
inputs: MLP inputs
hidden_size: Hidden state size
output_size: Output size of MLP
output_activation: Activation function to apply on output
hidden_activation: Activation function to apply on input
use_time_distributed: Whether to apply across time
Returns:
Tensor for MLP outputs.
|
apply_mlp
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/tft_model.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
|
MIT
|
def apply_gating_layer(x, hidden_layer_size, dropout_rate=None, use_time_distributed=True, activation=None):
"""Applies a Gated Linear Unit (GLU) to an input.
Args:
x: Input to gating layer
hidden_layer_size: Dimension of GLU
dropout_rate: Dropout rate to apply if any
use_time_distributed: Whether to apply across time
activation: Activation function to apply to the linear feature transform if
necessary
Returns:
Tuple of tensors for: (GLU output, gate)
"""
if dropout_rate is not None:
x = tf.keras.layers.Dropout(dropout_rate)(x)
if use_time_distributed:
activation_layer = tf.keras.layers.TimeDistributed(
tf.keras.layers.Dense(hidden_layer_size, activation=activation)
)(x)
gated_layer = tf.keras.layers.TimeDistributed(tf.keras.layers.Dense(hidden_layer_size, activation="sigmoid"))(x)
else:
activation_layer = tf.keras.layers.Dense(hidden_layer_size, activation=activation)(x)
gated_layer = tf.keras.layers.Dense(hidden_layer_size, activation="sigmoid")(x)
return tf.keras.layers.Multiply()([activation_layer, gated_layer]), gated_layer
|
Applies a Gated Linear Unit (GLU) to an input.
Args:
x: Input to gating layer
hidden_layer_size: Dimension of GLU
dropout_rate: Dropout rate to apply if any
use_time_distributed: Whether to apply across time
activation: Activation function to apply to the linear feature transform if
necessary
Returns:
Tuple of tensors for: (GLU output, gate)
|
apply_gating_layer
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/tft_model.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
|
MIT
|
def add_and_norm(x_list):
"""Applies skip connection followed by layer normalisation.
Args:
x_list: List of inputs to sum for skip connection
Returns:
Tensor output from layer.
"""
tmp = Add()(x_list)
tmp = LayerNorm()(tmp)
return tmp
|
Applies skip connection followed by layer normalisation.
Args:
x_list: List of inputs to sum for skip connection
Returns:
Tensor output from layer.
|
add_and_norm
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/tft_model.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
|
MIT
|
def gated_residual_network(
x,
hidden_layer_size,
output_size=None,
dropout_rate=None,
use_time_distributed=True,
additional_context=None,
return_gate=False,
):
"""Applies the gated residual network (GRN) as defined in paper.
Args:
x: Network inputs
hidden_layer_size: Internal state size
output_size: Size of output layer
dropout_rate: Dropout rate if dropout is applied
use_time_distributed: Whether to apply network across time dimension
additional_context: Additional context vector to use if relevant
return_gate: Whether to return GLU gate for diagnostic purposes
Returns:
Tuple of tensors for: (GRN output, GLU gate)
"""
# Setup skip connection
if output_size is None:
output_size = hidden_layer_size
skip = x
else:
linear = Dense(output_size)
if use_time_distributed:
linear = tf.keras.layers.TimeDistributed(linear)
skip = linear(x)
# Apply feedforward network
hidden = linear_layer(hidden_layer_size, activation=None, use_time_distributed=use_time_distributed)(x)
if additional_context is not None:
hidden = hidden + linear_layer(
hidden_layer_size, activation=None, use_time_distributed=use_time_distributed, use_bias=False
)(additional_context)
hidden = tf.keras.layers.Activation("elu")(hidden)
hidden = linear_layer(hidden_layer_size, activation=None, use_time_distributed=use_time_distributed)(hidden)
gating_layer, gate = apply_gating_layer(
hidden, output_size, dropout_rate=dropout_rate, use_time_distributed=use_time_distributed, activation=None
)
if return_gate:
return add_and_norm([skip, gating_layer]), gate
else:
return add_and_norm([skip, gating_layer])
|
Applies the gated residual network (GRN) as defined in paper.
Args:
x: Network inputs
hidden_layer_size: Internal state size
output_size: Size of output layer
dropout_rate: Dropout rate if dropout is applied
use_time_distributed: Whether to apply network across time dimension
additional_context: Additional context vector to use if relevant
return_gate: Whether to return GLU gate for diagnostic purposes
Returns:
Tuple of tensors for: (GRN output, GLU gate)
|
gated_residual_network
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/tft_model.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
|
MIT
|
def get_decoder_mask(self_attn_inputs):
"""Returns causal mask to apply for self-attention layer.
Args:
self_attn_inputs: Inputs to self attention layer to determine mask shape
"""
len_s = tf.shape(self_attn_inputs)[1]
bs = tf.shape(self_attn_inputs)[:1]
mask = K.cumsum(tf.eye(len_s, batch_shape=bs), 1)
return mask
|
Returns causal mask to apply for self-attention layer.
Args:
self_attn_inputs: Inputs to self attention layer to determine mask shape
|
get_decoder_mask
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/tft_model.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
|
MIT
|
def __call__(self, q, k, v, mask):
"""Applies scaled dot product attention.
Args:
q: Queries
k: Keys
v: Values
mask: Masking if required -- sets softmax to very large value
Returns:
Tuple of (layer outputs, attention weights)
"""
temper = tf.sqrt(tf.cast(tf.shape(k)[-1], dtype="float32"))
attn = Lambda(lambda x: K.batch_dot(x[0], x[1], axes=[2, 2]) / temper)([q, k]) # shape=(batch, q, k)
if mask is not None:
mmask = Lambda(lambda x: (-1e9) * (1.0 - K.cast(x, "float32")))(mask) # setting to infinity
attn = Add()([attn, mmask])
attn = self.activation(attn)
attn = self.dropout(attn)
output = Lambda(lambda x: K.batch_dot(x[0], x[1]))([attn, v])
return output, attn
|
Applies scaled dot product attention.
Args:
q: Queries
k: Keys
v: Values
mask: Masking if required -- sets softmax to very large value
Returns:
Tuple of (layer outputs, attention weights)
|
__call__
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/tft_model.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
|
MIT
|
def __init__(self, n_head, d_model, dropout):
"""Initialises layer.
Args:
n_head: Number of heads
d_model: TFT state dimensionality
dropout: Dropout discard rate
"""
self.n_head = n_head
self.d_k = self.d_v = d_k = d_v = d_model // n_head
self.dropout = dropout
self.qs_layers = []
self.ks_layers = []
self.vs_layers = []
# Use same value layer to facilitate interp
vs_layer = Dense(d_v, use_bias=False)
for _ in range(n_head):
self.qs_layers.append(Dense(d_k, use_bias=False))
self.ks_layers.append(Dense(d_k, use_bias=False))
self.vs_layers.append(vs_layer) # use same vs_layer
self.attention = ScaledDotProductAttention()
self.w_o = Dense(d_model, use_bias=False)
|
Initialises layer.
Args:
n_head: Number of heads
d_model: TFT state dimensionality
dropout: Dropout discard rate
|
__init__
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/tft_model.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
|
MIT
|
def __call__(self, q, k, v, mask=None):
"""Applies interpretable multihead attention.
Using T to denote the number of time steps fed into the transformer.
Args:
q: Query tensor of shape=(?, T, d_model)
k: Key of shape=(?, T, d_model)
v: Values of shape=(?, T, d_model)
mask: Masking if required with shape=(?, T, T)
Returns:
Tuple of (layer outputs, attention weights)
"""
n_head = self.n_head
heads = []
attns = []
for i in range(n_head):
qs = self.qs_layers[i](q)
ks = self.ks_layers[i](k)
vs = self.vs_layers[i](v)
head, attn = self.attention(qs, ks, vs, mask)
head_dropout = Dropout(self.dropout)(head)
heads.append(head_dropout)
attns.append(attn)
head = K.stack(heads) if n_head > 1 else heads[0]
attn = K.stack(attns)
outputs = K.mean(head, axis=0) if n_head > 1 else head
outputs = self.w_o(outputs)
outputs = Dropout(self.dropout)(outputs) # output dropout
return outputs, attn
|
Applies interpretable multihead attention.
Using T to denote the number of time steps fed into the transformer.
Args:
q: Query tensor of shape=(?, T, d_model)
k: Key of shape=(?, T, d_model)
v: Values of shape=(?, T, d_model)
mask: Masking if required with shape=(?, T, T)
Returns:
Tuple of (layer outputs, attention weights)
|
__call__
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/tft_model.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
|
MIT
|
def __init__(self, raw_params, use_cudnn=False):
"""Builds TFT from parameters.
Args:
raw_params: Parameters to define TFT
use_cudnn: Whether to use CUDNN GPU optimised LSTM
"""
self.name = self.__class__.__name__
params = dict(raw_params) # copy locally
# Data parameters
self.time_steps = int(params["total_time_steps"])
self.input_size = int(params["input_size"])
self.output_size = int(params["output_size"])
self.category_counts = json.loads(str(params["category_counts"]))
self.n_multiprocessing_workers = int(params["multiprocessing_workers"])
# Relevant indices for TFT
self._input_obs_loc = json.loads(str(params["input_obs_loc"]))
self._static_input_loc = json.loads(str(params["static_input_loc"]))
self._known_regular_input_idx = json.loads(str(params["known_regular_inputs"]))
self._known_categorical_input_idx = json.loads(str(params["known_categorical_inputs"]))
self.column_definition = params["column_definition"]
# Network params
self.quantiles = [0.1, 0.5, 0.9]
self.use_cudnn = use_cudnn # Whether to use GPU optimised LSTM
self.hidden_layer_size = int(params["hidden_layer_size"])
self.dropout_rate = float(params["dropout_rate"])
self.max_gradient_norm = float(params["max_gradient_norm"])
self.learning_rate = float(params["learning_rate"])
self.minibatch_size = int(params["minibatch_size"])
self.num_epochs = int(params["num_epochs"])
self.early_stopping_patience = int(params["early_stopping_patience"])
self.num_encoder_steps = int(params["num_encoder_steps"])
self.num_stacks = int(params["stack_size"])
self.num_heads = int(params["num_heads"])
# Serialisation options
self._temp_folder = os.path.join(params["model_folder"], "tmp")
self.reset_temp_folder()
# Extra components to store Tensorflow nodes for attention computations
self._input_placeholder = None
self._attention_components = None
self._prediction_parts = None
print("*** {} params ***".format(self.name))
for k in params:
print("# {} = {}".format(k, params[k]))
# Build model
self.model = self.build_model()
|
Builds TFT from parameters.
Args:
raw_params: Parameters to define TFT
use_cudnn: Whether to use CUDNN GPU optimised LSTM
|
__init__
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/tft_model.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
|
MIT
|
def get_tft_embeddings(self, all_inputs):
"""Transforms raw inputs to embeddings.
Applies linear transformation onto continuous variables and uses embeddings
for categorical variables.
Args:
all_inputs: Inputs to transform
Returns:
Tensors for transformed inputs.
"""
time_steps = self.time_steps
# Sanity checks
for i in self._known_regular_input_idx:
if i in self._input_obs_loc:
raise ValueError("Observation cannot be known a priori!")
for i in self._input_obs_loc:
if i in self._static_input_loc:
raise ValueError("Observation cannot be static!")
if all_inputs.get_shape().as_list()[-1] != self.input_size:
raise ValueError(
"Illegal number of inputs! Inputs observed={}, expected={}".format(
all_inputs.get_shape().as_list()[-1], self.input_size
)
)
num_categorical_variables = len(self.category_counts)
num_regular_variables = self.input_size - num_categorical_variables
embedding_sizes = [self.hidden_layer_size for i, size in enumerate(self.category_counts)]
embeddings = []
for i in range(num_categorical_variables):
embedding = tf.keras.Sequential(
[
tf.keras.layers.InputLayer([time_steps]),
tf.keras.layers.Embedding(
self.category_counts[i], embedding_sizes[i], input_length=time_steps, dtype=tf.float32
),
]
)
embeddings.append(embedding)
regular_inputs, categorical_inputs = (
all_inputs[:, :, :num_regular_variables],
all_inputs[:, :, num_regular_variables:],
)
embedded_inputs = [embeddings[i](categorical_inputs[Ellipsis, i]) for i in range(num_categorical_variables)]
# Static inputs
if self._static_input_loc:
static_inputs = [
tf.keras.layers.Dense(self.hidden_layer_size)(regular_inputs[:, 0, i : i + 1])
for i in range(num_regular_variables)
if i in self._static_input_loc
] + [
embedded_inputs[i][:, 0, :]
for i in range(num_categorical_variables)
if i + num_regular_variables in self._static_input_loc
]
static_inputs = tf.keras.backend.stack(static_inputs, axis=1)
else:
static_inputs = None
def convert_real_to_embedding(x):
"""Applies linear transformation for time-varying inputs."""
return tf.keras.layers.TimeDistributed(tf.keras.layers.Dense(self.hidden_layer_size))(x)
# Targets
obs_inputs = tf.keras.backend.stack(
[convert_real_to_embedding(regular_inputs[Ellipsis, i : i + 1]) for i in self._input_obs_loc], axis=-1
)
# Observed (a prioir unknown) inputs
wired_embeddings = []
for i in range(num_categorical_variables):
if i not in self._known_categorical_input_idx and i + num_regular_variables not in self._input_obs_loc:
e = embeddings[i](categorical_inputs[:, :, i])
wired_embeddings.append(e)
unknown_inputs = []
for i in range(regular_inputs.shape[-1]):
if i not in self._known_regular_input_idx and i not in self._input_obs_loc:
e = convert_real_to_embedding(regular_inputs[Ellipsis, i : i + 1])
unknown_inputs.append(e)
if unknown_inputs + wired_embeddings:
unknown_inputs = tf.keras.backend.stack(unknown_inputs + wired_embeddings, axis=-1)
else:
unknown_inputs = None
# A priori known inputs
known_regular_inputs = [
convert_real_to_embedding(regular_inputs[Ellipsis, i : i + 1])
for i in self._known_regular_input_idx
if i not in self._static_input_loc
]
known_categorical_inputs = [
embedded_inputs[i]
for i in self._known_categorical_input_idx
if i + num_regular_variables not in self._static_input_loc
]
known_combined_layer = tf.keras.backend.stack(known_regular_inputs + known_categorical_inputs, axis=-1)
return unknown_inputs, known_combined_layer, obs_inputs, static_inputs
|
Transforms raw inputs to embeddings.
Applies linear transformation onto continuous variables and uses embeddings
for categorical variables.
Args:
all_inputs: Inputs to transform
Returns:
Tensors for transformed inputs.
|
get_tft_embeddings
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/tft_model.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
|
MIT
|
def cache_batched_data(self, data, cache_key, num_samples=-1):
"""Batches and caches data once for using during training.
Args:
data: Data to batch and cache
cache_key: Key used for cache
num_samples: Maximum number of samples to extract (-1 to use all data)
"""
if num_samples > 0:
TFTDataCache.update(self._batch_sampled_data(data, max_samples=num_samples), cache_key)
else:
TFTDataCache.update(self._batch_data(data), cache_key)
print('Cached data "{}" updated'.format(cache_key))
|
Batches and caches data once for using during training.
Args:
data: Data to batch and cache
cache_key: Key used for cache
num_samples: Maximum number of samples to extract (-1 to use all data)
|
cache_batched_data
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/tft_model.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
|
MIT
|
def _batch_sampled_data(self, data, max_samples):
"""Samples segments into a compatible format.
Args:
data: Sources data to sample and batch
max_samples: Maximum number of samples in batch
Returns:
Dictionary of batched data with the maximum samples specified.
"""
if max_samples < 1:
raise ValueError("Illegal number of samples specified! samples={}".format(max_samples))
id_col = self._get_single_col_by_type(InputTypes.ID)
time_col = self._get_single_col_by_type(InputTypes.TIME)
data.sort_values(by=[id_col, time_col], inplace=True)
print("Getting valid sampling locations.")
valid_sampling_locations = []
split_data_map = {}
for identifier, df in data.groupby(id_col, group_key=False):
print("Getting locations for {}".format(identifier))
num_entries = len(df)
if num_entries >= self.time_steps:
valid_sampling_locations += [
(identifier, self.time_steps + i) for i in range(num_entries - self.time_steps + 1)
]
split_data_map[identifier] = df
inputs = np.zeros((max_samples, self.time_steps, self.input_size))
outputs = np.zeros((max_samples, self.time_steps, self.output_size))
time = np.empty((max_samples, self.time_steps, 1), dtype=object)
identifiers = np.empty((max_samples, self.time_steps, 1), dtype=object)
if max_samples > 0 and len(valid_sampling_locations) > max_samples:
print("Extracting {} samples...".format(max_samples))
ranges = [
valid_sampling_locations[i]
for i in np.random.choice(len(valid_sampling_locations), max_samples, replace=False)
]
else:
print("Max samples={} exceeds # available segments={}".format(max_samples, len(valid_sampling_locations)))
ranges = valid_sampling_locations
id_col = self._get_single_col_by_type(InputTypes.ID)
time_col = self._get_single_col_by_type(InputTypes.TIME)
target_col = self._get_single_col_by_type(InputTypes.TARGET)
input_cols = [tup[0] for tup in self.column_definition if tup[2] not in {InputTypes.ID, InputTypes.TIME}]
for i, tup in enumerate(ranges):
if (i + 1 % 1000) == 0:
print(i + 1, "of", max_samples, "samples done...")
identifier, start_idx = tup
sliced = split_data_map[identifier].iloc[start_idx - self.time_steps : start_idx]
inputs[i, :, :] = sliced[input_cols]
outputs[i, :, :] = sliced[[target_col]]
time[i, :, 0] = sliced[time_col]
identifiers[i, :, 0] = sliced[id_col]
sampled_data = {
"inputs": inputs,
"outputs": outputs[:, self.num_encoder_steps :, :],
"active_entries": np.ones_like(outputs[:, self.num_encoder_steps :, :]),
"time": time,
"identifier": identifiers,
}
return sampled_data
|
Samples segments into a compatible format.
Args:
data: Sources data to sample and batch
max_samples: Maximum number of samples in batch
Returns:
Dictionary of batched data with the maximum samples specified.
|
_batch_sampled_data
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/tft_model.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
|
MIT
|
def _batch_data(self, data):
"""Batches data for training.
Converts raw dataframe from a 2-D tabular format to a batched 3-D array
to feed into Keras model.
Args:
data: DataFrame to batch
Returns:
Batched Numpy array with shape=(?, self.time_steps, self.input_size)
"""
# Functions.
def _batch_single_entity(input_data):
time_steps = len(input_data)
lags = self.time_steps
x = input_data.values
if time_steps >= lags:
return np.stack([x[i : time_steps - (lags - 1) + i, :] for i in range(lags)], axis=1)
else:
return None
id_col = self._get_single_col_by_type(InputTypes.ID)
time_col = self._get_single_col_by_type(InputTypes.TIME)
target_col = self._get_single_col_by_type(InputTypes.TARGET)
input_cols = [tup[0] for tup in self.column_definition if tup[2] not in {InputTypes.ID, InputTypes.TIME}]
data_map = {}
for _, sliced in data.groupby(id_col, group_keys=False):
col_mappings = {"identifier": [id_col], "time": [time_col], "outputs": [target_col], "inputs": input_cols}
for k in col_mappings:
cols = col_mappings[k]
arr = _batch_single_entity(sliced[cols].copy())
if k not in data_map:
data_map[k] = [arr]
else:
data_map[k].append(arr)
# Combine all data
for k in data_map:
# Wendi: Avoid returning None when the length is not enough
data_map[k] = np.concatenate([i for i in data_map[k] if i is not None], axis=0)
# Shorten target so we only get decoder steps
data_map["outputs"] = data_map["outputs"][:, self.num_encoder_steps :, :]
active_entries = np.ones_like(data_map["outputs"])
if "active_entries" not in data_map:
data_map["active_entries"] = active_entries
else:
data_map["active_entries"].append(active_entries)
return data_map
|
Batches data for training.
Converts raw dataframe from a 2-D tabular format to a batched 3-D array
to feed into Keras model.
Args:
data: DataFrame to batch
Returns:
Batched Numpy array with shape=(?, self.time_steps, self.input_size)
|
_batch_data
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/tft_model.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
|
MIT
|
def _build_base_graph(self):
"""Returns graph defining layers of the TFT."""
# Size definitions.
time_steps = self.time_steps
combined_input_size = self.input_size
encoder_steps = self.num_encoder_steps
# Inputs.
all_inputs = tf.keras.layers.Input(
shape=(
time_steps,
combined_input_size,
)
)
unknown_inputs, known_combined_layer, obs_inputs, static_inputs = self.get_tft_embeddings(all_inputs)
# Isolate known and observed historical inputs.
if unknown_inputs is not None:
historical_inputs = concat(
[
unknown_inputs[:, :encoder_steps, :],
known_combined_layer[:, :encoder_steps, :],
obs_inputs[:, :encoder_steps, :],
],
axis=-1,
)
else:
historical_inputs = concat(
[known_combined_layer[:, :encoder_steps, :], obs_inputs[:, :encoder_steps, :]], axis=-1
)
# Isolate only known future inputs.
future_inputs = known_combined_layer[:, encoder_steps:, :]
def static_combine_and_mask(embedding):
"""Applies variable selection network to static inputs.
Args:
embedding: Transformed static inputs
Returns:
Tensor output for variable selection network
"""
# Add temporal features
_, num_static, _ = embedding.get_shape().as_list()
flatten = tf.keras.layers.Flatten()(embedding)
# Nonlinear transformation with gated residual network.
mlp_outputs = gated_residual_network(
flatten,
self.hidden_layer_size,
output_size=num_static,
dropout_rate=self.dropout_rate,
use_time_distributed=False,
additional_context=None,
)
sparse_weights = tf.keras.layers.Activation("softmax")(mlp_outputs)
sparse_weights = K.expand_dims(sparse_weights, axis=-1)
trans_emb_list = []
for i in range(num_static):
e = gated_residual_network(
embedding[:, i : i + 1, :],
self.hidden_layer_size,
dropout_rate=self.dropout_rate,
use_time_distributed=False,
)
trans_emb_list.append(e)
transformed_embedding = concat(trans_emb_list, axis=1)
combined = tf.keras.layers.Multiply()([sparse_weights, transformed_embedding])
static_vec = K.sum(combined, axis=1)
return static_vec, sparse_weights
static_encoder, static_weights = static_combine_and_mask(static_inputs)
static_context_variable_selection = gated_residual_network(
static_encoder, self.hidden_layer_size, dropout_rate=self.dropout_rate, use_time_distributed=False
)
static_context_enrichment = gated_residual_network(
static_encoder, self.hidden_layer_size, dropout_rate=self.dropout_rate, use_time_distributed=False
)
static_context_state_h = gated_residual_network(
static_encoder, self.hidden_layer_size, dropout_rate=self.dropout_rate, use_time_distributed=False
)
static_context_state_c = gated_residual_network(
static_encoder, self.hidden_layer_size, dropout_rate=self.dropout_rate, use_time_distributed=False
)
def lstm_combine_and_mask(embedding):
"""Apply temporal variable selection networks.
Args:
embedding: Transformed inputs.
Returns:
Processed tensor outputs.
"""
# Add temporal features
_, time_steps, embedding_dim, num_inputs = embedding.get_shape().as_list()
flatten = K.reshape(embedding, [-1, time_steps, embedding_dim * num_inputs])
expanded_static_context = K.expand_dims(static_context_variable_selection, axis=1)
# Variable selection weights
mlp_outputs, static_gate = gated_residual_network(
flatten,
self.hidden_layer_size,
output_size=num_inputs,
dropout_rate=self.dropout_rate,
use_time_distributed=True,
additional_context=expanded_static_context,
return_gate=True,
)
sparse_weights = tf.keras.layers.Activation("softmax")(mlp_outputs)
sparse_weights = tf.expand_dims(sparse_weights, axis=2)
# Non-linear Processing & weight application
trans_emb_list = []
for i in range(num_inputs):
grn_output = gated_residual_network(
embedding[Ellipsis, i],
self.hidden_layer_size,
dropout_rate=self.dropout_rate,
use_time_distributed=True,
)
trans_emb_list.append(grn_output)
transformed_embedding = stack(trans_emb_list, axis=-1)
combined = tf.keras.layers.Multiply()([sparse_weights, transformed_embedding])
temporal_ctx = K.sum(combined, axis=-1)
return temporal_ctx, sparse_weights, static_gate
historical_features, historical_flags, _ = lstm_combine_and_mask(historical_inputs)
future_features, future_flags, _ = lstm_combine_and_mask(future_inputs)
# LSTM layer
def get_lstm(return_state):
"""Returns LSTM cell initialized with default parameters."""
if self.use_cudnn:
lstm = tf.keras.layers.CuDNNLSTM(
self.hidden_layer_size,
return_sequences=True,
return_state=return_state,
stateful=False,
)
else:
lstm = tf.keras.layers.LSTM(
self.hidden_layer_size,
return_sequences=True,
return_state=return_state,
stateful=False,
# Additional params to ensure LSTM matches CuDNN, See TF 2.0 :
# (https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM)
activation="tanh",
recurrent_activation="sigmoid",
recurrent_dropout=0,
unroll=False,
use_bias=True,
)
return lstm
history_lstm, state_h, state_c = get_lstm(return_state=True)(
historical_features, initial_state=[static_context_state_h, static_context_state_c]
)
future_lstm = get_lstm(return_state=False)(future_features, initial_state=[state_h, state_c])
lstm_layer = concat([history_lstm, future_lstm], axis=1)
# Apply gated skip connection
input_embeddings = concat([historical_features, future_features], axis=1)
lstm_layer, _ = apply_gating_layer(lstm_layer, self.hidden_layer_size, self.dropout_rate, activation=None)
temporal_feature_layer = add_and_norm([lstm_layer, input_embeddings])
# Static enrichment layers
expanded_static_context = K.expand_dims(static_context_enrichment, axis=1)
enriched, _ = gated_residual_network(
temporal_feature_layer,
self.hidden_layer_size,
dropout_rate=self.dropout_rate,
use_time_distributed=True,
additional_context=expanded_static_context,
return_gate=True,
)
# Decoder self attention
self_attn_layer = InterpretableMultiHeadAttention(
self.num_heads, self.hidden_layer_size, dropout=self.dropout_rate
)
mask = get_decoder_mask(enriched)
x, self_att = self_attn_layer(enriched, enriched, enriched, mask=mask)
x, _ = apply_gating_layer(x, self.hidden_layer_size, dropout_rate=self.dropout_rate, activation=None)
x = add_and_norm([x, enriched])
# Nonlinear processing on outputs
decoder = gated_residual_network(
x, self.hidden_layer_size, dropout_rate=self.dropout_rate, use_time_distributed=True
)
# Final skip connection
decoder, _ = apply_gating_layer(decoder, self.hidden_layer_size, activation=None)
transformer_layer = add_and_norm([decoder, temporal_feature_layer])
# Attention components for explainability
attention_components = {
# Temporal attention weights
"decoder_self_attn": self_att,
# Static variable selection weights
"static_flags": static_weights[Ellipsis, 0],
# Variable selection weights of past inputs
"historical_flags": historical_flags[Ellipsis, 0, :],
# Variable selection weights of future inputs
"future_flags": future_flags[Ellipsis, 0, :],
}
return transformer_layer, all_inputs, attention_components
|
Returns graph defining layers of the TFT.
|
_build_base_graph
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/tft_model.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
|
MIT
|
def static_combine_and_mask(embedding):
"""Applies variable selection network to static inputs.
Args:
embedding: Transformed static inputs
Returns:
Tensor output for variable selection network
"""
# Add temporal features
_, num_static, _ = embedding.get_shape().as_list()
flatten = tf.keras.layers.Flatten()(embedding)
# Nonlinear transformation with gated residual network.
mlp_outputs = gated_residual_network(
flatten,
self.hidden_layer_size,
output_size=num_static,
dropout_rate=self.dropout_rate,
use_time_distributed=False,
additional_context=None,
)
sparse_weights = tf.keras.layers.Activation("softmax")(mlp_outputs)
sparse_weights = K.expand_dims(sparse_weights, axis=-1)
trans_emb_list = []
for i in range(num_static):
e = gated_residual_network(
embedding[:, i : i + 1, :],
self.hidden_layer_size,
dropout_rate=self.dropout_rate,
use_time_distributed=False,
)
trans_emb_list.append(e)
transformed_embedding = concat(trans_emb_list, axis=1)
combined = tf.keras.layers.Multiply()([sparse_weights, transformed_embedding])
static_vec = K.sum(combined, axis=1)
return static_vec, sparse_weights
|
Applies variable selection network to static inputs.
Args:
embedding: Transformed static inputs
Returns:
Tensor output for variable selection network
|
static_combine_and_mask
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/tft_model.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
|
MIT
|
def lstm_combine_and_mask(embedding):
"""Apply temporal variable selection networks.
Args:
embedding: Transformed inputs.
Returns:
Processed tensor outputs.
"""
# Add temporal features
_, time_steps, embedding_dim, num_inputs = embedding.get_shape().as_list()
flatten = K.reshape(embedding, [-1, time_steps, embedding_dim * num_inputs])
expanded_static_context = K.expand_dims(static_context_variable_selection, axis=1)
# Variable selection weights
mlp_outputs, static_gate = gated_residual_network(
flatten,
self.hidden_layer_size,
output_size=num_inputs,
dropout_rate=self.dropout_rate,
use_time_distributed=True,
additional_context=expanded_static_context,
return_gate=True,
)
sparse_weights = tf.keras.layers.Activation("softmax")(mlp_outputs)
sparse_weights = tf.expand_dims(sparse_weights, axis=2)
# Non-linear Processing & weight application
trans_emb_list = []
for i in range(num_inputs):
grn_output = gated_residual_network(
embedding[Ellipsis, i],
self.hidden_layer_size,
dropout_rate=self.dropout_rate,
use_time_distributed=True,
)
trans_emb_list.append(grn_output)
transformed_embedding = stack(trans_emb_list, axis=-1)
combined = tf.keras.layers.Multiply()([sparse_weights, transformed_embedding])
temporal_ctx = K.sum(combined, axis=-1)
return temporal_ctx, sparse_weights, static_gate
|
Apply temporal variable selection networks.
Args:
embedding: Transformed inputs.
Returns:
Processed tensor outputs.
|
lstm_combine_and_mask
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/tft_model.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
|
MIT
|
def get_lstm(return_state):
"""Returns LSTM cell initialized with default parameters."""
if self.use_cudnn:
lstm = tf.keras.layers.CuDNNLSTM(
self.hidden_layer_size,
return_sequences=True,
return_state=return_state,
stateful=False,
)
else:
lstm = tf.keras.layers.LSTM(
self.hidden_layer_size,
return_sequences=True,
return_state=return_state,
stateful=False,
# Additional params to ensure LSTM matches CuDNN, See TF 2.0 :
# (https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM)
activation="tanh",
recurrent_activation="sigmoid",
recurrent_dropout=0,
unroll=False,
use_bias=True,
)
return lstm
|
Returns LSTM cell initialized with default parameters.
|
get_lstm
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/tft_model.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
|
MIT
|
def build_model(self):
"""Build model and defines training losses.
Returns:
Fully defined Keras model.
"""
with tf.variable_scope(self.name):
transformer_layer, all_inputs, attention_components = self._build_base_graph()
outputs = tf.keras.layers.TimeDistributed(tf.keras.layers.Dense(self.output_size * len(self.quantiles)))(
transformer_layer[Ellipsis, self.num_encoder_steps :, :]
)
self._attention_components = attention_components
adam = tf.keras.optimizers.Adam(lr=self.learning_rate, clipnorm=self.max_gradient_norm)
model = tf.keras.Model(inputs=all_inputs, outputs=outputs)
print(model.summary())
valid_quantiles = self.quantiles
output_size = self.output_size
class QuantileLossCalculator:
"""Computes the combined quantile loss for prespecified quantiles.
Attributes:
quantiles: Quantiles to compute losses
"""
def __init__(self, quantiles):
"""Initializes computer with quantiles for loss calculations.
Args:
quantiles: Quantiles to use for computations.
"""
self.quantiles = quantiles
def quantile_loss(self, a, b):
"""Returns quantile loss for specified quantiles.
Args:
a: Targets
b: Predictions
"""
quantiles_used = set(self.quantiles)
loss = 0.0
for i, quantile in enumerate(valid_quantiles):
if quantile in quantiles_used:
loss += utils.tensorflow_quantile_loss(
a[Ellipsis, output_size * i : output_size * (i + 1)],
b[Ellipsis, output_size * i : output_size * (i + 1)],
quantile,
)
return loss
quantile_loss = QuantileLossCalculator(valid_quantiles).quantile_loss
model.compile(loss=quantile_loss, optimizer=adam, sample_weight_mode="temporal")
self._input_placeholder = all_inputs
return model
|
Build model and defines training losses.
Returns:
Fully defined Keras model.
|
build_model
|
python
|
microsoft/qlib
|
examples/benchmarks/TFT/libs/tft_model.py
|
https://github.com/microsoft/qlib/blob/master/examples/benchmarks/TFT/libs/tft_model.py
|
MIT
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.