code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def get_standard_normalized_histogram_GN(batch_std_labels, gain_base=2.0): """ Convert to a normalized histogram based on gain values, i.e., each entry equals to gain_value/sum_gain_value :param batch_std_labels: :return: """ batch_std_gains = torch.pow(gain_base, batch_std_labels) - 1.0 batch_histograms = batch_std_gains/torch.sum(batch_std_gains, dim=1).view(-1, 1) return batch_histograms
Convert to a normalized histogram based on gain values, i.e., each entry equals to gain_value/sum_gain_value :param batch_std_labels: :return:
get_standard_normalized_histogram_GN
python
wildltr/ptranking
ptranking/ltr_adhoc/listwise/wassrank/wasserstein_cost_mat.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/listwise/wassrank/wasserstein_cost_mat.py
MIT
def get_normalized_histograms(batch_std_labels=None, batch_preds=None, wass_dict_std_dists=None, qid=None, wass_para_dict=None, TL_AF=None): """ Convert both standard labels and predictions w.r.t. a query to normalized histograms """ smooth_type, norm_type = wass_para_dict['smooth_type'], wass_para_dict['norm_type'] if 'ST' == smooth_type: if wass_dict_std_dists is not None: if qid in wass_dict_std_dists: # target distributions batch_std_hists = wass_dict_std_dists[qid] else: batch_std_hists = get_standard_normalized_histogram_ST(batch_std_labels, adjust_softmax=False) wass_dict_std_dists[qid] = batch_std_hists else: batch_std_hists = get_standard_normalized_histogram_ST(batch_std_labels, adjust_softmax=False) if 'BothST' == norm_type: if 'S' == TL_AF or 'ST' == TL_AF: # first convert to the same relevance level max_rele_level = torch.max(batch_std_labels) batch_preds = batch_preds * max_rele_level batch_pred_hists = F.softmax(batch_preds, dim=1) else: raise NotImplementedError elif 'NG' == smooth_type: # normalization of gain, i.e., gain/sum_gain if wass_dict_std_dists is not None: if qid in wass_dict_std_dists: # target distributions batch_std_hists = wass_dict_std_dists[qid] else: batch_std_hists = get_standard_normalized_histogram_GN(batch_std_labels) wass_dict_std_dists[qid] = batch_std_hists else: batch_std_hists = get_standard_normalized_histogram_GN(batch_std_labels) #print(batch_std_hists.size()) #print('batch_std_hists', batch_std_hists) ''' normalizing predictions, where negative values should be taken into account ''' mini = torch.min(batch_preds) # print('mini', mini) # (1) #''' if mini > 0.0: batch_pred_hists = batch_preds / torch.sum(batch_preds, dim=1).view(-1, 1) else: batch_preds = batch_preds - mini batch_pred_hists = batch_preds / torch.sum(batch_preds, dim=1).view(-1, 1) #''' # (2) treat all negative values as zero, which seems to be a bad way ''' if mini > 0.0: batch_pred_hists = batch_preds / torch.sum(batch_preds, dim=1).view(-1, 1) else: batch_deltas = -torch.clamp(batch_preds, min=-1e3, max=0) batch_preds = batch_preds + batch_deltas batch_pred_hists = batch_preds / torch.sum(batch_preds, dim=1).view(-1, 1) ''' #print(batch_pred_hists.size()) #print('batch_pred_hists', batch_pred_hists) else: raise NotImplementedError return batch_std_hists, batch_pred_hists
Convert both standard labels and predictions w.r.t. a query to normalized histograms
get_normalized_histograms
python
wildltr/ptranking
ptranking/ltr_adhoc/listwise/wassrank/wasserstein_cost_mat.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/listwise/wassrank/wasserstein_cost_mat.py
MIT
def default_para_dict(self): """ Default parameter setting for WassRank. EntropicOT | SinkhornOT :return: """ self.wass_para_dict = dict(model_id=self.model_id, mode='SinkhornOT', sh_itr=20, lam=0.1, smooth_type='ST', norm_type='BothST', cost_type='eg', non_rele_gap=100, var_penalty=np.e, gain_base=4) return self.wass_para_dict
Default parameter setting for WassRank. EntropicOT | SinkhornOT :return:
default_para_dict
python
wildltr/ptranking
ptranking/ltr_adhoc/listwise/wassrank/wassRank.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/listwise/wassrank/wassRank.py
MIT
def to_para_string(self, log=False, given_para_dict=None): """ String identifier of parameters :param log: :param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search :return: """ # using specified para-dict or inner para-dict wass_para_dict = given_para_dict if given_para_dict is not None else self.wass_para_dict s1, s2 = (':', '\n') if log else ('_', '_') cost_type, smooth_type, norm_type = wass_para_dict['cost_type'], wass_para_dict['smooth_type'], wass_para_dict[ 'norm_type'] mode_str = s1.join(['mode', wass_para_dict['mode']]) if log else wass_para_dict['mode'] if smooth_type in ['ST', 'NG']: smooth_str = s1.join(['smooth_type', smooth_type]) if log else s1.join(['ST', smooth_type]) else: raise NotImplementedError if cost_type.startswith('Group'): gain_base, non_rele_gap, var_penalty = wass_para_dict['gain_base'], wass_para_dict['non_rele_gap'], \ wass_para_dict['var_penalty'] cost_str = s2.join([s1.join(['cost_type', cost_type]), s1.join(['gain_base', '{:,g}'.format(gain_base)]), s1.join(['non_rele_gap', '{:,g}'.format(non_rele_gap)]), s1.join(['var_penalty', '{:,g}'.format(var_penalty)])]) if log \ else s1.join( [cost_type, '{:,g}'.format(non_rele_gap), '{:,g}'.format(gain_base), '{:,g}'.format(var_penalty)]) else: cost_str = s1.join(['cost_type', cost_type]) if log else cost_type sh_itr, lam = wass_para_dict['sh_itr'], wass_para_dict['lam'] horn_str = s2.join([s1.join(['Lambda', '{:,g}'.format(lam)]), s1.join(['ShIter', str(sh_itr)])]) if log \ else s1.join(['Lambda', '{:,g}'.format(lam), 'ShIter', str(sh_itr)]) wass_paras_str = s2.join([mode_str, smooth_str, cost_str, horn_str]) return wass_paras_str
String identifier of parameters :param log: :param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search :return:
to_para_string
python
wildltr/ptranking
ptranking/ltr_adhoc/listwise/wassrank/wassRank.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/listwise/wassrank/wassRank.py
MIT
def grid_search(self): """ Iterator of parameter settings for WassRank """ if self.use_json: wass_choice_mode = self.json_dict['mode'] wass_choice_itr = self.json_dict['itr'] wass_choice_lam = self.json_dict['lam'] wass_cost_type = self.json_dict['cost_type'] # member parameters of 'Group' include margin, div, group-base wass_choice_non_rele_gap = self.json_dict['non_rele_gap'] wass_choice_var_penalty = self.json_dict['var_penalty'] wass_choice_group_base = self.json_dict['group_base'] wass_choice_smooth = self.json_dict['smooth'] wass_choice_norm = self.json_dict['norm'] else: wass_choice_mode = ['WassLossSta'] # EOTLossSta | WassLossSta wass_choice_itr = [10] # number of iterations w.r.t. sink-horn operation wass_choice_lam = [0.1] # 0.01 | 1e-3 | 1e-1 | 10 regularization parameter wass_cost_type = ['eg'] # p1 | p2 | eg | dg| ddg # member parameters of 'Group' include margin, div, group-base wass_choice_non_rele_gap = [10] # the gap between a relevant document and an irrelevant document wass_choice_var_penalty = [np.e] # variance penalty wass_choice_group_base = [4] # the base for computing gain value wass_choice_smooth = ['ST'] # 'ST', i.e., ST: softmax | Gain, namely the way on how to get the normalized distribution histograms wass_choice_norm = ['BothST'] # 'BothST': use ST for both prediction and standard labels for mode, wsss_lambda, sinkhorn_itr in product(wass_choice_mode, wass_choice_lam, wass_choice_itr): for wass_smooth, norm in product(wass_choice_smooth, wass_choice_norm): for cost_type in wass_cost_type: for non_rele_gap, var_penalty, group_base in product(wass_choice_non_rele_gap, wass_choice_var_penalty, wass_choice_group_base): self.wass_para_dict = dict(model_id='WassRank', mode=mode, sh_itr=sinkhorn_itr, lam=wsss_lambda, cost_type=cost_type, smooth_type=wass_smooth, norm_type=norm, gain_base=group_base, non_rele_gap=non_rele_gap, var_penalty=var_penalty) yield self.wass_para_dict
Iterator of parameter settings for WassRank
grid_search
python
wildltr/ptranking
ptranking/ltr_adhoc/listwise/wassrank/wassRank.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/listwise/wassrank/wassRank.py
MIT
def custom_loss_function(self, batch_preds, batch_std_labels, **kwargs): ''' @param batch_preds: [batch, ranking_size] each row represents the relevance predictions for documents associated with the same query @param batch_std_labels: [batch, ranking_size] each row represents the standard relevance grades for documents associated with the same query @param kwargs: @return: ''' batch_p_ij, batch_std_p_ij = get_pairwise_comp_probs(batch_preds=batch_preds, batch_std_labels=batch_std_labels, sigma=self.sigma) _batch_loss = F.binary_cross_entropy(input=torch.triu(batch_p_ij, diagonal=1), target=torch.triu(batch_std_p_ij, diagonal=1), reduction='none') batch_loss = torch.sum(torch.sum(_batch_loss, dim=(2, 1))) self.optimizer.zero_grad() batch_loss.backward() self.optimizer.step() return batch_loss
@param batch_preds: [batch, ranking_size] each row represents the relevance predictions for documents associated with the same query @param batch_std_labels: [batch, ranking_size] each row represents the standard relevance grades for documents associated with the same query @param kwargs: @return:
custom_loss_function
python
wildltr/ptranking
ptranking/ltr_adhoc/pairwise/ranknet.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/pairwise/ranknet.py
MIT
def to_para_string(self, log=False, given_para_dict=None): """ String identifier of parameters :param log: :param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search :return: """ # using specified para-dict or inner para-dict ranknet_para_dict = given_para_dict if given_para_dict is not None else self.ranknet_para_dict s1, s2 = (':', '\n') if log else ('_', '_') ranknet_para_str = s1.join(['Sigma', '{:,g}'.format(ranknet_para_dict['sigma'])]) return ranknet_para_str
String identifier of parameters :param log: :param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search :return:
to_para_string
python
wildltr/ptranking
ptranking/ltr_adhoc/pairwise/ranknet.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/pairwise/ranknet.py
MIT
def grid_search(self): """ Iterator of parameter settings for RankNet """ if self.use_json: choice_sigma = self.json_dict['sigma'] else: choice_sigma = [5.0, 1.0] if self.debug else [1.0] # 1.0, 10.0, 50.0, 100.0 for sigma in choice_sigma: self.ranknet_para_dict = dict(model_id=self.model_id, sigma=sigma) yield self.ranknet_para_dict
Iterator of parameter settings for RankNet
grid_search
python
wildltr/ptranking
ptranking/ltr_adhoc/pairwise/ranknet.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/pairwise/ranknet.py
MIT
def rankMSE_loss_function(relevance_preds=None, std_labels=None): ''' Ranking loss based on mean square error TODO adjust output scale w.r.t. output layer activation function @param batch_preds: [batch, ranking_size] each row represents the relevance predictions for documents associated with the same query @param batch_std_labels: [batch, ranking_size] each row represents the standard relevance grades for documents associated with the same query @return: ''' _batch_loss = F.mse_loss(relevance_preds, std_labels, reduction='none') batch_loss = torch.mean(torch.sum(_batch_loss, dim=1)) return batch_loss
Ranking loss based on mean square error TODO adjust output scale w.r.t. output layer activation function @param batch_preds: [batch, ranking_size] each row represents the relevance predictions for documents associated with the same query @param batch_std_labels: [batch, ranking_size] each row represents the standard relevance grades for documents associated with the same query @return:
rankMSE_loss_function
python
wildltr/ptranking
ptranking/ltr_adhoc/pointwise/rank_mse.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/pointwise/rank_mse.py
MIT
def custom_loss_function(self, batch_preds, batch_std_labels, **kwargs): ''' :param batch_preds: [batch, ranking_size] each row represents the relevance predictions for documents within a ltr_adhoc :param batch_std_labels: [batch, ranking_size] each row represents the standard relevance grades for documents within a ltr_adhoc :return: ''' batch_loss = rankMSE_loss_function(batch_preds, batch_std_labels) self.optimizer.zero_grad() batch_loss.backward() self.optimizer.step() return batch_loss
:param batch_preds: [batch, ranking_size] each row represents the relevance predictions for documents within a ltr_adhoc :param batch_std_labels: [batch, ranking_size] each row represents the standard relevance grades for documents within a ltr_adhoc :return:
custom_loss_function
python
wildltr/ptranking
ptranking/ltr_adhoc/pointwise/rank_mse.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/pointwise/rank_mse.py
MIT
def batch_count(batch_std_labels=None, max_rele_grade=None, descending=False, gpu=False): """ Todo now an api is already provided by pytorch :param batch_std_labels: :param max_rele_grade: :param descending: :param gpu: :return: """ rele_grades = torch.arange(max_rele_grade+1).type(torch.cuda.FloatTensor) if gpu else torch.arange(max_rele_grade+1).type(torch.FloatTensor) if descending: rele_grades, _ = torch.sort(rele_grades, descending=True) batch_cnts = torch.stack([(batch_std_labels == g).sum(dim=1) for g in rele_grades]) batch_cnts = torch.t(batch_cnts) return batch_cnts
Todo now an api is already provided by pytorch :param batch_std_labels: :param max_rele_grade: :param descending: :param gpu: :return:
batch_count
python
wildltr/ptranking
ptranking/ltr_adhoc/util/bin_utils.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/util/bin_utils.py
MIT
def torch_batch_triu(batch_mats=None, k=0, pair_type='All', batch_std_labels=None, gpu=False, device=None): ''' Get unique document pairs being consistent with the specified pair_type. This function is used to avoid duplicate computation. All: pairs including both pairs of documents across different relevance levels and pairs of documents having the same relevance level. NoTies: the pairs consisting of two documents of the same relevance level are removed No00: the pairs consisting of two non-relevant documents are removed :param batch_mats: [batch, m, m] :param k: the offset w.r.t. the diagonal line: k=0 means including the diagonal line, k=1 means upper triangular part without the diagonal line :return: ''' assert batch_mats.size(1) == batch_mats.size(2) assert pair_type in PAIR_TYPE m = batch_mats.size(1) # the number of documents if pair_type == 'All': row_inds, col_inds = np.triu_indices(m, k=k) elif pair_type == 'No00': assert batch_std_labels.size(0) == 1 row_inds, col_inds = np.triu_indices(m, k=k) std_labels = torch.squeeze(batch_std_labels, 0) labels = std_labels.cpu().numpy() if gpu else std_labels.data.numpy() pairs = [e for e in zip(row_inds, col_inds) if not (0 == labels[e[0]] and 0 == labels[e[1]])] # remove pairs of 00 comparisons row_inds = [e[0] for e in pairs] col_inds = [e[1] for e in pairs] elif pair_type == 'NoTies': assert batch_std_labels.size(0) == 1 std_labels = torch.squeeze(batch_std_labels, 0) row_inds, col_inds = np.triu_indices(m, k=k) labels = std_labels.cpu().numpy() if gpu else std_labels.data.numpy() pairs = [e for e in zip(row_inds, col_inds) if labels[e[0]]!=labels[e[1]]] # remove pairs of documents of the same level row_inds = [e[0] for e in pairs] col_inds = [e[1] for e in pairs] #tor_row_inds = torch.LongTensor(row_inds).to(device) if gpu else torch.LongTensor(row_inds) #tor_col_inds = torch.LongTensor(col_inds).to(device) if gpu else torch.LongTensor(col_inds) tor_row_inds = torch.LongTensor(row_inds, device) tor_col_inds = torch.LongTensor(col_inds, device) batch_triu = batch_mats[:, tor_row_inds, tor_col_inds] return batch_triu # shape: [batch_size, number of pairs]
Get unique document pairs being consistent with the specified pair_type. This function is used to avoid duplicate computation. All: pairs including both pairs of documents across different relevance levels and pairs of documents having the same relevance level. NoTies: the pairs consisting of two documents of the same relevance level are removed No00: the pairs consisting of two non-relevant documents are removed :param batch_mats: [batch, m, m] :param k: the offset w.r.t. the diagonal line: k=0 means including the diagonal line, k=1 means upper triangular part without the diagonal line :return:
torch_batch_triu
python
wildltr/ptranking
ptranking/ltr_adhoc/util/gather_utils.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/util/gather_utils.py
MIT
def torch_triu_indice(k=0, pair_type='All', batch_label=None, gpu=False, device=None): ''' Get unique document pairs being consistent with the specified pair_type. This function is used to avoid duplicate computation. All: pairs including both pairs of documents across different relevance levels and pairs of documents having the same relevance level. NoTies: the pairs consisting of two documents of the same relevance level are removed No00: the pairs consisting of two non-relevant documents are removed Inversion: the pairs that are inverted order, i.e., the 1st doc is less relevant than the 2nd doc :param batch_mats: [batch, m, m] :param k: the offset w.r.t. the diagonal line: k=0 means including the diagonal line, k=1 means upper triangular part without the diagonal line :return: ''' assert pair_type in PAIR_TYPE m = batch_label.size(1) # the number of documents if pair_type == 'All': row_inds, col_inds = np.triu_indices(m, k=k) elif pair_type == 'No00': assert batch_label.size(0) == 1 row_inds, col_inds = np.triu_indices(m, k=k) std_labels = torch.squeeze(batch_label, 0) labels = std_labels.cpu().numpy() if gpu else std_labels.data.numpy() pairs = [e for e in zip(row_inds, col_inds) if not (0==labels[e[0]] and 0==labels[e[1]])] # remove pairs of 00 comparisons row_inds = [e[0] for e in pairs] col_inds = [e[1] for e in pairs] elif pair_type == '00': # the pairs consisting of two non-relevant documents assert batch_label.size(0) == 1 row_inds, col_inds = np.triu_indices(m, k=k) std_labels = torch.squeeze(batch_label, 0) labels = std_labels.cpu().numpy() if gpu else std_labels.data.numpy() pairs = [e for e in zip(row_inds, col_inds) if (0 == labels[e[0]] and 0 == labels[e[1]])] # remove pairs of 00 comparisons row_inds = [e[0] for e in pairs] col_inds = [e[1] for e in pairs] elif pair_type == 'NoTies': assert batch_label.size(0) == 1 std_labels = torch.squeeze(batch_label, 0) row_inds, col_inds = np.triu_indices(m, k=k) labels = std_labels.cpu().numpy() if gpu else std_labels.data.numpy() pairs = [e for e in zip(row_inds, col_inds) if labels[e[0]]!=labels[e[1]]] # remove pairs of documents of the same level row_inds = [e[0] for e in pairs] col_inds = [e[1] for e in pairs] elif pair_type == 'Inversion': assert batch_label.size(0) == 1 std_labels = torch.squeeze(batch_label, 0) row_inds, col_inds = np.triu_indices(m, k=k) labels = std_labels.cpu().numpy() if gpu else std_labels.data.numpy() pairs = [e for e in zip(row_inds, col_inds) if labels[e[0]] < labels[e[1]]] # remove pairs of documents of the same level row_inds = [e[0] for e in pairs] col_inds = [e[1] for e in pairs] else: raise NotImplementedError #tor_row_inds = torch.LongTensor(row_inds).to(device) if gpu else torch.LongTensor(row_inds) #tor_col_inds = torch.LongTensor(col_inds).to(device) if gpu else torch.LongTensor(col_inds) tor_row_inds = torch.LongTensor(row_inds, device) tor_col_inds = torch.LongTensor(col_inds, device) #batch_triu = batch_mats[:, tor_row_inds, tor_col_inds] return tor_row_inds, tor_col_inds # shape: [number of pairs]
Get unique document pairs being consistent with the specified pair_type. This function is used to avoid duplicate computation. All: pairs including both pairs of documents across different relevance levels and pairs of documents having the same relevance level. NoTies: the pairs consisting of two documents of the same relevance level are removed No00: the pairs consisting of two non-relevant documents are removed Inversion: the pairs that are inverted order, i.e., the 1st doc is less relevant than the 2nd doc :param batch_mats: [batch, m, m] :param k: the offset w.r.t. the diagonal line: k=0 means including the diagonal line, k=1 means upper triangular part without the diagonal line :return:
torch_triu_indice
python
wildltr/ptranking
ptranking/ltr_adhoc/util/gather_utils.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/util/gather_utils.py
MIT
def get_pairwise_comp_probs(batch_preds, batch_std_labels, sigma=None): ''' Get the predicted and standard probabilities p_ij which denotes d_i beats d_j @param batch_preds: @param batch_std_labels: @param sigma: @return: ''' # computing pairwise differences w.r.t. predictions, i.e., s_i - s_j batch_s_ij = torch.unsqueeze(batch_preds, dim=2) - torch.unsqueeze(batch_preds, dim=1) batch_p_ij = torch.sigmoid(sigma * batch_s_ij) # computing pairwise differences w.r.t. standard labels, i.e., S_{ij} batch_std_diffs = torch.unsqueeze(batch_std_labels, dim=2) - torch.unsqueeze(batch_std_labels, dim=1) # ensuring S_{ij} \in {-1, 0, 1} batch_Sij = torch.clamp(batch_std_diffs, min=-1.0, max=1.0) batch_std_p_ij = 0.5 * (1.0 + batch_Sij) return batch_p_ij, batch_std_p_ij
Get the predicted and standard probabilities p_ij which denotes d_i beats d_j @param batch_preds: @param batch_std_labels: @param sigma: @return:
get_pairwise_comp_probs
python
wildltr/ptranking
ptranking/ltr_adhoc/util/lambda_utils.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/util/lambda_utils.py
MIT
def get_one_hot_reprs(batch_stds, gpu=False): """ Get one-hot representation of batch ground-truth labels """ batch_size = batch_stds.size(0) hist_size = batch_stds.size(1) int_batch_stds = batch_stds.type(torch.cuda.LongTensor) if gpu else batch_stds.type(torch.LongTensor) hot_batch_stds = torch.cuda.FloatTensor(batch_size, hist_size, 3) if gpu else torch.FloatTensor(batch_size, hist_size, 3) hot_batch_stds.zero_() hot_batch_stds.scatter_(2, torch.unsqueeze(int_batch_stds, 2), 1) return hot_batch_stds
Get one-hot representation of batch ground-truth labels
get_one_hot_reprs
python
wildltr/ptranking
ptranking/ltr_adhoc/util/one_hot_utils.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/util/one_hot_utils.py
MIT
def arg_shuffle_ties(batch_rankings, descending=True, device=None): '''Shuffle ties, and return the corresponding indice ''' batch_size, ranking_size = batch_rankings.size() if batch_size > 1: list_rperms = [] for _ in range(batch_size): list_rperms.append(torch.randperm(ranking_size, device=device)) batch_rperms = torch.stack(list_rperms, dim=0) else: batch_rperms = torch.randperm(ranking_size, device=device).view(1, -1) batch_shuffled_rankings = torch.gather(batch_rankings, dim=1, index=batch_rperms) batch_desc_inds = torch.argsort(batch_shuffled_rankings, descending=descending) batch_shuffle_ties_inds = torch.gather(batch_rperms, dim=1, index=batch_desc_inds) return batch_shuffle_ties_inds
Shuffle ties, and return the corresponding indice
arg_shuffle_ties
python
wildltr/ptranking
ptranking/ltr_adhoc/util/sampling_utils.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/util/sampling_utils.py
MIT
def sample_ranking_PL(batch_preds, only_indices=True, temperature=1.0): ''' Sample one ranking per query based on Plackett-Luce model @param batch_preds: [batch_size, ranking_size] each row denotes the relevance predictions for documents associated with the same query @param only_indices: only return the indices or not ''' if torch.isnan(batch_preds).any(): # checking is needed for later PL model print('batch_preds', batch_preds) print('Including NaN error.') if 1.0 != temperature: target_batch_preds = torch.div(batch_preds, temperature) else: target_batch_preds = batch_preds batch_m, _ = torch.max(target_batch_preds, dim=1, keepdim=True) # a transformation aiming for higher stability when computing softmax() with exp() m_target_batch_preds = target_batch_preds - batch_m batch_exps = torch.exp(m_target_batch_preds) batch_sample_inds = torch.multinomial(batch_exps, replacement=False, num_samples=batch_preds.size(1)) if only_indices: return batch_sample_inds else: # sort batch_preds according to the sample order # w.r.t. top-k, we need the remaining part, but we don't consider the orders among the remaining parts batch_preds_in_sample_order = torch.gather(batch_preds, dim=1, index=batch_sample_inds) return batch_sample_inds, batch_preds_in_sample_order
Sample one ranking per query based on Plackett-Luce model @param batch_preds: [batch_size, ranking_size] each row denotes the relevance predictions for documents associated with the same query @param only_indices: only return the indices or not
sample_ranking_PL
python
wildltr/ptranking
ptranking/ltr_adhoc/util/sampling_utils.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/util/sampling_utils.py
MIT
def sample_ranking_PL_gumbel_softmax(batch_preds, only_indices=True, temperature=1.0, device=None): ''' Sample a ranking based stochastic Plackett-Luce model, where gumble noise is added @param batch_preds: [batch_size, ranking_size] each row denotes the relevance predictions for documents associated with the same query @param only_indices: only return the indices or not ''' unif = torch.rand(batch_preds.size(), device=device) # [batch_size, ranking_size] gumbel = -torch.log(-torch.log(unif + EPS) + EPS) # Sample from gumbel distribution if only_indices: batch_logits = batch_preds + gumbel _, batch_sample_inds = torch.sort(batch_logits, dim=1, descending=True) return batch_sample_inds else: if 1.0 == temperature: batch_logits = batch_preds + gumbel else: batch_logits = (batch_preds + gumbel) / temperature batch_logits_in_sample_order, batch_sample_inds = torch.sort(batch_logits, dim=1, descending=True) return batch_sample_inds, batch_logits_in_sample_order
Sample a ranking based stochastic Plackett-Luce model, where gumble noise is added @param batch_preds: [batch_size, ranking_size] each row denotes the relevance predictions for documents associated with the same query @param only_indices: only return the indices or not
sample_ranking_PL_gumbel_softmax
python
wildltr/ptranking
ptranking/ltr_adhoc/util/sampling_utils.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/util/sampling_utils.py
MIT
def default_pointsf_para_dict(self): """ A default setting of the hyper-parameters of the stump neural scoring function for adversarial ltr. """ self.sf_para_dict = dict() self.sf_para_dict['sf_id'] = self.sf_id self.sf_para_dict['opt'] = 'Adam' # Adam | RMS | Adagrad self.sf_para_dict['lr'] = 0.001 # learning rate pointsf_para_dict = dict(num_layers=5, AF='R', TL_AF='R', apply_tl_af=True, BN=False, bn_type='BN', bn_affine=True) self.sf_para_dict[self.sf_id] = pointsf_para_dict return self.sf_para_dict
A default setting of the hyper-parameters of the stump neural scoring function for adversarial ltr.
default_pointsf_para_dict
python
wildltr/ptranking
ptranking/ltr_adversarial/eval/ad_parameter.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/eval/ad_parameter.py
MIT
def to_eval_setting_string(self, log=False): """ String identifier of eval-setting :param log: :return: """ eval_dict = self.eval_dict s1, s2 = (':', '\n') if log else ('_', '_') do_vali, epochs = eval_dict['do_validation'], eval_dict['epochs'] eval_string = s2.join([s1.join(['epochs', str(epochs)]), s1.join(['do_validation', str(do_vali)])]) if log \ else s1.join(['EP', str(epochs), 'V', str(do_vali)]) return eval_string
String identifier of eval-setting :param log: :return:
to_eval_setting_string
python
wildltr/ptranking
ptranking/ltr_adversarial/eval/ad_parameter.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/eval/ad_parameter.py
MIT
def default_setting(self): """ A default setting for evaluation when performing adversarial ltr :param debug: :param data_id: :param dir_output: :return: """ do_log = False if self.debug else True do_validation, do_summary = True, False log_step = 1 epochs = 10 if self.debug else 50 vali_k = 5 '''on the usage of mask_label (1) given a supervised dataset, True means that mask a supervised data to mimic unsupervised data (2) given an unsupervised dataset, this setting is not supported, since it is already an unsupervised data ''' mask_label = False if mask_label: assert not self.data_id in MSLETOR_SEMI mask_ratio = 0.1 mask_type = 'rand_mask_rele' else: mask_ratio = None mask_type = None # more evaluation settings that are rarely changed self.eval_dict = dict(debug=self.debug, grid_search=False, dir_output=self.dir_output, cutoffs=[1, 3, 5, 10, 20, 50], do_validation=do_validation, vali_k=vali_k, do_summary=do_summary, do_log=do_log, log_step=log_step, loss_guided=False, epochs=epochs, mask_label=mask_label, mask_ratio=mask_ratio, mask_type=mask_type) return self.eval_dict
A default setting for evaluation when performing adversarial ltr :param debug: :param data_id: :param dir_output: :return:
default_setting
python
wildltr/ptranking
ptranking/ltr_adversarial/eval/ad_parameter.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/eval/ad_parameter.py
MIT
def grid_search(self): """ Iterator of settings for evaluation when performing adversarial ltr """ if self.use_json: dir_output = self.json_dict['dir_output'] epochs = 5 if self.debug else self.json_dict['epochs'] do_validation, vali_k = self.json_dict['do_validation'], self.json_dict['vali_k'] cutoffs = self.json_dict['cutoffs'] do_log, log_step = self.json_dict['do_log'], self.json_dict['log_step'] do_summary = self.json_dict['do_summary'] loss_guided = self.json_dict['loss_guided'] mask_label = self.json_dict['mask']['mask_label'] choice_mask_type = self.json_dict['mask']['mask_type'] choice_mask_ratio = self.json_dict['mask']['mask_ratio'] base_dict = dict(debug=False, grid_search=True, dir_output=dir_output) else: base_dict = dict(debug=self.debug, grid_search=True, dir_output=self.dir_output) epochs = 20 if self.debug else 100 do_validation = False if self.debug else True # True, False vali_k, cutoffs = 5, [1, 3, 5, 10, 20, 50] do_log = False if self.debug else True log_step = 1 do_summary, loss_guided = False, False mask_label = False if self.debug else False choice_mask_type = ['rand_mask_rele'] choice_mask_ratio = [0.2] self.eval_dict = dict(epochs=epochs, do_validation=do_validation, vali_k=vali_k, cutoffs=cutoffs, do_log=do_log, log_step=log_step, do_summary=do_summary, loss_guided=loss_guided, mask_label=mask_label) self.eval_dict.update(base_dict) if mask_label: for mask_type, mask_ratio in product(choice_mask_type, choice_mask_ratio): mask_dict = dict(mask_type=mask_type, mask_ratio=mask_ratio) self.eval_dict.update(mask_dict) yield self.eval_dict else: yield self.eval_dict
Iterator of settings for evaluation when performing adversarial ltr
grid_search
python
wildltr/ptranking
ptranking/ltr_adversarial/eval/ad_parameter.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/eval/ad_parameter.py
MIT
def to_data_setting_string(self, log=False): """ String identifier of data-setting :param log: :return: """ data_dict = self.data_dict s1, s2 = (':', '\n') if log else ('_', '_') data_id, binary_rele = data_dict['data_id'], data_dict['binary_rele'] min_docs, min_rele, train_rough_batch_size, train_presort = data_dict['min_docs'], data_dict['min_rele'],\ data_dict['train_rough_batch_size'], data_dict['train_presort'] setting_string = s2.join([s1.join(['data_id', data_id]), s1.join(['min_docs', str(min_docs)]), s1.join(['min_rele', str(min_rele)]), s1.join(['TrBat', str(train_rough_batch_size)])]) if log \ else s1.join([data_id, 'MiD', str(min_docs), 'MiR', str(min_rele), 'TrBat', str(train_rough_batch_size)]) if train_presort: tr_presort_str = s1.join(['train_presort', str(train_presort)]) if log else 'TrPresort' setting_string = s2.join([setting_string, tr_presort_str]) if binary_rele: bi_str = s1.join(['binary_rele', str(binary_rele)]) if log else 'BiRele' setting_string = s2.join([setting_string, bi_str]) return setting_string
String identifier of data-setting :param log: :return:
to_data_setting_string
python
wildltr/ptranking
ptranking/ltr_adversarial/eval/ad_parameter.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/eval/ad_parameter.py
MIT
def default_setting(self): """ A default setting for data loading when performing adversarial ltr """ unknown_as_zero = False binary_rele = False # using the original values train_presort, validation_presort, test_presort = True, True, True train_rough_batch_size, validation_rough_batch_size, test_rough_batch_size = 1, 100, 100 scale_data, scaler_id, scaler_level = get_scaler_setting(data_id=self.data_id) # more data settings that are rarely changed self.data_dict = dict(data_id=self.data_id, dir_data=self.dir_data, min_docs=10, min_rele=1, unknown_as_zero=unknown_as_zero, binary_rele=binary_rele, train_presort=train_presort, validation_presort=validation_presort, test_presort=test_presort, train_rough_batch_size=train_rough_batch_size, validation_rough_batch_size=validation_rough_batch_size, test_rough_batch_size=test_rough_batch_size, scale_data=scale_data, scaler_id=scaler_id, scaler_level=scaler_level) data_meta = get_data_meta(data_id=self.data_id) # add meta-information if self.debug: data_meta['fold_num'] = 2 self.data_dict.update(data_meta) return self.data_dict
A default setting for data loading when performing adversarial ltr
default_setting
python
wildltr/ptranking
ptranking/ltr_adversarial/eval/ad_parameter.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/eval/ad_parameter.py
MIT
def grid_search(self): """ Iterator of settings for data loading when performing adversarial ltr """ if self.use_json: scaler_id = self.json_dict['scaler_id'] choice_min_docs = self.json_dict['min_docs'] choice_min_rele = self.json_dict['min_rele'] choice_binary_rele = self.json_dict['binary_rele'] choice_unknown_as_zero = self.json_dict['unknown_as_zero'] base_data_dict = dict(data_id=self.data_id, dir_data=self.json_dict["dir_data"], train_presort=True, test_presort=True, validation_presort=True, train_rough_batch_size=1, validation_rough_batch_size=100, test_rough_batch_size=100) else: scaler_id = None choice_min_docs = [10] choice_min_rele = [1] choice_binary_rele = [False] choice_unknown_as_zero = [False] base_data_dict = dict(data_id=self.data_id, dir_data=self.dir_data, train_presort=True, test_presort=True, validation_presort=True, train_rough_batch_size=1, validation_rough_batch_size=100, test_rough_batch_size=100) data_meta = get_data_meta(data_id=self.data_id) # add meta-information base_data_dict.update(data_meta) scale_data, scaler_id, scaler_level = get_scaler_setting(data_id=self.data_id, scaler_id=scaler_id) for min_docs, min_rele in product(choice_min_docs, choice_min_rele): threshold_dict = dict(min_docs=min_docs, min_rele=min_rele) for binary_rele, unknown_as_zero in product(choice_binary_rele, choice_unknown_as_zero): custom_dict = dict(binary_rele=binary_rele, unknown_as_zero=unknown_as_zero) scale_dict = dict(scale_data=scale_data, scaler_id=scaler_id, scaler_level=scaler_level) self.data_dict = dict() self.data_dict.update(base_data_dict) self.data_dict.update(threshold_dict) self.data_dict.update(custom_dict) self.data_dict.update(scale_dict) yield self.data_dict
Iterator of settings for data loading when performing adversarial ltr
grid_search
python
wildltr/ptranking
ptranking/ltr_adversarial/eval/ad_parameter.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/eval/ad_parameter.py
MIT
def check_consistency(self, data_dict, eval_dict, sf_para_dict): """ Check whether the settings are reasonable in the context of adversarial learning-to-rank """ ''' Part-1: data loading ''' assert 1 == data_dict['train_rough_batch_size'] # the required setting w.r.t. adversarial LTR if data_dict['data_id'] == 'Istella': assert eval_dict['do_validation'] is not True # since there is no validation data if data_dict['data_id'] in MSLETOR_SEMI: assert data_dict['unknown_as_zero'] is not True # use original data if data_dict['scale_data']: scaler_level = data_dict['scaler_level'] if 'scaler_level' in data_dict else None assert not scaler_level == 'DATASET' # not supported setting assert data_dict['validation_presort'] # Rule of thumb, as validation and test data are for metric-performance assert data_dict['test_presort'] # Rule of thumb, as validation and test data are for metric-performance ''' Part-2: evaluation setting ''' if eval_dict['mask_label']: # True is aimed to use supervised data to mimic semi-supervised data by masking assert not data_dict['data_id'] in MSLETOR_SEMI
Check whether the settings are reasonable in the context of adversarial learning-to-rank
check_consistency
python
wildltr/ptranking
ptranking/ltr_adversarial/eval/ltr_adversarial.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/eval/ltr_adversarial.py
MIT
def get_ad_machine(self, eval_dict=None, data_dict=None, sf_para_dict=None, ad_para_dict=None): """ Initialize the adversarial model correspondingly. :param eval_dict: :param data_dict: :param sf_para_dict: :param ad_para_dict: :return: """ model_id = ad_para_dict['model_id'] if model_id in ['IRGAN_Point', 'IRGAN_Pair', 'IRGAN_List', 'IRFGAN_Point', 'IRFGAN_Pair', 'IRFGAN_List']: ad_machine = globals()[model_id](eval_dict=eval_dict, data_dict=data_dict, gpu=self.gpu, device=self.device, sf_para_dict=sf_para_dict, ad_para_dict=ad_para_dict) else: raise NotImplementedError return ad_machine
Initialize the adversarial model correspondingly. :param eval_dict: :param data_dict: :param sf_para_dict: :param ad_para_dict: :return:
get_ad_machine
python
wildltr/ptranking
ptranking/ltr_adversarial/eval/ltr_adversarial.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/eval/ltr_adversarial.py
MIT
def ad_cv_eval(self, data_dict=None, eval_dict=None, ad_para_dict=None, sf_para_dict=None): """ Adversarial training and evaluation :param data_dict: :param eval_dict: :param ad_para_dict: :param sf_para_dict: :return: """ self.display_information(data_dict, model_para_dict=ad_para_dict) self.check_consistency(data_dict, eval_dict, sf_para_dict=sf_para_dict) self.setup_eval(data_dict, eval_dict, sf_para_dict, model_para_dict=ad_para_dict) model_id = ad_para_dict['model_id'] fold_num = data_dict['fold_num'] # for quick access of common evaluation settings epochs, loss_guided = eval_dict['epochs'], eval_dict['loss_guided'] vali_k, log_step, cutoffs = eval_dict['vali_k'], eval_dict['log_step'], eval_dict['cutoffs'] do_vali, do_summary = eval_dict['do_validation'], eval_dict['do_summary'] ad_machine = self.get_ad_machine(eval_dict=eval_dict, data_dict=data_dict, sf_para_dict=sf_para_dict, ad_para_dict=ad_para_dict) time_begin = datetime.datetime.now() # timing g_l2r_cv_avg_scores, d_l2r_cv_avg_scores = np.zeros(len(cutoffs)), np.zeros(len(cutoffs)) # fold average ''' Dataset-level buffering of frequently used information 1> e.g., number of positive documents per-query ''' global_buffer = dict() # refresh for each model instance for fold_k in range(1, fold_num + 1): ad_machine.reset_generator_discriminator() fold_optimal_checkpoint = '-'.join(['Fold', str(fold_k)]) train_data, test_data, vali_data = self.load_data(eval_dict, data_dict, fold_k) # update due to new train_data ad_machine.fill_global_buffer(train_data, dict_buffer=global_buffer) if do_vali: g_fold_optimal_ndcgk, d_fold_optimal_ndcgk= 0.0, 0.0 if do_summary: list_epoch_loss = [] # not used yet g_list_fold_k_train_eval_track, g_list_fold_k_test_eval_track, g_list_fold_k_vali_eval_track = [], [], [] d_list_fold_k_train_eval_track, d_list_fold_k_test_eval_track, d_list_fold_k_vali_eval_track = [], [], [] for _ in range(10): ad_machine.burn_in(train_data=train_data) for epoch_k in range(1, epochs + 1): if model_id == 'IR_GMAN_List': stop_training = ad_machine.mini_max_train(train_data=train_data, generator=ad_machine.generator, pool_discriminator=ad_machine.pool_discriminator, global_buffer=global_buffer) g_ranker = ad_machine.get_generator() d_ranker = ad_machine.pool_discriminator[0] else: stop_training = ad_machine.mini_max_train(train_data=train_data, generator=ad_machine.generator, discriminator=ad_machine.discriminator, global_buffer=global_buffer) g_ranker = ad_machine.get_generator() d_ranker = ad_machine.get_discriminator() if stop_training: print('training is failed !') break if (do_summary or do_vali) and (epoch_k % log_step == 0 or epoch_k == 1): # stepwise check if do_vali: g_vali_eval_tmp = g_ranker.ndcg_at_k(test_data=vali_data, k=vali_k, label_type=self.data_setting.data_dict['label_type']) d_vali_eval_tmp = d_ranker.ndcg_at_k(test_data=vali_data, k=vali_k, label_type=self.data_setting.data_dict['label_type']) g_vali_eval_v, d_vali_eval_v = g_vali_eval_tmp.data.numpy(), d_vali_eval_tmp.data.numpy() if epoch_k > 1: g_buffer, g_tmp_metric_val, g_tmp_epoch = \ self.per_epoch_validation(ranker=g_ranker, curr_metric_val=g_vali_eval_v, fold_optimal_metric_val=g_fold_optimal_ndcgk, curr_epoch=epoch_k, id_str='G', fold_optimal_checkpoint=fold_optimal_checkpoint, epochs=epochs) # observe better performance if g_buffer: g_fold_optimal_ndcgk, g_fold_optimal_epoch_val = g_tmp_metric_val, g_tmp_epoch d_buffer, d_tmp_metric_val, d_tmp_epoch = \ self.per_epoch_validation(ranker=d_ranker, curr_metric_val=d_vali_eval_v, fold_optimal_metric_val=d_fold_optimal_ndcgk, curr_epoch=epoch_k, id_str='D', fold_optimal_checkpoint=fold_optimal_checkpoint, epochs=epochs) if d_buffer: d_fold_optimal_ndcgk, d_fold_optimal_epoch_val = d_tmp_metric_val, d_tmp_epoch if do_summary: # summarize per-step performance w.r.t. train, test self.per_epoch_summary_step1(ranker=g_ranker, train_data=train_data, test_data=test_data, list_fold_k_train_eval_track=g_list_fold_k_train_eval_track, list_fold_k_test_eval_track=g_list_fold_k_test_eval_track, vali_eval_v=g_vali_eval_v, list_fold_k_vali_eval_track=g_list_fold_k_vali_eval_track, cutoffs=cutoffs, do_vali=do_vali) self.per_epoch_summary_step1(ranker=d_ranker, train_data=train_data, test_data=test_data, list_fold_k_train_eval_track=d_list_fold_k_train_eval_track, list_fold_k_test_eval_track=d_list_fold_k_test_eval_track, vali_eval_v=d_vali_eval_v, list_fold_k_vali_eval_track=d_list_fold_k_vali_eval_track, cutoffs=cutoffs, do_vali=do_vali) if do_summary: self.per_epoch_summary_step2(id_str='G', fold_k=fold_k, list_fold_k_train_eval_track=g_list_fold_k_train_eval_track, list_fold_k_test_eval_track=g_list_fold_k_test_eval_track, do_vali=do_vali, list_fold_k_vali_eval_track=g_list_fold_k_vali_eval_track) self.per_epoch_summary_step2(id_str='D', fold_k=fold_k, list_fold_k_train_eval_track=d_list_fold_k_train_eval_track, list_fold_k_test_eval_track=d_list_fold_k_test_eval_track, do_vali=do_vali, list_fold_k_vali_eval_track=d_list_fold_k_vali_eval_track) if do_vali: # using the fold-wise optimal model for later testing based on validation data # g_buffered_model = '_'.join(['net_params_epoch', str(g_fold_optimal_epoch_val), 'G']) + '.pkl' g_ranker.load(self.dir_run + fold_optimal_checkpoint + '/' + g_buffered_model) g_fold_optimal_ranker = g_ranker d_buffered_model = '_'.join(['net_params_epoch', str(d_fold_optimal_epoch_val), 'D']) + '.pkl' d_ranker.load(self.dir_run + fold_optimal_checkpoint + '/' + d_buffered_model) d_fold_optimal_ranker = d_ranker else: # using default G # buffer the model after a fixed number of training-epoches if no validation is deployed g_ranker.save(dir=self.dir_run + fold_optimal_checkpoint + '/', name='_'.join(['net_params_epoch', str(epoch_k), 'G']) + '.pkl') g_fold_optimal_ranker = g_ranker d_ranker.save(dir=self.dir_run + fold_optimal_checkpoint + '/', name='_'.join(['net_params_epoch', str(epoch_k), 'D']) + '.pkl') d_fold_optimal_ranker = d_ranker g_torch_fold_ndcg_ks = g_fold_optimal_ranker.ndcg_at_ks(test_data=test_data, ks=cutoffs, label_type=self.data_setting.data_dict['label_type']) g_fold_ndcg_ks = g_torch_fold_ndcg_ks.data.numpy() d_torch_fold_ndcg_ks = d_fold_optimal_ranker.ndcg_at_ks(test_data=test_data, ks=cutoffs, label_type=self.data_setting.data_dict['label_type']) d_fold_ndcg_ks = d_torch_fold_ndcg_ks.data.numpy() performance_list = [' Fold-' + str(fold_k)] # fold-wise performance performance_list.append('Generator') for i, co in enumerate(cutoffs): performance_list.append('nDCG@{}:{:.4f}'.format(co, g_fold_ndcg_ks[i])) performance_list.append('\nDiscriminator') for i, co in enumerate(cutoffs): performance_list.append('nDCG@{}:{:.4f}'.format(co, d_fold_ndcg_ks[i])) performance_str = '\t'.join(performance_list) print('\t', performance_str) g_l2r_cv_avg_scores = np.add(g_l2r_cv_avg_scores, g_fold_ndcg_ks) # sum for later cv-performance d_l2r_cv_avg_scores = np.add(d_l2r_cv_avg_scores, d_fold_ndcg_ks) time_end = datetime.datetime.now() # overall timing elapsed_time_str = str(time_end - time_begin) print('Elapsed time:\t', elapsed_time_str + "\n\n") # begin to print either cv or average performance g_l2r_cv_avg_scores = np.divide(g_l2r_cv_avg_scores, fold_num) d_l2r_cv_avg_scores = np.divide(d_l2r_cv_avg_scores, fold_num) if do_vali: eval_prefix = str(fold_num) + '-fold cross validation scores:' else: eval_prefix = str(fold_num) + '-fold average scores:' print('Generator', eval_prefix, metric_results_to_string(list_scores=g_l2r_cv_avg_scores, list_cutoffs=cutoffs)) print('Discriminator', eval_prefix, metric_results_to_string(list_scores=d_l2r_cv_avg_scores, list_cutoffs=cutoffs))
Adversarial training and evaluation :param data_dict: :param eval_dict: :param ad_para_dict: :param sf_para_dict: :return:
ad_cv_eval
python
wildltr/ptranking
ptranking/ltr_adversarial/eval/ltr_adversarial.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/eval/ltr_adversarial.py
MIT
def grid_run(self, debug=True, model_id=None, data_id=None, dir_data=None, dir_output=None, dir_json=None): """ Perform adversarial learning-to-rank based on grid search of optimal parameter setting """ if dir_json is not None: ad_data_eval_sf_json = dir_json + 'Ad_Data_Eval_ScoringFunction.json' para_json = dir_json + model_id + "Parameter.json" self.set_eval_setting(debug=debug, ad_eval_json=ad_data_eval_sf_json) self.set_data_setting(ad_data_json=ad_data_eval_sf_json) self.set_scoring_function_setting(sf_json=ad_data_eval_sf_json) self.set_model_setting(model_id=model_id, para_json=para_json) else: self.set_eval_setting(debug=debug, dir_output=dir_output) self.set_data_setting(debug=debug, data_id=data_id, dir_data=dir_data) self.set_scoring_function_setting(debug=debug) self.set_model_setting(debug=debug, model_id=model_id) for data_dict in self.iterate_data_setting(): for eval_dict in self.iterate_eval_setting(): for sf_para_dict in self.iterate_scoring_function_setting(): for ad_para_dict in self.iterate_model_setting(): self.ad_cv_eval(data_dict=data_dict, eval_dict=eval_dict, sf_para_dict=sf_para_dict, ad_para_dict=ad_para_dict)
Perform adversarial learning-to-rank based on grid search of optimal parameter setting
grid_run
python
wildltr/ptranking
ptranking/ltr_adversarial/eval/ltr_adversarial.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/eval/ltr_adversarial.py
MIT
def point_run(self, debug=False, model_id=None, sf_id=None, data_id=None, dir_data=None, dir_output=None): """ :param debug: :param model_id: :param data_id: :param dir_data: :param dir_output: :return: """ self.set_eval_setting(debug=debug, dir_output=dir_output) self.set_data_setting(debug=debug, data_id=data_id, dir_data=dir_data) data_dict = self.get_default_data_setting() eval_dict = self.get_default_eval_setting() self.set_scoring_function_setting(debug=debug, sf_id=sf_id) sf_para_dict = self.get_default_scoring_function_setting() self.set_model_setting(debug=debug, model_id=model_id) ad_model_para_dict = self.get_default_model_setting() self.ad_cv_eval(data_dict=data_dict, eval_dict=eval_dict, sf_para_dict=sf_para_dict, ad_para_dict=ad_model_para_dict)
:param debug: :param model_id: :param data_id: :param dir_data: :param dir_output: :return:
point_run
python
wildltr/ptranking
ptranking/ltr_adversarial/eval/ltr_adversarial.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/eval/ltr_adversarial.py
MIT
def __init__(self, eval_dict, data_dict, sf_para_dict=None, ad_para_dict=None, optimal_train=False, gpu=False, device=None): ''' :param optimal_train: training with supervised generator or discriminator ''' super(IRFGAN_List, self).__init__(eval_dict=eval_dict, data_dict=data_dict, gpu=gpu, device=device) #sf_para_dict['ffnns']['apply_tl_af'] = True # todo to be compared g_sf_para_dict = sf_para_dict d_sf_para_dict = copy.deepcopy(g_sf_para_dict) d_sf_para_dict[sf_para_dict['sf_id']]['apply_tl_af'] = True d_sf_para_dict[sf_para_dict['sf_id']]['TL_AF'] = 'S' self.generator = List_Generator(sf_para_dict=g_sf_para_dict, gpu=gpu, device=device) self.discriminator = List_Discriminator(sf_para_dict=d_sf_para_dict, gpu=gpu, device=device) self.pre_check() self.top_k = ad_para_dict['top_k'] self.f_div_id = ad_para_dict['f_div_id'] self.d_epoches = ad_para_dict['d_epoches'] self.g_epoches = ad_para_dict['g_epoches'] self.temperature = ad_para_dict['temperature'] self.ad_training_order = ad_para_dict['ad_training_order'] self.samples_per_query = ad_para_dict['samples_per_query'] self.PL_discriminator = ad_para_dict['PL_D'] self.replace_trick_4_generator = ad_para_dict['repTrick'] self.drop_discriminator_log_4_reward = ad_para_dict['dropLog'] self.optimal_train = optimal_train if optimal_train: self.super_generator = List_Generator(sf_para_dict=g_sf_para_dict) self.super_discriminator = List_Discriminator(sf_para_dict=d_sf_para_dict) self.activation_f, self.conjugate_f = get_f_divergence_functions(self.f_div_id)
:param optimal_train: training with supervised generator or discriminator
__init__
python
wildltr/ptranking
ptranking/ltr_adversarial/listwise/irfgan_list.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/listwise/irfgan_list.py
MIT
def per_query_generation(self, qid=None, batch_ranking=None, batch_label=None, pos_and_neg=None, generator=None, samples_per_query=None, top_k=None, temperature=None): ''' :param pos_and_neg: corresponding to discriminator optimization or generator optimization ''' generator.eval_mode() g_batch_pred = generator.predict(batch_ranking) # [batch, size_ranking] batch_gen_stochastic_prob = gumbel_softmax(g_batch_pred, samples_per_query=samples_per_query, temperature=temperature, cuda=self.gpu, cuda_device=self.device) sorted_batch_gen_stochastic_probs, batch_gen_sto_sorted_inds = torch.sort(batch_gen_stochastic_prob, dim=1, descending=True) if pos_and_neg: # for training discriminator used_batch_label = batch_label # Generate truth rankings by shuffling ties: ''' There is not need to firstly filter out documents of '-1', due to the descending sorting and we only use the top ones BTW, the only required condition is: the number of non-minus-one documents is larger than top_k, which builds upon the customized mask_data() ''' per_query_label = torch.squeeze(used_batch_label) list_std_sto_sorted_inds = [] for i in range(samples_per_query): shuffle_ties_inds = arg_shuffle_ties(per_query_label, descending=True) list_std_sto_sorted_inds.append(shuffle_ties_inds) batch_std_sto_sorted_inds = torch.stack(list_std_sto_sorted_inds, dim=0) list_pos_ranking, list_neg_ranking = [], [] if top_k is None: # using all documents for i in range(samples_per_query): pos_inds = batch_std_sto_sorted_inds[i, :] pos_ranking = batch_ranking[0, pos_inds, :] list_pos_ranking.append(pos_ranking) neg_inds = batch_gen_sto_sorted_inds[i, :] neg_ranking = batch_ranking[0, neg_inds, :] list_neg_ranking.append(neg_ranking) else: for i in range(samples_per_query): pos_inds = batch_std_sto_sorted_inds[i, 0:top_k] pos_ranking = batch_ranking[0, pos_inds, :] # sampled sublist of documents list_pos_ranking.append(pos_ranking) neg_inds = batch_gen_sto_sorted_inds[i, 0:top_k] neg_ranking = batch_ranking[0, neg_inds, :] list_neg_ranking.append(neg_ranking) batch_std_sample_ranking = torch.stack(list_pos_ranking, dim=0) batch_gen_sample_ranking = torch.stack(list_neg_ranking, dim=0) return batch_std_sample_ranking, batch_gen_sample_ranking else: # for training generator if top_k is None: return sorted_batch_gen_stochastic_probs, batch_gen_sto_sorted_inds else: list_g_sort_top_preds, list_g_sort_top_inds = [], [] # required to cope with ranking_size mismatch for i in range(samples_per_query): neg_inds = batch_gen_sto_sorted_inds[i, 0:top_k] list_g_sort_top_inds.append(neg_inds) top_gen_stochastic_probs = sorted_batch_gen_stochastic_probs[i, 0:top_k] list_g_sort_top_preds.append(top_gen_stochastic_probs) top_sorted_batch_gen_stochastic_probs = torch.stack(list_g_sort_top_preds, dim=0) return top_sorted_batch_gen_stochastic_probs, list_g_sort_top_inds
:param pos_and_neg: corresponding to discriminator optimization or generator optimization
per_query_generation
python
wildltr/ptranking
ptranking/ltr_adversarial/listwise/irfgan_list.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/listwise/irfgan_list.py
MIT
def to_para_string(self, log=False, given_para_dict=None): """ String identifier of parameters :param log: :param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search :return: """ # using specified para-dict or inner para-dict ad_para_dict = given_para_dict if given_para_dict is not None else self.ad_para_dict s1 = ':' if log else '_' f_div_id = ad_para_dict['f_div_id'] d_epoches, g_epoches, temperature, ad_training_order = ad_para_dict['d_epoches'], ad_para_dict['g_epoches'],\ ad_para_dict['temperature'], ad_para_dict['ad_training_order'] prefix = s1.join([str(d_epoches), str(g_epoches), '{:,g}'.format(temperature), ad_training_order, f_div_id]) top_k, PL_D, repTrick, dropLog = ad_para_dict['top_k'], ad_para_dict['PL_D'], ad_para_dict['repTrick'], \ ad_para_dict['dropLog'] top_k_str = 'topAll' if top_k is None else 'top' + str(top_k) s_str = 'S' + str(ad_para_dict['samples_per_query']) df_str = 'PLD' if PL_D else 'BTD' prefix = s1.join([prefix, top_k_str, s_str, df_str]) if repTrick: prefix += '_Rep' if dropLog: prefix += '_DropLog' list_irfgan_paras_str = prefix return list_irfgan_paras_str
String identifier of parameters :param log: :param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search :return:
to_para_string
python
wildltr/ptranking
ptranking/ltr_adversarial/listwise/irfgan_list.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/listwise/irfgan_list.py
MIT
def __init__(self, eval_dict, data_dict, sf_para_dict=None, ad_para_dict=None, optimal_train=False, gpu=False, device=None): ''' :param optimal_train: training with supervised generator or discriminator ''' super(IRGAN_List, self).__init__(eval_dict=eval_dict, data_dict=data_dict, gpu=gpu, device=device) g_sf_para_dict = sf_para_dict # todo support all setting based Nan checking d_sf_para_dict = copy.deepcopy(g_sf_para_dict) d_sf_para_dict[sf_para_dict['sf_id']]['apply_tl_af'] = True d_sf_para_dict[sf_para_dict['sf_id']]['TL_AF'] = 'S' self.generator = List_Generator(sf_para_dict=g_sf_para_dict, gpu=gpu, device=device) self.discriminator = List_Discriminator(sf_para_dict=d_sf_para_dict, gpu=gpu, device=device) self.super_generator = List_Generator(sf_para_dict=g_sf_para_dict, gpu=gpu, device=device) self.super_discriminator = List_Discriminator(sf_para_dict=d_sf_para_dict, gpu=gpu, device=device) self.top_k = ad_para_dict['top_k'] self.d_epoches = ad_para_dict['d_epoches'] self.g_epoches = ad_para_dict['g_epoches'] self.temperature = ad_para_dict['temperature'] self.ad_training_order = ad_para_dict['ad_training_order'] self.samples_per_query = ad_para_dict['samples_per_query'] self.PL_discriminator = ad_para_dict['PL_D'] self.replace_trick_4_generator = ad_para_dict['repTrick'] self.drop_discriminator_log_4_reward = ad_para_dict['dropLog'] self.optimal_train = optimal_train self.pre_check()
:param optimal_train: training with supervised generator or discriminator
__init__
python
wildltr/ptranking
ptranking/ltr_adversarial/listwise/irgan_list.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/listwise/irgan_list.py
MIT
def per_query_generation(self, qid=None, batch_ranking=None, batch_label=None, pos_and_neg=None, generator=None, samples_per_query=None, top_k=None, temperature=None): ''' :param pos_and_neg: corresponding to discriminator optimization or generator optimization ''' g_batch_pred = generator.predict(batch_ranking) # [batch, size_ranking] batch_gen_stochastic_prob = gumbel_softmax(g_batch_pred, samples_per_query=samples_per_query, temperature=temperature, cuda=self.gpu, cuda_device=self.device) sorted_batch_gen_stochastic_probs, batch_gen_sto_sorted_inds = torch.sort(batch_gen_stochastic_prob, dim=1, descending=True) if pos_and_neg: # for training discriminator used_batch_label = batch_label ''' Generate truth-ranking based on shuffling ties There is not need to firstly filter out documents of '-1', due to the descending sorting and we only use the top ones BTW, the only required condition is: the number of non-minus-one documents is larger than top_k, which builds upon the customized mask_data() ''' per_query_label = torch.squeeze(used_batch_label) list_std_sto_sorted_inds = [] for i in range(samples_per_query): shuffle_ties_inds = arg_shuffle_ties(per_query_label, descending=True) list_std_sto_sorted_inds.append(shuffle_ties_inds) batch_std_sto_sorted_inds = torch.stack(list_std_sto_sorted_inds, dim=0) list_pos_ranking, list_neg_ranking = [], [] if top_k is None: # using all documents for i in range(samples_per_query): pos_inds = batch_std_sto_sorted_inds[i, :] pos_ranking = batch_ranking[0, pos_inds, :] list_pos_ranking.append(pos_ranking) neg_inds = batch_gen_sto_sorted_inds[i, :] neg_ranking = batch_ranking[0, neg_inds, :] list_neg_ranking.append(neg_ranking) else: for i in range(samples_per_query): pos_inds = batch_std_sto_sorted_inds[i, 0:top_k] pos_ranking = batch_ranking[0, pos_inds, :] # sampled sublist of documents list_pos_ranking.append(pos_ranking) neg_inds = batch_gen_sto_sorted_inds[i, 0:top_k] neg_ranking = batch_ranking[0, neg_inds, :] list_neg_ranking.append(neg_ranking) batch_std_sample_ranking = torch.stack(list_pos_ranking, dim=0) batch_gen_sample_ranking = torch.stack(list_neg_ranking, dim=0) return batch_std_sample_ranking, batch_gen_sample_ranking else: # for training generator if top_k is None: return sorted_batch_gen_stochastic_probs, batch_gen_sto_sorted_inds else: list_g_sort_top_preds, list_g_sort_top_inds = [], [] # required to cope with ranking_size mismatch for i in range(samples_per_query): neg_inds = batch_gen_sto_sorted_inds[i, 0:top_k] list_g_sort_top_inds.append(neg_inds) top_gen_stochastic_probs = sorted_batch_gen_stochastic_probs[i, 0:top_k] list_g_sort_top_preds.append(top_gen_stochastic_probs) top_sorted_batch_gen_stochastic_probs = torch.stack(list_g_sort_top_preds, dim=0) return top_sorted_batch_gen_stochastic_probs, list_g_sort_top_inds
:param pos_and_neg: corresponding to discriminator optimization or generator optimization
per_query_generation
python
wildltr/ptranking
ptranking/ltr_adversarial/listwise/irgan_list.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/listwise/irgan_list.py
MIT
def to_para_string(self, log=False, given_para_dict=None): """ String identifier of parameters :param log: :param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search :return: """ # using specified para-dict or inner para-dict ad_para_dict = given_para_dict if given_para_dict is not None else self.ad_para_dict s1 = ':' if log else '_' d_epoches, g_epoches, temperature, ad_training_order = ad_para_dict['d_epoches'], ad_para_dict['g_epoches'],\ ad_para_dict['temperature'], ad_para_dict['ad_training_order'] prefix = s1.join([str(d_epoches), str(g_epoches), '{:,g}'.format(temperature), ad_training_order]) top_k, PL_D, repTrick, dropLog = ad_para_dict['top_k'], ad_para_dict['PL_D'], ad_para_dict['repTrick'], \ ad_para_dict['dropLog'] top_k_str = 'topAll' if top_k is None else 'top' + str(top_k) s_str = 'S' + str(ad_para_dict['samples_per_query']) df_str = 'PLD' if PL_D else 'BTD' prefix = s1.join([prefix, top_k_str, s_str, df_str]) if repTrick: prefix += '_Rep' if dropLog: prefix += '_DropLog' list_irgan_paras_str = prefix return list_irgan_paras_str
String identifier of parameters :param log: :param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search :return:
to_para_string
python
wildltr/ptranking
ptranking/ltr_adversarial/listwise/irgan_list.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/listwise/irgan_list.py
MIT
def fill_global_buffer(self, train_data, dict_buffer=None): ''' Buffer the number of positive documents, and the number of non-positive documents per query ''' assert self.data_dict['train_presort'] is True # this is required for efficient truth exampling if self.data_dict['data_id'] in MSLETOR_SEMI: for entry in train_data: qid, _, batch_label = entry[0][0], entry[1], entry[2] if not qid in dict_buffer: pos_boolean_mat = torch.gt(batch_label, 0) num_pos = torch.sum(pos_boolean_mat) explicit_boolean_mat = torch.ge(batch_label, 0) num_explicit = torch.sum(explicit_boolean_mat) ranking_size = batch_label.size(1) num_neg_unk = ranking_size - num_pos num_unk = ranking_size - num_explicit num_unique_labels = torch.unique(batch_label).size(0) dict_buffer[qid] = (num_pos, num_explicit, num_neg_unk, num_unk, num_unique_labels) else: for entry in train_data: qid, _, batch_label = entry[0][0], entry[1], entry[2] if not qid in dict_buffer: pos_boolean_mat = torch.gt(batch_label, 0) num_pos = torch.sum(pos_boolean_mat) ranking_size = batch_label.size(1) num_explicit = ranking_size num_neg_unk = ranking_size - num_pos num_unk = 0 num_unique_labels = torch.unique(batch_label).size(0) dict_buffer[qid] = (num_pos, num_explicit, num_neg_unk, num_unk, num_unique_labels)
Buffer the number of positive documents, and the number of non-positive documents per query
fill_global_buffer
python
wildltr/ptranking
ptranking/ltr_adversarial/pairwise/irfgan_pair.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pairwise/irfgan_pair.py
MIT
def mini_max_train(self, train_data=None, generator=None, discriminator=None, global_buffer=None): ''' Here it can not use the way of training like irgan-pair (still relying on single documents rather thank pairs), since ir-fgan requires to sample with two distributions. ''' stop_training = self.train_discriminator_generator_single_step(train_data=train_data, generator=generator, discriminator=discriminator, global_buffer=global_buffer) return stop_training
Here it can not use the way of training like irgan-pair (still relying on single documents rather thank pairs), since ir-fgan requires to sample with two distributions.
mini_max_train
python
wildltr/ptranking
ptranking/ltr_adversarial/pairwise/irfgan_pair.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pairwise/irfgan_pair.py
MIT
def train_discriminator_generator_single_step(self, train_data=None, generator=None, discriminator=None, global_buffer=None): ''' Train both discriminator and generator with a single step per query ''' stop_training = False generator.train_mode() for entry in train_data: qid, batch_ranking, batch_label = entry[0][0], entry[1], entry[2] if self.gpu: batch_ranking = batch_ranking.type(self.tensor) sorted_std_labels = torch.squeeze(batch_label, dim=0) num_pos, num_explicit, num_neg_unk, num_unk, num_unique_labels = global_buffer[qid] if num_unique_labels <2: # check unique values, say all [1, 1, 1] generates no pairs continue true_head_inds, true_tail_inds = generate_true_pairs(qid=qid, sorted_std_labels=sorted_std_labels, num_pairs=self.samples_per_query, dict_diff=self.dict_diff, global_buffer=global_buffer) batch_preds = generator.predict(batch_ranking) # [batch, size_ranking] # todo determine how to activation point_preds = torch.squeeze(batch_preds) if torch.isnan(point_preds).any(): print('Including NaN error.') stop_training = True return stop_training #--generate samples if 'BT' == self.g_key: mat_diffs = torch.unsqueeze(point_preds, dim=1) - torch.unsqueeze(point_preds, dim=0) mat_bt_probs = torch.sigmoid(mat_diffs) # default delta=1.0 fake_head_inds, fake_tail_inds = sample_points_Bernoulli(mat_bt_probs, num_pairs=self.samples_per_query) else: raise NotImplementedError #-- # real data and generated data true_head_docs = batch_ranking[:, true_head_inds, :] true_tail_docs = batch_ranking[:, true_tail_inds, :] fake_head_docs = batch_ranking[:, fake_head_inds, :] fake_tail_docs = batch_ranking[:, fake_tail_inds, :] ''' optimize discriminator ''' discriminator.train_mode() true_head_preds = discriminator.predict(true_head_docs) true_tail_preds = discriminator.predict(true_tail_docs) true_preds = true_head_preds - true_tail_preds fake_head_preds = discriminator.predict(fake_head_docs) fake_tail_preds = discriminator.predict(fake_tail_docs) fake_preds = fake_head_preds - fake_tail_preds dis_loss = torch.mean(self.conjugate_f(self.activation_f(fake_preds))) - torch.mean(self.activation_f(true_preds)) # objective to minimize w.r.t. discriminator discriminator.optimizer.zero_grad() dis_loss.backward() discriminator.optimizer.step() ''' optimize generator ''' # discriminator.eval_mode() d_fake_head_preds = discriminator.predict(fake_head_docs) d_fake_tail_preds = discriminator.predict(fake_tail_docs) d_fake_preds = self.conjugate_f(self.activation_f(d_fake_head_preds - d_fake_tail_preds)) if 'BT' == self.g_key: log_g_probs = torch.log(mat_bt_probs[fake_head_inds, fake_tail_inds].view(1, -1)) else: raise NotImplementedError g_batch_loss = -torch.mean(log_g_probs * d_fake_preds) generator.optimizer.zero_grad() g_batch_loss.backward() generator.optimizer.step() # after iteration ove train_data return stop_training
Train both discriminator and generator with a single step per query
train_discriminator_generator_single_step
python
wildltr/ptranking
ptranking/ltr_adversarial/pairwise/irfgan_pair.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pairwise/irfgan_pair.py
MIT
def to_para_string(self, log=False, given_para_dict=None): """ String identifier of parameters :param log: :param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search :return: """ # using specified para-dict or inner para-dict ad_para_dict = given_para_dict if given_para_dict is not None else self.ad_para_dict s1 = ':' if log else '_' f_div_id = ad_para_dict['f_div_id'] pair_irfgan_paras_str = f_div_id return pair_irfgan_paras_str
String identifier of parameters :param log: :param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search :return:
to_para_string
python
wildltr/ptranking
ptranking/ltr_adversarial/pairwise/irfgan_pair.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pairwise/irfgan_pair.py
MIT
def __init__(self, eval_dict, data_dict, sf_para_dict=None, ad_para_dict=None, gpu=False, device=None): ''' :param sf_para_dict: :param temperature: according to the description around Eq-10, temperature is deployed, while it is not used within the provided code ''' super(IRGAN_Pair, self).__init__(eval_dict=eval_dict, data_dict=data_dict, gpu=gpu, device=device) self.torch_one = torch.tensor([1.0], device=self.device) self.torch_zero = torch.tensor([0.0], device=self.device) sf_para_dict[sf_para_dict['sf_id']]['apply_tl_af'] = True g_sf_para_dict = sf_para_dict d_sf_para_dict = copy.deepcopy(g_sf_para_dict) d_sf_para_dict[sf_para_dict['sf_id']]['apply_tl_af'] = False #d_sf_para_dict['ffnns']['TL_AF'] = 'S' # as required by the IRGAN model self.generator = IRGAN_Pair_Generator(sf_para_dict=g_sf_para_dict, temperature=ad_para_dict['temperature'], gpu=gpu, device=device) self.discriminator = IRGAN_Pair_Discriminator(sf_para_dict=d_sf_para_dict, gpu=gpu, device=device) self.loss_type = ad_para_dict['loss_type'] self.d_epoches = ad_para_dict['d_epoches'] self.g_epoches = ad_para_dict['g_epoches'] self.temperature = ad_para_dict['temperature'] self.ad_training_order = ad_para_dict['ad_training_order'] self.samples_per_query = ad_para_dict['samples_per_query']
:param sf_para_dict: :param temperature: according to the description around Eq-10, temperature is deployed, while it is not used within the provided code
__init__
python
wildltr/ptranking
ptranking/ltr_adversarial/pairwise/irgan_pair.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pairwise/irgan_pair.py
MIT
def fill_global_buffer(self, train_data, dict_buffer=None): ''' Buffer the number of positive documents, and the number of non-positive documents per query ''' assert self.data_dict['train_presort'] is True # this is required for efficient truth exampling for entry in train_data: qid, _, batch_label = entry[0], entry[1], entry[2] if not qid in dict_buffer: boolean_mat = torch.gt(batch_label, 0) num_pos = torch.sum(boolean_mat) ranking_size = batch_label.size(1) num_neg_unk = ranking_size - num_pos dict_buffer[qid] = (num_pos, num_neg_unk)
Buffer the number of positive documents, and the number of non-positive documents per query
fill_global_buffer
python
wildltr/ptranking
ptranking/ltr_adversarial/pairwise/irgan_pair.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pairwise/irgan_pair.py
MIT
def generate_data(self, train_data=None, generator=None, global_buffer=None): ''' Sampling for training discriminator This is a re-implementation as the released irgan-tensorflow, but it seems that this part of irgan-tensorflow is not consistent with the discription of the paper (i.e., the description below Eq. 7) ''' generator.eval_mode() generated_data = dict() for entry in train_data: qid, batch_ranking, batch_label = entry[0], entry[1], entry[2] if self.gpu: batch_ranking = batch_ranking.to(self.device) samples = self.per_query_generation(qid=qid, batch_ranking=batch_ranking, generator=generator, global_buffer=global_buffer) if samples is not None: generated_data[qid] = samples return generated_data
Sampling for training discriminator This is a re-implementation as the released irgan-tensorflow, but it seems that this part of irgan-tensorflow is not consistent with the discription of the paper (i.e., the description below Eq. 7)
generate_data
python
wildltr/ptranking
ptranking/ltr_adversarial/pairwise/irgan_pair.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pairwise/irgan_pair.py
MIT
def to_para_string(self, log=False, given_para_dict=None): """ String identifier of parameters :param log: :param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search :return: """ # using specified para-dict or inner para-dict ad_para_dict = given_para_dict if given_para_dict is not None else self.ad_para_dict s1 = ':' if log else '_' d_epoches, g_epoches, temperature, ad_training_order, loss_type, samples_per_query = \ ad_para_dict['d_epoches'], ad_para_dict['g_epoches'], ad_para_dict['temperature'],\ ad_para_dict['ad_training_order'], ad_para_dict['loss_type'], ad_para_dict['samples_per_query'] pair_irgan_paras_str = s1.join([str(d_epoches), str(g_epoches), '{:,g}'.format(temperature), ad_training_order, loss_type, str(samples_per_query)]) return pair_irgan_paras_str
String identifier of parameters :param log: :param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search :return:
to_para_string
python
wildltr/ptranking
ptranking/ltr_adversarial/pairwise/irgan_pair.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pairwise/irgan_pair.py
MIT
def fill_global_buffer(self, train_data, dict_buffer=None): ''' Buffer the number of positive documents per query ''' assert self.data_dict['train_presort'] is True # this is required for efficient truth exampling for entry in train_data: qid, _, batch_label = entry[0], entry[1], entry[2] if not qid in dict_buffer: boolean_mat = torch.gt(batch_label, 0) num_pos = torch.sum(boolean_mat) # number of positive documents dict_buffer[qid] = num_pos
Buffer the number of positive documents per query
fill_global_buffer
python
wildltr/ptranking
ptranking/ltr_adversarial/pointwise/irfgan_point.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pointwise/irfgan_point.py
MIT
def train_discriminator_generator_single_step(self, train_data=None, generator=None, discriminator=None, global_buffer=None): ''' Train both discriminator and generator with a single step per query ''' generator.train_mode() for entry in train_data: qid, batch_ranking, batch_label = entry[0], entry[1], entry[2] if self.gpu: batch_ranking = batch_ranking.to(self.device) num_pos = global_buffer[qid] if num_pos < 1: continue valid_num = min(num_pos, self.samples_per_query) true_inds = torch.randperm(num_pos)[0:valid_num] # randomly select positive documents batch_preds = generator.predict(batch_ranking) # [batch, size_ranking] pred_probs = F.softmax(torch.squeeze(batch_preds), dim=0) if torch.isnan(pred_probs).any(): stop_training = True return stop_training fake_inds = torch.multinomial(pred_probs, valid_num, replacement=False) #real data and generated data true_docs = batch_ranking[0, true_inds, :] fake_docs = batch_ranking[0, fake_inds, :] true_docs = torch.unsqueeze(true_docs, dim=0) fake_docs = torch.unsqueeze(fake_docs, dim=0) ''' optimize discriminator ''' discriminator.train_mode() true_preds = discriminator.predict(true_docs) fake_preds = discriminator.predict(fake_docs) dis_loss = torch.mean(self.conjugate_f(self.activation_f(fake_preds))) - torch.mean(self.activation_f(true_preds)) # objective to minimize w.r.t. discriminator discriminator.optimizer.zero_grad() dis_loss.backward() discriminator.optimizer.step() ''' optimize generator ''' # discriminator.eval_mode() d_fake_preds = discriminator.predict(fake_docs) d_fake_preds = self.conjugate_f(self.activation_f(d_fake_preds)) ger_loss = -torch.mean((torch.log(pred_probs[fake_inds]) * d_fake_preds)) generator.optimizer.zero_grad() ger_loss.backward() generator.optimizer.step() stop_training = False return stop_training
Train both discriminator and generator with a single step per query
train_discriminator_generator_single_step
python
wildltr/ptranking
ptranking/ltr_adversarial/pointwise/irfgan_point.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pointwise/irfgan_point.py
MIT
def to_para_string(self, log=False, given_para_dict=None): """ String identifier of parameters :param log: :param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search :return: """ # using specified para-dict or inner para-dict ad_para_dict = given_para_dict if given_para_dict is not None else self.ad_para_dict s1 = ':' if log else '_' f_div_id = ad_para_dict['f_div_id'] point_irfgan_paras_str = f_div_id return point_irfgan_paras_str
String identifier of parameters :param log: :param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search :return:
to_para_string
python
wildltr/ptranking
ptranking/ltr_adversarial/pointwise/irfgan_point.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pointwise/irfgan_point.py
MIT
def __init__(self, eval_dict, data_dict, sf_para_dict=None, ad_para_dict=None, gpu=False, device=None): ''' :param ad_training_order: really matters, DG is preferred than GD ''' super(IRGAN_Point, self).__init__(eval_dict=eval_dict, data_dict=data_dict, gpu=gpu, device=device) ''' required final layer setting for Point_IR_GAN ''' # the setting of 'apply_tl_af=False' is due to the later application of softmax function w.r.t. all documents # TODO experiments show it is quite important to be True, otherwise will be nan issues. assert sf_para_dict[sf_para_dict['sf_id']]['apply_tl_af'] == True # local assignment affects the grid-evaluation g_sf_para_dict = sf_para_dict d_sf_para_dict = copy.deepcopy(g_sf_para_dict) #d_sf_para_dict['ffnns']['apply_tl_af'] = True d_sf_para_dict[sf_para_dict['sf_id']]['TL_AF'] = 'S' # as required by the IRGAN model self.generator = IRGAN_Point_Generator(sf_para_dict=g_sf_para_dict, temperature=ad_para_dict['temperature'], gpu=gpu, device=device) self.discriminator = IRGAN_Point_Discriminator(sf_para_dict=d_sf_para_dict, gpu=gpu, device=device) self.d_epoches = ad_para_dict['d_epoches'] self.g_epoches = ad_para_dict['g_epoches'] self.temperature = ad_para_dict['temperature'] self.ad_training_order = ad_para_dict['ad_training_order'] self.samples_per_query = ad_para_dict['samples_per_query']
:param ad_training_order: really matters, DG is preferred than GD
__init__
python
wildltr/ptranking
ptranking/ltr_adversarial/pointwise/irgan_point.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pointwise/irgan_point.py
MIT
def fill_global_buffer(self, train_data, dict_buffer=None): ''' Buffer the number of positive documents per query ''' assert self.data_dict['train_presort'] is True # this is required for efficient truth exampling for entry in train_data: qid, _, batch_label = entry[0], entry[1], entry[2] if not qid in dict_buffer: boolean_mat = torch.gt(batch_label, 0) num_pos = torch.sum(boolean_mat) # number of positive documents dict_buffer[qid] = num_pos
Buffer the number of positive documents per query
fill_global_buffer
python
wildltr/ptranking
ptranking/ltr_adversarial/pointwise/irgan_point.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pointwise/irgan_point.py
MIT
def to_para_string(self, log=False, given_para_dict=None): """ String identifier of parameters :param log: :param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search """ # using specified para-dict or inner para-dict ad_para_dict = given_para_dict if given_para_dict is not None else self.ad_para_dict s1 = ':' if log else '_' d_epoches, g_epoches, temperature, ad_training_order, samples_per_query = ad_para_dict['d_epoches'],\ ad_para_dict['g_epoches'], ad_para_dict['temperature'],\ ad_para_dict['ad_training_order'], ad_para_dict['samples_per_query'] irgan_point_paras_str = s1.join([str(d_epoches), str(g_epoches), '{:,g}'.format(temperature), ad_training_order, str(samples_per_query)]) return irgan_point_paras_str
String identifier of parameters :param log: :param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search
to_para_string
python
wildltr/ptranking
ptranking/ltr_adversarial/pointwise/irgan_point.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pointwise/irgan_point.py
MIT
def get_f_divergence_functions(f_div_str=None): ''' the activation function is chosen as a monotone increasing function ''' if 'TVar' == f_div_str: # Total variation def activation_f(v): return 0.5 * torch.tanh(v) def conjugate_f(t): return t elif 'KL' == f_div_str: # Kullback-Leibler def activation_f(v): return v def conjugate_f(t): return torch.exp(t-1) elif 'RKL' == f_div_str: # Reverse KL def activation_f(v): return -torch.exp(-v) def conjugate_f(t): return -1.0 - torch.log(-t) elif 'PC' == f_div_str: # Pearson chi-square def activation_f(v): return v def conjugate_f(t): return 0.25 * torch.pow(t, exponent=2.0) + t elif 'NC' == f_div_str: # Neyman chi-square def activation_f(v): return 1.0 - torch.exp(-v) def conjugate_f(t): return 2.0 - 2.0 * torch.sqrt(1.0-t) elif 'SH' == f_div_str: # Squared Hellinger def activation_f(v): return 1.0 - torch.exp(-v) def conjugate_f(t): return t/(1.0-t) elif 'JS' == f_div_str: # Jensen-Shannon def activation_f(v): return torch.log(torch.tensor(2.0)) - torch.log(1.0 + torch.exp(-v)) def conjugate_f(t): return -torch.log(2.0 - torch.exp(t)) elif 'JSW' == f_div_str: # Jensen-Shannon-weighted def activation_f(v): return -math.pi*torch.log(math.pi) - torch.log(1.0+torch.exp(-v)) def conjugate_f(t): return (1.0-math.pi)*torch.log((1.0-math.pi)/(1.0-math.pi*torch.exp(t/math.pi))) elif 'GAN' == f_div_str: # GAN def activation_f(v): return -torch.log(1.0 + torch.exp(-v)) def conjugate_f(t): return -torch.log(1.0 - torch.exp(t)) return activation_f, conjugate_f
the activation function is chosen as a monotone increasing function
get_f_divergence_functions
python
wildltr/ptranking
ptranking/ltr_adversarial/util/f_divergence.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/util/f_divergence.py
MIT
def gumbel_softmax(logits, samples_per_query, temperature=1.0, cuda=False, cuda_device=None): ''' :param logits: [1, ranking_size] :param num_samples_per_query: number of stochastic rankings to generate :param temperature: :return: ''' assert 1 == logits.size(0) and 2 == len(logits.size()) unif = torch.rand(samples_per_query, logits.size(1)) # [num_samples_per_query, ranking_size] if cuda: unif = unif.to(cuda_device) gumbel = -torch.log(-torch.log(unif + EPS) + EPS) # Sample from gumbel distribution logit = (logits + gumbel) / temperature y = F.softmax(logit, dim=1) # i.e., #return F.softmax(logit, dim=1) return y
:param logits: [1, ranking_size] :param num_samples_per_query: number of stochastic rankings to generate :param temperature: :return:
gumbel_softmax
python
wildltr/ptranking
ptranking/ltr_adversarial/util/list_sampling.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/util/list_sampling.py
MIT
def sample_ranking_PL_gumbel_softmax(batch_preds, num_sample_ranking=1, only_indices=True, temperature=1.0, gpu=False, device=None): ''' Sample a ranking based stochastic Plackett-Luce model, where gumble noise is added @param batch_preds: [1, ranking_size] vector of relevance predictions for documents associated with the same query @param num_sample_ranking: number of rankings to sample @param only_indices: only return the indices or not @return: ''' if num_sample_ranking > 1: target_batch_preds = batch_preds.expand(num_sample_ranking, -1) else: target_batch_preds = batch_preds unif = torch.rand(target_batch_preds.size()) # [num_samples_per_query, ranking_size] if gpu: unif = unif.to(device) gumbel = -torch.log(-torch.log(unif + EPS) + EPS) # Sample from gumbel distribution if only_indices: batch_logits = target_batch_preds + gumbel _, batch_indices = torch.sort(batch_logits, dim=1, descending=True) return batch_indices else: if 1.0 == temperature: batch_logits = target_batch_preds + gumbel else: batch_logits = (target_batch_preds + gumbel) / temperature batch_logits_sorted, batch_indices = torch.sort(batch_logits, dim=1, descending=True) return batch_indices, batch_logits_sorted
Sample a ranking based stochastic Plackett-Luce model, where gumble noise is added @param batch_preds: [1, ranking_size] vector of relevance predictions for documents associated with the same query @param num_sample_ranking: number of rankings to sample @param only_indices: only return the indices or not @return:
sample_ranking_PL_gumbel_softmax
python
wildltr/ptranking
ptranking/ltr_adversarial/util/list_sampling.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/util/list_sampling.py
MIT
def arg_shuffle_ties(target_batch_stds, descending=True, gpu=False, device=None): ''' Shuffle ties, and return the corresponding indice ''' batch_size, ranking_size = target_batch_stds.size() if batch_size > 1: list_rperms = [] for _ in range(batch_size): list_rperms.append(torch.randperm(ranking_size)) batch_rperms = torch.stack(list_rperms, dim=0) else: batch_rperms = torch.randperm(ranking_size).view(1, -1) if gpu: batch_rperms = batch_rperms.to(device) shuffled_target_batch_stds = torch.gather(target_batch_stds, dim=1, index=batch_rperms) batch_sorted_inds = torch.argsort(shuffled_target_batch_stds, descending=descending) batch_shuffle_ties_inds = torch.gather(batch_rperms, dim=1, index=batch_sorted_inds) return batch_shuffle_ties_inds
Shuffle ties, and return the corresponding indice
arg_shuffle_ties
python
wildltr/ptranking
ptranking/ltr_adversarial/util/list_sampling.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/util/list_sampling.py
MIT
def get_weighted_clipped_pos_diffs(qid, sorted_std_labels, global_buffer=None): ''' Get total true pairs based on explicit labels. In particular, the difference values are discounted based on positions. ''' num_pos, num_explicit, num_neg_unk, num_unk, num_unique_labels = global_buffer[qid] mat_diffs = torch.unsqueeze(sorted_std_labels, dim=1) - torch.unsqueeze(sorted_std_labels, dim=0) pos_diffs = torch.where(mat_diffs < 0, tor_zero, mat_diffs) clipped_pos_diffs = pos_diffs[0:num_pos, 0:num_explicit] total_true_pairs = torch.nonzero(clipped_pos_diffs, as_tuple=False).size(0) r_discounts = torch.arange(num_explicit).type(tensor) r_discounts = torch.log2(2.0 + r_discounts) r_discounts = torch.unsqueeze(r_discounts, dim=0) c_discounts = torch.arange(num_pos).type(tensor) c_discounts = torch.log2(2.0 + c_discounts) c_discounts = torch.unsqueeze(c_discounts, dim=1) weighted_clipped_pos_diffs = clipped_pos_diffs / r_discounts weighted_clipped_pos_diffs = weighted_clipped_pos_diffs / c_discounts return weighted_clipped_pos_diffs, total_true_pairs, num_explicit
Get total true pairs based on explicit labels. In particular, the difference values are discounted based on positions.
get_weighted_clipped_pos_diffs
python
wildltr/ptranking
ptranking/ltr_adversarial/util/pair_sampling.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/util/pair_sampling.py
MIT
def sample_pairs_BT(point_vals=None, num_pairs=None): ''' The probability of observing a pair of ordered documents is formulated based on Bradley-Terry model, i.e., p(d_i > d_j)=1/(1+exp(-delta(s_i - s_j))) ''' # the rank information is not taken into account, and all pairs are treated equally. #total_items = point_vals.size(0) mat_diffs = torch.unsqueeze(point_vals, dim=1) - torch.unsqueeze(point_vals, dim=0) mat_bt_probs = torch.sigmoid(mat_diffs) # default delta=1.0 """ B = tdist.Binomial(1, mat_bt_probs.view(1, -1)) b_res = B.sample() num_unique_pairs = torch.nonzero(b_res).size(0) if num_unique_pairs < num_pairs: res = torch.multinomial(b_res, num_pairs, replacement=True) else: res = torch.multinomial(b_res, num_pairs, replacement=False) res = torch.squeeze(res) head_inds = res / total_items tail_inds = res % total_items """ head_inds, tail_inds = sample_points_Bernoulli(mat_bt_probs, num_pairs) return head_inds, tail_inds
The probability of observing a pair of ordered documents is formulated based on Bradley-Terry model, i.e., p(d_i > d_j)=1/(1+exp(-delta(s_i - s_j)))
sample_pairs_BT
python
wildltr/ptranking
ptranking/ltr_adversarial/util/pair_sampling.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/util/pair_sampling.py
MIT
def ini_listsf(self, num_features=None, n_heads=2, encoder_layers=2, dropout=0.1, encoder_type=None, ff_dims=[256, 128, 64], out_dim=1, AF='R', TL_AF='GE', apply_tl_af=False, BN=True, bn_type=None, bn_affine=False): ''' Initialization the univariate scoring function for diversified ranking. ''' # the input size according to the used dataset encoder_num_features, fc_num_features = num_features * 3, num_features * 6 ''' Component-1: stacked multi-head self-attention (MHSA) blocks ''' mhsa = MultiheadAttention(hid_dim=encoder_num_features, n_heads=n_heads, dropout=dropout, device=self.device) if 'AllRank' == encoder_type: fc = PositionwiseFeedForward(encoder_num_features, hid_dim=encoder_num_features, dropout=dropout) encoder = Encoder(layer=EncoderLayer(hid_dim=encoder_num_features, mhsa=dc(mhsa), encoder_type=encoder_type, fc=fc, dropout=dropout), num_layers=encoder_layers, encoder_type=encoder_type) elif 'DASALC' == encoder_type: # we note that feature normalization strategy is different from AllRank encoder = Encoder(layer=EncoderLayer(hid_dim=encoder_num_features, mhsa=dc(mhsa), encoder_type=encoder_type), num_layers=encoder_layers, encoder_type=encoder_type) elif 'AttnDIN' == encoder_type: encoder = Encoder(layer=EncoderLayer(hid_dim=encoder_num_features, mhsa=dc(mhsa), encoder_type=encoder_type), num_layers=encoder_layers, encoder_type=encoder_type) else: raise NotImplementedError ''' Component-2: univariate scoring function ''' uni_ff_dims = [fc_num_features] uni_ff_dims.extend(ff_dims) uni_ff_dims.append(out_dim) uni_sf = get_stacked_FFNet(ff_dims=uni_ff_dims, AF=AF, TL_AF=TL_AF, apply_tl_af=apply_tl_af, BN=BN, bn_type=bn_type, bn_affine=bn_affine, device=self.device) if self.gpu: encoder = encoder.to(self.device) uni_sf = uni_sf.to(self.device) list_sf = {'encoder': encoder, 'uni_sf': uni_sf} return list_sf
Initialization the univariate scoring function for diversified ranking.
ini_listsf
python
wildltr/ptranking
ptranking/ltr_diversification/base/div_list_ranker.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/base/div_list_ranker.py
MIT
def get_diff_normal(self, batch_mus, batch_vars, batch_cocos=None): ''' The difference of two normal random variables is another normal random variable. In particular, we consider two cases: (1) correlated (2) independent. @param batch_mus: the predicted mean @param batch_vars: the predicted variance @param batch_cocos: the predicted correlation coefficient in [-1, 1], which is formulated as the cosine-similarity of corresponding vectors. @return: the mean, variance of the result normal variable. ''' # mu_i - mu_j batch_pairsub_mus = torch.unsqueeze(batch_mus, dim=2) - torch.unsqueeze(batch_mus, dim=1) # variance w.r.t. S_i - S_j, which is equal to: (1)sigma^2_i + sigma^2_j - \rou_ij*sigma_i*sigma_j (2) sigma^2_i + sigma^2_j if batch_cocos is not None: batch_std_vars = torch.pow(batch_vars, .5) batch_pairsub_vars = torch.unsqueeze(batch_vars, dim=2) + torch.unsqueeze(batch_vars, dim=1) - \ batch_cocos * torch.bmm(torch.unsqueeze(batch_std_vars, dim=2), torch.unsqueeze(batch_std_vars, dim=1)) else: batch_pairsub_vars = torch.unsqueeze(batch_vars, dim=2) + torch.unsqueeze(batch_vars, dim=1) return batch_pairsub_mus, batch_pairsub_vars
The difference of two normal random variables is another normal random variable. In particular, we consider two cases: (1) correlated (2) independent. @param batch_mus: the predicted mean @param batch_vars: the predicted variance @param batch_cocos: the predicted correlation coefficient in [-1, 1], which is formulated as the cosine-similarity of corresponding vectors. @return: the mean, variance of the result normal variable.
get_diff_normal
python
wildltr/ptranking
ptranking/ltr_diversification/base/div_mdn_ranker.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/base/div_mdn_ranker.py
MIT
def ini_listsf(self, num_features=None, n_heads=2, encoder_layers=2, dropout=0.1, encoder_type=None, ff_dims=[256, 128, 64], out_dim=1, AF='R', TL_AF='GE', apply_tl_af=False, BN=True, bn_type=None, bn_affine=False): ''' Initialization the univariate scoring function for diversified ranking. ''' # the input size according to the used dataset encoder_num_features, fc_num_features = num_features * 3, num_features * 6 ''' Component-1: stacked multi-head self-attention (MHSA) blocks ''' mhsa = MultiheadAttention(hid_dim=encoder_num_features, n_heads=n_heads, dropout=dropout, device=self.device) if 'AllRank' == encoder_type: fc = PositionwiseFeedForward(encoder_num_features, hid_dim=encoder_num_features, dropout=dropout) encoder = Encoder(layer=EncoderLayer(hid_dim=encoder_num_features, mhsa=dc(mhsa), encoder_type=encoder_type, fc=fc, dropout=dropout), num_layers=encoder_layers, encoder_type=encoder_type) elif 'DASALC' == encoder_type: # we note that feature normalization strategy is different from AllRank encoder = Encoder(layer=EncoderLayer(hid_dim=encoder_num_features, mhsa=dc(mhsa), encoder_type=encoder_type), num_layers=encoder_layers, encoder_type=encoder_type) elif 'AttnDIN' == encoder_type: encoder = Encoder(layer=EncoderLayer(hid_dim=encoder_num_features, mhsa=dc(mhsa), encoder_type=encoder_type), num_layers=encoder_layers, encoder_type=encoder_type) else: raise NotImplementedError ''' Component-2: univariate scoring function ''' uni_ff_dims = [fc_num_features] uni_ff_dims.extend(ff_dims) uni_ff_dims.append(out_dim) uni_sf = get_stacked_FFNet(ff_dims=uni_ff_dims, AF=AF, TL_AF=TL_AF, apply_tl_af=apply_tl_af, BN=BN, bn_type=bn_type, bn_affine=bn_affine, device=self.device) ''' Component-3: stacked feed-forward layers for co-variance prediction ''' if self.sf_id.endswith("co"): co_ff_dims = [fc_num_features] co_ff_dims.extend(ff_dims) co_ffnns = get_stacked_FFNet(ff_dims=co_ff_dims, AF=AF, apply_tl_af=False, dropout=dropout, BN=BN, bn_type=bn_type, bn_affine=bn_affine, device=self.device) if self.gpu: encoder = encoder.to(self.device) uni_sf = uni_sf.to(self.device) if self.sf_id.endswith("co"): co_ffnns = co_ffnns.to(self.device) if self.sf_id.endswith("co"): list_sf = {'encoder': encoder, 'uni_sf': uni_sf, 'co_ffnns':co_ffnns} else: list_sf = {'encoder': encoder, 'uni_sf': uni_sf} return list_sf
Initialization the univariate scoring function for diversified ranking.
ini_listsf
python
wildltr/ptranking
ptranking/ltr_diversification/base/div_mdn_ranker.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/base/div_mdn_ranker.py
MIT
def div_predict(self, q_repr, doc_reprs): ''' The relevance prediction. In the context of diversified ranking, the shape is interpreted as: @param q_repr: @param doc_reprs: @return: ''' if self.sf_id.endswith("co"): batch_mus, batch_vars, batch_cocos = self.div_forward(q_repr, doc_reprs) else: batch_cocos = None batch_mus, batch_vars = self.div_forward(q_repr, doc_reprs) if 'RERAR' == self.sort_id: # reciprocal_expected_rank_as_relevance (RERAR) ''' Expected Ranks ''' batch_expt_ranks = \ get_expected_rank(batch_mus=batch_mus, batch_vars=batch_vars, batch_cocos=batch_cocos, return_cdf=False) batch_RERAR = 1.0 / batch_expt_ranks return batch_RERAR elif 'ExpRele' == self.sort_id: return batch_mus elif 'RiskAware' == self.sort_id: # TODO integrating coco for ranking return batch_mus - self.b*batch_vars else: raise NotImplementedError
The relevance prediction. In the context of diversified ranking, the shape is interpreted as: @param q_repr: @param doc_reprs: @return:
div_predict
python
wildltr/ptranking
ptranking/ltr_diversification/base/div_mdn_ranker.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/base/div_mdn_ranker.py
MIT
def default_pointsf_para_dict(self): """ The default setting of the hyper-parameters of the stump neural scoring function. """ self.sf_para_dict = dict() if self.use_json: opt = self.json_dict['opt'][0] lr = self.json_dict['lr'][0] pointsf_json_dict = self.json_dict[self.sf_id] num_layers = pointsf_json_dict['layers'][0] af = pointsf_json_dict['AF'][0] apply_tl_af = pointsf_json_dict['apply_tl_af'][0] tl_af = pointsf_json_dict['TL_AF'][0] if apply_tl_af else None BN = pointsf_json_dict['BN'][0] bn_type = pointsf_json_dict['bn_type'][0] if BN else None bn_affine = pointsf_json_dict['bn_affine'][0] if BN else None self.sf_para_dict['opt'] = opt self.sf_para_dict['lr'] = lr pointsf_para_dict = dict(num_layers=num_layers, AF=af, TL_AF=tl_af, apply_tl_af=apply_tl_af, BN=BN, bn_type=bn_type, bn_affine=bn_affine) self.sf_para_dict['sf_id'] = self.sf_id self.sf_para_dict[self.sf_id] = pointsf_para_dict else: # optimization-specific setting self.sf_para_dict['opt'] = 'Adagrad' # Adam | RMS | Adagrad self.sf_para_dict['lr'] = 0.001 # learning rate # common settings for a scoring function based on feed-forward neural networks pointsf_para_dict = dict(num_layers=5, AF='GE', TL_AF='GE', apply_tl_af=False, BN=True, bn_type='BN', bn_affine=True) self.sf_para_dict['sf_id'] = self.sf_id self.sf_para_dict[self.sf_id] = pointsf_para_dict return self.sf_para_dict
The default setting of the hyper-parameters of the stump neural scoring function.
default_pointsf_para_dict
python
wildltr/ptranking
ptranking/ltr_diversification/eval/div_parameter.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/div_parameter.py
MIT
def default_listsf_para_dict(self): """ The default setting of the hyper-parameters of the permutation-equivariant neural scoring function. """ self.sf_para_dict = dict() if self.use_json: opt = self.json_dict['opt'][0] lr = self.json_dict['lr'][0] listsf_json_dict = self.json_dict[self.sf_id] BN = listsf_json_dict['BN'][0] bn_type = listsf_json_dict['bn_type'][0] if BN else None bn_affine = listsf_json_dict['bn_affine'][0] if BN else None ff_dims = listsf_json_dict['ff_dims'] af = listsf_json_dict['AF'][0] apply_tl_af = listsf_json_dict['apply_tl_af'][0] tl_af = listsf_json_dict['TL_AF'][0] if apply_tl_af else None n_heads = listsf_json_dict['n_heads'][0] encoder_type = listsf_json_dict['encoder_type'][0] encoder_layers = listsf_json_dict['encoder_layers'][0] self.sf_para_dict['opt'] = opt self.sf_para_dict['lr'] = lr listsf_para_dict = dict(BN=BN, AF=af, ff_dims=ff_dims, apply_tl_af=apply_tl_af, n_heads=n_heads, encoder_type=encoder_type, encoder_layers=encoder_layers, bn_type=bn_type, bn_affine=bn_affine, TL_AF=tl_af) self.sf_para_dict['sf_id'] = self.sf_id self.sf_para_dict[self.sf_id] = listsf_para_dict else: # optimization-specific setting self.sf_para_dict['opt'] = 'Adagrad' # Adam | RMS | Adagrad self.sf_para_dict['lr'] = 0.01 # learning rate # DASALC, AllRank, AttnDIN listsf_para_dict = dict(encoder_type='AttnDIN', n_heads=6, encoder_layers=6, ff_dims=[256, 128, 64], AF='R', TL_AF='GE', apply_tl_af=False, BN=True, bn_type='BN', bn_affine=True) self.sf_para_dict['sf_id'] = self.sf_id self.sf_para_dict[self.sf_id] = listsf_para_dict return self.sf_para_dict
The default setting of the hyper-parameters of the permutation-equivariant neural scoring function.
default_listsf_para_dict
python
wildltr/ptranking
ptranking/ltr_diversification/eval/div_parameter.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/div_parameter.py
MIT
def pointsf_grid_search(self): """ Iterator of hyper-parameters of the stump neural scoring function. """ if self.use_json: choice_opt = self.json_dict['opt'] choice_lr = self.json_dict['lr'] pointsf_json_dict = self.json_dict[self.sf_id] choice_layers = pointsf_json_dict['layers'] choice_af = pointsf_json_dict['AF'] choice_apply_tl_af = pointsf_json_dict['apply_tl_af'] choice_tl_af = pointsf_json_dict['TL_AF'] if True in choice_apply_tl_af else None choice_BN = pointsf_json_dict['BN'] choice_bn_type = pointsf_json_dict['bn_type'] if True in choice_BN else None choice_bn_affine = pointsf_json_dict['bn_affine'] if True in choice_BN else None else: choice_BN = [True] choice_bn_type = ['BN'] choice_bn_affine = [True] choice_layers = [3] if self.debug else [5] # 1, 2, 3, 4 choice_af = ['R', 'CE'] if self.debug else ['R', 'CE', 'S'] # ['R', 'LR', 'RR', 'E', 'SE', 'CE', 'S'] choice_tl_af = ['R', 'CE'] if self.debug else ['R', 'CE', 'S'] # ['R', 'LR', 'RR', 'E', 'SE', 'CE', 'S'] choice_apply_tl_af = [True] # True, False choice_opt = ['Adam'] choice_lr = [0.001] for opt, lr in product(choice_opt, choice_lr): sf_para_dict = dict() sf_para_dict['sf_id'] = self.sf_id base_dict = dict(opt=opt, lr=lr) sf_para_dict.update(base_dict) for num_layers, af, apply_tl_af, BN in product(choice_layers, choice_af, choice_apply_tl_af, choice_BN): pointsf_para_dict = dict(num_layers=num_layers, AF=af, apply_tl_af=apply_tl_af, BN=BN) if apply_tl_af: for tl_af in choice_tl_af: pointsf_para_dict.update(dict(TL_AF=tl_af)) if BN: for bn_type, bn_affine in product(choice_bn_type, choice_bn_affine): bn_dict = dict(bn_type=bn_type, bn_affine=bn_affine) pointsf_para_dict.update(bn_dict) sf_para_dict[self.sf_id] = pointsf_para_dict self.sf_para_dict = sf_para_dict yield sf_para_dict else: sf_para_dict[self.sf_id] = pointsf_para_dict self.sf_para_dict = sf_para_dict yield sf_para_dict else: if BN: for bn_type, bn_affine in product(choice_bn_type, choice_bn_affine): bn_dict = dict(bn_type=bn_type, bn_affine=bn_affine) pointsf_para_dict.update(bn_dict) sf_para_dict[self.sf_id] = pointsf_para_dict self.sf_para_dict = sf_para_dict yield sf_para_dict else: sf_para_dict[self.sf_id] = pointsf_para_dict self.sf_para_dict = sf_para_dict yield sf_para_dict
Iterator of hyper-parameters of the stump neural scoring function.
pointsf_grid_search
python
wildltr/ptranking
ptranking/ltr_diversification/eval/div_parameter.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/div_parameter.py
MIT
def listsf_to_para_string(self, log=False): ''' Get the identifier of scoring function ''' sf_str = super().listsf_to_para_string(log=log) s1, s2 = (':', '\n') if log else ('_', '_') if self.sf_id.endswith("co"): if log: sf_str = s2.join([sf_str, s1.join(['CoVariance', 'True'])]) else: sf_str = '_'.join([sf_str, 'CoCo']) return sf_str
Get the identifier of scoring function
listsf_to_para_string
python
wildltr/ptranking
ptranking/ltr_diversification/eval/div_parameter.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/div_parameter.py
MIT
def to_eval_setting_string(self, log=False): """ String identifier of eval-setting :param log: :return: """ eval_dict = self.eval_dict s1, s2 = (':', '\n') if log else ('_', '_') do_vali, epochs = eval_dict['do_validation'], eval_dict['epochs'] if do_vali: vali_metric, vali_k = eval_dict['vali_metric'], eval_dict['vali_k'] vali_str = '@'.join([vali_metric, str(vali_k)]) eval_string = s2.join([s1.join(['epochs', str(epochs)]), s1.join(['validation', vali_str])]) if log \ else s1.join(['EP', str(epochs), 'V', vali_str]) else: eval_string = s1.join(['epochs', str(epochs)]) rerank = eval_dict['rerank'] if rerank: rerank_k, rerank_model_id = eval_dict['rerank_k'], eval_dict['rerank_model_id'] eval_string = s2.join([eval_string, s1.join(['rerank_k', str(rerank_k)]), s1.join(['rerank_model_id', rerank_model_id])]) if log else \ s1.join([eval_string, 'RR', str(rerank_k), rerank_model_id]) return eval_string
String identifier of eval-setting :param log: :return:
to_eval_setting_string
python
wildltr/ptranking
ptranking/ltr_diversification/eval/div_parameter.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/div_parameter.py
MIT
def default_setting(self): """ A default setting for evaluation when performing diversified ranking. :param debug: :param data_id: :param dir_output: :return: """ if self.use_json: dir_output = self.json_dict['dir_output'] epochs = 5 if self.debug else self.json_dict['epochs'] do_validation = self.json_dict['do_validation'] vali_k = self.json_dict['vali_k'] if do_validation else None vali_metric = self.json_dict['vali_metric'] if do_validation else None cutoffs = self.json_dict['cutoffs'] do_log = self.json_dict['do_log'] log_step = self.json_dict['log_step'] if do_log else None do_summary = self.json_dict['do_summary'] loss_guided = self.json_dict['loss_guided'] rerank = self.json_dict['rerank'] rerank_k = self.json_dict['rerank_k'] if rerank else None rerank_dir = self.json_dict['rerank_dir'] if rerank else None rerank_model_id = self.json_dict['rerank_model_id'] if rerank else None rerank_model_dir = self.json_dict['rerank_model_dir'] if rerank else None else: do_log = False if self.debug else True do_validation, do_summary = True, False cutoffs = [1, 3, 5, 10, 20, 50] log_step = 1 epochs = 5 if self.debug else 500 vali_k = 5 vali_metric = 'aNDCG' # nERR-IA, aNDCG dir_output = self.dir_output loss_guided = False rerank = False rerank_k = 50 if rerank else None rerank_dir = '/Users/iimac/Workbench/CodeBench/Output/DivLTR/Rerank/R_reproduce/Opt_aNDCG/' if rerank\ else None rerank_model_id = 'DivProbRanker' if rerank else None rerank_model_dir = '/Users/iimac/Workbench/CodeBench/Output/DivLTR/Rerank/R/DivProbRanker_SF_R3R_BN_Affine_AttnDIN_2_heads_6_encoder_Adagrad_0.01_WT_Div_0912_Implicit_EP_300_V_aNDCG@5/1_SuperSoft_ExpRele_0.01_OptIdeal_10/' if rerank\ else None # more evaluation settings that are rarely changed self.eval_dict = dict(debug=self.debug, grid_search=False, dir_output=dir_output, epochs=epochs, cutoffs=cutoffs, do_validation=do_validation, vali_metric=vali_metric, vali_k=vali_k, do_summary=do_summary, do_log=do_log, log_step=log_step, loss_guided=loss_guided, rerank=rerank, rerank_k=rerank_k, rerank_dir=rerank_dir, rerank_model_id=rerank_model_id, rerank_model_dir=rerank_model_dir) return self.eval_dict
A default setting for evaluation when performing diversified ranking. :param debug: :param data_id: :param dir_output: :return:
default_setting
python
wildltr/ptranking
ptranking/ltr_diversification/eval/div_parameter.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/div_parameter.py
MIT
def grid_search(self): """ Iterator of settings for evaluation when performing diversified ranking. """ if self.use_json: dir_output = self.json_dict['dir_output'] epochs = 5 if self.debug else self.json_dict['epochs'] do_validation = self.json_dict['do_validation'] vali_k = self.json_dict['vali_k'] if do_validation else None vali_metric = self.json_dict['vali_metric'] if do_validation else None cutoffs = self.json_dict['cutoffs'] do_log, log_step = self.json_dict['do_log'], self.json_dict['log_step'] do_summary = self.json_dict['do_summary'] loss_guided = self.json_dict['loss_guided'] rerank = self.json_dict['rerank'] rerank_k = self.json_dict['rerank_k'] if rerank else None rerank_dir = self.json_dict['rerank_dir'] if rerank else None rerank_model_id = self.json_dict['rerank_model_id'] if rerank else None base_dict = dict(debug=False, grid_search=True, dir_output=dir_output) else: base_dict = dict(debug=self.debug, grid_search=True, dir_output=self.dir_output) epochs = 2 if self.debug else 100 do_validation = False if self.debug else True # True, False vali_k, cutoffs = 5, [1, 3, 5, 10, 20, 50] vali_metric = 'aNDCG' do_log = False if self.debug else True log_step = 1 do_summary, loss_guided = False, False rerank = False rerank_k = 20 if rerank else None rerank_dir = '' if rerank else None rerank_model_id = '' if rerank else None self.eval_dict = dict(epochs=epochs, do_validation=do_validation, vali_k=vali_k, cutoffs=cutoffs, vali_metric=vali_metric, do_log=do_log, log_step=log_step, do_summary=do_summary, loss_guided=loss_guided, rerank=rerank, rerank_k=rerank_k, rerank_dir=rerank_dir, rerank_model_id=rerank_model_id) self.eval_dict.update(base_dict) yield self.eval_dict
Iterator of settings for evaluation when performing diversified ranking.
grid_search
python
wildltr/ptranking
ptranking/ltr_diversification/eval/div_parameter.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/div_parameter.py
MIT
def to_data_setting_string(self, log=False): """ String identifier of data-setting :param log: :return: """ data_dict = self.data_dict setting_string, add_noise = data_dict['data_id'], data_dict['add_noise'] if add_noise: std_delta = data_dict['std_delta'] setting_string = '_'.join([setting_string, 'Gaussian', '{:,g}'.format(std_delta)]) return setting_string
String identifier of data-setting :param log: :return:
to_data_setting_string
python
wildltr/ptranking
ptranking/ltr_diversification/eval/div_parameter.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/div_parameter.py
MIT
def default_setting(self): """ A default setting for data loading when performing diversified ranking """ if self.use_json: add_noise = self.json_dict['add_noise'][0] std_delta = self.json_dict['std_delta'][0] if add_noise else None self.data_dict = dict(data_id=self.data_id, dir_data=self.json_dict["dir_data"], add_noise=add_noise, std_delta=std_delta) else: add_noise = False std_delta = 1.0 if add_noise else None self.data_dict = dict(data_id=self.data_id, dir_data=self.dir_data, add_noise=add_noise,std_delta=std_delta) div_data_meta = get_div_data_meta(data_id=self.data_id) # add meta-information self.data_dict.update(div_data_meta) return self.data_dict
A default setting for data loading when performing diversified ranking
default_setting
python
wildltr/ptranking
ptranking/ltr_diversification/eval/div_parameter.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/div_parameter.py
MIT
def grid_search(self): """ Iterator of settings for data loading when performing adversarial ltr """ if self.use_json: choice_add_noise = self.json_dict['add_noise'] choice_std_delta = self.json_dict['std_delta'] if True in choice_add_noise else None self.data_dict = dict(data_id=self.data_id, dir_data=self.json_dict["dir_data"]) else: choice_add_noise = [False] choice_std_delta = [1.0] if True in choice_add_noise else None self.data_dict = dict(data_id=self.data_id, dir_data=self.dir_data) div_data_meta = get_div_data_meta(data_id=self.data_id) # add meta-information self.data_dict.update(div_data_meta) for add_noise in choice_add_noise: if add_noise: for std_delta in choice_std_delta: noise_dict = dict(add_noise=add_noise, std_delta=std_delta) self.data_dict.update(noise_dict) yield self.data_dict else: noise_dict = dict(add_noise=add_noise, std_delta=None) self.data_dict.update(noise_dict) yield self.data_dict
Iterator of settings for data loading when performing adversarial ltr
grid_search
python
wildltr/ptranking
ptranking/ltr_diversification/eval/div_parameter.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/div_parameter.py
MIT
def load_data(self, eval_dict=None, data_dict=None, fold_k=None, discriminator=None): """ We note that it is impossible to perform processing over multiple queries, since q_doc_rele_mat may differ from query to query. @param eval_dict: @param data_dict: @param fold_k: @return: """ file_train, file_vali, file_test = self.determine_files(data_splits=self.data_splits, fold_k=fold_k) fold_dir = data_dict['dir_data'] + 'folder' + str(fold_k) + '/' if discriminator is not None: train_data = \ RerankDIVDataset(list_as_file=file_train, split_type=SPLIT_TYPE.Train, fold_dir=fold_dir, data_dict=data_dict, dictQueryRepresentation=self.dictQueryRepresentation, dictDocumentRepresentation=self.dictDocumentRepresentation, dictQueryPermutaion=self.dictQueryPermutaion, presort=self.presort, dictQueryDocumentSubtopics=self.dictQueryDocumentSubtopics, buffer=True, discriminator=discriminator, eval_dict=eval_dict) test_data = \ RerankDIVDataset(list_as_file=file_test, split_type=SPLIT_TYPE.Test, fold_dir=fold_dir, data_dict=data_dict, dictQueryRepresentation=self.dictQueryRepresentation, dictQueryPermutaion=self.dictQueryPermutaion, dictDocumentRepresentation=self.dictDocumentRepresentation, dictQueryDocumentSubtopics=self.dictQueryDocumentSubtopics, presort=self.presort, discriminator=discriminator, buffer=True, eval_dict=eval_dict) vali_data = \ RerankDIVDataset(list_as_file=file_vali, split_type=SPLIT_TYPE.Validation, fold_dir=fold_dir, data_dict=data_dict, dictQueryRepresentation=self.dictQueryRepresentation, dictDocumentRepresentation=self.dictDocumentRepresentation, dictQueryPermutaion=self.dictQueryPermutaion, dictQueryDocumentSubtopics=self.dictQueryDocumentSubtopics, buffer=True, presort=self.presort, discriminator=discriminator, eval_dict=eval_dict) else: train_data = \ DIVDataset(list_as_file=file_train, split_type=SPLIT_TYPE.Train, fold_dir=fold_dir, data_dict=data_dict, dictQueryRepresentation=self.dictQueryRepresentation, dictDocumentRepresentation=self.dictDocumentRepresentation, dictQueryPermutaion=self.dictQueryPermutaion, buffer=True, presort=self.presort, dictQueryDocumentSubtopics=self.dictQueryDocumentSubtopics, add_noise=data_dict['add_noise'], std_delta=data_dict['std_delta']) test_data = \ DIVDataset(list_as_file=file_test, split_type=SPLIT_TYPE.Test, fold_dir=fold_dir, data_dict=data_dict, dictQueryRepresentation=self.dictQueryRepresentation, dictDocumentRepresentation=self.dictDocumentRepresentation, dictQueryPermutaion=self.dictQueryPermutaion, presort=self.presort, dictQueryDocumentSubtopics=self.dictQueryDocumentSubtopics, buffer=True, add_noise=data_dict['add_noise'], std_delta=data_dict['std_delta']) vali_data = \ DIVDataset(list_as_file=file_vali, split_type=SPLIT_TYPE.Validation, fold_dir=fold_dir, data_dict=data_dict, dictQueryRepresentation=self.dictQueryRepresentation, dictDocumentRepresentation=self.dictDocumentRepresentation, dictQueryPermutaion=self.dictQueryPermutaion, presort=self.presort, dictQueryDocumentSubtopics=self.dictQueryDocumentSubtopics, buffer=True, add_noise=data_dict['add_noise'], std_delta=data_dict['std_delta']) return train_data, test_data, vali_data
We note that it is impossible to perform processing over multiple queries, since q_doc_rele_mat may differ from query to query. @param eval_dict: @param data_dict: @param fold_k: @return:
load_data
python
wildltr/ptranking
ptranking/ltr_diversification/eval/ltr_diversification.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/ltr_diversification.py
MIT
def setup_output(self, data_dict=None, eval_dict=None, reproduce=False): """ Update output directory :param data_dict: :param eval_dict: :param sf_para_dict: :param model_para_dict: :return: """ model_id = self.model_parameter.model_id grid_search, do_vali, dir_output = eval_dict['grid_search'], eval_dict['do_validation'], eval_dict['dir_output'] if grid_search or reproduce: dir_root = dir_output + '_'.join(['gpu', 'grid', model_id]) + '/' if self.gpu else dir_output + '_'.join(['grid', model_id]) + '/' else: dir_root = dir_output eval_dict['dir_root'] = dir_root if not os.path.exists(dir_root): os.makedirs(dir_root) sf_str = self.sf_parameter.to_para_string() data_eval_str = '_'.join([self.data_setting.to_data_setting_string(), self.eval_setting.to_eval_setting_string()]) file_prefix = '_'.join([model_id, 'SF', sf_str, data_eval_str]) dir_run = dir_root + file_prefix + '/' # run-specific outputs model_para_string = self.model_parameter.to_para_string() if len(model_para_string) > 0: dir_run = dir_run + model_para_string + '/' eval_dict['dir_run'] = dir_run if not os.path.exists(dir_run): os.makedirs(dir_run) return dir_run
Update output directory :param data_dict: :param eval_dict: :param sf_para_dict: :param model_para_dict: :return:
setup_output
python
wildltr/ptranking
ptranking/ltr_diversification/eval/ltr_diversification.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/ltr_diversification.py
MIT
def setup_eval(self, data_dict, eval_dict, sf_para_dict, model_para_dict): """ Finalize the evaluation setting correspondingly :param data_dict: :param eval_dict: :param sf_para_dict: :param model_para_dict: :return: """ sf_para_dict[sf_para_dict['sf_id']].update(dict(num_features=data_dict['num_features'])) self.dir_run = self.setup_output(data_dict, eval_dict) if eval_dict['do_log'] and not self.eval_setting.debug: time_str = datetime.datetime.now().strftime("%Y_%m_%d_%H_%M") sys.stdout = open(self.dir_run + '_'.join(['log', time_str]) + '.txt', "w") #if self.do_summary: self.summary_writer = SummaryWriter(self.dir_run + 'summary')
Finalize the evaluation setting correspondingly :param data_dict: :param eval_dict: :param sf_para_dict: :param model_para_dict: :return:
setup_eval
python
wildltr/ptranking
ptranking/ltr_diversification/eval/ltr_diversification.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/ltr_diversification.py
MIT
def load_ranker(self, sf_para_dict, model_para_dict): """ Load a ranker correspondingly :param sf_para_dict: :param model_para_dict: :param kwargs: :return: """ model_id = model_para_dict['model_id'] if model_id in ['DALETOR', 'DivLambdaRank', 'DivProbRanker', 'DivSoftRank', 'DivTwinRank']: ranker = globals()[model_id](sf_para_dict=sf_para_dict, model_para_dict=model_para_dict, gpu=self.gpu, device=self.device) else: raise NotImplementedError return ranker
Load a ranker correspondingly :param sf_para_dict: :param model_para_dict: :param kwargs: :return:
load_ranker
python
wildltr/ptranking
ptranking/ltr_diversification/eval/ltr_diversification.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/ltr_diversification.py
MIT
def log_max(self, data_dict=None, max_cv_avg_scores=None, sf_para_dict=None, eval_dict=None, log_para_str=None): ''' Log the best performance across grid search and the corresponding setting ''' dir_root, cutoffs = eval_dict['dir_root'], eval_dict['cutoffs'] data_id = data_dict['data_id'] sf_str = self.sf_parameter.to_para_string(log=True) data_eval_str = self.data_setting.to_data_setting_string(log=True) +'\n'+ self.eval_setting.to_eval_setting_string(log=True) with open(file=dir_root + '/' + '_'.join([data_id, sf_para_dict['sf_id'], 'max.txt']), mode='w') as max_writer: max_writer.write('\n\n'.join([data_eval_str, sf_str, log_para_str, metric_results_to_string(max_cv_avg_scores, cutoffs, metric='aNDCG')]))
Log the best performance across grid search and the corresponding setting
log_max
python
wildltr/ptranking
ptranking/ltr_diversification/eval/ltr_diversification.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/ltr_diversification.py
MIT
def grid_run(self, debug=True, model_id=None, sf_id=None, data_id=None, dir_data=None, dir_output=None, dir_json=None): """ Perform diversified ranking based on grid search of optimal parameter setting """ if dir_json is not None: div_data_eval_sf_json = dir_json + 'Div_Data_Eval_ScoringFunction.json' para_json = dir_json + model_id + "Parameter.json" self.set_eval_setting(debug=debug, div_eval_json=div_data_eval_sf_json) self.set_data_setting(div_data_json=div_data_eval_sf_json) self.set_scoring_function_setting(sf_json=div_data_eval_sf_json) self.set_model_setting(model_id=model_id, para_json=para_json) else: self.set_eval_setting(debug=debug, dir_output=dir_output) self.set_data_setting(debug=debug, data_id=data_id, dir_data=dir_data) self.set_scoring_function_setting(debug=debug, sf_id=sf_id) self.set_model_setting(debug=debug, model_id=model_id) ''' select the best setting through grid search ''' vali_k, cutoffs = 5, [1, 3, 5, 10, 20, 50] # cutoffs should be consistent w.r.t. eval_dict max_cv_avg_scores = np.zeros(len(cutoffs)) # fold average k_index = cutoffs.index(vali_k) max_common_para_dict, max_sf_para_dict, max_div_para_dict = None, None, None for data_dict in self.iterate_data_setting(): for eval_dict in self.iterate_eval_setting(): if eval_dict['rerank']: d_sf_para_dict, d_div_para_dict = self.get_rerank_para_dicts(eval_dict=eval_dict) else: d_sf_para_dict, d_div_para_dict = None, None for sf_para_dict in self.iterate_scoring_function_setting(): for div_para_dict in self.iterate_model_setting(): curr_cv_avg_scores = \ self.div_cv_eval(data_dict=data_dict, eval_dict=eval_dict, sf_para_dict=sf_para_dict, div_para_dict=div_para_dict, d_sf_para_dict=d_sf_para_dict, d_div_para_dict=d_div_para_dict) if curr_cv_avg_scores[k_index] > max_cv_avg_scores[k_index]: max_cv_avg_scores, max_sf_para_dict, max_eval_dict, max_div_para_dict = \ curr_cv_avg_scores, sf_para_dict, eval_dict, div_para_dict # log max setting self.log_max(data_dict=data_dict, eval_dict=max_eval_dict, max_cv_avg_scores=max_cv_avg_scores, sf_para_dict=max_sf_para_dict, log_para_str=self.model_parameter.to_para_string(log=True, given_para_dict=max_div_para_dict))
Perform diversified ranking based on grid search of optimal parameter setting
grid_run
python
wildltr/ptranking
ptranking/ltr_diversification/eval/ltr_diversification.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/ltr_diversification.py
MIT
def point_run(self, debug=False, model_id=None, sf_id=None, data_id=None, dir_data=None, dir_output=None, dir_json=None, reproduce=False): """ :param debug: :param model_id: :param data_id: :param dir_data: :param dir_output: :return: """ if dir_json is None: self.set_eval_setting(debug=debug, dir_output=dir_output) self.set_data_setting(debug=debug, data_id=data_id, dir_data=dir_data) self.set_scoring_function_setting(debug=debug, sf_id=sf_id) self.set_model_setting(debug=debug, model_id=model_id) else: div_data_eval_sf_json = dir_json + 'Div_Data_Eval_ScoringFunction.json' para_json = dir_json + model_id + "Parameter.json" self.set_eval_setting(debug=debug, div_eval_json=div_data_eval_sf_json) self.set_data_setting(div_data_json=div_data_eval_sf_json) self.set_scoring_function_setting(sf_json=div_data_eval_sf_json) self.set_model_setting(model_id=model_id, para_json=para_json) data_dict = self.get_default_data_setting() eval_dict = self.get_default_eval_setting() sf_para_dict = self.get_default_scoring_function_setting() div_model_para_dict = self.get_default_model_setting() if eval_dict['rerank']: d_sf_para_dict, d_div_para_dict = self.get_rerank_para_dicts(eval_dict=eval_dict) self.div_cv_eval(data_dict=data_dict, eval_dict=eval_dict, sf_para_dict=sf_para_dict, div_para_dict=div_model_para_dict, d_sf_para_dict=d_sf_para_dict, d_div_para_dict=d_div_para_dict) else: if reproduce: self.div_cv_reproduce(data_dict=data_dict, eval_dict=eval_dict, sf_para_dict=sf_para_dict, div_para_dict=div_model_para_dict) else: self.div_cv_eval(data_dict=data_dict, eval_dict=eval_dict, sf_para_dict=sf_para_dict, div_para_dict=div_model_para_dict)
:param debug: :param model_id: :param data_id: :param dir_data: :param dir_output: :return:
point_run
python
wildltr/ptranking
ptranking/ltr_diversification/eval/ltr_diversification.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/ltr_diversification.py
MIT
def get_approx_ranks(batch_preds, rt=None, device=None, q_doc_rele_mat=None): ''' get approximated rank positions: Equation-7 in the paper''' batch_pred_diffs = torch.unsqueeze(batch_preds, dim=2) - torch.unsqueeze(batch_preds, dim=1) # computing pairwise differences, i.e., Sij or Sxy batch_indicators = robust_sigmoid(torch.transpose(batch_pred_diffs, dim0=1, dim1=2), rt, device) # using {-1.0*} may lead to a poor performance when compared with the above way; batch_hat_pis = torch.sum(batch_indicators, dim=2) + 0.5 # get approximated rank positions, i.e., hat_pi(x) _q_doc_rele_mat = torch.unsqueeze(q_doc_rele_mat, dim=1) batch_q_doc_rele_mat = _q_doc_rele_mat.expand(-1, q_doc_rele_mat.size(1), -1) # duplicate w.r.t. each subtopic -> [num_subtopics, ranking_size, ranking_size] prior_cover_cnts = torch.sum(batch_indicators * batch_q_doc_rele_mat, dim=2) - q_doc_rele_mat/2.0 # [num_subtopics, num_docs] return batch_hat_pis, prior_cover_cnts
get approximated rank positions: Equation-7 in the paper
get_approx_ranks
python
wildltr/ptranking
ptranking/ltr_diversification/score_and_sort/daletor.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/score_and_sort/daletor.py
MIT
def alphaDCG_as_a_loss(batch_preds=None, q_doc_rele_mat=None, rt=10, device=None, alpha=0.5, top_k=10): """ There are two ways to formulate the loss: (1) using the ideal order; (2) using the predicted order (TBA) """ batch_hat_pis, prior_cover_cnts = get_approx_ranks(batch_preds, rt=rt, device=device, q_doc_rele_mat=q_doc_rele_mat) batch_per_subtopic_gains = q_doc_rele_mat * torch.pow((1.0-alpha), prior_cover_cnts) / torch.log2(1.0 + batch_hat_pis) batch_global_gains = torch.sum(batch_per_subtopic_gains, dim=1) if top_k is None: alpha_DCG = torch.sum(batch_global_gains) else: alpha_DCG = torch.sum(batch_global_gains[0:top_k]) batch_loss = -alpha_DCG return batch_loss
There are two ways to formulate the loss: (1) using the ideal order; (2) using the predicted order (TBA)
alphaDCG_as_a_loss
python
wildltr/ptranking
ptranking/ltr_diversification/score_and_sort/daletor.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/score_and_sort/daletor.py
MIT
def div_custom_loss_function(self, batch_preds, q_doc_rele_mat, **kwargs): ''' :param batch_preds: [batch, ranking_size] each row represents the relevance predictions for documents within a ltr_adhoc :param batch_stds: [batch, ranking_size] each row represents the standard relevance grades for documents within a ltr_adhoc :return: ''' assert 'presort' in kwargs and kwargs['presort'] is True # aiming for directly optimising alpha-nDCG over top-k documents batch_loss = alphaDCG_as_a_loss(batch_preds=batch_preds, q_doc_rele_mat=q_doc_rele_mat, rt=self.rt, top_k=self.top_k, device=self.device) self.optimizer.zero_grad() batch_loss.backward() self.optimizer.step() return batch_loss
:param batch_preds: [batch, ranking_size] each row represents the relevance predictions for documents within a ltr_adhoc :param batch_stds: [batch, ranking_size] each row represents the standard relevance grades for documents within a ltr_adhoc :return:
div_custom_loss_function
python
wildltr/ptranking
ptranking/ltr_diversification/score_and_sort/daletor.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/score_and_sort/daletor.py
MIT
def default_para_dict(self): """ Default parameter setting for DALETOR. Here rt (reversed T) corresponds to 1/T in paper. :return: """ if self.use_json: top_k = self.json_dict['top_k'][0] rt = self.json_dict['rt'][0] # corresponds to 1/T in paper self.DALETOR_para_dict = dict(model_id=self.model_id, rt=rt, top_k=top_k) else: self.DALETOR_para_dict = dict(model_id=self.model_id, rt=10., top_k=10) return self.DALETOR_para_dict
Default parameter setting for DALETOR. Here rt (reversed T) corresponds to 1/T in paper. :return:
default_para_dict
python
wildltr/ptranking
ptranking/ltr_diversification/score_and_sort/daletor.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/score_and_sort/daletor.py
MIT
def to_para_string(self, log=False, given_para_dict=None): """ String identifier of parameters :param log: :param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search :return: """ # using specified para-dict or inner para-dict DALETOR_para_dict = given_para_dict if given_para_dict is not None else self.DALETOR_para_dict rt, top_k = DALETOR_para_dict['rt'], DALETOR_para_dict['top_k'] s1 = ':' if log else '_' if top_k is None: DALETOR_paras_str = s1.join(['rt', str(rt), 'topk', 'Full']) else: DALETOR_paras_str = s1.join(['rt', str(rt), 'topk', str(top_k)]) return DALETOR_paras_str
String identifier of parameters :param log: :param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search :return:
to_para_string
python
wildltr/ptranking
ptranking/ltr_diversification/score_and_sort/daletor.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/score_and_sort/daletor.py
MIT
def grid_search(self): """ Iterator of parameter settings for ApproxNDCG """ if self.use_json: choice_rt = self.json_dict['rt'] # corresponds to 1/T in paper choice_topk = self.json_dict['top_k'] # the cutoff value of optimising objective alpha-nDCG@k else: choice_rt = [10.0] if self.debug else [10.0] # 1.0, 10.0, 50.0, 100.0 choice_topk = [10] if self.debug else [10] for rt, top_k in product(choice_rt, choice_topk): self.DALETOR_para_dict = dict(model_id=self.model_id, rt=rt, top_k=top_k) yield self.DALETOR_para_dict
Iterator of parameter settings for ApproxNDCG
grid_search
python
wildltr/ptranking
ptranking/ltr_diversification/score_and_sort/daletor.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/score_and_sort/daletor.py
MIT
def alpha_dcg_as_a_loss(top_k=None, batch_mus=None, batch_vars=None, batch_cocos=None, q_doc_rele_mat=None, opt_ideal=True, presort=False, beta=0.5, const=False, const_var=None): ''' Alpha_nDCG as the optimization objective. @param top_k: @param batch_mus: @param batch_vars: @param batch_cocos: @param q_doc_rele_mat: @param opt_ideal: @param presort: @param beta: @return: ''' if const: batch_expt_ranks, batch_Phi0_subdiag = \ get_expected_rank_const(batch_mus=batch_mus, const_var=const_var, return_cdf=True) else: batch_expt_ranks, batch_Phi0_subdiag = \ get_expected_rank(batch_mus=batch_mus, batch_vars=batch_vars, batch_cocos=batch_cocos, return_cdf=True) if opt_ideal: assert presort is True used_batch_expt_ranks = batch_expt_ranks used_q_doc_rele_mat = q_doc_rele_mat used_batch_indicators = batch_Phi0_subdiag # the diagonal elements are zero else: batch_ascend_expt_ranks, batch_resort_inds = torch.sort(batch_expt_ranks, dim=1, descending=False) used_batch_expt_ranks = batch_ascend_expt_ranks used_batch_indicators = torch.gather(batch_Phi0_subdiag, dim=1, index=torch.unsqueeze(batch_resort_inds.expand(batch_Phi0_subdiag.size(0), -1), dim=0)) used_q_doc_rele_mat = torch.gather(q_doc_rele_mat, dim=1, index=batch_resort_inds.expand(q_doc_rele_mat.size(0), -1)) _used_q_doc_rele_mat = torch.unsqueeze(used_q_doc_rele_mat, dim=1) # duplicate w.r.t. each subtopic -> [num_subtopics, ranking_size, ranking_size] batch_q_doc_rele_mat = _used_q_doc_rele_mat.expand(-1, used_q_doc_rele_mat.size(1), -1) prior_cover_cnts = torch.sum(used_batch_indicators * batch_q_doc_rele_mat, dim=2) # [num_subtopics,num_docs] batch_per_subtopic_gains = used_q_doc_rele_mat * torch.pow((1.0 - beta), prior_cover_cnts) \ / torch.log2(1.0 + used_batch_expt_ranks) batch_global_gains = torch.sum(batch_per_subtopic_gains, dim=1) if top_k is None: alpha_DCG = torch.sum(batch_global_gains) else: alpha_DCG = torch.sum(batch_global_gains[0:top_k]) batch_loss = -alpha_DCG return batch_loss
Alpha_nDCG as the optimization objective. @param top_k: @param batch_mus: @param batch_vars: @param batch_cocos: @param q_doc_rele_mat: @param opt_ideal: @param presort: @param beta: @return:
alpha_dcg_as_a_loss
python
wildltr/ptranking
ptranking/ltr_diversification/score_and_sort/div_prob_ranker.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/score_and_sort/div_prob_ranker.py
MIT
def err_ia_as_a_loss(top_k=None, batch_mus=None, batch_vars=None, batch_cocos=None, q_doc_rele_mat=None, opt_ideal=True, presort=False, max_label=1.0, device=None, const=False, const_var=None): ''' ERR-IA as the optimization objective. @param top_k: @param batch_mus: @param batch_vars: @param batch_cocos: @param q_doc_rele_mat: @param opt_ideal: @param presort: @return: ''' ranking_size = q_doc_rele_mat.size(1) #max_label = torch.max(q_doc_rele_mat) t2 = torch.tensor([2.0], dtype=torch.float, device=device) #k = ranking_size if top_k is None else top_k #if self.norm: # batch_ideal_err = torch_rankwise_err(q_doc_rele_mat, max_label=max_label, k=k, point=True, device=self.device) if const: batch_expt_ranks = get_expected_rank_const(batch_mus=batch_mus, const_var=const_var, return_cdf=False) else: batch_expt_ranks = get_expected_rank(batch_mus=batch_mus, batch_vars=batch_vars, batch_cocos=batch_cocos) if opt_ideal: assert presort is True used_batch_expt_ranks = batch_expt_ranks used_batch_labels = q_doc_rele_mat else: ''' Sort the predicted ranks in a ascending natural order (i.e., 1, 2, 3, ..., n), the returned indices can be used to sort other vectors following the predicted order ''' batch_ascend_expt_ranks, sort_indices = torch.sort(batch_expt_ranks, dim=1, descending=False) # sort labels according to the expected ranks # batch_sys_std_labels = torch.gather(batch_std_labels, dim=1, index=sort_indices) batch_sys_std_labels = torch.gather(q_doc_rele_mat, dim=1,index=sort_indices.expand(q_doc_rele_mat.size(0), -1)) used_batch_expt_ranks = batch_ascend_expt_ranks used_batch_labels = batch_sys_std_labels if top_k is None: expt_ranks = 1.0 / used_batch_expt_ranks satis_pros = (torch.pow(t2, used_batch_labels) - 1.0) / torch.pow(t2, max_label) unsatis_pros = torch.ones_like(used_batch_labels) - satis_pros cum_unsatis_pros = torch.cumprod(unsatis_pros, dim=1) cascad_unsatis_pros = torch.ones_like(cum_unsatis_pros) cascad_unsatis_pros[:, 1:ranking_size] = cum_unsatis_pros[:, 0:ranking_size - 1] expt_satis_ranks = expt_ranks * satis_pros * cascad_unsatis_pros batch_err = torch.sum(expt_satis_ranks, dim=1) #if self.norm: # batch_nerr = batch_err / batch_ideal_err # nerr_loss = -torch.sum(batch_nerr) #else: nerr_loss = -torch.sum(batch_err) return nerr_loss else: top_k_labels = used_batch_labels[:, 0:top_k] if opt_ideal: pos_rows = torch.arange(top_k_labels.size(0), dtype=torch.long) # all rows else: non_zero_inds = torch.nonzero(torch.sum(top_k_labels, dim=1)) zero_metric_value = False if non_zero_inds.size(0) > 0 else True if zero_metric_value: return None, zero_metric_value # should not be optimized due to no useful training signal else: pos_rows = non_zero_inds[:, 0] expt_ranks = 1.0 / used_batch_expt_ranks[:, 0:top_k] satis_pros = (torch.pow(t2, top_k_labels) - 1.0) / torch.pow(t2, max_label) unsatis_pros = torch.ones_like(top_k_labels) - satis_pros cum_unsatis_pros = torch.cumprod(unsatis_pros, dim=1) cascad_unsatis_pros = torch.ones_like(cum_unsatis_pros) cascad_unsatis_pros[:, 1:top_k] = cum_unsatis_pros[:, 0:top_k - 1] expt_satis_ranks = satis_pros[pos_rows, :] * cascad_unsatis_pros[pos_rows, :] * expt_ranks batch_err = torch.sum(expt_satis_ranks, dim=1) #if self.norm: # batch_nerr = batch_err / batch_ideal_err[pos_rows, :] # nerr_loss = -torch.sum(batch_nerr) #else: nerr_loss = -torch.sum(batch_err) return nerr_loss
ERR-IA as the optimization objective. @param top_k: @param batch_mus: @param batch_vars: @param batch_cocos: @param q_doc_rele_mat: @param opt_ideal: @param presort: @return:
err_ia_as_a_loss
python
wildltr/ptranking
ptranking/ltr_diversification/score_and_sort/div_prob_ranker.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/score_and_sort/div_prob_ranker.py
MIT
def div_custom_loss_function(self, batch_mus, batch_vars, q_doc_rele_mat, **kwargs): ''' In the context of SRD, batch_size is commonly 1. @param batch_mus: [batch_size, ranking_size] each row represents the mean predictions for documents associated with the same query @param batch_vars: [batch_size, ranking_size] each row represents the variance predictions for documents associated with the same query @param batch_std_labels: [batch_size, ranking_size] each row represents the standard relevance grades for documents associated with the same query @param kwargs: @return: ''' # aiming for directly optimising alpha-nDCG over top-k documents assert 'presort' in kwargs and kwargs['presort'] is True presort = kwargs['presort'] batch_cocos = kwargs['batch_cocos'] if 'batch_cocos' in kwargs else None if 'SuperSoft' == self.opt_id: if 'aNDCG' == self.metric: batch_loss = alpha_dcg_as_a_loss(top_k=self.top_k, batch_mus=batch_mus, batch_vars=batch_vars, batch_cocos=batch_cocos, q_doc_rele_mat=q_doc_rele_mat, opt_ideal=self.opt_ideal, presort=presort, beta=self.beta) elif 'nERR-IA' == self.metric: batch_loss = err_ia_as_a_loss(top_k=self.top_k, batch_mus=batch_mus, batch_vars=batch_vars, batch_cocos=batch_cocos, q_doc_rele_mat=q_doc_rele_mat, opt_ideal=self.opt_ideal, presort=presort, max_label=1.0, device=self.device) elif self.opt_id == 'LambdaPairCLS': batch_loss = prob_lambda_loss(opt_id=self.opt_id, batch_mus=batch_mus, batch_vars=batch_vars, batch_cocos=batch_cocos, q_doc_rele_mat=q_doc_rele_mat, opt_ideal=self.opt_ideal, presort=presort, beta=self.beta, device=self.device, norm=self.norm) elif self.opt_id == 'PairCLS': batch_loss = prob_lambda_loss(opt_id=self.opt_id, batch_mus=batch_mus, batch_vars=batch_vars, batch_cocos=batch_cocos, q_doc_rele_mat=q_doc_rele_mat) elif self.opt_id == "Portfolio": rets = batch_mus n_samples, n_assets = rets.shape covmat_sqrt = batch_cocos alpha = torch.tensor([0.01], device=self.device) gamma_sqrt = torch.tensor([0.1], device=self.device) gamma_sqrt_ = gamma_sqrt.repeat((1, n_assets * n_assets)).view(n_samples, n_assets, n_assets) alpha_abs = torch.abs(alpha) # it needs to be nonnegative #print('rets', rets.size()) #print('gamma_sqrt_', gamma_sqrt_.size()) #print('covmat_sqrt', covmat_sqrt.size()) #print('alpha_abs', alpha_abs) batch_preds = self.cvxpylayer(rets, gamma_sqrt_ * covmat_sqrt, alpha_abs)[0] #print('batch_preds', batch_preds) #print('q_doc_rele_mat', q_doc_rele_mat.size()) batch_loss = alphaDCG_as_a_loss(batch_preds=batch_preds, q_doc_rele_mat=q_doc_rele_mat, rt=10, top_k=10, device=self.device) else: raise NotImplementedError self.optimizer.zero_grad() batch_loss.backward() self.optimizer.step() return batch_loss
In the context of SRD, batch_size is commonly 1. @param batch_mus: [batch_size, ranking_size] each row represents the mean predictions for documents associated with the same query @param batch_vars: [batch_size, ranking_size] each row represents the variance predictions for documents associated with the same query @param batch_std_labels: [batch_size, ranking_size] each row represents the standard relevance grades for documents associated with the same query @param kwargs: @return:
div_custom_loss_function
python
wildltr/ptranking
ptranking/ltr_diversification/score_and_sort/div_prob_ranker.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/score_and_sort/div_prob_ranker.py
MIT
def to_para_string(self, log=False, given_para_dict=None): """ String identifier of parameters :param log: :param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search """ # using specified para-dict or inner para-dict probrank_para_dict = given_para_dict if given_para_dict is not None else self.probrank_para_dict s1 = ':' if log else '_' K, cluster, opt_id = probrank_para_dict['K'], probrank_para_dict['cluster'], probrank_para_dict['opt_id'] sort_id, limit_delta = probrank_para_dict['sort_id'], probrank_para_dict['limit_delta'] if cluster: probrank_paras_str = s1.join([str(K), 'CS', opt_id]) else: probrank_paras_str = s1.join([str(K), opt_id]) probrank_paras_str = s1.join([probrank_paras_str, sort_id]) if limit_delta is not None: probrank_paras_str = s1.join([probrank_paras_str, '{:,g}'.format(limit_delta)]) if 'LambdaPairCLS' == opt_id: norm = probrank_para_dict['norm'] probrank_paras_str = s1.join([probrank_paras_str, 'Norm']) if norm else probrank_paras_str opt_ideal = probrank_para_dict['opt_ideal'] probrank_paras_str = s1.join([probrank_paras_str, 'OptIdeal']) if opt_ideal else probrank_paras_str elif 'SuperSoft' == opt_id: opt_ideal = probrank_para_dict['opt_ideal'] probrank_paras_str = s1.join([probrank_paras_str, 'OptIdeal']) if opt_ideal else probrank_paras_str top_k = probrank_para_dict['top_k'] if top_k is None: probrank_paras_str = s1.join([probrank_paras_str, 'Full']) else: probrank_paras_str = s1.join([probrank_paras_str, str(top_k)]) metric = probrank_para_dict['metric'] s1.join([probrank_paras_str, metric]) return probrank_paras_str
String identifier of parameters :param log: :param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search
to_para_string
python
wildltr/ptranking
ptranking/ltr_diversification/score_and_sort/div_prob_ranker.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/score_and_sort/div_prob_ranker.py
MIT
def grid_search(self): """ Iterator of parameter settings for MiDeExpectedUtility """ if self.use_json: choice_topk = self.json_dict['top_k'] choice_opt_id = self.json_dict['opt_id'] choice_K = self.json_dict['K'] choice_cluster = self.json_dict['cluster'] choice_sort_id = self.json_dict['sort_id'] choice_limit_delta = self.json_dict['limit_delta'] choice_opt_ideal = self.json_dict['opt_ideal'] choice_metric = self.json_dict['metric'] choice_norm = self.json_dict['norm'] else: choice_topk = [10] if self.debug else [10] choice_opt_id = ['SuperSoft'] if self.debug else ['SuperSoft', 'PairCLS', 'LambdaPairCLS'] choice_K = [5] choice_cluster = [False] choice_sort_id = ['ExpRele'] choice_limit_delta = [None, 0.1] choice_opt_ideal = [True] if self.debug else [True] choice_metric = ['aNDCG'] # 'aNDCG', 'nERR-IA' choice_norm = [True] if self.debug else [True] for K, cluster, opt_id, sort_id, limit_delta in \ product(choice_K, choice_cluster, choice_opt_id, choice_sort_id, choice_limit_delta): self.probrank_para_dict = dict(model_id=self.model_id, K=K, cluster=cluster, opt_id=opt_id, sort_id=sort_id, limit_delta=limit_delta) if opt_id == 'PairCLS': yield self.probrank_para_dict elif opt_id == 'LambdaPairCLS': # top-k is not needed, due to the requirement of pairwise swapping for opt_ideal, norm in product(choice_opt_ideal, choice_norm): inner_para_dict = dict() inner_para_dict['opt_ideal'] = opt_ideal inner_para_dict['norm'] = norm self.probrank_para_dict.update(inner_para_dict) yield self.probrank_para_dict elif opt_id == 'SuperSoft': for top_k, metric, opt_ideal in product(choice_topk, choice_metric, choice_opt_ideal): inner_para_dict = dict() inner_para_dict['top_k'] = top_k inner_para_dict['metric'] = metric inner_para_dict['opt_ideal'] = opt_ideal self.probrank_para_dict.update(inner_para_dict) yield self.probrank_para_dict else: raise NotImplementedError
Iterator of parameter settings for MiDeExpectedUtility
grid_search
python
wildltr/ptranking
ptranking/ltr_diversification/score_and_sort/div_prob_ranker.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/score_and_sort/div_prob_ranker.py
MIT
def get_div_data_meta(data_id=None): """ Get the meta-information corresponding to the specified dataset """ if data_id in TREC_DIV: fold_num = 5 max_label = 1 num_features = 100 else: raise NotImplementedError data_meta = dict(num_features=num_features, fold_num=fold_num, max_label=max_label) return data_meta
Get the meta-information corresponding to the specified dataset
get_div_data_meta
python
wildltr/ptranking
ptranking/ltr_diversification/util/div_data.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/util/div_data.py
MIT
def deploy_1st_stage_div_discriminating(discriminator, rerank_k, q_repr, doc_reprs, gpu, device): ''' Perform 1st-stage ranking as a discriminating process. ''' sys_rele_preds = discriminator.div_predict(q_repr, doc_reprs) # [1, ranking_size] if gpu: sys_rele_preds = sys_rele_preds.cpu() _, sys_sorted_inds = torch.sort(sys_rele_preds, dim=1, descending=True) # [1, ranking_size] batch_top_k_sys_sorted_inds = sys_sorted_inds[:, 0:rerank_k] return torch.squeeze(batch_top_k_sys_sorted_inds)
Perform 1st-stage ranking as a discriminating process.
deploy_1st_stage_div_discriminating
python
wildltr/ptranking
ptranking/ltr_diversification/util/div_data.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/util/div_data.py
MIT
def get_pairwise_comp_probs(batch_preds, std_q_doc_rele_mat, sigma=None): ''' Get the predicted and standard probabilities p_ij which denotes d_i beats d_j, the subtopic labels are aggregated. @param batch_preds: @param batch_std_labels: @param sigma: @return: ''' # standard pairwise differences per-subtopic, i.e., S_{ij} subtopic_std_diffs = torch.unsqueeze(std_q_doc_rele_mat, dim=2) - torch.unsqueeze(std_q_doc_rele_mat, dim=1) # ensuring S_{ij} \in {-1, 0, 1} subtopic_std_Sij = torch.clamp(subtopic_std_diffs, min=-1.0, max=1.0) subtopic_std_p_ij = 0.5 * (1.0 + subtopic_std_Sij) batch_std_p_ij = torch.mean(subtopic_std_p_ij, dim=0, keepdim=True) # computing pairwise differences, i.e., s_i - s_j batch_s_ij = torch.unsqueeze(batch_preds, dim=2) - torch.unsqueeze(batch_preds, dim=1) batch_p_ij = torch.sigmoid(sigma * batch_s_ij) return batch_p_ij, batch_std_p_ij
Get the predicted and standard probabilities p_ij which denotes d_i beats d_j, the subtopic labels are aggregated. @param batch_preds: @param batch_std_labels: @param sigma: @return:
get_pairwise_comp_probs
python
wildltr/ptranking
ptranking/ltr_diversification/util/div_lambda_utils.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/util/div_lambda_utils.py
MIT
def get_prob_pairwise_comp_probs(batch_pairsub_mus, batch_pairsub_vars, q_doc_rele_mat): ''' The difference of two normal random variables is another normal random variable. pairsub_mu & pairsub_var denote the corresponding mean & variance of the difference of two normal random variables p_ij denotes the probability that d_i beats d_j @param batch_pairsub_mus: @param batch_pairsub_vars: @param batch_std_labels: @return: ''' subtopic_std_diffs = torch.unsqueeze(q_doc_rele_mat, dim=2) - torch.unsqueeze(q_doc_rele_mat, dim=1) subtopic_std_Sij = torch.clamp(subtopic_std_diffs, min=-1.0, max=1.0) # ensuring S_{ij} \in {-1, 0, 1} subtopic_std_p_ij = 0.5 * (1.0 + subtopic_std_Sij) batch_std_p_ij = torch.mean(subtopic_std_p_ij, dim=0, keepdim=True) batch_p_ij = 1.0 - 0.5 * torch.erfc(batch_pairsub_mus / torch.sqrt(2 * batch_pairsub_vars)) return batch_p_ij, batch_std_p_ij
The difference of two normal random variables is another normal random variable. pairsub_mu & pairsub_var denote the corresponding mean & variance of the difference of two normal random variables p_ij denotes the probability that d_i beats d_j @param batch_pairsub_mus: @param batch_pairsub_vars: @param batch_std_labels: @return:
get_prob_pairwise_comp_probs
python
wildltr/ptranking
ptranking/ltr_diversification/util/div_lambda_utils.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/util/div_lambda_utils.py
MIT
def get_diff_normal(batch_mus, batch_vars, batch_cocos=None): ''' The difference of two normal random variables is another normal random variable. In particular, we consider two cases: (1) correlated (2) independent. @param batch_mus: the predicted mean @param batch_vars: the predicted variance @param batch_cocos: the predicted correlation coefficient in [-1, 1], which is formulated as the cosine-similarity of corresponding vectors. @return: the mean, variance of the result normal variable. ''' # mu_i - mu_j batch_pairsub_mus = torch.unsqueeze(batch_mus, dim=2) - torch.unsqueeze(batch_mus, dim=1) # variance w.r.t. S_i - S_j, which is equal to: (1)sigma^2_i + sigma^2_j - \rou_ij*sigma_i*sigma_j (2) sigma^2_i + sigma^2_j if batch_cocos is not None: batch_std_vars = torch.pow(batch_vars, .5) batch_pairsub_vars = torch.unsqueeze(batch_vars, dim=2) + torch.unsqueeze(batch_vars, dim=1) - \ batch_cocos * torch.bmm(torch.unsqueeze(batch_std_vars, dim=2), torch.unsqueeze(batch_std_vars, dim=1)) else: batch_pairsub_vars = torch.unsqueeze(batch_vars, dim=2) + torch.unsqueeze(batch_vars, dim=1) return batch_pairsub_mus, batch_pairsub_vars
The difference of two normal random variables is another normal random variable. In particular, we consider two cases: (1) correlated (2) independent. @param batch_mus: the predicted mean @param batch_vars: the predicted variance @param batch_cocos: the predicted correlation coefficient in [-1, 1], which is formulated as the cosine-similarity of corresponding vectors. @return: the mean, variance of the result normal variable.
get_diff_normal
python
wildltr/ptranking
ptranking/ltr_diversification/util/prob_utils.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/util/prob_utils.py
MIT
def get_diff_normal_resort(batch_mus, batch_vars, batch_cocos=None, batch_resort_inds=None): ''' Compared with get_diff_normal(), resort is conducted first. ''' batch_resorted_mus = torch.gather(batch_mus, dim=1, index=batch_resort_inds) batch_resorted_vars = torch.gather(batch_vars, dim=1, index=batch_resort_inds) if batch_cocos is not None: num_docs = batch_cocos.size(1) batch_cocos_1 = torch.gather(batch_cocos, dim=2, index=torch.unsqueeze(batch_resort_inds, dim=1).expand(-1, num_docs, -1)) batch_resorted_cocos = torch.gather(batch_cocos_1, dim=1, index=torch.unsqueeze(batch_resort_inds, dim=2).expand(-1, -1, num_docs)) else: batch_resorted_cocos = None return get_diff_normal(batch_mus=batch_resorted_mus, batch_vars=batch_resorted_vars, batch_cocos=batch_resorted_cocos)
Compared with get_diff_normal(), resort is conducted first.
get_diff_normal_resort
python
wildltr/ptranking
ptranking/ltr_diversification/util/prob_utils.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/util/prob_utils.py
MIT
def neg_log_likelihood(batch_pairsub_mus, batch_pairsub_vars, top_k=None, device=None): ''' Compute the negative log-likelihood w.r.t. rankings, where the likelihood is formulated as the joint probability of consistent pairwise comparisons. @param batch_pairsub_mus: mean w.r.t. a pair comparison @param batch_pairsub_vars: variance w.r.t. a pair comparison @return: ''' batch_full_erfc = torch.erfc(batch_pairsub_mus / torch.sqrt(2 * batch_pairsub_vars)) if top_k is None: # use the triu-part of pairwise probabilities w.r.t. d_i > d_j, and using the trick: log(1.0) is zero batch_p_ij_triu = 1.0 - 0.5 * torch.triu(batch_full_erfc, diagonal=1) # batch_neg_log_probs = - torch.log(triu_probs) # facing the issue of nan due to overflow batch_neg_log_probs = F.binary_cross_entropy(input=batch_p_ij_triu, reduction='none', target=torch.ones_like(batch_p_ij_triu, device=device)) else: # the part to keep will be 1, otherwise 0 keep_mask = torch.triu(torch.ones_like(batch_pairsub_vars), diagonal=1) keep_mask[:, top_k:, :] = 0.0 # without considering pairs beneath position-k batch_p_ij_triu_top_k = 1 - batch_full_erfc * keep_mask * 0.5 # batch_neg_log_probs = - torch.log(1 - batch_full_erfc * keep_mask * 0.5) # using the trick: log(1.0) is zero batch_neg_log_probs = F.binary_cross_entropy(input=batch_p_ij_triu_top_k, reduction='none', target=torch.ones_like(batch_p_ij_triu_top_k, device=device)) return batch_neg_log_probs # with a shape of [batch_size, ranking_size, ranking_size]
Compute the negative log-likelihood w.r.t. rankings, where the likelihood is formulated as the joint probability of consistent pairwise comparisons. @param batch_pairsub_mus: mean w.r.t. a pair comparison @param batch_pairsub_vars: variance w.r.t. a pair comparison @return:
neg_log_likelihood
python
wildltr/ptranking
ptranking/ltr_diversification/util/prob_utils.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/util/prob_utils.py
MIT
def neg_log_likelihood_explicit(batch_pairsub_mus, std_var, top_k=None, device=None): ''' Compute the negative log-likelihood w.r.t. rankings, where the likelihood is formulated as the joint probability of consistent pairwise comparisons. @param batch_pairsub_mus: mean w.r.t. a pair comparison @param batch_pairsub_vars: variance w.r.t. a pair comparison @return: ''' batch_full_erfc = torch.erfc(batch_pairsub_mus / torch.sqrt(torch.tensor([2 * std_var ** 2], device=device))) if top_k is None: # use the triu-part of pairwise probabilities w.r.t. d_i > d_j, and using the trick: log(1.0) is zero batch_p_ij_triu = 1.0 - 0.5 * torch.triu(batch_full_erfc, diagonal=1) # batch_neg_log_probs = - torch.log(triu_probs) # facing the issue of nan due to overflow batch_neg_log_probs = F.binary_cross_entropy(input=batch_p_ij_triu, reduction='none', target=torch.ones_like(batch_p_ij_triu, device=device)) else: # the part to keep will be 1, otherwise 0 keep_mask = torch.triu(torch.ones_like(batch_pairsub_mus), diagonal=1) keep_mask[:, top_k:, :] = 0.0 # without considering pairs beneath position-k batch_p_ij_triu_top_k = 1 - batch_full_erfc * keep_mask * 0.5 # batch_neg_log_probs = - torch.log(1 - batch_full_erfc * keep_mask * 0.5) # using the trick: log(1.0) is zero batch_neg_log_probs = F.binary_cross_entropy(input=batch_p_ij_triu_top_k, reduction='none', target=torch.ones_like(batch_p_ij_triu_top_k, device=device)) return batch_neg_log_probs # with a shape of [batch_size, ranking_size, ranking_size]
Compute the negative log-likelihood w.r.t. rankings, where the likelihood is formulated as the joint probability of consistent pairwise comparisons. @param batch_pairsub_mus: mean w.r.t. a pair comparison @param batch_pairsub_vars: variance w.r.t. a pair comparison @return:
neg_log_likelihood_explicit
python
wildltr/ptranking
ptranking/ltr_diversification/util/prob_utils.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/util/prob_utils.py
MIT
def batch_cosine_similarity(x1, x2=None, eps=1e-8): ''' :param x1: [batch_size, num_docs, num_features] :param x2: the same shape or None :param eps: :return: ''' x2 = x1 if x2 is None else x2 w1 = x1.norm(p=2, dim=2, keepdim=True) #print('w1', w1.size(), '\n', w1) w2 = w1 if x2 is x1 else x2.norm(p=2, dim=2, keepdim=True) batch_numerator = torch.bmm(x1, x2.permute(0, 2, 1)) batch_denominator = torch.bmm(w1, w2.permute(0, 2, 1)).clamp(min=eps) return batch_numerator/batch_denominator
:param x1: [batch_size, num_docs, num_features] :param x2: the same shape or None :param eps: :return:
batch_cosine_similarity
python
wildltr/ptranking
ptranking/ltr_diversification/util/sim_utils.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/util/sim_utils.py
MIT
def check_consistency(self, data_dict, eval_dict): """ Check whether the settings are reasonable in the context of gbdt learning-to-rank """ ''' Part-1: data loading ''' if data_dict['data_id'] == 'Istella': assert eval_dict['do_validation'] is not True # since there is no validation data if data_dict['data_id'] in MSLETOR_SEMI: assert data_dict['train_presort'] is not True # due to the non-labeled documents if data_dict['binary_rele']: # for unsupervised dataset, it is required for binarization due to '-1' labels assert data_dict['unknown_as_zero'] else: assert data_dict['unknown_as_zero'] is not True # since there is no non-labeled documents if data_dict['data_id'] in MSLETOR_LIST: # for which the standard ltr_adhoc of each query is unique assert 1 == data_dict['train_rough_batch_size'] if data_dict['scale_data']: scaler_level = data_dict['scaler_level'] if 'scaler_level' in data_dict else None assert not scaler_level == 'DATASET' # not supported setting assert data_dict['validation_presort'] # Rule of thumb setting for adhoc learning-to-rank assert data_dict['test_presort'] # Rule of thumb setting for adhoc learning-to-rank assert 1 == data_dict['validation_rough_batch_size'] # Rule of thumb setting for adhoc learning-to-rank assert 1 == data_dict['test_rough_batch_size'] # Rule of thumb setting for adhoc learning-to-rank ''' Part-2: evaluation setting ''' if eval_dict['mask_label']: # True is aimed to use supervised data to mimic semi-supervised data by masking assert not data_dict['data_id'] in MSLETOR_SEMI
Check whether the settings are reasonable in the context of gbdt learning-to-rank
check_consistency
python
wildltr/ptranking
ptranking/ltr_tree/eval/ltr_tree.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_tree/eval/ltr_tree.py
MIT
def setup_output(self, data_dict=None, eval_dict=None): """ Determine the output. :param data_dict: :param eval_dict: :return: """ dir_output, grid_search, mask_label = eval_dict['dir_output'], eval_dict['grid_search'],\ eval_dict['mask_label'] #print(' '.join(['Start {} on {} >>>'.format(self.model_parameter.model_id, data_id)])) if grid_search: output_root = dir_output + '_'.join(['grid', self.model_parameter.get_identifier()]) + '/' else: output_root = dir_output + self.model_parameter.get_identifier() + '/' data_eval_str = '_'.join([self.data_setting.to_data_setting_string(), self.eval_setting.to_eval_setting_string()]) if mask_label: data_eval_str = '_'.join([data_eval_str, 'MaskLabel', 'Ratio', '{:,g}'.format(eval_dict['mask_ratio'])]) if data_dict['scale_data']: if data_dict['scaler_level'] == 'QUERY': data_eval_str = '_'.join([data_eval_str, 'QS', data_dict['scaler_id']]) else: data_eval_str = '_'.join([data_eval_str, 'DS', data_dict['scaler_id']]) output_root = output_root + data_eval_str + '/' + self.model_parameter.to_para_string() + '/' # run-specific outputs return output_root
Determine the output. :param data_dict: :param eval_dict: :return:
setup_output
python
wildltr/ptranking
ptranking/ltr_tree/eval/ltr_tree.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_tree/eval/ltr_tree.py
MIT
def result_to_str(self, list_scores=None, list_cutoffs=None, split_str=', ', metric_str=None): """ Convert metric results to a string :param list_scores: :param list_cutoffs: :param split_str: :param metric_str: :return: """ list_str = [] for i in range(len(list_scores)): list_str.append('{}@{}:{:.4f}'.format(metric_str, list_cutoffs[i], list_scores[i])) return split_str.join(list_str)
Convert metric results to a string :param list_scores: :param list_cutoffs: :param split_str: :param metric_str: :return:
result_to_str
python
wildltr/ptranking
ptranking/ltr_tree/eval/ltr_tree.py
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_tree/eval/ltr_tree.py
MIT