code
stringlengths 66
870k
| docstring
stringlengths 19
26.7k
| func_name
stringlengths 1
138
| language
stringclasses 1
value | repo
stringlengths 7
68
| path
stringlengths 5
324
| url
stringlengths 46
389
| license
stringclasses 7
values |
---|---|---|---|---|---|---|---|
def get_standard_normalized_histogram_GN(batch_std_labels, gain_base=2.0):
"""
Convert to a normalized histogram based on gain values, i.e., each entry equals to gain_value/sum_gain_value
:param batch_std_labels:
:return:
"""
batch_std_gains = torch.pow(gain_base, batch_std_labels) - 1.0
batch_histograms = batch_std_gains/torch.sum(batch_std_gains, dim=1).view(-1, 1)
return batch_histograms
|
Convert to a normalized histogram based on gain values, i.e., each entry equals to gain_value/sum_gain_value
:param batch_std_labels:
:return:
|
get_standard_normalized_histogram_GN
|
python
|
wildltr/ptranking
|
ptranking/ltr_adhoc/listwise/wassrank/wasserstein_cost_mat.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/listwise/wassrank/wasserstein_cost_mat.py
|
MIT
|
def get_normalized_histograms(batch_std_labels=None, batch_preds=None,
wass_dict_std_dists=None, qid=None, wass_para_dict=None, TL_AF=None):
""" Convert both standard labels and predictions w.r.t. a query to normalized histograms """
smooth_type, norm_type = wass_para_dict['smooth_type'], wass_para_dict['norm_type']
if 'ST' == smooth_type:
if wass_dict_std_dists is not None:
if qid in wass_dict_std_dists: # target distributions
batch_std_hists = wass_dict_std_dists[qid]
else:
batch_std_hists = get_standard_normalized_histogram_ST(batch_std_labels, adjust_softmax=False)
wass_dict_std_dists[qid] = batch_std_hists
else:
batch_std_hists = get_standard_normalized_histogram_ST(batch_std_labels, adjust_softmax=False)
if 'BothST' == norm_type:
if 'S' == TL_AF or 'ST' == TL_AF: # first convert to the same relevance level
max_rele_level = torch.max(batch_std_labels)
batch_preds = batch_preds * max_rele_level
batch_pred_hists = F.softmax(batch_preds, dim=1)
else:
raise NotImplementedError
elif 'NG' == smooth_type: # normalization of gain, i.e., gain/sum_gain
if wass_dict_std_dists is not None:
if qid in wass_dict_std_dists: # target distributions
batch_std_hists = wass_dict_std_dists[qid]
else:
batch_std_hists = get_standard_normalized_histogram_GN(batch_std_labels)
wass_dict_std_dists[qid] = batch_std_hists
else:
batch_std_hists = get_standard_normalized_histogram_GN(batch_std_labels)
#print(batch_std_hists.size())
#print('batch_std_hists', batch_std_hists)
''' normalizing predictions, where negative values should be taken into account '''
mini = torch.min(batch_preds)
# print('mini', mini)
# (1)
#'''
if mini > 0.0:
batch_pred_hists = batch_preds / torch.sum(batch_preds, dim=1).view(-1, 1)
else:
batch_preds = batch_preds - mini
batch_pred_hists = batch_preds / torch.sum(batch_preds, dim=1).view(-1, 1)
#'''
# (2) treat all negative values as zero, which seems to be a bad way
'''
if mini > 0.0:
batch_pred_hists = batch_preds / torch.sum(batch_preds, dim=1).view(-1, 1)
else:
batch_deltas = -torch.clamp(batch_preds, min=-1e3, max=0)
batch_preds = batch_preds + batch_deltas
batch_pred_hists = batch_preds / torch.sum(batch_preds, dim=1).view(-1, 1)
'''
#print(batch_pred_hists.size())
#print('batch_pred_hists', batch_pred_hists)
else:
raise NotImplementedError
return batch_std_hists, batch_pred_hists
|
Convert both standard labels and predictions w.r.t. a query to normalized histograms
|
get_normalized_histograms
|
python
|
wildltr/ptranking
|
ptranking/ltr_adhoc/listwise/wassrank/wasserstein_cost_mat.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/listwise/wassrank/wasserstein_cost_mat.py
|
MIT
|
def default_para_dict(self):
"""
Default parameter setting for WassRank. EntropicOT | SinkhornOT
:return:
"""
self.wass_para_dict = dict(model_id=self.model_id, mode='SinkhornOT', sh_itr=20, lam=0.1, smooth_type='ST',
norm_type='BothST', cost_type='eg', non_rele_gap=100, var_penalty=np.e, gain_base=4)
return self.wass_para_dict
|
Default parameter setting for WassRank. EntropicOT | SinkhornOT
:return:
|
default_para_dict
|
python
|
wildltr/ptranking
|
ptranking/ltr_adhoc/listwise/wassrank/wassRank.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/listwise/wassrank/wassRank.py
|
MIT
|
def to_para_string(self, log=False, given_para_dict=None):
"""
String identifier of parameters
:param log:
:param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search
:return:
"""
# using specified para-dict or inner para-dict
wass_para_dict = given_para_dict if given_para_dict is not None else self.wass_para_dict
s1, s2 = (':', '\n') if log else ('_', '_')
cost_type, smooth_type, norm_type = wass_para_dict['cost_type'], wass_para_dict['smooth_type'], wass_para_dict[
'norm_type']
mode_str = s1.join(['mode', wass_para_dict['mode']]) if log else wass_para_dict['mode']
if smooth_type in ['ST', 'NG']:
smooth_str = s1.join(['smooth_type', smooth_type]) if log else s1.join(['ST', smooth_type])
else:
raise NotImplementedError
if cost_type.startswith('Group'):
gain_base, non_rele_gap, var_penalty = wass_para_dict['gain_base'], wass_para_dict['non_rele_gap'], \
wass_para_dict['var_penalty']
cost_str = s2.join([s1.join(['cost_type', cost_type]),
s1.join(['gain_base', '{:,g}'.format(gain_base)]),
s1.join(['non_rele_gap', '{:,g}'.format(non_rele_gap)]),
s1.join(['var_penalty', '{:,g}'.format(var_penalty)])]) if log \
else s1.join(
[cost_type, '{:,g}'.format(non_rele_gap), '{:,g}'.format(gain_base), '{:,g}'.format(var_penalty)])
else:
cost_str = s1.join(['cost_type', cost_type]) if log else cost_type
sh_itr, lam = wass_para_dict['sh_itr'], wass_para_dict['lam']
horn_str = s2.join([s1.join(['Lambda', '{:,g}'.format(lam)]), s1.join(['ShIter', str(sh_itr)])]) if log \
else s1.join(['Lambda', '{:,g}'.format(lam), 'ShIter', str(sh_itr)])
wass_paras_str = s2.join([mode_str, smooth_str, cost_str, horn_str])
return wass_paras_str
|
String identifier of parameters
:param log:
:param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search
:return:
|
to_para_string
|
python
|
wildltr/ptranking
|
ptranking/ltr_adhoc/listwise/wassrank/wassRank.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/listwise/wassrank/wassRank.py
|
MIT
|
def grid_search(self):
"""
Iterator of parameter settings for WassRank
"""
if self.use_json:
wass_choice_mode = self.json_dict['mode']
wass_choice_itr = self.json_dict['itr']
wass_choice_lam = self.json_dict['lam']
wass_cost_type = self.json_dict['cost_type']
# member parameters of 'Group' include margin, div, group-base
wass_choice_non_rele_gap = self.json_dict['non_rele_gap']
wass_choice_var_penalty = self.json_dict['var_penalty']
wass_choice_group_base = self.json_dict['group_base']
wass_choice_smooth = self.json_dict['smooth']
wass_choice_norm = self.json_dict['norm']
else:
wass_choice_mode = ['WassLossSta'] # EOTLossSta | WassLossSta
wass_choice_itr = [10] # number of iterations w.r.t. sink-horn operation
wass_choice_lam = [0.1] # 0.01 | 1e-3 | 1e-1 | 10 regularization parameter
wass_cost_type = ['eg'] # p1 | p2 | eg | dg| ddg
# member parameters of 'Group' include margin, div, group-base
wass_choice_non_rele_gap = [10] # the gap between a relevant document and an irrelevant document
wass_choice_var_penalty = [np.e] # variance penalty
wass_choice_group_base = [4] # the base for computing gain value
wass_choice_smooth = ['ST'] # 'ST', i.e., ST: softmax | Gain, namely the way on how to get the normalized distribution histograms
wass_choice_norm = ['BothST'] # 'BothST': use ST for both prediction and standard labels
for mode, wsss_lambda, sinkhorn_itr in product(wass_choice_mode, wass_choice_lam, wass_choice_itr):
for wass_smooth, norm in product(wass_choice_smooth, wass_choice_norm):
for cost_type in wass_cost_type:
for non_rele_gap, var_penalty, group_base in product(wass_choice_non_rele_gap,
wass_choice_var_penalty,
wass_choice_group_base):
self.wass_para_dict = dict(model_id='WassRank', mode=mode, sh_itr=sinkhorn_itr, lam=wsss_lambda,
cost_type=cost_type, smooth_type=wass_smooth, norm_type=norm,
gain_base=group_base, non_rele_gap=non_rele_gap, var_penalty=var_penalty)
yield self.wass_para_dict
|
Iterator of parameter settings for WassRank
|
grid_search
|
python
|
wildltr/ptranking
|
ptranking/ltr_adhoc/listwise/wassrank/wassRank.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/listwise/wassrank/wassRank.py
|
MIT
|
def custom_loss_function(self, batch_preds, batch_std_labels, **kwargs):
'''
@param batch_preds: [batch, ranking_size] each row represents the relevance predictions for documents associated with the same query
@param batch_std_labels: [batch, ranking_size] each row represents the standard relevance grades for documents associated with the same query
@param kwargs:
@return:
'''
batch_p_ij, batch_std_p_ij = get_pairwise_comp_probs(batch_preds=batch_preds, batch_std_labels=batch_std_labels,
sigma=self.sigma)
_batch_loss = F.binary_cross_entropy(input=torch.triu(batch_p_ij, diagonal=1),
target=torch.triu(batch_std_p_ij, diagonal=1), reduction='none')
batch_loss = torch.sum(torch.sum(_batch_loss, dim=(2, 1)))
self.optimizer.zero_grad()
batch_loss.backward()
self.optimizer.step()
return batch_loss
|
@param batch_preds: [batch, ranking_size] each row represents the relevance predictions for documents associated with the same query
@param batch_std_labels: [batch, ranking_size] each row represents the standard relevance grades for documents associated with the same query
@param kwargs:
@return:
|
custom_loss_function
|
python
|
wildltr/ptranking
|
ptranking/ltr_adhoc/pairwise/ranknet.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/pairwise/ranknet.py
|
MIT
|
def to_para_string(self, log=False, given_para_dict=None):
"""
String identifier of parameters
:param log:
:param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search
:return:
"""
# using specified para-dict or inner para-dict
ranknet_para_dict = given_para_dict if given_para_dict is not None else self.ranknet_para_dict
s1, s2 = (':', '\n') if log else ('_', '_')
ranknet_para_str = s1.join(['Sigma', '{:,g}'.format(ranknet_para_dict['sigma'])])
return ranknet_para_str
|
String identifier of parameters
:param log:
:param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search
:return:
|
to_para_string
|
python
|
wildltr/ptranking
|
ptranking/ltr_adhoc/pairwise/ranknet.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/pairwise/ranknet.py
|
MIT
|
def grid_search(self):
"""
Iterator of parameter settings for RankNet
"""
if self.use_json:
choice_sigma = self.json_dict['sigma']
else:
choice_sigma = [5.0, 1.0] if self.debug else [1.0] # 1.0, 10.0, 50.0, 100.0
for sigma in choice_sigma:
self.ranknet_para_dict = dict(model_id=self.model_id, sigma=sigma)
yield self.ranknet_para_dict
|
Iterator of parameter settings for RankNet
|
grid_search
|
python
|
wildltr/ptranking
|
ptranking/ltr_adhoc/pairwise/ranknet.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/pairwise/ranknet.py
|
MIT
|
def rankMSE_loss_function(relevance_preds=None, std_labels=None):
'''
Ranking loss based on mean square error TODO adjust output scale w.r.t. output layer activation function
@param batch_preds: [batch, ranking_size] each row represents the relevance predictions for documents associated with the same query
@param batch_std_labels: [batch, ranking_size] each row represents the standard relevance grades for documents associated with the same query
@return:
'''
_batch_loss = F.mse_loss(relevance_preds, std_labels, reduction='none')
batch_loss = torch.mean(torch.sum(_batch_loss, dim=1))
return batch_loss
|
Ranking loss based on mean square error TODO adjust output scale w.r.t. output layer activation function
@param batch_preds: [batch, ranking_size] each row represents the relevance predictions for documents associated with the same query
@param batch_std_labels: [batch, ranking_size] each row represents the standard relevance grades for documents associated with the same query
@return:
|
rankMSE_loss_function
|
python
|
wildltr/ptranking
|
ptranking/ltr_adhoc/pointwise/rank_mse.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/pointwise/rank_mse.py
|
MIT
|
def custom_loss_function(self, batch_preds, batch_std_labels, **kwargs):
'''
:param batch_preds: [batch, ranking_size] each row represents the relevance predictions for documents within a ltr_adhoc
:param batch_std_labels: [batch, ranking_size] each row represents the standard relevance grades for documents within a ltr_adhoc
:return:
'''
batch_loss = rankMSE_loss_function(batch_preds, batch_std_labels)
self.optimizer.zero_grad()
batch_loss.backward()
self.optimizer.step()
return batch_loss
|
:param batch_preds: [batch, ranking_size] each row represents the relevance predictions for documents within a ltr_adhoc
:param batch_std_labels: [batch, ranking_size] each row represents the standard relevance grades for documents within a ltr_adhoc
:return:
|
custom_loss_function
|
python
|
wildltr/ptranking
|
ptranking/ltr_adhoc/pointwise/rank_mse.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/pointwise/rank_mse.py
|
MIT
|
def batch_count(batch_std_labels=None, max_rele_grade=None, descending=False, gpu=False):
"""
Todo now an api is already provided by pytorch
:param batch_std_labels:
:param max_rele_grade:
:param descending:
:param gpu:
:return:
"""
rele_grades = torch.arange(max_rele_grade+1).type(torch.cuda.FloatTensor) if gpu else torch.arange(max_rele_grade+1).type(torch.FloatTensor)
if descending: rele_grades, _ = torch.sort(rele_grades, descending=True)
batch_cnts = torch.stack([(batch_std_labels == g).sum(dim=1) for g in rele_grades])
batch_cnts = torch.t(batch_cnts)
return batch_cnts
|
Todo now an api is already provided by pytorch
:param batch_std_labels:
:param max_rele_grade:
:param descending:
:param gpu:
:return:
|
batch_count
|
python
|
wildltr/ptranking
|
ptranking/ltr_adhoc/util/bin_utils.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/util/bin_utils.py
|
MIT
|
def torch_batch_triu(batch_mats=None, k=0, pair_type='All', batch_std_labels=None, gpu=False, device=None):
'''
Get unique document pairs being consistent with the specified pair_type. This function is used to avoid duplicate computation.
All: pairs including both pairs of documents across different relevance levels and
pairs of documents having the same relevance level.
NoTies: the pairs consisting of two documents of the same relevance level are removed
No00: the pairs consisting of two non-relevant documents are removed
:param batch_mats: [batch, m, m]
:param k: the offset w.r.t. the diagonal line: k=0 means including the diagonal line, k=1 means upper triangular part without the diagonal line
:return:
'''
assert batch_mats.size(1) == batch_mats.size(2)
assert pair_type in PAIR_TYPE
m = batch_mats.size(1) # the number of documents
if pair_type == 'All':
row_inds, col_inds = np.triu_indices(m, k=k)
elif pair_type == 'No00':
assert batch_std_labels.size(0) == 1
row_inds, col_inds = np.triu_indices(m, k=k)
std_labels = torch.squeeze(batch_std_labels, 0)
labels = std_labels.cpu().numpy() if gpu else std_labels.data.numpy()
pairs = [e for e in zip(row_inds, col_inds) if not (0 == labels[e[0]] and 0 == labels[e[1]])] # remove pairs of 00 comparisons
row_inds = [e[0] for e in pairs]
col_inds = [e[1] for e in pairs]
elif pair_type == 'NoTies':
assert batch_std_labels.size(0) == 1
std_labels = torch.squeeze(batch_std_labels, 0)
row_inds, col_inds = np.triu_indices(m, k=k)
labels = std_labels.cpu().numpy() if gpu else std_labels.data.numpy()
pairs = [e for e in zip(row_inds, col_inds) if labels[e[0]]!=labels[e[1]]] # remove pairs of documents of the same level
row_inds = [e[0] for e in pairs]
col_inds = [e[1] for e in pairs]
#tor_row_inds = torch.LongTensor(row_inds).to(device) if gpu else torch.LongTensor(row_inds)
#tor_col_inds = torch.LongTensor(col_inds).to(device) if gpu else torch.LongTensor(col_inds)
tor_row_inds = torch.LongTensor(row_inds, device)
tor_col_inds = torch.LongTensor(col_inds, device)
batch_triu = batch_mats[:, tor_row_inds, tor_col_inds]
return batch_triu # shape: [batch_size, number of pairs]
|
Get unique document pairs being consistent with the specified pair_type. This function is used to avoid duplicate computation.
All: pairs including both pairs of documents across different relevance levels and
pairs of documents having the same relevance level.
NoTies: the pairs consisting of two documents of the same relevance level are removed
No00: the pairs consisting of two non-relevant documents are removed
:param batch_mats: [batch, m, m]
:param k: the offset w.r.t. the diagonal line: k=0 means including the diagonal line, k=1 means upper triangular part without the diagonal line
:return:
|
torch_batch_triu
|
python
|
wildltr/ptranking
|
ptranking/ltr_adhoc/util/gather_utils.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/util/gather_utils.py
|
MIT
|
def torch_triu_indice(k=0, pair_type='All', batch_label=None, gpu=False, device=None):
'''
Get unique document pairs being consistent with the specified pair_type. This function is used to avoid duplicate computation.
All: pairs including both pairs of documents across different relevance levels and
pairs of documents having the same relevance level.
NoTies: the pairs consisting of two documents of the same relevance level are removed
No00: the pairs consisting of two non-relevant documents are removed
Inversion: the pairs that are inverted order, i.e., the 1st doc is less relevant than the 2nd doc
:param batch_mats: [batch, m, m]
:param k: the offset w.r.t. the diagonal line: k=0 means including the diagonal line, k=1 means upper triangular part without the diagonal line
:return:
'''
assert pair_type in PAIR_TYPE
m = batch_label.size(1) # the number of documents
if pair_type == 'All':
row_inds, col_inds = np.triu_indices(m, k=k)
elif pair_type == 'No00':
assert batch_label.size(0) == 1
row_inds, col_inds = np.triu_indices(m, k=k)
std_labels = torch.squeeze(batch_label, 0)
labels = std_labels.cpu().numpy() if gpu else std_labels.data.numpy()
pairs = [e for e in zip(row_inds, col_inds) if not (0==labels[e[0]] and 0==labels[e[1]])] # remove pairs of 00 comparisons
row_inds = [e[0] for e in pairs]
col_inds = [e[1] for e in pairs]
elif pair_type == '00': # the pairs consisting of two non-relevant documents
assert batch_label.size(0) == 1
row_inds, col_inds = np.triu_indices(m, k=k)
std_labels = torch.squeeze(batch_label, 0)
labels = std_labels.cpu().numpy() if gpu else std_labels.data.numpy()
pairs = [e for e in zip(row_inds, col_inds) if (0 == labels[e[0]] and 0 == labels[e[1]])] # remove pairs of 00 comparisons
row_inds = [e[0] for e in pairs]
col_inds = [e[1] for e in pairs]
elif pair_type == 'NoTies':
assert batch_label.size(0) == 1
std_labels = torch.squeeze(batch_label, 0)
row_inds, col_inds = np.triu_indices(m, k=k)
labels = std_labels.cpu().numpy() if gpu else std_labels.data.numpy()
pairs = [e for e in zip(row_inds, col_inds) if labels[e[0]]!=labels[e[1]]] # remove pairs of documents of the same level
row_inds = [e[0] for e in pairs]
col_inds = [e[1] for e in pairs]
elif pair_type == 'Inversion':
assert batch_label.size(0) == 1
std_labels = torch.squeeze(batch_label, 0)
row_inds, col_inds = np.triu_indices(m, k=k)
labels = std_labels.cpu().numpy() if gpu else std_labels.data.numpy()
pairs = [e for e in zip(row_inds, col_inds) if labels[e[0]] < labels[e[1]]] # remove pairs of documents of the same level
row_inds = [e[0] for e in pairs]
col_inds = [e[1] for e in pairs]
else:
raise NotImplementedError
#tor_row_inds = torch.LongTensor(row_inds).to(device) if gpu else torch.LongTensor(row_inds)
#tor_col_inds = torch.LongTensor(col_inds).to(device) if gpu else torch.LongTensor(col_inds)
tor_row_inds = torch.LongTensor(row_inds, device)
tor_col_inds = torch.LongTensor(col_inds, device)
#batch_triu = batch_mats[:, tor_row_inds, tor_col_inds]
return tor_row_inds, tor_col_inds # shape: [number of pairs]
|
Get unique document pairs being consistent with the specified pair_type. This function is used to avoid duplicate computation.
All: pairs including both pairs of documents across different relevance levels and
pairs of documents having the same relevance level.
NoTies: the pairs consisting of two documents of the same relevance level are removed
No00: the pairs consisting of two non-relevant documents are removed
Inversion: the pairs that are inverted order, i.e., the 1st doc is less relevant than the 2nd doc
:param batch_mats: [batch, m, m]
:param k: the offset w.r.t. the diagonal line: k=0 means including the diagonal line, k=1 means upper triangular part without the diagonal line
:return:
|
torch_triu_indice
|
python
|
wildltr/ptranking
|
ptranking/ltr_adhoc/util/gather_utils.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/util/gather_utils.py
|
MIT
|
def get_pairwise_comp_probs(batch_preds, batch_std_labels, sigma=None):
'''
Get the predicted and standard probabilities p_ij which denotes d_i beats d_j
@param batch_preds:
@param batch_std_labels:
@param sigma:
@return:
'''
# computing pairwise differences w.r.t. predictions, i.e., s_i - s_j
batch_s_ij = torch.unsqueeze(batch_preds, dim=2) - torch.unsqueeze(batch_preds, dim=1)
batch_p_ij = torch.sigmoid(sigma * batch_s_ij)
# computing pairwise differences w.r.t. standard labels, i.e., S_{ij}
batch_std_diffs = torch.unsqueeze(batch_std_labels, dim=2) - torch.unsqueeze(batch_std_labels, dim=1)
# ensuring S_{ij} \in {-1, 0, 1}
batch_Sij = torch.clamp(batch_std_diffs, min=-1.0, max=1.0)
batch_std_p_ij = 0.5 * (1.0 + batch_Sij)
return batch_p_ij, batch_std_p_ij
|
Get the predicted and standard probabilities p_ij which denotes d_i beats d_j
@param batch_preds:
@param batch_std_labels:
@param sigma:
@return:
|
get_pairwise_comp_probs
|
python
|
wildltr/ptranking
|
ptranking/ltr_adhoc/util/lambda_utils.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/util/lambda_utils.py
|
MIT
|
def get_one_hot_reprs(batch_stds, gpu=False):
""" Get one-hot representation of batch ground-truth labels """
batch_size = batch_stds.size(0)
hist_size = batch_stds.size(1)
int_batch_stds = batch_stds.type(torch.cuda.LongTensor) if gpu else batch_stds.type(torch.LongTensor)
hot_batch_stds = torch.cuda.FloatTensor(batch_size, hist_size, 3) if gpu else torch.FloatTensor(batch_size, hist_size, 3)
hot_batch_stds.zero_()
hot_batch_stds.scatter_(2, torch.unsqueeze(int_batch_stds, 2), 1)
return hot_batch_stds
|
Get one-hot representation of batch ground-truth labels
|
get_one_hot_reprs
|
python
|
wildltr/ptranking
|
ptranking/ltr_adhoc/util/one_hot_utils.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/util/one_hot_utils.py
|
MIT
|
def arg_shuffle_ties(batch_rankings, descending=True, device=None):
'''Shuffle ties, and return the corresponding indice '''
batch_size, ranking_size = batch_rankings.size()
if batch_size > 1:
list_rperms = []
for _ in range(batch_size):
list_rperms.append(torch.randperm(ranking_size, device=device))
batch_rperms = torch.stack(list_rperms, dim=0)
else:
batch_rperms = torch.randperm(ranking_size, device=device).view(1, -1)
batch_shuffled_rankings = torch.gather(batch_rankings, dim=1, index=batch_rperms)
batch_desc_inds = torch.argsort(batch_shuffled_rankings, descending=descending)
batch_shuffle_ties_inds = torch.gather(batch_rperms, dim=1, index=batch_desc_inds)
return batch_shuffle_ties_inds
|
Shuffle ties, and return the corresponding indice
|
arg_shuffle_ties
|
python
|
wildltr/ptranking
|
ptranking/ltr_adhoc/util/sampling_utils.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/util/sampling_utils.py
|
MIT
|
def sample_ranking_PL(batch_preds, only_indices=True, temperature=1.0):
'''
Sample one ranking per query based on Plackett-Luce model
@param batch_preds: [batch_size, ranking_size] each row denotes the relevance predictions for documents associated with the same query
@param only_indices: only return the indices or not
'''
if torch.isnan(batch_preds).any(): # checking is needed for later PL model
print('batch_preds', batch_preds)
print('Including NaN error.')
if 1.0 != temperature:
target_batch_preds = torch.div(batch_preds, temperature)
else:
target_batch_preds = batch_preds
batch_m, _ = torch.max(target_batch_preds, dim=1, keepdim=True) # a transformation aiming for higher stability when computing softmax() with exp()
m_target_batch_preds = target_batch_preds - batch_m
batch_exps = torch.exp(m_target_batch_preds)
batch_sample_inds = torch.multinomial(batch_exps, replacement=False, num_samples=batch_preds.size(1))
if only_indices:
return batch_sample_inds
else:
# sort batch_preds according to the sample order
# w.r.t. top-k, we need the remaining part, but we don't consider the orders among the remaining parts
batch_preds_in_sample_order = torch.gather(batch_preds, dim=1, index=batch_sample_inds)
return batch_sample_inds, batch_preds_in_sample_order
|
Sample one ranking per query based on Plackett-Luce model
@param batch_preds: [batch_size, ranking_size] each row denotes the relevance predictions for documents associated with the same query
@param only_indices: only return the indices or not
|
sample_ranking_PL
|
python
|
wildltr/ptranking
|
ptranking/ltr_adhoc/util/sampling_utils.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/util/sampling_utils.py
|
MIT
|
def sample_ranking_PL_gumbel_softmax(batch_preds, only_indices=True, temperature=1.0, device=None):
'''
Sample a ranking based stochastic Plackett-Luce model, where gumble noise is added
@param batch_preds: [batch_size, ranking_size] each row denotes the relevance predictions for documents associated with the same query
@param only_indices: only return the indices or not
'''
unif = torch.rand(batch_preds.size(), device=device) # [batch_size, ranking_size]
gumbel = -torch.log(-torch.log(unif + EPS) + EPS) # Sample from gumbel distribution
if only_indices:
batch_logits = batch_preds + gumbel
_, batch_sample_inds = torch.sort(batch_logits, dim=1, descending=True)
return batch_sample_inds
else:
if 1.0 == temperature:
batch_logits = batch_preds + gumbel
else:
batch_logits = (batch_preds + gumbel) / temperature
batch_logits_in_sample_order, batch_sample_inds = torch.sort(batch_logits, dim=1, descending=True)
return batch_sample_inds, batch_logits_in_sample_order
|
Sample a ranking based stochastic Plackett-Luce model, where gumble noise is added
@param batch_preds: [batch_size, ranking_size] each row denotes the relevance predictions for documents associated with the same query
@param only_indices: only return the indices or not
|
sample_ranking_PL_gumbel_softmax
|
python
|
wildltr/ptranking
|
ptranking/ltr_adhoc/util/sampling_utils.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adhoc/util/sampling_utils.py
|
MIT
|
def default_pointsf_para_dict(self):
"""
A default setting of the hyper-parameters of the stump neural scoring function for adversarial ltr.
"""
self.sf_para_dict = dict()
self.sf_para_dict['sf_id'] = self.sf_id
self.sf_para_dict['opt'] = 'Adam' # Adam | RMS | Adagrad
self.sf_para_dict['lr'] = 0.001 # learning rate
pointsf_para_dict = dict(num_layers=5, AF='R', TL_AF='R', apply_tl_af=True,
BN=False, bn_type='BN', bn_affine=True)
self.sf_para_dict[self.sf_id] = pointsf_para_dict
return self.sf_para_dict
|
A default setting of the hyper-parameters of the stump neural scoring function for adversarial ltr.
|
default_pointsf_para_dict
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/eval/ad_parameter.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/eval/ad_parameter.py
|
MIT
|
def to_eval_setting_string(self, log=False):
"""
String identifier of eval-setting
:param log:
:return:
"""
eval_dict = self.eval_dict
s1, s2 = (':', '\n') if log else ('_', '_')
do_vali, epochs = eval_dict['do_validation'], eval_dict['epochs']
eval_string = s2.join([s1.join(['epochs', str(epochs)]), s1.join(['do_validation', str(do_vali)])]) if log \
else s1.join(['EP', str(epochs), 'V', str(do_vali)])
return eval_string
|
String identifier of eval-setting
:param log:
:return:
|
to_eval_setting_string
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/eval/ad_parameter.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/eval/ad_parameter.py
|
MIT
|
def default_setting(self):
"""
A default setting for evaluation when performing adversarial ltr
:param debug:
:param data_id:
:param dir_output:
:return:
"""
do_log = False if self.debug else True
do_validation, do_summary = True, False
log_step = 1
epochs = 10 if self.debug else 50
vali_k = 5
'''on the usage of mask_label
(1) given a supervised dataset, True means that mask a supervised data to mimic unsupervised data
(2) given an unsupervised dataset, this setting is not supported, since it is already an unsupervised data
'''
mask_label = False
if mask_label:
assert not self.data_id in MSLETOR_SEMI
mask_ratio = 0.1
mask_type = 'rand_mask_rele'
else:
mask_ratio = None
mask_type = None
# more evaluation settings that are rarely changed
self.eval_dict = dict(debug=self.debug, grid_search=False, dir_output=self.dir_output,
cutoffs=[1, 3, 5, 10, 20, 50], do_validation=do_validation, vali_k=vali_k,
do_summary=do_summary, do_log=do_log, log_step=log_step, loss_guided=False, epochs=epochs,
mask_label=mask_label, mask_ratio=mask_ratio, mask_type=mask_type)
return self.eval_dict
|
A default setting for evaluation when performing adversarial ltr
:param debug:
:param data_id:
:param dir_output:
:return:
|
default_setting
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/eval/ad_parameter.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/eval/ad_parameter.py
|
MIT
|
def grid_search(self):
"""
Iterator of settings for evaluation when performing adversarial ltr
"""
if self.use_json:
dir_output = self.json_dict['dir_output']
epochs = 5 if self.debug else self.json_dict['epochs']
do_validation, vali_k = self.json_dict['do_validation'], self.json_dict['vali_k']
cutoffs = self.json_dict['cutoffs']
do_log, log_step = self.json_dict['do_log'], self.json_dict['log_step']
do_summary = self.json_dict['do_summary']
loss_guided = self.json_dict['loss_guided']
mask_label = self.json_dict['mask']['mask_label']
choice_mask_type = self.json_dict['mask']['mask_type']
choice_mask_ratio = self.json_dict['mask']['mask_ratio']
base_dict = dict(debug=False, grid_search=True, dir_output=dir_output)
else:
base_dict = dict(debug=self.debug, grid_search=True, dir_output=self.dir_output)
epochs = 20 if self.debug else 100
do_validation = False if self.debug else True # True, False
vali_k, cutoffs = 5, [1, 3, 5, 10, 20, 50]
do_log = False if self.debug else True
log_step = 1
do_summary, loss_guided = False, False
mask_label = False if self.debug else False
choice_mask_type = ['rand_mask_rele']
choice_mask_ratio = [0.2]
self.eval_dict = dict(epochs=epochs, do_validation=do_validation, vali_k=vali_k, cutoffs=cutoffs,
do_log=do_log, log_step=log_step, do_summary=do_summary, loss_guided=loss_guided,
mask_label=mask_label)
self.eval_dict.update(base_dict)
if mask_label:
for mask_type, mask_ratio in product(choice_mask_type, choice_mask_ratio):
mask_dict = dict(mask_type=mask_type, mask_ratio=mask_ratio)
self.eval_dict.update(mask_dict)
yield self.eval_dict
else:
yield self.eval_dict
|
Iterator of settings for evaluation when performing adversarial ltr
|
grid_search
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/eval/ad_parameter.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/eval/ad_parameter.py
|
MIT
|
def to_data_setting_string(self, log=False):
"""
String identifier of data-setting
:param log:
:return:
"""
data_dict = self.data_dict
s1, s2 = (':', '\n') if log else ('_', '_')
data_id, binary_rele = data_dict['data_id'], data_dict['binary_rele']
min_docs, min_rele, train_rough_batch_size, train_presort = data_dict['min_docs'], data_dict['min_rele'],\
data_dict['train_rough_batch_size'], data_dict['train_presort']
setting_string = s2.join([s1.join(['data_id', data_id]),
s1.join(['min_docs', str(min_docs)]),
s1.join(['min_rele', str(min_rele)]),
s1.join(['TrBat', str(train_rough_batch_size)])]) if log \
else s1.join([data_id, 'MiD', str(min_docs), 'MiR', str(min_rele), 'TrBat', str(train_rough_batch_size)])
if train_presort:
tr_presort_str = s1.join(['train_presort', str(train_presort)]) if log else 'TrPresort'
setting_string = s2.join([setting_string, tr_presort_str])
if binary_rele:
bi_str = s1.join(['binary_rele', str(binary_rele)]) if log else 'BiRele'
setting_string = s2.join([setting_string, bi_str])
return setting_string
|
String identifier of data-setting
:param log:
:return:
|
to_data_setting_string
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/eval/ad_parameter.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/eval/ad_parameter.py
|
MIT
|
def default_setting(self):
"""
A default setting for data loading when performing adversarial ltr
"""
unknown_as_zero = False
binary_rele = False # using the original values
train_presort, validation_presort, test_presort = True, True, True
train_rough_batch_size, validation_rough_batch_size, test_rough_batch_size = 1, 100, 100
scale_data, scaler_id, scaler_level = get_scaler_setting(data_id=self.data_id)
# more data settings that are rarely changed
self.data_dict = dict(data_id=self.data_id, dir_data=self.dir_data, min_docs=10, min_rele=1,
unknown_as_zero=unknown_as_zero, binary_rele=binary_rele, train_presort=train_presort,
validation_presort=validation_presort, test_presort=test_presort,
train_rough_batch_size=train_rough_batch_size, validation_rough_batch_size=validation_rough_batch_size,
test_rough_batch_size=test_rough_batch_size,
scale_data=scale_data, scaler_id=scaler_id, scaler_level=scaler_level)
data_meta = get_data_meta(data_id=self.data_id) # add meta-information
if self.debug: data_meta['fold_num'] = 2
self.data_dict.update(data_meta)
return self.data_dict
|
A default setting for data loading when performing adversarial ltr
|
default_setting
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/eval/ad_parameter.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/eval/ad_parameter.py
|
MIT
|
def grid_search(self):
"""
Iterator of settings for data loading when performing adversarial ltr
"""
if self.use_json:
scaler_id = self.json_dict['scaler_id']
choice_min_docs = self.json_dict['min_docs']
choice_min_rele = self.json_dict['min_rele']
choice_binary_rele = self.json_dict['binary_rele']
choice_unknown_as_zero = self.json_dict['unknown_as_zero']
base_data_dict = dict(data_id=self.data_id, dir_data=self.json_dict["dir_data"],
train_presort=True, test_presort=True, validation_presort=True,
train_rough_batch_size=1, validation_rough_batch_size=100, test_rough_batch_size=100)
else:
scaler_id = None
choice_min_docs = [10]
choice_min_rele = [1]
choice_binary_rele = [False]
choice_unknown_as_zero = [False]
base_data_dict = dict(data_id=self.data_id, dir_data=self.dir_data,
train_presort=True, test_presort=True, validation_presort=True,
train_rough_batch_size=1, validation_rough_batch_size=100, test_rough_batch_size=100)
data_meta = get_data_meta(data_id=self.data_id) # add meta-information
base_data_dict.update(data_meta)
scale_data, scaler_id, scaler_level = get_scaler_setting(data_id=self.data_id, scaler_id=scaler_id)
for min_docs, min_rele in product(choice_min_docs, choice_min_rele):
threshold_dict = dict(min_docs=min_docs, min_rele=min_rele)
for binary_rele, unknown_as_zero in product(choice_binary_rele, choice_unknown_as_zero):
custom_dict = dict(binary_rele=binary_rele, unknown_as_zero=unknown_as_zero)
scale_dict = dict(scale_data=scale_data, scaler_id=scaler_id, scaler_level=scaler_level)
self.data_dict = dict()
self.data_dict.update(base_data_dict)
self.data_dict.update(threshold_dict)
self.data_dict.update(custom_dict)
self.data_dict.update(scale_dict)
yield self.data_dict
|
Iterator of settings for data loading when performing adversarial ltr
|
grid_search
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/eval/ad_parameter.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/eval/ad_parameter.py
|
MIT
|
def check_consistency(self, data_dict, eval_dict, sf_para_dict):
"""
Check whether the settings are reasonable in the context of adversarial learning-to-rank
"""
''' Part-1: data loading '''
assert 1 == data_dict['train_rough_batch_size'] # the required setting w.r.t. adversarial LTR
if data_dict['data_id'] == 'Istella':
assert eval_dict['do_validation'] is not True # since there is no validation data
if data_dict['data_id'] in MSLETOR_SEMI:
assert data_dict['unknown_as_zero'] is not True # use original data
if data_dict['scale_data']:
scaler_level = data_dict['scaler_level'] if 'scaler_level' in data_dict else None
assert not scaler_level == 'DATASET' # not supported setting
assert data_dict['validation_presort'] # Rule of thumb, as validation and test data are for metric-performance
assert data_dict['test_presort'] # Rule of thumb, as validation and test data are for metric-performance
''' Part-2: evaluation setting '''
if eval_dict['mask_label']: # True is aimed to use supervised data to mimic semi-supervised data by masking
assert not data_dict['data_id'] in MSLETOR_SEMI
|
Check whether the settings are reasonable in the context of adversarial learning-to-rank
|
check_consistency
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/eval/ltr_adversarial.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/eval/ltr_adversarial.py
|
MIT
|
def get_ad_machine(self, eval_dict=None, data_dict=None, sf_para_dict=None, ad_para_dict=None):
"""
Initialize the adversarial model correspondingly.
:param eval_dict:
:param data_dict:
:param sf_para_dict:
:param ad_para_dict:
:return:
"""
model_id = ad_para_dict['model_id']
if model_id in ['IRGAN_Point', 'IRGAN_Pair', 'IRGAN_List', 'IRFGAN_Point', 'IRFGAN_Pair', 'IRFGAN_List']:
ad_machine = globals()[model_id](eval_dict=eval_dict, data_dict=data_dict, gpu=self.gpu, device=self.device,
sf_para_dict=sf_para_dict, ad_para_dict=ad_para_dict)
else:
raise NotImplementedError
return ad_machine
|
Initialize the adversarial model correspondingly.
:param eval_dict:
:param data_dict:
:param sf_para_dict:
:param ad_para_dict:
:return:
|
get_ad_machine
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/eval/ltr_adversarial.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/eval/ltr_adversarial.py
|
MIT
|
def ad_cv_eval(self, data_dict=None, eval_dict=None, ad_para_dict=None, sf_para_dict=None):
"""
Adversarial training and evaluation
:param data_dict:
:param eval_dict:
:param ad_para_dict:
:param sf_para_dict:
:return:
"""
self.display_information(data_dict, model_para_dict=ad_para_dict)
self.check_consistency(data_dict, eval_dict, sf_para_dict=sf_para_dict)
self.setup_eval(data_dict, eval_dict, sf_para_dict, model_para_dict=ad_para_dict)
model_id = ad_para_dict['model_id']
fold_num = data_dict['fold_num']
# for quick access of common evaluation settings
epochs, loss_guided = eval_dict['epochs'], eval_dict['loss_guided']
vali_k, log_step, cutoffs = eval_dict['vali_k'], eval_dict['log_step'], eval_dict['cutoffs']
do_vali, do_summary = eval_dict['do_validation'], eval_dict['do_summary']
ad_machine = self.get_ad_machine(eval_dict=eval_dict, data_dict=data_dict, sf_para_dict=sf_para_dict, ad_para_dict=ad_para_dict)
time_begin = datetime.datetime.now() # timing
g_l2r_cv_avg_scores, d_l2r_cv_avg_scores = np.zeros(len(cutoffs)), np.zeros(len(cutoffs)) # fold average
'''
Dataset-level buffering of frequently used information
1> e.g., number of positive documents per-query
'''
global_buffer = dict() # refresh for each model instance
for fold_k in range(1, fold_num + 1):
ad_machine.reset_generator_discriminator()
fold_optimal_checkpoint = '-'.join(['Fold', str(fold_k)])
train_data, test_data, vali_data = self.load_data(eval_dict, data_dict, fold_k)
# update due to new train_data
ad_machine.fill_global_buffer(train_data, dict_buffer=global_buffer)
if do_vali: g_fold_optimal_ndcgk, d_fold_optimal_ndcgk= 0.0, 0.0
if do_summary:
list_epoch_loss = [] # not used yet
g_list_fold_k_train_eval_track, g_list_fold_k_test_eval_track, g_list_fold_k_vali_eval_track = [], [], []
d_list_fold_k_train_eval_track, d_list_fold_k_test_eval_track, d_list_fold_k_vali_eval_track = [], [], []
for _ in range(10):
ad_machine.burn_in(train_data=train_data)
for epoch_k in range(1, epochs + 1):
if model_id == 'IR_GMAN_List':
stop_training = ad_machine.mini_max_train(train_data=train_data, generator=ad_machine.generator,
pool_discriminator=ad_machine.pool_discriminator, global_buffer=global_buffer)
g_ranker = ad_machine.get_generator()
d_ranker = ad_machine.pool_discriminator[0]
else:
stop_training = ad_machine.mini_max_train(train_data=train_data, generator=ad_machine.generator,
discriminator=ad_machine.discriminator, global_buffer=global_buffer)
g_ranker = ad_machine.get_generator()
d_ranker = ad_machine.get_discriminator()
if stop_training:
print('training is failed !')
break
if (do_summary or do_vali) and (epoch_k % log_step == 0 or epoch_k == 1): # stepwise check
if do_vali:
g_vali_eval_tmp = g_ranker.ndcg_at_k(test_data=vali_data, k=vali_k, label_type=self.data_setting.data_dict['label_type'])
d_vali_eval_tmp = d_ranker.ndcg_at_k(test_data=vali_data, k=vali_k, label_type=self.data_setting.data_dict['label_type'])
g_vali_eval_v, d_vali_eval_v = g_vali_eval_tmp.data.numpy(), d_vali_eval_tmp.data.numpy()
if epoch_k > 1:
g_buffer, g_tmp_metric_val, g_tmp_epoch = \
self.per_epoch_validation(ranker=g_ranker, curr_metric_val=g_vali_eval_v,
fold_optimal_metric_val=g_fold_optimal_ndcgk, curr_epoch=epoch_k,
id_str='G', fold_optimal_checkpoint=fold_optimal_checkpoint, epochs=epochs)
# observe better performance
if g_buffer: g_fold_optimal_ndcgk, g_fold_optimal_epoch_val = g_tmp_metric_val, g_tmp_epoch
d_buffer, d_tmp_metric_val, d_tmp_epoch = \
self.per_epoch_validation(ranker=d_ranker, curr_metric_val=d_vali_eval_v,
fold_optimal_metric_val=d_fold_optimal_ndcgk, curr_epoch=epoch_k,
id_str='D', fold_optimal_checkpoint=fold_optimal_checkpoint, epochs=epochs)
if d_buffer: d_fold_optimal_ndcgk, d_fold_optimal_epoch_val = d_tmp_metric_val, d_tmp_epoch
if do_summary: # summarize per-step performance w.r.t. train, test
self.per_epoch_summary_step1(ranker=g_ranker, train_data=train_data, test_data=test_data,
list_fold_k_train_eval_track=g_list_fold_k_train_eval_track,
list_fold_k_test_eval_track=g_list_fold_k_test_eval_track,
vali_eval_v=g_vali_eval_v,
list_fold_k_vali_eval_track=g_list_fold_k_vali_eval_track,
cutoffs=cutoffs, do_vali=do_vali)
self.per_epoch_summary_step1(ranker=d_ranker, train_data=train_data, test_data=test_data,
list_fold_k_train_eval_track=d_list_fold_k_train_eval_track,
list_fold_k_test_eval_track=d_list_fold_k_test_eval_track,
vali_eval_v=d_vali_eval_v,
list_fold_k_vali_eval_track=d_list_fold_k_vali_eval_track,
cutoffs=cutoffs, do_vali=do_vali)
if do_summary:
self.per_epoch_summary_step2(id_str='G', fold_k=fold_k,
list_fold_k_train_eval_track=g_list_fold_k_train_eval_track,
list_fold_k_test_eval_track=g_list_fold_k_test_eval_track,
do_vali=do_vali,
list_fold_k_vali_eval_track=g_list_fold_k_vali_eval_track)
self.per_epoch_summary_step2(id_str='D', fold_k=fold_k,
list_fold_k_train_eval_track=d_list_fold_k_train_eval_track,
list_fold_k_test_eval_track=d_list_fold_k_test_eval_track,
do_vali=do_vali,
list_fold_k_vali_eval_track=d_list_fold_k_vali_eval_track)
if do_vali: # using the fold-wise optimal model for later testing based on validation data #
g_buffered_model = '_'.join(['net_params_epoch', str(g_fold_optimal_epoch_val), 'G']) + '.pkl'
g_ranker.load(self.dir_run + fold_optimal_checkpoint + '/' + g_buffered_model)
g_fold_optimal_ranker = g_ranker
d_buffered_model = '_'.join(['net_params_epoch', str(d_fold_optimal_epoch_val), 'D']) + '.pkl'
d_ranker.load(self.dir_run + fold_optimal_checkpoint + '/' + d_buffered_model)
d_fold_optimal_ranker = d_ranker
else: # using default G # buffer the model after a fixed number of training-epoches if no validation is deployed
g_ranker.save(dir=self.dir_run + fold_optimal_checkpoint + '/', name='_'.join(['net_params_epoch', str(epoch_k), 'G']) + '.pkl')
g_fold_optimal_ranker = g_ranker
d_ranker.save(dir=self.dir_run + fold_optimal_checkpoint + '/', name='_'.join(['net_params_epoch', str(epoch_k), 'D']) + '.pkl')
d_fold_optimal_ranker = d_ranker
g_torch_fold_ndcg_ks = g_fold_optimal_ranker.ndcg_at_ks(test_data=test_data, ks=cutoffs, label_type=self.data_setting.data_dict['label_type'])
g_fold_ndcg_ks = g_torch_fold_ndcg_ks.data.numpy()
d_torch_fold_ndcg_ks = d_fold_optimal_ranker.ndcg_at_ks(test_data=test_data, ks=cutoffs, label_type=self.data_setting.data_dict['label_type'])
d_fold_ndcg_ks = d_torch_fold_ndcg_ks.data.numpy()
performance_list = [' Fold-' + str(fold_k)] # fold-wise performance
performance_list.append('Generator')
for i, co in enumerate(cutoffs):
performance_list.append('nDCG@{}:{:.4f}'.format(co, g_fold_ndcg_ks[i]))
performance_list.append('\nDiscriminator')
for i, co in enumerate(cutoffs):
performance_list.append('nDCG@{}:{:.4f}'.format(co, d_fold_ndcg_ks[i]))
performance_str = '\t'.join(performance_list)
print('\t', performance_str)
g_l2r_cv_avg_scores = np.add(g_l2r_cv_avg_scores, g_fold_ndcg_ks) # sum for later cv-performance
d_l2r_cv_avg_scores = np.add(d_l2r_cv_avg_scores, d_fold_ndcg_ks)
time_end = datetime.datetime.now() # overall timing
elapsed_time_str = str(time_end - time_begin)
print('Elapsed time:\t', elapsed_time_str + "\n\n")
# begin to print either cv or average performance
g_l2r_cv_avg_scores = np.divide(g_l2r_cv_avg_scores, fold_num)
d_l2r_cv_avg_scores = np.divide(d_l2r_cv_avg_scores, fold_num)
if do_vali:
eval_prefix = str(fold_num) + '-fold cross validation scores:'
else:
eval_prefix = str(fold_num) + '-fold average scores:'
print('Generator', eval_prefix, metric_results_to_string(list_scores=g_l2r_cv_avg_scores, list_cutoffs=cutoffs))
print('Discriminator', eval_prefix, metric_results_to_string(list_scores=d_l2r_cv_avg_scores, list_cutoffs=cutoffs))
|
Adversarial training and evaluation
:param data_dict:
:param eval_dict:
:param ad_para_dict:
:param sf_para_dict:
:return:
|
ad_cv_eval
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/eval/ltr_adversarial.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/eval/ltr_adversarial.py
|
MIT
|
def grid_run(self, debug=True, model_id=None, data_id=None, dir_data=None, dir_output=None, dir_json=None):
"""
Perform adversarial learning-to-rank based on grid search of optimal parameter setting
"""
if dir_json is not None:
ad_data_eval_sf_json = dir_json + 'Ad_Data_Eval_ScoringFunction.json'
para_json = dir_json + model_id + "Parameter.json"
self.set_eval_setting(debug=debug, ad_eval_json=ad_data_eval_sf_json)
self.set_data_setting(ad_data_json=ad_data_eval_sf_json)
self.set_scoring_function_setting(sf_json=ad_data_eval_sf_json)
self.set_model_setting(model_id=model_id, para_json=para_json)
else:
self.set_eval_setting(debug=debug, dir_output=dir_output)
self.set_data_setting(debug=debug, data_id=data_id, dir_data=dir_data)
self.set_scoring_function_setting(debug=debug)
self.set_model_setting(debug=debug, model_id=model_id)
for data_dict in self.iterate_data_setting():
for eval_dict in self.iterate_eval_setting():
for sf_para_dict in self.iterate_scoring_function_setting():
for ad_para_dict in self.iterate_model_setting():
self.ad_cv_eval(data_dict=data_dict, eval_dict=eval_dict,
sf_para_dict=sf_para_dict, ad_para_dict=ad_para_dict)
|
Perform adversarial learning-to-rank based on grid search of optimal parameter setting
|
grid_run
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/eval/ltr_adversarial.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/eval/ltr_adversarial.py
|
MIT
|
def point_run(self, debug=False, model_id=None, sf_id=None, data_id=None, dir_data=None, dir_output=None):
"""
:param debug:
:param model_id:
:param data_id:
:param dir_data:
:param dir_output:
:return:
"""
self.set_eval_setting(debug=debug, dir_output=dir_output)
self.set_data_setting(debug=debug, data_id=data_id, dir_data=dir_data)
data_dict = self.get_default_data_setting()
eval_dict = self.get_default_eval_setting()
self.set_scoring_function_setting(debug=debug, sf_id=sf_id)
sf_para_dict = self.get_default_scoring_function_setting()
self.set_model_setting(debug=debug, model_id=model_id)
ad_model_para_dict = self.get_default_model_setting()
self.ad_cv_eval(data_dict=data_dict, eval_dict=eval_dict, sf_para_dict=sf_para_dict,
ad_para_dict=ad_model_para_dict)
|
:param debug:
:param model_id:
:param data_id:
:param dir_data:
:param dir_output:
:return:
|
point_run
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/eval/ltr_adversarial.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/eval/ltr_adversarial.py
|
MIT
|
def __init__(self, eval_dict, data_dict, sf_para_dict=None, ad_para_dict=None, optimal_train=False, gpu=False, device=None):
'''
:param optimal_train: training with supervised generator or discriminator
'''
super(IRFGAN_List, self).__init__(eval_dict=eval_dict, data_dict=data_dict, gpu=gpu, device=device)
#sf_para_dict['ffnns']['apply_tl_af'] = True # todo to be compared
g_sf_para_dict = sf_para_dict
d_sf_para_dict = copy.deepcopy(g_sf_para_dict)
d_sf_para_dict[sf_para_dict['sf_id']]['apply_tl_af'] = True
d_sf_para_dict[sf_para_dict['sf_id']]['TL_AF'] = 'S'
self.generator = List_Generator(sf_para_dict=g_sf_para_dict, gpu=gpu, device=device)
self.discriminator = List_Discriminator(sf_para_dict=d_sf_para_dict, gpu=gpu, device=device)
self.pre_check()
self.top_k = ad_para_dict['top_k']
self.f_div_id = ad_para_dict['f_div_id']
self.d_epoches = ad_para_dict['d_epoches']
self.g_epoches = ad_para_dict['g_epoches']
self.temperature = ad_para_dict['temperature']
self.ad_training_order = ad_para_dict['ad_training_order']
self.samples_per_query = ad_para_dict['samples_per_query']
self.PL_discriminator = ad_para_dict['PL_D']
self.replace_trick_4_generator = ad_para_dict['repTrick']
self.drop_discriminator_log_4_reward = ad_para_dict['dropLog']
self.optimal_train = optimal_train
if optimal_train:
self.super_generator = List_Generator(sf_para_dict=g_sf_para_dict)
self.super_discriminator = List_Discriminator(sf_para_dict=d_sf_para_dict)
self.activation_f, self.conjugate_f = get_f_divergence_functions(self.f_div_id)
|
:param optimal_train: training with supervised generator or discriminator
|
__init__
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/listwise/irfgan_list.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/listwise/irfgan_list.py
|
MIT
|
def per_query_generation(self, qid=None, batch_ranking=None, batch_label=None, pos_and_neg=None, generator=None,
samples_per_query=None, top_k=None, temperature=None):
'''
:param pos_and_neg: corresponding to discriminator optimization or generator optimization
'''
generator.eval_mode()
g_batch_pred = generator.predict(batch_ranking) # [batch, size_ranking]
batch_gen_stochastic_prob = gumbel_softmax(g_batch_pred, samples_per_query=samples_per_query, temperature=temperature, cuda=self.gpu, cuda_device=self.device)
sorted_batch_gen_stochastic_probs, batch_gen_sto_sorted_inds = torch.sort(batch_gen_stochastic_prob, dim=1, descending=True)
if pos_and_neg: # for training discriminator
used_batch_label = batch_label
# Generate truth rankings by shuffling ties:
'''
There is not need to firstly filter out documents of '-1', due to the descending sorting and we only use the top ones
BTW, the only required condition is: the number of non-minus-one documents is larger than top_k, which builds upon the customized mask_data()
'''
per_query_label = torch.squeeze(used_batch_label)
list_std_sto_sorted_inds = []
for i in range(samples_per_query):
shuffle_ties_inds = arg_shuffle_ties(per_query_label, descending=True)
list_std_sto_sorted_inds.append(shuffle_ties_inds)
batch_std_sto_sorted_inds = torch.stack(list_std_sto_sorted_inds, dim=0)
list_pos_ranking, list_neg_ranking = [], []
if top_k is None: # using all documents
for i in range(samples_per_query):
pos_inds = batch_std_sto_sorted_inds[i, :]
pos_ranking = batch_ranking[0, pos_inds, :]
list_pos_ranking.append(pos_ranking)
neg_inds = batch_gen_sto_sorted_inds[i, :]
neg_ranking = batch_ranking[0, neg_inds, :]
list_neg_ranking.append(neg_ranking)
else:
for i in range(samples_per_query):
pos_inds = batch_std_sto_sorted_inds[i, 0:top_k]
pos_ranking = batch_ranking[0, pos_inds, :] # sampled sublist of documents
list_pos_ranking.append(pos_ranking)
neg_inds = batch_gen_sto_sorted_inds[i, 0:top_k]
neg_ranking = batch_ranking[0, neg_inds, :]
list_neg_ranking.append(neg_ranking)
batch_std_sample_ranking = torch.stack(list_pos_ranking, dim=0)
batch_gen_sample_ranking = torch.stack(list_neg_ranking, dim=0)
return batch_std_sample_ranking, batch_gen_sample_ranking
else: # for training generator
if top_k is None:
return sorted_batch_gen_stochastic_probs, batch_gen_sto_sorted_inds
else:
list_g_sort_top_preds, list_g_sort_top_inds = [], [] # required to cope with ranking_size mismatch
for i in range(samples_per_query):
neg_inds = batch_gen_sto_sorted_inds[i, 0:top_k]
list_g_sort_top_inds.append(neg_inds)
top_gen_stochastic_probs = sorted_batch_gen_stochastic_probs[i, 0:top_k]
list_g_sort_top_preds.append(top_gen_stochastic_probs)
top_sorted_batch_gen_stochastic_probs = torch.stack(list_g_sort_top_preds, dim=0)
return top_sorted_batch_gen_stochastic_probs, list_g_sort_top_inds
|
:param pos_and_neg: corresponding to discriminator optimization or generator optimization
|
per_query_generation
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/listwise/irfgan_list.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/listwise/irfgan_list.py
|
MIT
|
def to_para_string(self, log=False, given_para_dict=None):
"""
String identifier of parameters
:param log:
:param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search
:return:
"""
# using specified para-dict or inner para-dict
ad_para_dict = given_para_dict if given_para_dict is not None else self.ad_para_dict
s1 = ':' if log else '_'
f_div_id = ad_para_dict['f_div_id']
d_epoches, g_epoches, temperature, ad_training_order = ad_para_dict['d_epoches'], ad_para_dict['g_epoches'],\
ad_para_dict['temperature'], ad_para_dict['ad_training_order']
prefix = s1.join([str(d_epoches), str(g_epoches), '{:,g}'.format(temperature), ad_training_order, f_div_id])
top_k, PL_D, repTrick, dropLog = ad_para_dict['top_k'], ad_para_dict['PL_D'], ad_para_dict['repTrick'], \
ad_para_dict['dropLog']
top_k_str = 'topAll' if top_k is None else 'top' + str(top_k)
s_str = 'S' + str(ad_para_dict['samples_per_query'])
df_str = 'PLD' if PL_D else 'BTD'
prefix = s1.join([prefix, top_k_str, s_str, df_str])
if repTrick: prefix += '_Rep'
if dropLog: prefix += '_DropLog'
list_irfgan_paras_str = prefix
return list_irfgan_paras_str
|
String identifier of parameters
:param log:
:param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search
:return:
|
to_para_string
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/listwise/irfgan_list.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/listwise/irfgan_list.py
|
MIT
|
def __init__(self, eval_dict, data_dict, sf_para_dict=None, ad_para_dict=None, optimal_train=False, gpu=False, device=None):
'''
:param optimal_train: training with supervised generator or discriminator
'''
super(IRGAN_List, self).__init__(eval_dict=eval_dict, data_dict=data_dict, gpu=gpu, device=device)
g_sf_para_dict = sf_para_dict
# todo support all setting based Nan checking
d_sf_para_dict = copy.deepcopy(g_sf_para_dict)
d_sf_para_dict[sf_para_dict['sf_id']]['apply_tl_af'] = True
d_sf_para_dict[sf_para_dict['sf_id']]['TL_AF'] = 'S'
self.generator = List_Generator(sf_para_dict=g_sf_para_dict, gpu=gpu, device=device)
self.discriminator = List_Discriminator(sf_para_dict=d_sf_para_dict, gpu=gpu, device=device)
self.super_generator = List_Generator(sf_para_dict=g_sf_para_dict, gpu=gpu, device=device)
self.super_discriminator = List_Discriminator(sf_para_dict=d_sf_para_dict, gpu=gpu, device=device)
self.top_k = ad_para_dict['top_k']
self.d_epoches = ad_para_dict['d_epoches']
self.g_epoches = ad_para_dict['g_epoches']
self.temperature = ad_para_dict['temperature']
self.ad_training_order = ad_para_dict['ad_training_order']
self.samples_per_query = ad_para_dict['samples_per_query']
self.PL_discriminator = ad_para_dict['PL_D']
self.replace_trick_4_generator = ad_para_dict['repTrick']
self.drop_discriminator_log_4_reward = ad_para_dict['dropLog']
self.optimal_train = optimal_train
self.pre_check()
|
:param optimal_train: training with supervised generator or discriminator
|
__init__
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/listwise/irgan_list.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/listwise/irgan_list.py
|
MIT
|
def per_query_generation(self, qid=None, batch_ranking=None, batch_label=None, pos_and_neg=None, generator=None,
samples_per_query=None, top_k=None, temperature=None):
'''
:param pos_and_neg: corresponding to discriminator optimization or generator optimization
'''
g_batch_pred = generator.predict(batch_ranking) # [batch, size_ranking]
batch_gen_stochastic_prob = gumbel_softmax(g_batch_pred, samples_per_query=samples_per_query, temperature=temperature, cuda=self.gpu, cuda_device=self.device)
sorted_batch_gen_stochastic_probs, batch_gen_sto_sorted_inds = torch.sort(batch_gen_stochastic_prob, dim=1, descending=True)
if pos_and_neg: # for training discriminator
used_batch_label = batch_label
''' Generate truth-ranking based on shuffling ties
There is not need to firstly filter out documents of '-1', due to the descending sorting and we only use the top ones
BTW, the only required condition is: the number of non-minus-one documents is larger than top_k, which builds upon the customized mask_data()
'''
per_query_label = torch.squeeze(used_batch_label)
list_std_sto_sorted_inds = []
for i in range(samples_per_query):
shuffle_ties_inds = arg_shuffle_ties(per_query_label, descending=True)
list_std_sto_sorted_inds.append(shuffle_ties_inds)
batch_std_sto_sorted_inds = torch.stack(list_std_sto_sorted_inds, dim=0)
list_pos_ranking, list_neg_ranking = [], []
if top_k is None: # using all documents
for i in range(samples_per_query):
pos_inds = batch_std_sto_sorted_inds[i, :]
pos_ranking = batch_ranking[0, pos_inds, :]
list_pos_ranking.append(pos_ranking)
neg_inds = batch_gen_sto_sorted_inds[i, :]
neg_ranking = batch_ranking[0, neg_inds, :]
list_neg_ranking.append(neg_ranking)
else:
for i in range(samples_per_query):
pos_inds = batch_std_sto_sorted_inds[i, 0:top_k]
pos_ranking = batch_ranking[0, pos_inds, :] # sampled sublist of documents
list_pos_ranking.append(pos_ranking)
neg_inds = batch_gen_sto_sorted_inds[i, 0:top_k]
neg_ranking = batch_ranking[0, neg_inds, :]
list_neg_ranking.append(neg_ranking)
batch_std_sample_ranking = torch.stack(list_pos_ranking, dim=0)
batch_gen_sample_ranking = torch.stack(list_neg_ranking, dim=0)
return batch_std_sample_ranking, batch_gen_sample_ranking
else: # for training generator
if top_k is None:
return sorted_batch_gen_stochastic_probs, batch_gen_sto_sorted_inds
else:
list_g_sort_top_preds, list_g_sort_top_inds = [], [] # required to cope with ranking_size mismatch
for i in range(samples_per_query):
neg_inds = batch_gen_sto_sorted_inds[i, 0:top_k]
list_g_sort_top_inds.append(neg_inds)
top_gen_stochastic_probs = sorted_batch_gen_stochastic_probs[i, 0:top_k]
list_g_sort_top_preds.append(top_gen_stochastic_probs)
top_sorted_batch_gen_stochastic_probs = torch.stack(list_g_sort_top_preds, dim=0)
return top_sorted_batch_gen_stochastic_probs, list_g_sort_top_inds
|
:param pos_and_neg: corresponding to discriminator optimization or generator optimization
|
per_query_generation
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/listwise/irgan_list.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/listwise/irgan_list.py
|
MIT
|
def to_para_string(self, log=False, given_para_dict=None):
"""
String identifier of parameters
:param log:
:param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search
:return:
"""
# using specified para-dict or inner para-dict
ad_para_dict = given_para_dict if given_para_dict is not None else self.ad_para_dict
s1 = ':' if log else '_'
d_epoches, g_epoches, temperature, ad_training_order = ad_para_dict['d_epoches'], ad_para_dict['g_epoches'],\
ad_para_dict['temperature'], ad_para_dict['ad_training_order']
prefix = s1.join([str(d_epoches), str(g_epoches), '{:,g}'.format(temperature), ad_training_order])
top_k, PL_D, repTrick, dropLog = ad_para_dict['top_k'], ad_para_dict['PL_D'], ad_para_dict['repTrick'], \
ad_para_dict['dropLog']
top_k_str = 'topAll' if top_k is None else 'top' + str(top_k)
s_str = 'S' + str(ad_para_dict['samples_per_query'])
df_str = 'PLD' if PL_D else 'BTD'
prefix = s1.join([prefix, top_k_str, s_str, df_str])
if repTrick: prefix += '_Rep'
if dropLog: prefix += '_DropLog'
list_irgan_paras_str = prefix
return list_irgan_paras_str
|
String identifier of parameters
:param log:
:param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search
:return:
|
to_para_string
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/listwise/irgan_list.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/listwise/irgan_list.py
|
MIT
|
def fill_global_buffer(self, train_data, dict_buffer=None):
''' Buffer the number of positive documents, and the number of non-positive documents per query '''
assert self.data_dict['train_presort'] is True # this is required for efficient truth exampling
if self.data_dict['data_id'] in MSLETOR_SEMI:
for entry in train_data:
qid, _, batch_label = entry[0][0], entry[1], entry[2]
if not qid in dict_buffer:
pos_boolean_mat = torch.gt(batch_label, 0)
num_pos = torch.sum(pos_boolean_mat)
explicit_boolean_mat = torch.ge(batch_label, 0)
num_explicit = torch.sum(explicit_boolean_mat)
ranking_size = batch_label.size(1)
num_neg_unk = ranking_size - num_pos
num_unk = ranking_size - num_explicit
num_unique_labels = torch.unique(batch_label).size(0)
dict_buffer[qid] = (num_pos, num_explicit, num_neg_unk, num_unk, num_unique_labels)
else:
for entry in train_data:
qid, _, batch_label = entry[0][0], entry[1], entry[2]
if not qid in dict_buffer:
pos_boolean_mat = torch.gt(batch_label, 0)
num_pos = torch.sum(pos_boolean_mat)
ranking_size = batch_label.size(1)
num_explicit = ranking_size
num_neg_unk = ranking_size - num_pos
num_unk = 0
num_unique_labels = torch.unique(batch_label).size(0)
dict_buffer[qid] = (num_pos, num_explicit, num_neg_unk, num_unk, num_unique_labels)
|
Buffer the number of positive documents, and the number of non-positive documents per query
|
fill_global_buffer
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/pairwise/irfgan_pair.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pairwise/irfgan_pair.py
|
MIT
|
def mini_max_train(self, train_data=None, generator=None, discriminator=None, global_buffer=None):
'''
Here it can not use the way of training like irgan-pair (still relying on single documents rather thank pairs),
since ir-fgan requires to sample with two distributions.
'''
stop_training = self.train_discriminator_generator_single_step(train_data=train_data, generator=generator,
discriminator=discriminator, global_buffer=global_buffer)
return stop_training
|
Here it can not use the way of training like irgan-pair (still relying on single documents rather thank pairs),
since ir-fgan requires to sample with two distributions.
|
mini_max_train
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/pairwise/irfgan_pair.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pairwise/irfgan_pair.py
|
MIT
|
def train_discriminator_generator_single_step(self, train_data=None, generator=None, discriminator=None,
global_buffer=None):
''' Train both discriminator and generator with a single step per query '''
stop_training = False
generator.train_mode()
for entry in train_data:
qid, batch_ranking, batch_label = entry[0][0], entry[1], entry[2]
if self.gpu: batch_ranking = batch_ranking.type(self.tensor)
sorted_std_labels = torch.squeeze(batch_label, dim=0)
num_pos, num_explicit, num_neg_unk, num_unk, num_unique_labels = global_buffer[qid]
if num_unique_labels <2: # check unique values, say all [1, 1, 1] generates no pairs
continue
true_head_inds, true_tail_inds = generate_true_pairs(qid=qid, sorted_std_labels=sorted_std_labels,
num_pairs=self.samples_per_query, dict_diff=self.dict_diff, global_buffer=global_buffer)
batch_preds = generator.predict(batch_ranking) # [batch, size_ranking]
# todo determine how to activation
point_preds = torch.squeeze(batch_preds)
if torch.isnan(point_preds).any():
print('Including NaN error.')
stop_training = True
return stop_training
#--generate samples
if 'BT' == self.g_key:
mat_diffs = torch.unsqueeze(point_preds, dim=1) - torch.unsqueeze(point_preds, dim=0)
mat_bt_probs = torch.sigmoid(mat_diffs) # default delta=1.0
fake_head_inds, fake_tail_inds = sample_points_Bernoulli(mat_bt_probs, num_pairs=self.samples_per_query)
else:
raise NotImplementedError
#--
# real data and generated data
true_head_docs = batch_ranking[:, true_head_inds, :]
true_tail_docs = batch_ranking[:, true_tail_inds, :]
fake_head_docs = batch_ranking[:, fake_head_inds, :]
fake_tail_docs = batch_ranking[:, fake_tail_inds, :]
''' optimize discriminator '''
discriminator.train_mode()
true_head_preds = discriminator.predict(true_head_docs)
true_tail_preds = discriminator.predict(true_tail_docs)
true_preds = true_head_preds - true_tail_preds
fake_head_preds = discriminator.predict(fake_head_docs)
fake_tail_preds = discriminator.predict(fake_tail_docs)
fake_preds = fake_head_preds - fake_tail_preds
dis_loss = torch.mean(self.conjugate_f(self.activation_f(fake_preds))) - torch.mean(self.activation_f(true_preds)) # objective to minimize w.r.t. discriminator
discriminator.optimizer.zero_grad()
dis_loss.backward()
discriminator.optimizer.step()
''' optimize generator ''' #
discriminator.eval_mode()
d_fake_head_preds = discriminator.predict(fake_head_docs)
d_fake_tail_preds = discriminator.predict(fake_tail_docs)
d_fake_preds = self.conjugate_f(self.activation_f(d_fake_head_preds - d_fake_tail_preds))
if 'BT' == self.g_key:
log_g_probs = torch.log(mat_bt_probs[fake_head_inds, fake_tail_inds].view(1, -1))
else:
raise NotImplementedError
g_batch_loss = -torch.mean(log_g_probs * d_fake_preds)
generator.optimizer.zero_grad()
g_batch_loss.backward()
generator.optimizer.step()
# after iteration ove train_data
return stop_training
|
Train both discriminator and generator with a single step per query
|
train_discriminator_generator_single_step
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/pairwise/irfgan_pair.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pairwise/irfgan_pair.py
|
MIT
|
def to_para_string(self, log=False, given_para_dict=None):
"""
String identifier of parameters
:param log:
:param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search
:return:
"""
# using specified para-dict or inner para-dict
ad_para_dict = given_para_dict if given_para_dict is not None else self.ad_para_dict
s1 = ':' if log else '_'
f_div_id = ad_para_dict['f_div_id']
pair_irfgan_paras_str = f_div_id
return pair_irfgan_paras_str
|
String identifier of parameters
:param log:
:param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search
:return:
|
to_para_string
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/pairwise/irfgan_pair.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pairwise/irfgan_pair.py
|
MIT
|
def __init__(self, eval_dict, data_dict, sf_para_dict=None, ad_para_dict=None, gpu=False, device=None):
'''
:param sf_para_dict:
:param temperature: according to the description around Eq-10, temperature is deployed, while it is not used within the provided code
'''
super(IRGAN_Pair, self).__init__(eval_dict=eval_dict, data_dict=data_dict, gpu=gpu, device=device)
self.torch_one = torch.tensor([1.0], device=self.device)
self.torch_zero = torch.tensor([0.0], device=self.device)
sf_para_dict[sf_para_dict['sf_id']]['apply_tl_af'] = True
g_sf_para_dict = sf_para_dict
d_sf_para_dict = copy.deepcopy(g_sf_para_dict)
d_sf_para_dict[sf_para_dict['sf_id']]['apply_tl_af'] = False
#d_sf_para_dict['ffnns']['TL_AF'] = 'S' # as required by the IRGAN model
self.generator = IRGAN_Pair_Generator(sf_para_dict=g_sf_para_dict, temperature=ad_para_dict['temperature'], gpu=gpu, device=device)
self.discriminator = IRGAN_Pair_Discriminator(sf_para_dict=d_sf_para_dict, gpu=gpu, device=device)
self.loss_type = ad_para_dict['loss_type']
self.d_epoches = ad_para_dict['d_epoches']
self.g_epoches = ad_para_dict['g_epoches']
self.temperature = ad_para_dict['temperature']
self.ad_training_order = ad_para_dict['ad_training_order']
self.samples_per_query = ad_para_dict['samples_per_query']
|
:param sf_para_dict:
:param temperature: according to the description around Eq-10, temperature is deployed, while it is not used within the provided code
|
__init__
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/pairwise/irgan_pair.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pairwise/irgan_pair.py
|
MIT
|
def fill_global_buffer(self, train_data, dict_buffer=None):
''' Buffer the number of positive documents, and the number of non-positive documents per query '''
assert self.data_dict['train_presort'] is True # this is required for efficient truth exampling
for entry in train_data:
qid, _, batch_label = entry[0], entry[1], entry[2]
if not qid in dict_buffer:
boolean_mat = torch.gt(batch_label, 0)
num_pos = torch.sum(boolean_mat)
ranking_size = batch_label.size(1)
num_neg_unk = ranking_size - num_pos
dict_buffer[qid] = (num_pos, num_neg_unk)
|
Buffer the number of positive documents, and the number of non-positive documents per query
|
fill_global_buffer
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/pairwise/irgan_pair.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pairwise/irgan_pair.py
|
MIT
|
def generate_data(self, train_data=None, generator=None, global_buffer=None):
'''
Sampling for training discriminator
This is a re-implementation as the released irgan-tensorflow, but it seems that this part of irgan-tensorflow
is not consistent with the discription of the paper (i.e., the description below Eq. 7)
'''
generator.eval_mode()
generated_data = dict()
for entry in train_data:
qid, batch_ranking, batch_label = entry[0], entry[1], entry[2]
if self.gpu: batch_ranking = batch_ranking.to(self.device)
samples = self.per_query_generation(qid=qid, batch_ranking=batch_ranking, generator=generator,
global_buffer=global_buffer)
if samples is not None: generated_data[qid] = samples
return generated_data
|
Sampling for training discriminator
This is a re-implementation as the released irgan-tensorflow, but it seems that this part of irgan-tensorflow
is not consistent with the discription of the paper (i.e., the description below Eq. 7)
|
generate_data
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/pairwise/irgan_pair.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pairwise/irgan_pair.py
|
MIT
|
def to_para_string(self, log=False, given_para_dict=None):
"""
String identifier of parameters
:param log:
:param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search
:return:
"""
# using specified para-dict or inner para-dict
ad_para_dict = given_para_dict if given_para_dict is not None else self.ad_para_dict
s1 = ':' if log else '_'
d_epoches, g_epoches, temperature, ad_training_order, loss_type, samples_per_query = \
ad_para_dict['d_epoches'], ad_para_dict['g_epoches'], ad_para_dict['temperature'],\
ad_para_dict['ad_training_order'], ad_para_dict['loss_type'], ad_para_dict['samples_per_query']
pair_irgan_paras_str = s1.join([str(d_epoches), str(g_epoches), '{:,g}'.format(temperature),
ad_training_order, loss_type, str(samples_per_query)])
return pair_irgan_paras_str
|
String identifier of parameters
:param log:
:param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search
:return:
|
to_para_string
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/pairwise/irgan_pair.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pairwise/irgan_pair.py
|
MIT
|
def fill_global_buffer(self, train_data, dict_buffer=None):
''' Buffer the number of positive documents per query '''
assert self.data_dict['train_presort'] is True # this is required for efficient truth exampling
for entry in train_data:
qid, _, batch_label = entry[0], entry[1], entry[2]
if not qid in dict_buffer:
boolean_mat = torch.gt(batch_label, 0)
num_pos = torch.sum(boolean_mat) # number of positive documents
dict_buffer[qid] = num_pos
|
Buffer the number of positive documents per query
|
fill_global_buffer
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/pointwise/irfgan_point.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pointwise/irfgan_point.py
|
MIT
|
def train_discriminator_generator_single_step(self, train_data=None, generator=None, discriminator=None,
global_buffer=None):
''' Train both discriminator and generator with a single step per query '''
generator.train_mode()
for entry in train_data:
qid, batch_ranking, batch_label = entry[0], entry[1], entry[2]
if self.gpu: batch_ranking = batch_ranking.to(self.device)
num_pos = global_buffer[qid]
if num_pos < 1: continue
valid_num = min(num_pos, self.samples_per_query)
true_inds = torch.randperm(num_pos)[0:valid_num] # randomly select positive documents
batch_preds = generator.predict(batch_ranking) # [batch, size_ranking]
pred_probs = F.softmax(torch.squeeze(batch_preds), dim=0)
if torch.isnan(pred_probs).any():
stop_training = True
return stop_training
fake_inds = torch.multinomial(pred_probs, valid_num, replacement=False)
#real data and generated data
true_docs = batch_ranking[0, true_inds, :]
fake_docs = batch_ranking[0, fake_inds, :]
true_docs = torch.unsqueeze(true_docs, dim=0)
fake_docs = torch.unsqueeze(fake_docs, dim=0)
''' optimize discriminator '''
discriminator.train_mode()
true_preds = discriminator.predict(true_docs)
fake_preds = discriminator.predict(fake_docs)
dis_loss = torch.mean(self.conjugate_f(self.activation_f(fake_preds))) - torch.mean(self.activation_f(true_preds)) # objective to minimize w.r.t. discriminator
discriminator.optimizer.zero_grad()
dis_loss.backward()
discriminator.optimizer.step()
''' optimize generator ''' #
discriminator.eval_mode()
d_fake_preds = discriminator.predict(fake_docs)
d_fake_preds = self.conjugate_f(self.activation_f(d_fake_preds))
ger_loss = -torch.mean((torch.log(pred_probs[fake_inds]) * d_fake_preds))
generator.optimizer.zero_grad()
ger_loss.backward()
generator.optimizer.step()
stop_training = False
return stop_training
|
Train both discriminator and generator with a single step per query
|
train_discriminator_generator_single_step
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/pointwise/irfgan_point.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pointwise/irfgan_point.py
|
MIT
|
def to_para_string(self, log=False, given_para_dict=None):
"""
String identifier of parameters
:param log:
:param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search
:return:
"""
# using specified para-dict or inner para-dict
ad_para_dict = given_para_dict if given_para_dict is not None else self.ad_para_dict
s1 = ':' if log else '_'
f_div_id = ad_para_dict['f_div_id']
point_irfgan_paras_str = f_div_id
return point_irfgan_paras_str
|
String identifier of parameters
:param log:
:param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search
:return:
|
to_para_string
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/pointwise/irfgan_point.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pointwise/irfgan_point.py
|
MIT
|
def __init__(self, eval_dict, data_dict, sf_para_dict=None, ad_para_dict=None, gpu=False, device=None):
'''
:param ad_training_order: really matters, DG is preferred than GD
'''
super(IRGAN_Point, self).__init__(eval_dict=eval_dict, data_dict=data_dict, gpu=gpu, device=device)
''' required final layer setting for Point_IR_GAN '''
# the setting of 'apply_tl_af=False' is due to the later application of softmax function w.r.t. all documents
# TODO experiments show it is quite important to be True, otherwise will be nan issues.
assert sf_para_dict[sf_para_dict['sf_id']]['apply_tl_af'] == True # local assignment affects the grid-evaluation
g_sf_para_dict = sf_para_dict
d_sf_para_dict = copy.deepcopy(g_sf_para_dict)
#d_sf_para_dict['ffnns']['apply_tl_af'] = True
d_sf_para_dict[sf_para_dict['sf_id']]['TL_AF'] = 'S' # as required by the IRGAN model
self.generator = IRGAN_Point_Generator(sf_para_dict=g_sf_para_dict, temperature=ad_para_dict['temperature'], gpu=gpu, device=device)
self.discriminator = IRGAN_Point_Discriminator(sf_para_dict=d_sf_para_dict, gpu=gpu, device=device)
self.d_epoches = ad_para_dict['d_epoches']
self.g_epoches = ad_para_dict['g_epoches']
self.temperature = ad_para_dict['temperature']
self.ad_training_order = ad_para_dict['ad_training_order']
self.samples_per_query = ad_para_dict['samples_per_query']
|
:param ad_training_order: really matters, DG is preferred than GD
|
__init__
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/pointwise/irgan_point.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pointwise/irgan_point.py
|
MIT
|
def fill_global_buffer(self, train_data, dict_buffer=None):
''' Buffer the number of positive documents per query '''
assert self.data_dict['train_presort'] is True # this is required for efficient truth exampling
for entry in train_data:
qid, _, batch_label = entry[0], entry[1], entry[2]
if not qid in dict_buffer:
boolean_mat = torch.gt(batch_label, 0)
num_pos = torch.sum(boolean_mat) # number of positive documents
dict_buffer[qid] = num_pos
|
Buffer the number of positive documents per query
|
fill_global_buffer
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/pointwise/irgan_point.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pointwise/irgan_point.py
|
MIT
|
def to_para_string(self, log=False, given_para_dict=None):
"""
String identifier of parameters
:param log:
:param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search
"""
# using specified para-dict or inner para-dict
ad_para_dict = given_para_dict if given_para_dict is not None else self.ad_para_dict
s1 = ':' if log else '_'
d_epoches, g_epoches, temperature, ad_training_order, samples_per_query = ad_para_dict['d_epoches'],\
ad_para_dict['g_epoches'], ad_para_dict['temperature'],\
ad_para_dict['ad_training_order'], ad_para_dict['samples_per_query']
irgan_point_paras_str = s1.join([str(d_epoches), str(g_epoches), '{:,g}'.format(temperature),
ad_training_order, str(samples_per_query)])
return irgan_point_paras_str
|
String identifier of parameters
:param log:
:param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search
|
to_para_string
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/pointwise/irgan_point.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/pointwise/irgan_point.py
|
MIT
|
def get_f_divergence_functions(f_div_str=None):
'''
the activation function is chosen as a monotone increasing function
'''
if 'TVar' == f_div_str: # Total variation
def activation_f(v):
return 0.5 * torch.tanh(v)
def conjugate_f(t):
return t
elif 'KL' == f_div_str: # Kullback-Leibler
def activation_f(v):
return v
def conjugate_f(t):
return torch.exp(t-1)
elif 'RKL' == f_div_str: # Reverse KL
def activation_f(v):
return -torch.exp(-v)
def conjugate_f(t):
return -1.0 - torch.log(-t)
elif 'PC' == f_div_str: # Pearson chi-square
def activation_f(v):
return v
def conjugate_f(t):
return 0.25 * torch.pow(t, exponent=2.0) + t
elif 'NC' == f_div_str: # Neyman chi-square
def activation_f(v):
return 1.0 - torch.exp(-v)
def conjugate_f(t):
return 2.0 - 2.0 * torch.sqrt(1.0-t)
elif 'SH' == f_div_str: # Squared Hellinger
def activation_f(v):
return 1.0 - torch.exp(-v)
def conjugate_f(t):
return t/(1.0-t)
elif 'JS' == f_div_str: # Jensen-Shannon
def activation_f(v):
return torch.log(torch.tensor(2.0)) - torch.log(1.0 + torch.exp(-v))
def conjugate_f(t):
return -torch.log(2.0 - torch.exp(t))
elif 'JSW' == f_div_str: # Jensen-Shannon-weighted
def activation_f(v):
return -math.pi*torch.log(math.pi) - torch.log(1.0+torch.exp(-v))
def conjugate_f(t):
return (1.0-math.pi)*torch.log((1.0-math.pi)/(1.0-math.pi*torch.exp(t/math.pi)))
elif 'GAN' == f_div_str: # GAN
def activation_f(v):
return -torch.log(1.0 + torch.exp(-v))
def conjugate_f(t):
return -torch.log(1.0 - torch.exp(t))
return activation_f, conjugate_f
|
the activation function is chosen as a monotone increasing function
|
get_f_divergence_functions
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/util/f_divergence.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/util/f_divergence.py
|
MIT
|
def gumbel_softmax(logits, samples_per_query, temperature=1.0, cuda=False, cuda_device=None):
'''
:param logits: [1, ranking_size]
:param num_samples_per_query: number of stochastic rankings to generate
:param temperature:
:return:
'''
assert 1 == logits.size(0) and 2 == len(logits.size())
unif = torch.rand(samples_per_query, logits.size(1)) # [num_samples_per_query, ranking_size]
if cuda: unif = unif.to(cuda_device)
gumbel = -torch.log(-torch.log(unif + EPS) + EPS) # Sample from gumbel distribution
logit = (logits + gumbel) / temperature
y = F.softmax(logit, dim=1)
# i.e., #return F.softmax(logit, dim=1)
return y
|
:param logits: [1, ranking_size]
:param num_samples_per_query: number of stochastic rankings to generate
:param temperature:
:return:
|
gumbel_softmax
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/util/list_sampling.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/util/list_sampling.py
|
MIT
|
def sample_ranking_PL_gumbel_softmax(batch_preds, num_sample_ranking=1, only_indices=True, temperature=1.0, gpu=False, device=None):
'''
Sample a ranking based stochastic Plackett-Luce model, where gumble noise is added
@param batch_preds: [1, ranking_size] vector of relevance predictions for documents associated with the same query
@param num_sample_ranking: number of rankings to sample
@param only_indices: only return the indices or not
@return:
'''
if num_sample_ranking > 1:
target_batch_preds = batch_preds.expand(num_sample_ranking, -1)
else:
target_batch_preds = batch_preds
unif = torch.rand(target_batch_preds.size()) # [num_samples_per_query, ranking_size]
if gpu: unif = unif.to(device)
gumbel = -torch.log(-torch.log(unif + EPS) + EPS) # Sample from gumbel distribution
if only_indices:
batch_logits = target_batch_preds + gumbel
_, batch_indices = torch.sort(batch_logits, dim=1, descending=True)
return batch_indices
else:
if 1.0 == temperature:
batch_logits = target_batch_preds + gumbel
else:
batch_logits = (target_batch_preds + gumbel) / temperature
batch_logits_sorted, batch_indices = torch.sort(batch_logits, dim=1, descending=True)
return batch_indices, batch_logits_sorted
|
Sample a ranking based stochastic Plackett-Luce model, where gumble noise is added
@param batch_preds: [1, ranking_size] vector of relevance predictions for documents associated with the same query
@param num_sample_ranking: number of rankings to sample
@param only_indices: only return the indices or not
@return:
|
sample_ranking_PL_gumbel_softmax
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/util/list_sampling.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/util/list_sampling.py
|
MIT
|
def arg_shuffle_ties(target_batch_stds, descending=True, gpu=False, device=None):
''' Shuffle ties, and return the corresponding indice '''
batch_size, ranking_size = target_batch_stds.size()
if batch_size > 1:
list_rperms = []
for _ in range(batch_size):
list_rperms.append(torch.randperm(ranking_size))
batch_rperms = torch.stack(list_rperms, dim=0)
else:
batch_rperms = torch.randperm(ranking_size).view(1, -1)
if gpu: batch_rperms = batch_rperms.to(device)
shuffled_target_batch_stds = torch.gather(target_batch_stds, dim=1, index=batch_rperms)
batch_sorted_inds = torch.argsort(shuffled_target_batch_stds, descending=descending)
batch_shuffle_ties_inds = torch.gather(batch_rperms, dim=1, index=batch_sorted_inds)
return batch_shuffle_ties_inds
|
Shuffle ties, and return the corresponding indice
|
arg_shuffle_ties
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/util/list_sampling.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/util/list_sampling.py
|
MIT
|
def get_weighted_clipped_pos_diffs(qid, sorted_std_labels, global_buffer=None):
'''
Get total true pairs based on explicit labels.
In particular, the difference values are discounted based on positions.
'''
num_pos, num_explicit, num_neg_unk, num_unk, num_unique_labels = global_buffer[qid]
mat_diffs = torch.unsqueeze(sorted_std_labels, dim=1) - torch.unsqueeze(sorted_std_labels, dim=0)
pos_diffs = torch.where(mat_diffs < 0, tor_zero, mat_diffs)
clipped_pos_diffs = pos_diffs[0:num_pos, 0:num_explicit]
total_true_pairs = torch.nonzero(clipped_pos_diffs, as_tuple=False).size(0)
r_discounts = torch.arange(num_explicit).type(tensor)
r_discounts = torch.log2(2.0 + r_discounts)
r_discounts = torch.unsqueeze(r_discounts, dim=0)
c_discounts = torch.arange(num_pos).type(tensor)
c_discounts = torch.log2(2.0 + c_discounts)
c_discounts = torch.unsqueeze(c_discounts, dim=1)
weighted_clipped_pos_diffs = clipped_pos_diffs / r_discounts
weighted_clipped_pos_diffs = weighted_clipped_pos_diffs / c_discounts
return weighted_clipped_pos_diffs, total_true_pairs, num_explicit
|
Get total true pairs based on explicit labels.
In particular, the difference values are discounted based on positions.
|
get_weighted_clipped_pos_diffs
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/util/pair_sampling.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/util/pair_sampling.py
|
MIT
|
def sample_pairs_BT(point_vals=None, num_pairs=None):
''' The probability of observing a pair of ordered documents is formulated based on Bradley-Terry model, i.e., p(d_i > d_j)=1/(1+exp(-delta(s_i - s_j))) '''
# the rank information is not taken into account, and all pairs are treated equally.
#total_items = point_vals.size(0)
mat_diffs = torch.unsqueeze(point_vals, dim=1) - torch.unsqueeze(point_vals, dim=0)
mat_bt_probs = torch.sigmoid(mat_diffs) # default delta=1.0
"""
B = tdist.Binomial(1, mat_bt_probs.view(1, -1))
b_res = B.sample()
num_unique_pairs = torch.nonzero(b_res).size(0)
if num_unique_pairs < num_pairs:
res = torch.multinomial(b_res, num_pairs, replacement=True)
else:
res = torch.multinomial(b_res, num_pairs, replacement=False)
res = torch.squeeze(res)
head_inds = res / total_items
tail_inds = res % total_items
"""
head_inds, tail_inds = sample_points_Bernoulli(mat_bt_probs, num_pairs)
return head_inds, tail_inds
|
The probability of observing a pair of ordered documents is formulated based on Bradley-Terry model, i.e., p(d_i > d_j)=1/(1+exp(-delta(s_i - s_j)))
|
sample_pairs_BT
|
python
|
wildltr/ptranking
|
ptranking/ltr_adversarial/util/pair_sampling.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_adversarial/util/pair_sampling.py
|
MIT
|
def ini_listsf(self, num_features=None, n_heads=2, encoder_layers=2, dropout=0.1, encoder_type=None,
ff_dims=[256, 128, 64], out_dim=1, AF='R', TL_AF='GE', apply_tl_af=False,
BN=True, bn_type=None, bn_affine=False):
'''
Initialization the univariate scoring function for diversified ranking.
'''
# the input size according to the used dataset
encoder_num_features, fc_num_features = num_features * 3, num_features * 6
''' Component-1: stacked multi-head self-attention (MHSA) blocks '''
mhsa = MultiheadAttention(hid_dim=encoder_num_features, n_heads=n_heads, dropout=dropout, device=self.device)
if 'AllRank' == encoder_type:
fc = PositionwiseFeedForward(encoder_num_features, hid_dim=encoder_num_features, dropout=dropout)
encoder = Encoder(layer=EncoderLayer(hid_dim=encoder_num_features, mhsa=dc(mhsa), encoder_type=encoder_type,
fc=fc, dropout=dropout),
num_layers=encoder_layers, encoder_type=encoder_type)
elif 'DASALC' == encoder_type: # we note that feature normalization strategy is different from AllRank
encoder = Encoder(layer=EncoderLayer(hid_dim=encoder_num_features, mhsa=dc(mhsa), encoder_type=encoder_type),
num_layers=encoder_layers, encoder_type=encoder_type)
elif 'AttnDIN' == encoder_type:
encoder = Encoder(layer=EncoderLayer(hid_dim=encoder_num_features, mhsa=dc(mhsa), encoder_type=encoder_type),
num_layers=encoder_layers, encoder_type=encoder_type)
else:
raise NotImplementedError
''' Component-2: univariate scoring function '''
uni_ff_dims = [fc_num_features]
uni_ff_dims.extend(ff_dims)
uni_ff_dims.append(out_dim)
uni_sf = get_stacked_FFNet(ff_dims=uni_ff_dims, AF=AF, TL_AF=TL_AF, apply_tl_af=apply_tl_af,
BN=BN, bn_type=bn_type, bn_affine=bn_affine, device=self.device)
if self.gpu:
encoder = encoder.to(self.device)
uni_sf = uni_sf.to(self.device)
list_sf = {'encoder': encoder, 'uni_sf': uni_sf}
return list_sf
|
Initialization the univariate scoring function for diversified ranking.
|
ini_listsf
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/base/div_list_ranker.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/base/div_list_ranker.py
|
MIT
|
def get_diff_normal(self, batch_mus, batch_vars, batch_cocos=None):
'''
The difference of two normal random variables is another normal random variable. In particular, we consider two
cases: (1) correlated (2) independent.
@param batch_mus: the predicted mean
@param batch_vars: the predicted variance
@param batch_cocos: the predicted correlation coefficient in [-1, 1], which is formulated as the cosine-similarity of corresponding vectors.
@return: the mean, variance of the result normal variable.
'''
# mu_i - mu_j
batch_pairsub_mus = torch.unsqueeze(batch_mus, dim=2) - torch.unsqueeze(batch_mus, dim=1)
# variance w.r.t. S_i - S_j, which is equal to: (1)sigma^2_i + sigma^2_j - \rou_ij*sigma_i*sigma_j (2) sigma^2_i + sigma^2_j
if batch_cocos is not None:
batch_std_vars = torch.pow(batch_vars, .5)
batch_pairsub_vars = torch.unsqueeze(batch_vars, dim=2) + torch.unsqueeze(batch_vars, dim=1) - \
batch_cocos * torch.bmm(torch.unsqueeze(batch_std_vars, dim=2),
torch.unsqueeze(batch_std_vars, dim=1))
else:
batch_pairsub_vars = torch.unsqueeze(batch_vars, dim=2) + torch.unsqueeze(batch_vars, dim=1)
return batch_pairsub_mus, batch_pairsub_vars
|
The difference of two normal random variables is another normal random variable. In particular, we consider two
cases: (1) correlated (2) independent.
@param batch_mus: the predicted mean
@param batch_vars: the predicted variance
@param batch_cocos: the predicted correlation coefficient in [-1, 1], which is formulated as the cosine-similarity of corresponding vectors.
@return: the mean, variance of the result normal variable.
|
get_diff_normal
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/base/div_mdn_ranker.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/base/div_mdn_ranker.py
|
MIT
|
def ini_listsf(self, num_features=None, n_heads=2, encoder_layers=2, dropout=0.1, encoder_type=None,
ff_dims=[256, 128, 64], out_dim=1, AF='R', TL_AF='GE', apply_tl_af=False,
BN=True, bn_type=None, bn_affine=False):
'''
Initialization the univariate scoring function for diversified ranking.
'''
# the input size according to the used dataset
encoder_num_features, fc_num_features = num_features * 3, num_features * 6
''' Component-1: stacked multi-head self-attention (MHSA) blocks '''
mhsa = MultiheadAttention(hid_dim=encoder_num_features, n_heads=n_heads, dropout=dropout, device=self.device)
if 'AllRank' == encoder_type:
fc = PositionwiseFeedForward(encoder_num_features, hid_dim=encoder_num_features, dropout=dropout)
encoder = Encoder(layer=EncoderLayer(hid_dim=encoder_num_features, mhsa=dc(mhsa), encoder_type=encoder_type,
fc=fc, dropout=dropout),
num_layers=encoder_layers, encoder_type=encoder_type)
elif 'DASALC' == encoder_type: # we note that feature normalization strategy is different from AllRank
encoder = Encoder(layer=EncoderLayer(hid_dim=encoder_num_features, mhsa=dc(mhsa), encoder_type=encoder_type),
num_layers=encoder_layers, encoder_type=encoder_type)
elif 'AttnDIN' == encoder_type:
encoder = Encoder(layer=EncoderLayer(hid_dim=encoder_num_features, mhsa=dc(mhsa), encoder_type=encoder_type),
num_layers=encoder_layers, encoder_type=encoder_type)
else:
raise NotImplementedError
''' Component-2: univariate scoring function '''
uni_ff_dims = [fc_num_features]
uni_ff_dims.extend(ff_dims)
uni_ff_dims.append(out_dim)
uni_sf = get_stacked_FFNet(ff_dims=uni_ff_dims, AF=AF, TL_AF=TL_AF, apply_tl_af=apply_tl_af,
BN=BN, bn_type=bn_type, bn_affine=bn_affine, device=self.device)
''' Component-3: stacked feed-forward layers for co-variance prediction '''
if self.sf_id.endswith("co"):
co_ff_dims = [fc_num_features]
co_ff_dims.extend(ff_dims)
co_ffnns = get_stacked_FFNet(ff_dims=co_ff_dims, AF=AF, apply_tl_af=False, dropout=dropout,
BN=BN, bn_type=bn_type, bn_affine=bn_affine, device=self.device)
if self.gpu:
encoder = encoder.to(self.device)
uni_sf = uni_sf.to(self.device)
if self.sf_id.endswith("co"): co_ffnns = co_ffnns.to(self.device)
if self.sf_id.endswith("co"):
list_sf = {'encoder': encoder, 'uni_sf': uni_sf, 'co_ffnns':co_ffnns}
else:
list_sf = {'encoder': encoder, 'uni_sf': uni_sf}
return list_sf
|
Initialization the univariate scoring function for diversified ranking.
|
ini_listsf
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/base/div_mdn_ranker.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/base/div_mdn_ranker.py
|
MIT
|
def div_predict(self, q_repr, doc_reprs):
'''
The relevance prediction. In the context of diversified ranking, the shape is interpreted as:
@param q_repr:
@param doc_reprs:
@return:
'''
if self.sf_id.endswith("co"):
batch_mus, batch_vars, batch_cocos = self.div_forward(q_repr, doc_reprs)
else:
batch_cocos = None
batch_mus, batch_vars = self.div_forward(q_repr, doc_reprs)
if 'RERAR' == self.sort_id: # reciprocal_expected_rank_as_relevance (RERAR)
''' Expected Ranks '''
batch_expt_ranks = \
get_expected_rank(batch_mus=batch_mus, batch_vars=batch_vars, batch_cocos=batch_cocos, return_cdf=False)
batch_RERAR = 1.0 / batch_expt_ranks
return batch_RERAR
elif 'ExpRele' == self.sort_id:
return batch_mus
elif 'RiskAware' == self.sort_id: # TODO integrating coco for ranking
return batch_mus - self.b*batch_vars
else:
raise NotImplementedError
|
The relevance prediction. In the context of diversified ranking, the shape is interpreted as:
@param q_repr:
@param doc_reprs:
@return:
|
div_predict
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/base/div_mdn_ranker.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/base/div_mdn_ranker.py
|
MIT
|
def default_pointsf_para_dict(self):
"""
The default setting of the hyper-parameters of the stump neural scoring function.
"""
self.sf_para_dict = dict()
if self.use_json:
opt = self.json_dict['opt'][0]
lr = self.json_dict['lr'][0]
pointsf_json_dict = self.json_dict[self.sf_id]
num_layers = pointsf_json_dict['layers'][0]
af = pointsf_json_dict['AF'][0]
apply_tl_af = pointsf_json_dict['apply_tl_af'][0]
tl_af = pointsf_json_dict['TL_AF'][0] if apply_tl_af else None
BN = pointsf_json_dict['BN'][0]
bn_type = pointsf_json_dict['bn_type'][0] if BN else None
bn_affine = pointsf_json_dict['bn_affine'][0] if BN else None
self.sf_para_dict['opt'] = opt
self.sf_para_dict['lr'] = lr
pointsf_para_dict = dict(num_layers=num_layers, AF=af, TL_AF=tl_af, apply_tl_af=apply_tl_af,
BN=BN, bn_type=bn_type, bn_affine=bn_affine)
self.sf_para_dict['sf_id'] = self.sf_id
self.sf_para_dict[self.sf_id] = pointsf_para_dict
else:
# optimization-specific setting
self.sf_para_dict['opt'] = 'Adagrad' # Adam | RMS | Adagrad
self.sf_para_dict['lr'] = 0.001 # learning rate
# common settings for a scoring function based on feed-forward neural networks
pointsf_para_dict = dict(num_layers=5, AF='GE', TL_AF='GE', apply_tl_af=False,
BN=True, bn_type='BN', bn_affine=True)
self.sf_para_dict['sf_id'] = self.sf_id
self.sf_para_dict[self.sf_id] = pointsf_para_dict
return self.sf_para_dict
|
The default setting of the hyper-parameters of the stump neural scoring function.
|
default_pointsf_para_dict
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/eval/div_parameter.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/div_parameter.py
|
MIT
|
def default_listsf_para_dict(self):
"""
The default setting of the hyper-parameters of the permutation-equivariant neural scoring function.
"""
self.sf_para_dict = dict()
if self.use_json:
opt = self.json_dict['opt'][0]
lr = self.json_dict['lr'][0]
listsf_json_dict = self.json_dict[self.sf_id]
BN = listsf_json_dict['BN'][0]
bn_type = listsf_json_dict['bn_type'][0] if BN else None
bn_affine = listsf_json_dict['bn_affine'][0] if BN else None
ff_dims = listsf_json_dict['ff_dims']
af = listsf_json_dict['AF'][0]
apply_tl_af = listsf_json_dict['apply_tl_af'][0]
tl_af = listsf_json_dict['TL_AF'][0] if apply_tl_af else None
n_heads = listsf_json_dict['n_heads'][0]
encoder_type = listsf_json_dict['encoder_type'][0]
encoder_layers = listsf_json_dict['encoder_layers'][0]
self.sf_para_dict['opt'] = opt
self.sf_para_dict['lr'] = lr
listsf_para_dict = dict(BN=BN, AF=af, ff_dims=ff_dims, apply_tl_af=apply_tl_af,
n_heads=n_heads, encoder_type=encoder_type, encoder_layers=encoder_layers,
bn_type=bn_type, bn_affine=bn_affine, TL_AF=tl_af)
self.sf_para_dict['sf_id'] = self.sf_id
self.sf_para_dict[self.sf_id] = listsf_para_dict
else:
# optimization-specific setting
self.sf_para_dict['opt'] = 'Adagrad' # Adam | RMS | Adagrad
self.sf_para_dict['lr'] = 0.01 # learning rate
# DASALC, AllRank, AttnDIN
listsf_para_dict = dict(encoder_type='AttnDIN', n_heads=6, encoder_layers=6, ff_dims=[256, 128, 64],
AF='R', TL_AF='GE', apply_tl_af=False, BN=True, bn_type='BN', bn_affine=True)
self.sf_para_dict['sf_id'] = self.sf_id
self.sf_para_dict[self.sf_id] = listsf_para_dict
return self.sf_para_dict
|
The default setting of the hyper-parameters of the permutation-equivariant neural scoring function.
|
default_listsf_para_dict
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/eval/div_parameter.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/div_parameter.py
|
MIT
|
def pointsf_grid_search(self):
"""
Iterator of hyper-parameters of the stump neural scoring function.
"""
if self.use_json:
choice_opt = self.json_dict['opt']
choice_lr = self.json_dict['lr']
pointsf_json_dict = self.json_dict[self.sf_id]
choice_layers = pointsf_json_dict['layers']
choice_af = pointsf_json_dict['AF']
choice_apply_tl_af = pointsf_json_dict['apply_tl_af']
choice_tl_af = pointsf_json_dict['TL_AF'] if True in choice_apply_tl_af else None
choice_BN = pointsf_json_dict['BN']
choice_bn_type = pointsf_json_dict['bn_type'] if True in choice_BN else None
choice_bn_affine = pointsf_json_dict['bn_affine'] if True in choice_BN else None
else:
choice_BN = [True]
choice_bn_type = ['BN']
choice_bn_affine = [True]
choice_layers = [3] if self.debug else [5] # 1, 2, 3, 4
choice_af = ['R', 'CE'] if self.debug else ['R', 'CE', 'S'] # ['R', 'LR', 'RR', 'E', 'SE', 'CE', 'S']
choice_tl_af = ['R', 'CE'] if self.debug else ['R', 'CE', 'S'] # ['R', 'LR', 'RR', 'E', 'SE', 'CE', 'S']
choice_apply_tl_af = [True] # True, False
choice_opt = ['Adam']
choice_lr = [0.001]
for opt, lr in product(choice_opt, choice_lr):
sf_para_dict = dict()
sf_para_dict['sf_id'] = self.sf_id
base_dict = dict(opt=opt, lr=lr)
sf_para_dict.update(base_dict)
for num_layers, af, apply_tl_af, BN in product(choice_layers, choice_af, choice_apply_tl_af, choice_BN):
pointsf_para_dict = dict(num_layers=num_layers, AF=af, apply_tl_af=apply_tl_af, BN=BN)
if apply_tl_af:
for tl_af in choice_tl_af:
pointsf_para_dict.update(dict(TL_AF=tl_af))
if BN:
for bn_type, bn_affine in product(choice_bn_type, choice_bn_affine):
bn_dict = dict(bn_type=bn_type, bn_affine=bn_affine)
pointsf_para_dict.update(bn_dict)
sf_para_dict[self.sf_id] = pointsf_para_dict
self.sf_para_dict = sf_para_dict
yield sf_para_dict
else:
sf_para_dict[self.sf_id] = pointsf_para_dict
self.sf_para_dict = sf_para_dict
yield sf_para_dict
else:
if BN:
for bn_type, bn_affine in product(choice_bn_type, choice_bn_affine):
bn_dict = dict(bn_type=bn_type, bn_affine=bn_affine)
pointsf_para_dict.update(bn_dict)
sf_para_dict[self.sf_id] = pointsf_para_dict
self.sf_para_dict = sf_para_dict
yield sf_para_dict
else:
sf_para_dict[self.sf_id] = pointsf_para_dict
self.sf_para_dict = sf_para_dict
yield sf_para_dict
|
Iterator of hyper-parameters of the stump neural scoring function.
|
pointsf_grid_search
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/eval/div_parameter.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/div_parameter.py
|
MIT
|
def listsf_to_para_string(self, log=False):
''' Get the identifier of scoring function '''
sf_str = super().listsf_to_para_string(log=log)
s1, s2 = (':', '\n') if log else ('_', '_')
if self.sf_id.endswith("co"):
if log:
sf_str = s2.join([sf_str, s1.join(['CoVariance', 'True'])])
else:
sf_str = '_'.join([sf_str, 'CoCo'])
return sf_str
|
Get the identifier of scoring function
|
listsf_to_para_string
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/eval/div_parameter.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/div_parameter.py
|
MIT
|
def to_eval_setting_string(self, log=False):
"""
String identifier of eval-setting
:param log:
:return:
"""
eval_dict = self.eval_dict
s1, s2 = (':', '\n') if log else ('_', '_')
do_vali, epochs = eval_dict['do_validation'], eval_dict['epochs']
if do_vali:
vali_metric, vali_k = eval_dict['vali_metric'], eval_dict['vali_k']
vali_str = '@'.join([vali_metric, str(vali_k)])
eval_string = s2.join([s1.join(['epochs', str(epochs)]), s1.join(['validation', vali_str])]) if log \
else s1.join(['EP', str(epochs), 'V', vali_str])
else:
eval_string = s1.join(['epochs', str(epochs)])
rerank = eval_dict['rerank']
if rerank:
rerank_k, rerank_model_id = eval_dict['rerank_k'], eval_dict['rerank_model_id']
eval_string = s2.join([eval_string, s1.join(['rerank_k', str(rerank_k)]),
s1.join(['rerank_model_id', rerank_model_id])]) if log else \
s1.join([eval_string, 'RR', str(rerank_k), rerank_model_id])
return eval_string
|
String identifier of eval-setting
:param log:
:return:
|
to_eval_setting_string
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/eval/div_parameter.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/div_parameter.py
|
MIT
|
def default_setting(self):
"""
A default setting for evaluation when performing diversified ranking.
:param debug:
:param data_id:
:param dir_output:
:return:
"""
if self.use_json:
dir_output = self.json_dict['dir_output']
epochs = 5 if self.debug else self.json_dict['epochs']
do_validation = self.json_dict['do_validation']
vali_k = self.json_dict['vali_k'] if do_validation else None
vali_metric = self.json_dict['vali_metric'] if do_validation else None
cutoffs = self.json_dict['cutoffs']
do_log = self.json_dict['do_log']
log_step = self.json_dict['log_step'] if do_log else None
do_summary = self.json_dict['do_summary']
loss_guided = self.json_dict['loss_guided']
rerank = self.json_dict['rerank']
rerank_k = self.json_dict['rerank_k'] if rerank else None
rerank_dir = self.json_dict['rerank_dir'] if rerank else None
rerank_model_id = self.json_dict['rerank_model_id'] if rerank else None
rerank_model_dir = self.json_dict['rerank_model_dir'] if rerank else None
else:
do_log = False if self.debug else True
do_validation, do_summary = True, False
cutoffs = [1, 3, 5, 10, 20, 50]
log_step = 1
epochs = 5 if self.debug else 500
vali_k = 5
vali_metric = 'aNDCG' # nERR-IA, aNDCG
dir_output = self.dir_output
loss_guided = False
rerank = False
rerank_k = 50 if rerank else None
rerank_dir = '/Users/iimac/Workbench/CodeBench/Output/DivLTR/Rerank/R_reproduce/Opt_aNDCG/' if rerank\
else None
rerank_model_id = 'DivProbRanker' if rerank else None
rerank_model_dir = '/Users/iimac/Workbench/CodeBench/Output/DivLTR/Rerank/R/DivProbRanker_SF_R3R_BN_Affine_AttnDIN_2_heads_6_encoder_Adagrad_0.01_WT_Div_0912_Implicit_EP_300_V_aNDCG@5/1_SuperSoft_ExpRele_0.01_OptIdeal_10/' if rerank\
else None
# more evaluation settings that are rarely changed
self.eval_dict = dict(debug=self.debug, grid_search=False, dir_output=dir_output, epochs=epochs,
cutoffs=cutoffs, do_validation=do_validation, vali_metric=vali_metric, vali_k=vali_k,
do_summary=do_summary, do_log=do_log, log_step=log_step, loss_guided=loss_guided,
rerank=rerank, rerank_k=rerank_k, rerank_dir=rerank_dir, rerank_model_id=rerank_model_id, rerank_model_dir=rerank_model_dir)
return self.eval_dict
|
A default setting for evaluation when performing diversified ranking.
:param debug:
:param data_id:
:param dir_output:
:return:
|
default_setting
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/eval/div_parameter.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/div_parameter.py
|
MIT
|
def grid_search(self):
"""
Iterator of settings for evaluation when performing diversified ranking.
"""
if self.use_json:
dir_output = self.json_dict['dir_output']
epochs = 5 if self.debug else self.json_dict['epochs']
do_validation = self.json_dict['do_validation']
vali_k = self.json_dict['vali_k'] if do_validation else None
vali_metric = self.json_dict['vali_metric'] if do_validation else None
cutoffs = self.json_dict['cutoffs']
do_log, log_step = self.json_dict['do_log'], self.json_dict['log_step']
do_summary = self.json_dict['do_summary']
loss_guided = self.json_dict['loss_guided']
rerank = self.json_dict['rerank']
rerank_k = self.json_dict['rerank_k'] if rerank else None
rerank_dir = self.json_dict['rerank_dir'] if rerank else None
rerank_model_id = self.json_dict['rerank_model_id'] if rerank else None
base_dict = dict(debug=False, grid_search=True, dir_output=dir_output)
else:
base_dict = dict(debug=self.debug, grid_search=True, dir_output=self.dir_output)
epochs = 2 if self.debug else 100
do_validation = False if self.debug else True # True, False
vali_k, cutoffs = 5, [1, 3, 5, 10, 20, 50]
vali_metric = 'aNDCG'
do_log = False if self.debug else True
log_step = 1
do_summary, loss_guided = False, False
rerank = False
rerank_k = 20 if rerank else None
rerank_dir = '' if rerank else None
rerank_model_id = '' if rerank else None
self.eval_dict = dict(epochs=epochs, do_validation=do_validation, vali_k=vali_k, cutoffs=cutoffs,
vali_metric=vali_metric, do_log=do_log, log_step=log_step,
do_summary=do_summary, loss_guided=loss_guided,
rerank=rerank, rerank_k=rerank_k, rerank_dir=rerank_dir, rerank_model_id=rerank_model_id)
self.eval_dict.update(base_dict)
yield self.eval_dict
|
Iterator of settings for evaluation when performing diversified ranking.
|
grid_search
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/eval/div_parameter.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/div_parameter.py
|
MIT
|
def to_data_setting_string(self, log=False):
"""
String identifier of data-setting
:param log:
:return:
"""
data_dict = self.data_dict
setting_string, add_noise = data_dict['data_id'], data_dict['add_noise']
if add_noise:
std_delta = data_dict['std_delta']
setting_string = '_'.join([setting_string, 'Gaussian', '{:,g}'.format(std_delta)])
return setting_string
|
String identifier of data-setting
:param log:
:return:
|
to_data_setting_string
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/eval/div_parameter.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/div_parameter.py
|
MIT
|
def default_setting(self):
"""
A default setting for data loading when performing diversified ranking
"""
if self.use_json:
add_noise = self.json_dict['add_noise'][0]
std_delta = self.json_dict['std_delta'][0] if add_noise else None
self.data_dict = dict(data_id=self.data_id, dir_data=self.json_dict["dir_data"],
add_noise=add_noise, std_delta=std_delta)
else:
add_noise = False
std_delta = 1.0 if add_noise else None
self.data_dict = dict(data_id=self.data_id, dir_data=self.dir_data, add_noise=add_noise,std_delta=std_delta)
div_data_meta = get_div_data_meta(data_id=self.data_id) # add meta-information
self.data_dict.update(div_data_meta)
return self.data_dict
|
A default setting for data loading when performing diversified ranking
|
default_setting
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/eval/div_parameter.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/div_parameter.py
|
MIT
|
def grid_search(self):
"""
Iterator of settings for data loading when performing adversarial ltr
"""
if self.use_json:
choice_add_noise = self.json_dict['add_noise']
choice_std_delta = self.json_dict['std_delta'] if True in choice_add_noise else None
self.data_dict = dict(data_id=self.data_id, dir_data=self.json_dict["dir_data"])
else:
choice_add_noise = [False]
choice_std_delta = [1.0] if True in choice_add_noise else None
self.data_dict = dict(data_id=self.data_id, dir_data=self.dir_data)
div_data_meta = get_div_data_meta(data_id=self.data_id) # add meta-information
self.data_dict.update(div_data_meta)
for add_noise in choice_add_noise:
if add_noise:
for std_delta in choice_std_delta:
noise_dict = dict(add_noise=add_noise, std_delta=std_delta)
self.data_dict.update(noise_dict)
yield self.data_dict
else:
noise_dict = dict(add_noise=add_noise, std_delta=None)
self.data_dict.update(noise_dict)
yield self.data_dict
|
Iterator of settings for data loading when performing adversarial ltr
|
grid_search
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/eval/div_parameter.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/div_parameter.py
|
MIT
|
def load_data(self, eval_dict=None, data_dict=None, fold_k=None, discriminator=None):
"""
We note that it is impossible to perform processing over multiple queries,
since q_doc_rele_mat may differ from query to query.
@param eval_dict:
@param data_dict:
@param fold_k:
@return:
"""
file_train, file_vali, file_test = self.determine_files(data_splits=self.data_splits, fold_k=fold_k)
fold_dir = data_dict['dir_data'] + 'folder' + str(fold_k) + '/'
if discriminator is not None:
train_data = \
RerankDIVDataset(list_as_file=file_train, split_type=SPLIT_TYPE.Train, fold_dir=fold_dir,
data_dict=data_dict, dictQueryRepresentation=self.dictQueryRepresentation,
dictDocumentRepresentation=self.dictDocumentRepresentation,
dictQueryPermutaion=self.dictQueryPermutaion, presort=self.presort,
dictQueryDocumentSubtopics=self.dictQueryDocumentSubtopics, buffer=True,
discriminator=discriminator, eval_dict=eval_dict)
test_data = \
RerankDIVDataset(list_as_file=file_test, split_type=SPLIT_TYPE.Test, fold_dir=fold_dir,
data_dict=data_dict, dictQueryRepresentation=self.dictQueryRepresentation,
dictQueryPermutaion=self.dictQueryPermutaion,
dictDocumentRepresentation=self.dictDocumentRepresentation,
dictQueryDocumentSubtopics=self.dictQueryDocumentSubtopics,
presort=self.presort, discriminator=discriminator, buffer=True, eval_dict=eval_dict)
vali_data = \
RerankDIVDataset(list_as_file=file_vali, split_type=SPLIT_TYPE.Validation, fold_dir=fold_dir,
data_dict=data_dict, dictQueryRepresentation=self.dictQueryRepresentation,
dictDocumentRepresentation=self.dictDocumentRepresentation,
dictQueryPermutaion=self.dictQueryPermutaion,
dictQueryDocumentSubtopics=self.dictQueryDocumentSubtopics,
buffer=True, presort=self.presort, discriminator=discriminator, eval_dict=eval_dict)
else:
train_data = \
DIVDataset(list_as_file=file_train, split_type=SPLIT_TYPE.Train, fold_dir=fold_dir, data_dict=data_dict,
dictQueryRepresentation=self.dictQueryRepresentation,
dictDocumentRepresentation=self.dictDocumentRepresentation,
dictQueryPermutaion=self.dictQueryPermutaion, buffer=True, presort=self.presort,
dictQueryDocumentSubtopics=self.dictQueryDocumentSubtopics,
add_noise=data_dict['add_noise'], std_delta=data_dict['std_delta'])
test_data = \
DIVDataset(list_as_file=file_test, split_type=SPLIT_TYPE.Test, fold_dir=fold_dir,
data_dict=data_dict, dictQueryRepresentation=self.dictQueryRepresentation,
dictDocumentRepresentation=self.dictDocumentRepresentation,
dictQueryPermutaion=self.dictQueryPermutaion, presort=self.presort,
dictQueryDocumentSubtopics=self.dictQueryDocumentSubtopics, buffer=True,
add_noise=data_dict['add_noise'], std_delta=data_dict['std_delta'])
vali_data = \
DIVDataset(list_as_file=file_vali, split_type=SPLIT_TYPE.Validation, fold_dir=fold_dir,
data_dict=data_dict, dictQueryRepresentation=self.dictQueryRepresentation,
dictDocumentRepresentation=self.dictDocumentRepresentation,
dictQueryPermutaion=self.dictQueryPermutaion, presort=self.presort,
dictQueryDocumentSubtopics=self.dictQueryDocumentSubtopics, buffer=True,
add_noise=data_dict['add_noise'], std_delta=data_dict['std_delta'])
return train_data, test_data, vali_data
|
We note that it is impossible to perform processing over multiple queries,
since q_doc_rele_mat may differ from query to query.
@param eval_dict:
@param data_dict:
@param fold_k:
@return:
|
load_data
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/eval/ltr_diversification.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/ltr_diversification.py
|
MIT
|
def setup_output(self, data_dict=None, eval_dict=None, reproduce=False):
"""
Update output directory
:param data_dict:
:param eval_dict:
:param sf_para_dict:
:param model_para_dict:
:return:
"""
model_id = self.model_parameter.model_id
grid_search, do_vali, dir_output = eval_dict['grid_search'], eval_dict['do_validation'], eval_dict['dir_output']
if grid_search or reproduce:
dir_root = dir_output + '_'.join(['gpu', 'grid', model_id]) + '/' if self.gpu else dir_output + '_'.join(['grid', model_id]) + '/'
else:
dir_root = dir_output
eval_dict['dir_root'] = dir_root
if not os.path.exists(dir_root): os.makedirs(dir_root)
sf_str = self.sf_parameter.to_para_string()
data_eval_str = '_'.join([self.data_setting.to_data_setting_string(),
self.eval_setting.to_eval_setting_string()])
file_prefix = '_'.join([model_id, 'SF', sf_str, data_eval_str])
dir_run = dir_root + file_prefix + '/' # run-specific outputs
model_para_string = self.model_parameter.to_para_string()
if len(model_para_string) > 0:
dir_run = dir_run + model_para_string + '/'
eval_dict['dir_run'] = dir_run
if not os.path.exists(dir_run):
os.makedirs(dir_run)
return dir_run
|
Update output directory
:param data_dict:
:param eval_dict:
:param sf_para_dict:
:param model_para_dict:
:return:
|
setup_output
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/eval/ltr_diversification.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/ltr_diversification.py
|
MIT
|
def setup_eval(self, data_dict, eval_dict, sf_para_dict, model_para_dict):
"""
Finalize the evaluation setting correspondingly
:param data_dict:
:param eval_dict:
:param sf_para_dict:
:param model_para_dict:
:return:
"""
sf_para_dict[sf_para_dict['sf_id']].update(dict(num_features=data_dict['num_features']))
self.dir_run = self.setup_output(data_dict, eval_dict)
if eval_dict['do_log'] and not self.eval_setting.debug:
time_str = datetime.datetime.now().strftime("%Y_%m_%d_%H_%M")
sys.stdout = open(self.dir_run + '_'.join(['log', time_str]) + '.txt', "w")
#if self.do_summary: self.summary_writer = SummaryWriter(self.dir_run + 'summary')
|
Finalize the evaluation setting correspondingly
:param data_dict:
:param eval_dict:
:param sf_para_dict:
:param model_para_dict:
:return:
|
setup_eval
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/eval/ltr_diversification.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/ltr_diversification.py
|
MIT
|
def load_ranker(self, sf_para_dict, model_para_dict):
"""
Load a ranker correspondingly
:param sf_para_dict:
:param model_para_dict:
:param kwargs:
:return:
"""
model_id = model_para_dict['model_id']
if model_id in ['DALETOR', 'DivLambdaRank', 'DivProbRanker', 'DivSoftRank', 'DivTwinRank']:
ranker = globals()[model_id](sf_para_dict=sf_para_dict, model_para_dict=model_para_dict,
gpu=self.gpu, device=self.device)
else:
raise NotImplementedError
return ranker
|
Load a ranker correspondingly
:param sf_para_dict:
:param model_para_dict:
:param kwargs:
:return:
|
load_ranker
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/eval/ltr_diversification.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/ltr_diversification.py
|
MIT
|
def log_max(self, data_dict=None, max_cv_avg_scores=None, sf_para_dict=None, eval_dict=None, log_para_str=None):
''' Log the best performance across grid search and the corresponding setting '''
dir_root, cutoffs = eval_dict['dir_root'], eval_dict['cutoffs']
data_id = data_dict['data_id']
sf_str = self.sf_parameter.to_para_string(log=True)
data_eval_str = self.data_setting.to_data_setting_string(log=True) +'\n'+ self.eval_setting.to_eval_setting_string(log=True)
with open(file=dir_root + '/' + '_'.join([data_id, sf_para_dict['sf_id'], 'max.txt']), mode='w') as max_writer:
max_writer.write('\n\n'.join([data_eval_str, sf_str, log_para_str, metric_results_to_string(max_cv_avg_scores, cutoffs, metric='aNDCG')]))
|
Log the best performance across grid search and the corresponding setting
|
log_max
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/eval/ltr_diversification.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/ltr_diversification.py
|
MIT
|
def grid_run(self, debug=True, model_id=None, sf_id=None, data_id=None, dir_data=None, dir_output=None, dir_json=None):
"""
Perform diversified ranking based on grid search of optimal parameter setting
"""
if dir_json is not None:
div_data_eval_sf_json = dir_json + 'Div_Data_Eval_ScoringFunction.json'
para_json = dir_json + model_id + "Parameter.json"
self.set_eval_setting(debug=debug, div_eval_json=div_data_eval_sf_json)
self.set_data_setting(div_data_json=div_data_eval_sf_json)
self.set_scoring_function_setting(sf_json=div_data_eval_sf_json)
self.set_model_setting(model_id=model_id, para_json=para_json)
else:
self.set_eval_setting(debug=debug, dir_output=dir_output)
self.set_data_setting(debug=debug, data_id=data_id, dir_data=dir_data)
self.set_scoring_function_setting(debug=debug, sf_id=sf_id)
self.set_model_setting(debug=debug, model_id=model_id)
''' select the best setting through grid search '''
vali_k, cutoffs = 5, [1, 3, 5, 10, 20, 50] # cutoffs should be consistent w.r.t. eval_dict
max_cv_avg_scores = np.zeros(len(cutoffs)) # fold average
k_index = cutoffs.index(vali_k)
max_common_para_dict, max_sf_para_dict, max_div_para_dict = None, None, None
for data_dict in self.iterate_data_setting():
for eval_dict in self.iterate_eval_setting():
if eval_dict['rerank']:
d_sf_para_dict, d_div_para_dict = self.get_rerank_para_dicts(eval_dict=eval_dict)
else:
d_sf_para_dict, d_div_para_dict = None, None
for sf_para_dict in self.iterate_scoring_function_setting():
for div_para_dict in self.iterate_model_setting():
curr_cv_avg_scores = \
self.div_cv_eval(data_dict=data_dict, eval_dict=eval_dict,
sf_para_dict=sf_para_dict, div_para_dict=div_para_dict,
d_sf_para_dict=d_sf_para_dict, d_div_para_dict=d_div_para_dict)
if curr_cv_avg_scores[k_index] > max_cv_avg_scores[k_index]:
max_cv_avg_scores, max_sf_para_dict, max_eval_dict, max_div_para_dict = \
curr_cv_avg_scores, sf_para_dict, eval_dict, div_para_dict
# log max setting
self.log_max(data_dict=data_dict, eval_dict=max_eval_dict,
max_cv_avg_scores=max_cv_avg_scores, sf_para_dict=max_sf_para_dict,
log_para_str=self.model_parameter.to_para_string(log=True, given_para_dict=max_div_para_dict))
|
Perform diversified ranking based on grid search of optimal parameter setting
|
grid_run
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/eval/ltr_diversification.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/ltr_diversification.py
|
MIT
|
def point_run(self, debug=False, model_id=None, sf_id=None, data_id=None, dir_data=None, dir_output=None,
dir_json=None, reproduce=False):
"""
:param debug:
:param model_id:
:param data_id:
:param dir_data:
:param dir_output:
:return:
"""
if dir_json is None:
self.set_eval_setting(debug=debug, dir_output=dir_output)
self.set_data_setting(debug=debug, data_id=data_id, dir_data=dir_data)
self.set_scoring_function_setting(debug=debug, sf_id=sf_id)
self.set_model_setting(debug=debug, model_id=model_id)
else:
div_data_eval_sf_json = dir_json + 'Div_Data_Eval_ScoringFunction.json'
para_json = dir_json + model_id + "Parameter.json"
self.set_eval_setting(debug=debug, div_eval_json=div_data_eval_sf_json)
self.set_data_setting(div_data_json=div_data_eval_sf_json)
self.set_scoring_function_setting(sf_json=div_data_eval_sf_json)
self.set_model_setting(model_id=model_id, para_json=para_json)
data_dict = self.get_default_data_setting()
eval_dict = self.get_default_eval_setting()
sf_para_dict = self.get_default_scoring_function_setting()
div_model_para_dict = self.get_default_model_setting()
if eval_dict['rerank']:
d_sf_para_dict, d_div_para_dict = self.get_rerank_para_dicts(eval_dict=eval_dict)
self.div_cv_eval(data_dict=data_dict, eval_dict=eval_dict, sf_para_dict=sf_para_dict,
div_para_dict=div_model_para_dict,
d_sf_para_dict=d_sf_para_dict, d_div_para_dict=d_div_para_dict)
else:
if reproduce:
self.div_cv_reproduce(data_dict=data_dict, eval_dict=eval_dict, sf_para_dict=sf_para_dict,
div_para_dict=div_model_para_dict)
else:
self.div_cv_eval(data_dict=data_dict, eval_dict=eval_dict, sf_para_dict=sf_para_dict,
div_para_dict=div_model_para_dict)
|
:param debug:
:param model_id:
:param data_id:
:param dir_data:
:param dir_output:
:return:
|
point_run
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/eval/ltr_diversification.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/eval/ltr_diversification.py
|
MIT
|
def get_approx_ranks(batch_preds, rt=None, device=None, q_doc_rele_mat=None):
''' get approximated rank positions: Equation-7 in the paper'''
batch_pred_diffs = torch.unsqueeze(batch_preds, dim=2) - torch.unsqueeze(batch_preds, dim=1) # computing pairwise differences, i.e., Sij or Sxy
batch_indicators = robust_sigmoid(torch.transpose(batch_pred_diffs, dim0=1, dim1=2), rt, device) # using {-1.0*} may lead to a poor performance when compared with the above way;
batch_hat_pis = torch.sum(batch_indicators, dim=2) + 0.5 # get approximated rank positions, i.e., hat_pi(x)
_q_doc_rele_mat = torch.unsqueeze(q_doc_rele_mat, dim=1)
batch_q_doc_rele_mat = _q_doc_rele_mat.expand(-1, q_doc_rele_mat.size(1), -1) # duplicate w.r.t. each subtopic -> [num_subtopics, ranking_size, ranking_size]
prior_cover_cnts = torch.sum(batch_indicators * batch_q_doc_rele_mat, dim=2) - q_doc_rele_mat/2.0 # [num_subtopics, num_docs]
return batch_hat_pis, prior_cover_cnts
|
get approximated rank positions: Equation-7 in the paper
|
get_approx_ranks
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/score_and_sort/daletor.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/score_and_sort/daletor.py
|
MIT
|
def alphaDCG_as_a_loss(batch_preds=None, q_doc_rele_mat=None, rt=10, device=None, alpha=0.5, top_k=10):
"""
There are two ways to formulate the loss: (1) using the ideal order; (2) using the predicted order (TBA)
"""
batch_hat_pis, prior_cover_cnts = get_approx_ranks(batch_preds, rt=rt, device=device, q_doc_rele_mat=q_doc_rele_mat)
batch_per_subtopic_gains = q_doc_rele_mat * torch.pow((1.0-alpha), prior_cover_cnts) / torch.log2(1.0 + batch_hat_pis)
batch_global_gains = torch.sum(batch_per_subtopic_gains, dim=1)
if top_k is None:
alpha_DCG = torch.sum(batch_global_gains)
else:
alpha_DCG = torch.sum(batch_global_gains[0:top_k])
batch_loss = -alpha_DCG
return batch_loss
|
There are two ways to formulate the loss: (1) using the ideal order; (2) using the predicted order (TBA)
|
alphaDCG_as_a_loss
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/score_and_sort/daletor.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/score_and_sort/daletor.py
|
MIT
|
def div_custom_loss_function(self, batch_preds, q_doc_rele_mat, **kwargs):
'''
:param batch_preds: [batch, ranking_size] each row represents the relevance predictions for documents within a ltr_adhoc
:param batch_stds: [batch, ranking_size] each row represents the standard relevance grades for documents within a ltr_adhoc
:return:
'''
assert 'presort' in kwargs and kwargs['presort'] is True # aiming for directly optimising alpha-nDCG over top-k documents
batch_loss = alphaDCG_as_a_loss(batch_preds=batch_preds, q_doc_rele_mat=q_doc_rele_mat,
rt=self.rt, top_k=self.top_k, device=self.device)
self.optimizer.zero_grad()
batch_loss.backward()
self.optimizer.step()
return batch_loss
|
:param batch_preds: [batch, ranking_size] each row represents the relevance predictions for documents within a ltr_adhoc
:param batch_stds: [batch, ranking_size] each row represents the standard relevance grades for documents within a ltr_adhoc
:return:
|
div_custom_loss_function
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/score_and_sort/daletor.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/score_and_sort/daletor.py
|
MIT
|
def default_para_dict(self):
"""
Default parameter setting for DALETOR. Here rt (reversed T) corresponds to 1/T in paper.
:return:
"""
if self.use_json:
top_k = self.json_dict['top_k'][0]
rt = self.json_dict['rt'][0] # corresponds to 1/T in paper
self.DALETOR_para_dict = dict(model_id=self.model_id, rt=rt, top_k=top_k)
else:
self.DALETOR_para_dict = dict(model_id=self.model_id, rt=10., top_k=10)
return self.DALETOR_para_dict
|
Default parameter setting for DALETOR. Here rt (reversed T) corresponds to 1/T in paper.
:return:
|
default_para_dict
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/score_and_sort/daletor.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/score_and_sort/daletor.py
|
MIT
|
def to_para_string(self, log=False, given_para_dict=None):
"""
String identifier of parameters
:param log:
:param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search
:return:
"""
# using specified para-dict or inner para-dict
DALETOR_para_dict = given_para_dict if given_para_dict is not None else self.DALETOR_para_dict
rt, top_k = DALETOR_para_dict['rt'], DALETOR_para_dict['top_k']
s1 = ':' if log else '_'
if top_k is None:
DALETOR_paras_str = s1.join(['rt', str(rt), 'topk', 'Full'])
else:
DALETOR_paras_str = s1.join(['rt', str(rt), 'topk', str(top_k)])
return DALETOR_paras_str
|
String identifier of parameters
:param log:
:param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search
:return:
|
to_para_string
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/score_and_sort/daletor.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/score_and_sort/daletor.py
|
MIT
|
def grid_search(self):
"""
Iterator of parameter settings for ApproxNDCG
"""
if self.use_json:
choice_rt = self.json_dict['rt'] # corresponds to 1/T in paper
choice_topk = self.json_dict['top_k'] # the cutoff value of optimising objective alpha-nDCG@k
else:
choice_rt = [10.0] if self.debug else [10.0] # 1.0, 10.0, 50.0, 100.0
choice_topk = [10] if self.debug else [10]
for rt, top_k in product(choice_rt, choice_topk):
self.DALETOR_para_dict = dict(model_id=self.model_id, rt=rt, top_k=top_k)
yield self.DALETOR_para_dict
|
Iterator of parameter settings for ApproxNDCG
|
grid_search
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/score_and_sort/daletor.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/score_and_sort/daletor.py
|
MIT
|
def alpha_dcg_as_a_loss(top_k=None, batch_mus=None, batch_vars=None, batch_cocos=None, q_doc_rele_mat=None,
opt_ideal=True, presort=False, beta=0.5, const=False, const_var=None):
'''
Alpha_nDCG as the optimization objective.
@param top_k:
@param batch_mus:
@param batch_vars:
@param batch_cocos:
@param q_doc_rele_mat:
@param opt_ideal:
@param presort:
@param beta:
@return:
'''
if const:
batch_expt_ranks, batch_Phi0_subdiag = \
get_expected_rank_const(batch_mus=batch_mus, const_var=const_var, return_cdf=True)
else:
batch_expt_ranks, batch_Phi0_subdiag = \
get_expected_rank(batch_mus=batch_mus, batch_vars=batch_vars, batch_cocos=batch_cocos, return_cdf=True)
if opt_ideal:
assert presort is True
used_batch_expt_ranks = batch_expt_ranks
used_q_doc_rele_mat = q_doc_rele_mat
used_batch_indicators = batch_Phi0_subdiag # the diagonal elements are zero
else:
batch_ascend_expt_ranks, batch_resort_inds = torch.sort(batch_expt_ranks, dim=1, descending=False)
used_batch_expt_ranks = batch_ascend_expt_ranks
used_batch_indicators = torch.gather(batch_Phi0_subdiag, dim=1,
index=torch.unsqueeze(batch_resort_inds.expand(batch_Phi0_subdiag.size(0), -1), dim=0))
used_q_doc_rele_mat = torch.gather(q_doc_rele_mat, dim=1,
index=batch_resort_inds.expand(q_doc_rele_mat.size(0), -1))
_used_q_doc_rele_mat = torch.unsqueeze(used_q_doc_rele_mat, dim=1)
# duplicate w.r.t. each subtopic -> [num_subtopics, ranking_size, ranking_size]
batch_q_doc_rele_mat = _used_q_doc_rele_mat.expand(-1, used_q_doc_rele_mat.size(1), -1)
prior_cover_cnts = torch.sum(used_batch_indicators * batch_q_doc_rele_mat, dim=2) # [num_subtopics,num_docs]
batch_per_subtopic_gains = used_q_doc_rele_mat * torch.pow((1.0 - beta), prior_cover_cnts) \
/ torch.log2(1.0 + used_batch_expt_ranks)
batch_global_gains = torch.sum(batch_per_subtopic_gains, dim=1)
if top_k is None:
alpha_DCG = torch.sum(batch_global_gains)
else:
alpha_DCG = torch.sum(batch_global_gains[0:top_k])
batch_loss = -alpha_DCG
return batch_loss
|
Alpha_nDCG as the optimization objective.
@param top_k:
@param batch_mus:
@param batch_vars:
@param batch_cocos:
@param q_doc_rele_mat:
@param opt_ideal:
@param presort:
@param beta:
@return:
|
alpha_dcg_as_a_loss
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/score_and_sort/div_prob_ranker.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/score_and_sort/div_prob_ranker.py
|
MIT
|
def err_ia_as_a_loss(top_k=None, batch_mus=None, batch_vars=None, batch_cocos=None, q_doc_rele_mat=None,
opt_ideal=True, presort=False, max_label=1.0, device=None, const=False, const_var=None):
'''
ERR-IA as the optimization objective.
@param top_k:
@param batch_mus:
@param batch_vars:
@param batch_cocos:
@param q_doc_rele_mat:
@param opt_ideal:
@param presort:
@return:
'''
ranking_size = q_doc_rele_mat.size(1)
#max_label = torch.max(q_doc_rele_mat)
t2 = torch.tensor([2.0], dtype=torch.float, device=device)
#k = ranking_size if top_k is None else top_k
#if self.norm:
# batch_ideal_err = torch_rankwise_err(q_doc_rele_mat, max_label=max_label, k=k, point=True, device=self.device)
if const:
batch_expt_ranks = get_expected_rank_const(batch_mus=batch_mus, const_var=const_var, return_cdf=False)
else:
batch_expt_ranks = get_expected_rank(batch_mus=batch_mus, batch_vars=batch_vars, batch_cocos=batch_cocos)
if opt_ideal:
assert presort is True
used_batch_expt_ranks = batch_expt_ranks
used_batch_labels = q_doc_rele_mat
else:
'''
Sort the predicted ranks in a ascending natural order (i.e., 1, 2, 3, ..., n),
the returned indices can be used to sort other vectors following the predicted order
'''
batch_ascend_expt_ranks, sort_indices = torch.sort(batch_expt_ranks, dim=1, descending=False)
# sort labels according to the expected ranks
# batch_sys_std_labels = torch.gather(batch_std_labels, dim=1, index=sort_indices)
batch_sys_std_labels = torch.gather(q_doc_rele_mat, dim=1,index=sort_indices.expand(q_doc_rele_mat.size(0), -1))
used_batch_expt_ranks = batch_ascend_expt_ranks
used_batch_labels = batch_sys_std_labels
if top_k is None:
expt_ranks = 1.0 / used_batch_expt_ranks
satis_pros = (torch.pow(t2, used_batch_labels) - 1.0) / torch.pow(t2, max_label)
unsatis_pros = torch.ones_like(used_batch_labels) - satis_pros
cum_unsatis_pros = torch.cumprod(unsatis_pros, dim=1)
cascad_unsatis_pros = torch.ones_like(cum_unsatis_pros)
cascad_unsatis_pros[:, 1:ranking_size] = cum_unsatis_pros[:, 0:ranking_size - 1]
expt_satis_ranks = expt_ranks * satis_pros * cascad_unsatis_pros
batch_err = torch.sum(expt_satis_ranks, dim=1)
#if self.norm:
# batch_nerr = batch_err / batch_ideal_err
# nerr_loss = -torch.sum(batch_nerr)
#else:
nerr_loss = -torch.sum(batch_err)
return nerr_loss
else:
top_k_labels = used_batch_labels[:, 0:top_k]
if opt_ideal:
pos_rows = torch.arange(top_k_labels.size(0), dtype=torch.long) # all rows
else:
non_zero_inds = torch.nonzero(torch.sum(top_k_labels, dim=1))
zero_metric_value = False if non_zero_inds.size(0) > 0 else True
if zero_metric_value:
return None, zero_metric_value # should not be optimized due to no useful training signal
else:
pos_rows = non_zero_inds[:, 0]
expt_ranks = 1.0 / used_batch_expt_ranks[:, 0:top_k]
satis_pros = (torch.pow(t2, top_k_labels) - 1.0) / torch.pow(t2, max_label)
unsatis_pros = torch.ones_like(top_k_labels) - satis_pros
cum_unsatis_pros = torch.cumprod(unsatis_pros, dim=1)
cascad_unsatis_pros = torch.ones_like(cum_unsatis_pros)
cascad_unsatis_pros[:, 1:top_k] = cum_unsatis_pros[:, 0:top_k - 1]
expt_satis_ranks = satis_pros[pos_rows, :] * cascad_unsatis_pros[pos_rows, :] * expt_ranks
batch_err = torch.sum(expt_satis_ranks, dim=1)
#if self.norm:
# batch_nerr = batch_err / batch_ideal_err[pos_rows, :]
# nerr_loss = -torch.sum(batch_nerr)
#else:
nerr_loss = -torch.sum(batch_err)
return nerr_loss
|
ERR-IA as the optimization objective.
@param top_k:
@param batch_mus:
@param batch_vars:
@param batch_cocos:
@param q_doc_rele_mat:
@param opt_ideal:
@param presort:
@return:
|
err_ia_as_a_loss
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/score_and_sort/div_prob_ranker.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/score_and_sort/div_prob_ranker.py
|
MIT
|
def div_custom_loss_function(self, batch_mus, batch_vars, q_doc_rele_mat, **kwargs):
'''
In the context of SRD, batch_size is commonly 1.
@param batch_mus: [batch_size, ranking_size] each row represents the mean predictions for documents associated with the same query
@param batch_vars: [batch_size, ranking_size] each row represents the variance predictions for documents associated with the same query
@param batch_std_labels: [batch_size, ranking_size] each row represents the standard relevance grades for documents associated with the same query
@param kwargs:
@return:
'''
# aiming for directly optimising alpha-nDCG over top-k documents
assert 'presort' in kwargs and kwargs['presort'] is True
presort = kwargs['presort']
batch_cocos = kwargs['batch_cocos'] if 'batch_cocos' in kwargs else None
if 'SuperSoft' == self.opt_id:
if 'aNDCG' == self.metric:
batch_loss = alpha_dcg_as_a_loss(top_k=self.top_k, batch_mus=batch_mus, batch_vars=batch_vars,
batch_cocos=batch_cocos, q_doc_rele_mat=q_doc_rele_mat,
opt_ideal=self.opt_ideal, presort=presort, beta=self.beta)
elif 'nERR-IA' == self.metric:
batch_loss = err_ia_as_a_loss(top_k=self.top_k, batch_mus=batch_mus, batch_vars=batch_vars,
batch_cocos=batch_cocos, q_doc_rele_mat=q_doc_rele_mat,
opt_ideal=self.opt_ideal, presort=presort, max_label=1.0,
device=self.device)
elif self.opt_id == 'LambdaPairCLS':
batch_loss = prob_lambda_loss(opt_id=self.opt_id, batch_mus=batch_mus, batch_vars=batch_vars,
batch_cocos=batch_cocos, q_doc_rele_mat=q_doc_rele_mat,
opt_ideal=self.opt_ideal, presort=presort, beta=self.beta,
device=self.device, norm=self.norm)
elif self.opt_id == 'PairCLS':
batch_loss = prob_lambda_loss(opt_id=self.opt_id, batch_mus=batch_mus, batch_vars=batch_vars,
batch_cocos=batch_cocos, q_doc_rele_mat=q_doc_rele_mat)
elif self.opt_id == "Portfolio":
rets = batch_mus
n_samples, n_assets = rets.shape
covmat_sqrt = batch_cocos
alpha = torch.tensor([0.01], device=self.device)
gamma_sqrt = torch.tensor([0.1], device=self.device)
gamma_sqrt_ = gamma_sqrt.repeat((1, n_assets * n_assets)).view(n_samples, n_assets, n_assets)
alpha_abs = torch.abs(alpha) # it needs to be nonnegative
#print('rets', rets.size())
#print('gamma_sqrt_', gamma_sqrt_.size())
#print('covmat_sqrt', covmat_sqrt.size())
#print('alpha_abs', alpha_abs)
batch_preds = self.cvxpylayer(rets, gamma_sqrt_ * covmat_sqrt, alpha_abs)[0]
#print('batch_preds', batch_preds)
#print('q_doc_rele_mat', q_doc_rele_mat.size())
batch_loss = alphaDCG_as_a_loss(batch_preds=batch_preds, q_doc_rele_mat=q_doc_rele_mat,
rt=10, top_k=10, device=self.device)
else:
raise NotImplementedError
self.optimizer.zero_grad()
batch_loss.backward()
self.optimizer.step()
return batch_loss
|
In the context of SRD, batch_size is commonly 1.
@param batch_mus: [batch_size, ranking_size] each row represents the mean predictions for documents associated with the same query
@param batch_vars: [batch_size, ranking_size] each row represents the variance predictions for documents associated with the same query
@param batch_std_labels: [batch_size, ranking_size] each row represents the standard relevance grades for documents associated with the same query
@param kwargs:
@return:
|
div_custom_loss_function
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/score_and_sort/div_prob_ranker.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/score_and_sort/div_prob_ranker.py
|
MIT
|
def to_para_string(self, log=False, given_para_dict=None):
"""
String identifier of parameters
:param log:
:param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search
"""
# using specified para-dict or inner para-dict
probrank_para_dict = given_para_dict if given_para_dict is not None else self.probrank_para_dict
s1 = ':' if log else '_'
K, cluster, opt_id = probrank_para_dict['K'], probrank_para_dict['cluster'], probrank_para_dict['opt_id']
sort_id, limit_delta = probrank_para_dict['sort_id'], probrank_para_dict['limit_delta']
if cluster:
probrank_paras_str = s1.join([str(K), 'CS', opt_id])
else:
probrank_paras_str = s1.join([str(K), opt_id])
probrank_paras_str = s1.join([probrank_paras_str, sort_id])
if limit_delta is not None:
probrank_paras_str = s1.join([probrank_paras_str, '{:,g}'.format(limit_delta)])
if 'LambdaPairCLS' == opt_id:
norm = probrank_para_dict['norm']
probrank_paras_str = s1.join([probrank_paras_str, 'Norm']) if norm else probrank_paras_str
opt_ideal = probrank_para_dict['opt_ideal']
probrank_paras_str = s1.join([probrank_paras_str, 'OptIdeal']) if opt_ideal else probrank_paras_str
elif 'SuperSoft' == opt_id:
opt_ideal = probrank_para_dict['opt_ideal']
probrank_paras_str = s1.join([probrank_paras_str, 'OptIdeal']) if opt_ideal else probrank_paras_str
top_k = probrank_para_dict['top_k']
if top_k is None:
probrank_paras_str = s1.join([probrank_paras_str, 'Full'])
else:
probrank_paras_str = s1.join([probrank_paras_str, str(top_k)])
metric = probrank_para_dict['metric']
s1.join([probrank_paras_str, metric])
return probrank_paras_str
|
String identifier of parameters
:param log:
:param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search
|
to_para_string
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/score_and_sort/div_prob_ranker.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/score_and_sort/div_prob_ranker.py
|
MIT
|
def grid_search(self):
""" Iterator of parameter settings for MiDeExpectedUtility """
if self.use_json:
choice_topk = self.json_dict['top_k']
choice_opt_id = self.json_dict['opt_id']
choice_K = self.json_dict['K']
choice_cluster = self.json_dict['cluster']
choice_sort_id = self.json_dict['sort_id']
choice_limit_delta = self.json_dict['limit_delta']
choice_opt_ideal = self.json_dict['opt_ideal']
choice_metric = self.json_dict['metric']
choice_norm = self.json_dict['norm']
else:
choice_topk = [10] if self.debug else [10]
choice_opt_id = ['SuperSoft'] if self.debug else ['SuperSoft', 'PairCLS', 'LambdaPairCLS']
choice_K = [5]
choice_cluster = [False]
choice_sort_id = ['ExpRele']
choice_limit_delta = [None, 0.1]
choice_opt_ideal = [True] if self.debug else [True]
choice_metric = ['aNDCG'] # 'aNDCG', 'nERR-IA'
choice_norm = [True] if self.debug else [True]
for K, cluster, opt_id, sort_id, limit_delta in \
product(choice_K, choice_cluster, choice_opt_id, choice_sort_id, choice_limit_delta):
self.probrank_para_dict = dict(model_id=self.model_id, K=K, cluster=cluster, opt_id=opt_id, sort_id=sort_id,
limit_delta=limit_delta)
if opt_id == 'PairCLS':
yield self.probrank_para_dict
elif opt_id == 'LambdaPairCLS': # top-k is not needed, due to the requirement of pairwise swapping
for opt_ideal, norm in product(choice_opt_ideal, choice_norm):
inner_para_dict = dict()
inner_para_dict['opt_ideal'] = opt_ideal
inner_para_dict['norm'] = norm
self.probrank_para_dict.update(inner_para_dict)
yield self.probrank_para_dict
elif opt_id == 'SuperSoft':
for top_k, metric, opt_ideal in product(choice_topk, choice_metric, choice_opt_ideal):
inner_para_dict = dict()
inner_para_dict['top_k'] = top_k
inner_para_dict['metric'] = metric
inner_para_dict['opt_ideal'] = opt_ideal
self.probrank_para_dict.update(inner_para_dict)
yield self.probrank_para_dict
else:
raise NotImplementedError
|
Iterator of parameter settings for MiDeExpectedUtility
|
grid_search
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/score_and_sort/div_prob_ranker.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/score_and_sort/div_prob_ranker.py
|
MIT
|
def get_div_data_meta(data_id=None):
""" Get the meta-information corresponding to the specified dataset """
if data_id in TREC_DIV:
fold_num = 5
max_label = 1
num_features = 100
else:
raise NotImplementedError
data_meta = dict(num_features=num_features, fold_num=fold_num, max_label=max_label)
return data_meta
|
Get the meta-information corresponding to the specified dataset
|
get_div_data_meta
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/util/div_data.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/util/div_data.py
|
MIT
|
def deploy_1st_stage_div_discriminating(discriminator, rerank_k, q_repr, doc_reprs, gpu, device):
''' Perform 1st-stage ranking as a discriminating process. '''
sys_rele_preds = discriminator.div_predict(q_repr, doc_reprs) # [1, ranking_size]
if gpu: sys_rele_preds = sys_rele_preds.cpu()
_, sys_sorted_inds = torch.sort(sys_rele_preds, dim=1, descending=True) # [1, ranking_size]
batch_top_k_sys_sorted_inds = sys_sorted_inds[:, 0:rerank_k]
return torch.squeeze(batch_top_k_sys_sorted_inds)
|
Perform 1st-stage ranking as a discriminating process.
|
deploy_1st_stage_div_discriminating
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/util/div_data.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/util/div_data.py
|
MIT
|
def get_pairwise_comp_probs(batch_preds, std_q_doc_rele_mat, sigma=None):
'''
Get the predicted and standard probabilities p_ij which denotes d_i beats d_j, the subtopic labels are aggregated.
@param batch_preds:
@param batch_std_labels:
@param sigma:
@return:
'''
# standard pairwise differences per-subtopic, i.e., S_{ij}
subtopic_std_diffs = torch.unsqueeze(std_q_doc_rele_mat, dim=2) - torch.unsqueeze(std_q_doc_rele_mat, dim=1)
# ensuring S_{ij} \in {-1, 0, 1}
subtopic_std_Sij = torch.clamp(subtopic_std_diffs, min=-1.0, max=1.0)
subtopic_std_p_ij = 0.5 * (1.0 + subtopic_std_Sij)
batch_std_p_ij = torch.mean(subtopic_std_p_ij, dim=0, keepdim=True)
# computing pairwise differences, i.e., s_i - s_j
batch_s_ij = torch.unsqueeze(batch_preds, dim=2) - torch.unsqueeze(batch_preds, dim=1)
batch_p_ij = torch.sigmoid(sigma * batch_s_ij)
return batch_p_ij, batch_std_p_ij
|
Get the predicted and standard probabilities p_ij which denotes d_i beats d_j, the subtopic labels are aggregated.
@param batch_preds:
@param batch_std_labels:
@param sigma:
@return:
|
get_pairwise_comp_probs
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/util/div_lambda_utils.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/util/div_lambda_utils.py
|
MIT
|
def get_prob_pairwise_comp_probs(batch_pairsub_mus, batch_pairsub_vars, q_doc_rele_mat):
'''
The difference of two normal random variables is another normal random variable.
pairsub_mu & pairsub_var denote the corresponding mean & variance of the difference of two normal random variables
p_ij denotes the probability that d_i beats d_j
@param batch_pairsub_mus:
@param batch_pairsub_vars:
@param batch_std_labels:
@return:
'''
subtopic_std_diffs = torch.unsqueeze(q_doc_rele_mat, dim=2) - torch.unsqueeze(q_doc_rele_mat, dim=1)
subtopic_std_Sij = torch.clamp(subtopic_std_diffs, min=-1.0, max=1.0) # ensuring S_{ij} \in {-1, 0, 1}
subtopic_std_p_ij = 0.5 * (1.0 + subtopic_std_Sij)
batch_std_p_ij = torch.mean(subtopic_std_p_ij, dim=0, keepdim=True)
batch_p_ij = 1.0 - 0.5 * torch.erfc(batch_pairsub_mus / torch.sqrt(2 * batch_pairsub_vars))
return batch_p_ij, batch_std_p_ij
|
The difference of two normal random variables is another normal random variable.
pairsub_mu & pairsub_var denote the corresponding mean & variance of the difference of two normal random variables
p_ij denotes the probability that d_i beats d_j
@param batch_pairsub_mus:
@param batch_pairsub_vars:
@param batch_std_labels:
@return:
|
get_prob_pairwise_comp_probs
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/util/div_lambda_utils.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/util/div_lambda_utils.py
|
MIT
|
def get_diff_normal(batch_mus, batch_vars, batch_cocos=None):
'''
The difference of two normal random variables is another normal random variable. In particular, we consider two
cases: (1) correlated (2) independent.
@param batch_mus: the predicted mean
@param batch_vars: the predicted variance
@param batch_cocos: the predicted correlation coefficient in [-1, 1], which is formulated as the cosine-similarity of corresponding vectors.
@return: the mean, variance of the result normal variable.
'''
# mu_i - mu_j
batch_pairsub_mus = torch.unsqueeze(batch_mus, dim=2) - torch.unsqueeze(batch_mus, dim=1)
# variance w.r.t. S_i - S_j, which is equal to: (1)sigma^2_i + sigma^2_j - \rou_ij*sigma_i*sigma_j (2) sigma^2_i + sigma^2_j
if batch_cocos is not None:
batch_std_vars = torch.pow(batch_vars, .5)
batch_pairsub_vars = torch.unsqueeze(batch_vars, dim=2) + torch.unsqueeze(batch_vars, dim=1) - \
batch_cocos * torch.bmm(torch.unsqueeze(batch_std_vars, dim=2),
torch.unsqueeze(batch_std_vars, dim=1))
else:
batch_pairsub_vars = torch.unsqueeze(batch_vars, dim=2) + torch.unsqueeze(batch_vars, dim=1)
return batch_pairsub_mus, batch_pairsub_vars
|
The difference of two normal random variables is another normal random variable. In particular, we consider two
cases: (1) correlated (2) independent.
@param batch_mus: the predicted mean
@param batch_vars: the predicted variance
@param batch_cocos: the predicted correlation coefficient in [-1, 1], which is formulated as the cosine-similarity of corresponding vectors.
@return: the mean, variance of the result normal variable.
|
get_diff_normal
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/util/prob_utils.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/util/prob_utils.py
|
MIT
|
def get_diff_normal_resort(batch_mus, batch_vars, batch_cocos=None, batch_resort_inds=None):
'''
Compared with get_diff_normal(), resort is conducted first.
'''
batch_resorted_mus = torch.gather(batch_mus, dim=1, index=batch_resort_inds)
batch_resorted_vars = torch.gather(batch_vars, dim=1, index=batch_resort_inds)
if batch_cocos is not None:
num_docs = batch_cocos.size(1)
batch_cocos_1 = torch.gather(batch_cocos, dim=2,
index=torch.unsqueeze(batch_resort_inds, dim=1).expand(-1, num_docs, -1))
batch_resorted_cocos = torch.gather(batch_cocos_1, dim=1,
index=torch.unsqueeze(batch_resort_inds, dim=2).expand(-1, -1, num_docs))
else:
batch_resorted_cocos = None
return get_diff_normal(batch_mus=batch_resorted_mus, batch_vars=batch_resorted_vars,
batch_cocos=batch_resorted_cocos)
|
Compared with get_diff_normal(), resort is conducted first.
|
get_diff_normal_resort
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/util/prob_utils.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/util/prob_utils.py
|
MIT
|
def neg_log_likelihood(batch_pairsub_mus, batch_pairsub_vars, top_k=None, device=None):
'''
Compute the negative log-likelihood w.r.t. rankings, where the likelihood is formulated as the joint probability of
consistent pairwise comparisons.
@param batch_pairsub_mus: mean w.r.t. a pair comparison
@param batch_pairsub_vars: variance w.r.t. a pair comparison
@return:
'''
batch_full_erfc = torch.erfc(batch_pairsub_mus / torch.sqrt(2 * batch_pairsub_vars))
if top_k is None:
# use the triu-part of pairwise probabilities w.r.t. d_i > d_j, and using the trick: log(1.0) is zero
batch_p_ij_triu = 1.0 - 0.5 * torch.triu(batch_full_erfc, diagonal=1)
# batch_neg_log_probs = - torch.log(triu_probs) # facing the issue of nan due to overflow
batch_neg_log_probs = F.binary_cross_entropy(input=batch_p_ij_triu, reduction='none',
target=torch.ones_like(batch_p_ij_triu, device=device))
else: # the part to keep will be 1, otherwise 0
keep_mask = torch.triu(torch.ones_like(batch_pairsub_vars), diagonal=1)
keep_mask[:, top_k:, :] = 0.0 # without considering pairs beneath position-k
batch_p_ij_triu_top_k = 1 - batch_full_erfc * keep_mask * 0.5
# batch_neg_log_probs = - torch.log(1 - batch_full_erfc * keep_mask * 0.5) # using the trick: log(1.0) is zero
batch_neg_log_probs = F.binary_cross_entropy(input=batch_p_ij_triu_top_k, reduction='none',
target=torch.ones_like(batch_p_ij_triu_top_k, device=device))
return batch_neg_log_probs # with a shape of [batch_size, ranking_size, ranking_size]
|
Compute the negative log-likelihood w.r.t. rankings, where the likelihood is formulated as the joint probability of
consistent pairwise comparisons.
@param batch_pairsub_mus: mean w.r.t. a pair comparison
@param batch_pairsub_vars: variance w.r.t. a pair comparison
@return:
|
neg_log_likelihood
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/util/prob_utils.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/util/prob_utils.py
|
MIT
|
def neg_log_likelihood_explicit(batch_pairsub_mus, std_var, top_k=None, device=None):
'''
Compute the negative log-likelihood w.r.t. rankings, where the likelihood is formulated as the joint probability of
consistent pairwise comparisons.
@param batch_pairsub_mus: mean w.r.t. a pair comparison
@param batch_pairsub_vars: variance w.r.t. a pair comparison
@return:
'''
batch_full_erfc = torch.erfc(batch_pairsub_mus / torch.sqrt(torch.tensor([2 * std_var ** 2], device=device)))
if top_k is None:
# use the triu-part of pairwise probabilities w.r.t. d_i > d_j, and using the trick: log(1.0) is zero
batch_p_ij_triu = 1.0 - 0.5 * torch.triu(batch_full_erfc, diagonal=1)
# batch_neg_log_probs = - torch.log(triu_probs) # facing the issue of nan due to overflow
batch_neg_log_probs = F.binary_cross_entropy(input=batch_p_ij_triu, reduction='none',
target=torch.ones_like(batch_p_ij_triu, device=device))
else: # the part to keep will be 1, otherwise 0
keep_mask = torch.triu(torch.ones_like(batch_pairsub_mus), diagonal=1)
keep_mask[:, top_k:, :] = 0.0 # without considering pairs beneath position-k
batch_p_ij_triu_top_k = 1 - batch_full_erfc * keep_mask * 0.5
# batch_neg_log_probs = - torch.log(1 - batch_full_erfc * keep_mask * 0.5) # using the trick: log(1.0) is zero
batch_neg_log_probs = F.binary_cross_entropy(input=batch_p_ij_triu_top_k, reduction='none',
target=torch.ones_like(batch_p_ij_triu_top_k, device=device))
return batch_neg_log_probs # with a shape of [batch_size, ranking_size, ranking_size]
|
Compute the negative log-likelihood w.r.t. rankings, where the likelihood is formulated as the joint probability of
consistent pairwise comparisons.
@param batch_pairsub_mus: mean w.r.t. a pair comparison
@param batch_pairsub_vars: variance w.r.t. a pair comparison
@return:
|
neg_log_likelihood_explicit
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/util/prob_utils.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/util/prob_utils.py
|
MIT
|
def batch_cosine_similarity(x1, x2=None, eps=1e-8):
'''
:param x1: [batch_size, num_docs, num_features]
:param x2: the same shape or None
:param eps:
:return:
'''
x2 = x1 if x2 is None else x2
w1 = x1.norm(p=2, dim=2, keepdim=True)
#print('w1', w1.size(), '\n', w1)
w2 = w1 if x2 is x1 else x2.norm(p=2, dim=2, keepdim=True)
batch_numerator = torch.bmm(x1, x2.permute(0, 2, 1))
batch_denominator = torch.bmm(w1, w2.permute(0, 2, 1)).clamp(min=eps)
return batch_numerator/batch_denominator
|
:param x1: [batch_size, num_docs, num_features]
:param x2: the same shape or None
:param eps:
:return:
|
batch_cosine_similarity
|
python
|
wildltr/ptranking
|
ptranking/ltr_diversification/util/sim_utils.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_diversification/util/sim_utils.py
|
MIT
|
def check_consistency(self, data_dict, eval_dict):
"""
Check whether the settings are reasonable in the context of gbdt learning-to-rank
"""
''' Part-1: data loading '''
if data_dict['data_id'] == 'Istella':
assert eval_dict['do_validation'] is not True # since there is no validation data
if data_dict['data_id'] in MSLETOR_SEMI:
assert data_dict['train_presort'] is not True # due to the non-labeled documents
if data_dict['binary_rele']: # for unsupervised dataset, it is required for binarization due to '-1' labels
assert data_dict['unknown_as_zero']
else:
assert data_dict['unknown_as_zero'] is not True # since there is no non-labeled documents
if data_dict['data_id'] in MSLETOR_LIST: # for which the standard ltr_adhoc of each query is unique
assert 1 == data_dict['train_rough_batch_size']
if data_dict['scale_data']:
scaler_level = data_dict['scaler_level'] if 'scaler_level' in data_dict else None
assert not scaler_level == 'DATASET' # not supported setting
assert data_dict['validation_presort'] # Rule of thumb setting for adhoc learning-to-rank
assert data_dict['test_presort'] # Rule of thumb setting for adhoc learning-to-rank
assert 1 == data_dict['validation_rough_batch_size'] # Rule of thumb setting for adhoc learning-to-rank
assert 1 == data_dict['test_rough_batch_size'] # Rule of thumb setting for adhoc learning-to-rank
''' Part-2: evaluation setting '''
if eval_dict['mask_label']: # True is aimed to use supervised data to mimic semi-supervised data by masking
assert not data_dict['data_id'] in MSLETOR_SEMI
|
Check whether the settings are reasonable in the context of gbdt learning-to-rank
|
check_consistency
|
python
|
wildltr/ptranking
|
ptranking/ltr_tree/eval/ltr_tree.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_tree/eval/ltr_tree.py
|
MIT
|
def setup_output(self, data_dict=None, eval_dict=None):
"""
Determine the output.
:param data_dict:
:param eval_dict:
:return:
"""
dir_output, grid_search, mask_label = eval_dict['dir_output'], eval_dict['grid_search'],\
eval_dict['mask_label']
#print(' '.join(['Start {} on {} >>>'.format(self.model_parameter.model_id, data_id)]))
if grid_search:
output_root = dir_output + '_'.join(['grid', self.model_parameter.get_identifier()]) + '/'
else:
output_root = dir_output + self.model_parameter.get_identifier() + '/'
data_eval_str = '_'.join([self.data_setting.to_data_setting_string(), self.eval_setting.to_eval_setting_string()])
if mask_label:
data_eval_str = '_'.join([data_eval_str, 'MaskLabel', 'Ratio', '{:,g}'.format(eval_dict['mask_ratio'])])
if data_dict['scale_data']:
if data_dict['scaler_level'] == 'QUERY':
data_eval_str = '_'.join([data_eval_str, 'QS', data_dict['scaler_id']])
else:
data_eval_str = '_'.join([data_eval_str, 'DS', data_dict['scaler_id']])
output_root = output_root + data_eval_str + '/' + self.model_parameter.to_para_string() + '/' # run-specific outputs
return output_root
|
Determine the output.
:param data_dict:
:param eval_dict:
:return:
|
setup_output
|
python
|
wildltr/ptranking
|
ptranking/ltr_tree/eval/ltr_tree.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_tree/eval/ltr_tree.py
|
MIT
|
def result_to_str(self, list_scores=None, list_cutoffs=None, split_str=', ', metric_str=None):
"""
Convert metric results to a string
:param list_scores:
:param list_cutoffs:
:param split_str:
:param metric_str:
:return:
"""
list_str = []
for i in range(len(list_scores)):
list_str.append('{}@{}:{:.4f}'.format(metric_str, list_cutoffs[i], list_scores[i]))
return split_str.join(list_str)
|
Convert metric results to a string
:param list_scores:
:param list_cutoffs:
:param split_str:
:param metric_str:
:return:
|
result_to_str
|
python
|
wildltr/ptranking
|
ptranking/ltr_tree/eval/ltr_tree.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/ltr_tree/eval/ltr_tree.py
|
MIT
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.