code
stringlengths 66
870k
| docstring
stringlengths 19
26.7k
| func_name
stringlengths 1
138
| language
stringclasses 1
value | repo
stringlengths 7
68
| path
stringlengths 5
324
| url
stringlengths 46
389
| license
stringclasses 7
values |
---|---|---|---|---|---|---|---|
def leftordered(M):
""" Returns the given matrix in left-ordered-form. """
l = list(M.T)
l.sort(key=tuple)
return array(l)[::-1].T
|
Returns the given matrix in left-ordered-form.
|
leftordered
|
python
|
pybrain/pybrain
|
pybrain/tools/ibp.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/ibp.py
|
BSD-3-Clause
|
def testIBP():
""" Plot matrices generated by an IBP, for a few different settings. """
from pybrain.tools.plotting.colormaps import ColorMap
import pylab
# always 50 customers
n = 50
# define parameter settings
ps = [(10, 0.1),
(10,), (50,),
(50, 0.5),
]
# generate a few matrices, on for each parameter setting
ms = []
for p in ps:
if len(p) > 1:
m = generateIBP(n, p[0], p[1])
else:
m = generateIBP(n, p[0])
ms.append(leftordered(m))
# plot the matrices
for m in ms:
ColorMap(m, pixelspervalue=3)
pylab.show()
|
Plot matrices generated by an IBP, for a few different settings.
|
testIBP
|
python
|
pybrain/pybrain
|
pybrain/tools/ibp.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/ibp.py
|
BSD-3-Clause
|
def __init__(self, DS, **kwargs):
""" Initialize with the training data set DS. All keywords given are set as member variables.
The following are particularly important:
:key hidden: number of hidden units
:key TDS: test data set for checking convergence
:key VDS: validation data set for final performance evaluation
:key epoinc: number of epochs to train for, before checking convergence (default: 5)
"""
self.DS = DS
self.hidden = 10
self.maxepochs = 1000
self.Graph = None
self.TDS = None
self.VDS = None
self.epoinc = 5
setAllArgs(self, kwargs)
self.trainCurve = None
|
Initialize with the training data set DS. All keywords given are set as member variables.
The following are particularly important:
:key hidden: number of hidden units
:key TDS: test data set for checking convergence
:key VDS: validation data set for final performance evaluation
:key epoinc: number of epochs to train for, before checking convergence (default: 5)
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/tools/neuralnets.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/neuralnets.py
|
BSD-3-Clause
|
def initGraphics(self, ymax=10, xmax= -1):
""" initialize the interactive graphics output window, and return a handle to the plot """
if xmax < 0:
xmax = self.maxepochs
figure(figsize=[12, 8])
ion()
draw()
#self.Graph = MultilinePlotter(autoscale=1.2 ) #xlim=[0, self.maxepochs], ylim=[0, ymax])
self.Graph = MultilinePlotter(xlim=[0, xmax], ylim=[0, ymax])
self.Graph.setLineStyle([0, 1], linewidth=2)
return self.Graph
|
initialize the interactive graphics output window, and return a handle to the plot
|
initGraphics
|
python
|
pybrain/pybrain
|
pybrain/tools/neuralnets.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/neuralnets.py
|
BSD-3-Clause
|
def saveTrainingCurve(self, learnfname):
""" save the training curves into a file with the given name (CSV format) """
logging.info('Saving training curves into ' + learnfname)
if self.trainCurve is None:
logging.error('No training curve available for saving!')
learnf = open(learnfname, "wb")
writer = csv.writer(learnf, dialect='excel')
nDataSets = len(self.trainCurve)
for i in range(1, len(self.trainCurve[0]) - 1):
writer.writerow([self.trainCurve[k][i] for k in range(nDataSets)])
learnf.close()
|
save the training curves into a file with the given name (CSV format)
|
saveTrainingCurve
|
python
|
pybrain/pybrain
|
pybrain/tools/neuralnets.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/neuralnets.py
|
BSD-3-Clause
|
def saveNetwork(self, fname):
""" save the trained network to a file """
NetworkWriter.writeToFile(self.Trainer.module, fname)
logging.info("Network saved to: " + fname)
|
save the trained network to a file
|
saveNetwork
|
python
|
pybrain/pybrain
|
pybrain/tools/neuralnets.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/neuralnets.py
|
BSD-3-Clause
|
def setupNN(self, trainer=RPropMinusTrainer, hidden=None, **trnargs):
""" Constructs a 3-layer FNN for regression. Optional arguments are passed on to the Trainer class. """
if hidden is not None:
self.hidden = hidden
logging.info("Constructing FNN with following config:")
FNN = buildNetwork(self.DS.indim, self.hidden, self.DS.outdim)
logging.info(str(FNN) + "\n Hidden units:\n " + str(self.hidden))
logging.info("Training FNN with following special arguments:")
logging.info(str(trnargs))
self.Trainer = trainer(FNN, dataset=self.DS, **trnargs)
|
Constructs a 3-layer FNN for regression. Optional arguments are passed on to the Trainer class.
|
setupNN
|
python
|
pybrain/pybrain
|
pybrain/tools/neuralnets.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/neuralnets.py
|
BSD-3-Clause
|
def runTraining(self, convergence=0, **kwargs):
""" Trains the network on the stored dataset. If convergence is >0, check after that many epoch increments
whether test error is going down again, and stop training accordingly.
CAVEAT: No support for Sequential datasets!"""
assert isinstance(self.Trainer, Trainer)
if self.Graph is not None:
self.Graph.setLabels(x='epoch', y='normalized regression error')
self.Graph.setLegend(['training', 'test'], loc='upper right')
epoch = 0
inc = self.epoinc
best_error = Infinity
best_epoch = 0
learncurve_x = [0]
learncurve_y = [0.0]
valcurve_y = [0.0]
converged = False
convtest = 0
if convergence > 0:
logging.info("Convergence criterion: %d batches of %d epochs w/o improvement" % (convergence, inc))
while epoch <= self.maxepochs and not converged:
self.Trainer.trainEpochs(inc)
epoch += inc
learncurve_x.append(epoch)
# calculate errors on TRAINING data
err_trn = ModuleValidator.validate(Validator.MSE, self.Trainer.module, self.DS)
learncurve_y.append(err_trn)
if self.TDS is None:
logging.info("epoch: %6d, err_trn: %10g" % (epoch, err_trn))
else:
# calculate same errors on TEST data
err_tst = ModuleValidator.validate(Validator.MSE, self.Trainer.module, self.TDS)
valcurve_y.append(err_tst)
if err_tst < best_error:
# store best error and parameters
best_epoch = epoch
best_error = err_tst
bestweights = self.Trainer.module.params.copy()
convtest = 0
else:
convtest += 1
logging.info("epoch: %6d, err_trn: %10g, err_tst: %10g, best_tst: %10g" % (epoch, err_trn, err_tst, best_error))
if self.Graph is not None:
self.Graph.addData(1, epoch, err_tst)
# check if convegence criterion is fulfilled (no improvement after N epoincs)
if convtest >= convergence:
converged = True
if self.Graph is not None:
self.Graph.addData(0, epoch, err_trn)
self.Graph.update()
# training finished!
logging.info("Best epoch: %6d, with error: %10g" % (best_epoch, best_error))
if self.VDS is not None:
# calculate same errors on VALIDATION data
self.Trainer.module.params[:] = bestweights.copy()
err_val = ModuleValidator.validate(Validator.MSE, self.Trainer.module, self.VDS)
logging.info("Result on evaluation data: %10g" % err_val)
# store training curve for saving into file
self.trainCurve = (learncurve_x, learncurve_y, valcurve_y)
|
Trains the network on the stored dataset. If convergence is >0, check after that many epoch increments
whether test error is going down again, and stop training accordingly.
CAVEAT: No support for Sequential datasets!
|
runTraining
|
python
|
pybrain/pybrain
|
pybrain/tools/neuralnets.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/neuralnets.py
|
BSD-3-Clause
|
def __init__(self, DS, **kwargs):
""" Initialize the classifier: the least we need is the dataset to be classified. All keywords given are set as member variables. """
if not isinstance(DS, ClassificationDataSet):
raise TypeError('Need a ClassificationDataSet to do classification!')
NNtools.__init__(self, DS, **kwargs)
self.nClasses = self.DS.nClasses # need this because targets may be altered later
self.clsnames = None
self.targetsAreOneOfMany = False
|
Initialize the classifier: the least we need is the dataset to be classified. All keywords given are set as member variables.
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/tools/neuralnets.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/neuralnets.py
|
BSD-3-Clause
|
def _convertAllDataToOneOfMany(self, values=[0, 1]):
""" converts all datasets associated with self into 1-out-of-many representations,
e.g. with original classes 0 to 4, the new target for class 1 would be [0,1,0,0,0],
or accordingly with other upper and lower bounds, as given by the values keyword """
if self.targetsAreOneOfMany:
return
else:
# convert all datasets to one-of-many ("winner takes all") representation
for dsname in ["DS", "TDS", "VDS"]:
d = getattr(self, dsname)
if d is not None:
if d.outdim < d.nClasses:
d._convertToOneOfMany(values)
self.targetsAreOneOfMany = True
|
converts all datasets associated with self into 1-out-of-many representations,
e.g. with original classes 0 to 4, the new target for class 1 would be [0,1,0,0,0],
or accordingly with other upper and lower bounds, as given by the values keyword
|
_convertAllDataToOneOfMany
|
python
|
pybrain/pybrain
|
pybrain/tools/neuralnets.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/neuralnets.py
|
BSD-3-Clause
|
def setupNN(self, trainer=RPropMinusTrainer, hidden=None, **trnargs):
""" Setup FNN and trainer for classification. """
self._convertAllDataToOneOfMany()
if hidden is not None:
self.hidden = hidden
FNN = buildNetwork(self.DS.indim, self.hidden, self.DS.outdim, outclass=SoftmaxLayer)
logging.info("Constructing classification FNN with following config:")
logging.info(str(FNN) + "\n Hidden units:\n " + str(self.hidden))
logging.info("Trainer received the following special arguments:")
logging.info(str(trnargs))
self.Trainer = trainer(FNN, dataset=self.DS, **trnargs)
|
Setup FNN and trainer for classification.
|
setupNN
|
python
|
pybrain/pybrain
|
pybrain/tools/neuralnets.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/neuralnets.py
|
BSD-3-Clause
|
def setupRNN(self, trainer=BackpropTrainer, hidden=None, **trnargs):
""" Setup an LSTM RNN and trainer for sequence classification. """
if hidden is not None:
self.hidden = hidden
self._convertAllDataToOneOfMany()
RNN = buildNetwork(self.DS.indim, self.hidden, self.DS.outdim, hiddenclass=LSTMLayer,
recurrent=True, outclass=SoftmaxLayer)
logging.info("Constructing classification RNN with following config:")
logging.info(str(RNN) + "\n Hidden units:\n " + str(self.hidden))
logging.info("Trainer received the following special arguments:")
logging.info(str(trnargs))
self.Trainer = trainer(RNN, dataset=self.DS, **trnargs)
|
Setup an LSTM RNN and trainer for sequence classification.
|
setupRNN
|
python
|
pybrain/pybrain
|
pybrain/tools/neuralnets.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/neuralnets.py
|
BSD-3-Clause
|
def runTraining(self, convergence=0, **kwargs):
""" Trains the network on the stored dataset. If convergence is >0, check after that many epoch increments
whether test error is going down again, and stop training accordingly. """
assert isinstance(self.Trainer, Trainer)
if self.Graph is not None:
self.Graph.setLabels(x='epoch', y='% classification error')
self.Graph.setLegend(['training', 'test'], loc='lower right')
epoch = 0
inc = self.epoinc
best_error = 100.0
best_epoch = 0
learncurve_x = [0]
learncurve_y = [0.0]
valcurve_y = [0.0]
converged = False
convtest = 0
if convergence > 0:
logging.info("Convergence criterion: %d batches of %d epochs w/o improvement" % (convergence, inc))
while epoch <= self.maxepochs and not converged:
self.Trainer.trainEpochs(inc)
epoch += inc
learncurve_x.append(epoch)
# calculate errors on TRAINING data
if isinstance(self.DS, SequentialDataSet):
r_trn = 100. * (1.0 - testOnSequenceData(self.Trainer.module, self.DS))
else:
# FIXME: messy - validation does not belong into the Trainer...
out, trueclass = self.Trainer.testOnClassData(return_targets=True)
r_trn = 100. * (1.0 - Validator.classificationPerformance(out, trueclass))
learncurve_y.append(r_trn)
if self.TDS is None:
logging.info("epoch: %6d, err_trn: %5.2f%%" % (epoch, r_trn))
else:
# calculate errors on TEST data
if isinstance(self.DS, SequentialDataSet):
r_tst = 100. * (1.0 - testOnSequenceData(self.Trainer.module, self.TDS))
else:
# FIXME: messy - validation does not belong into the Trainer...
out, trueclass = self.Trainer.testOnClassData(return_targets=True, dataset=self.TDS)
r_tst = 100. * (1.0 - Validator.classificationPerformance(out, trueclass))
valcurve_y.append(r_tst)
if r_tst < best_error:
best_epoch = epoch
best_error = r_tst
bestweights = self.Trainer.module.params.copy()
convtest = 0
else:
convtest += 1
logging.info("epoch: %6d, err_trn: %5.2f%%, err_tst: %5.2f%%, best_tst: %5.2f%%" % (epoch, r_trn, r_tst, best_error))
if self.Graph is not None:
self.Graph.addData(1, epoch, r_tst)
# check if convegence criterion is fulfilled (no improvement after N epoincs)
if convtest >= convergence:
converged = True
if self.Graph is not None:
self.Graph.addData(0, epoch, r_trn)
self.Graph.update()
logging.info("Best epoch: %6d, with error: %5.2f%%" % (best_epoch, best_error))
if self.VDS is not None:
# calculate errors on VALIDATION data
self.Trainer.module.params[:] = bestweights.copy()
if isinstance(self.DS, SequentialDataSet):
r_val = 100. * (1.0 - testOnSequenceData(self.Trainer.module, self.VDS))
else:
out, trueclass = self.Trainer.testOnClassData(return_targets=True, dataset=self.VDS)
r_val = 100. * (1.0 - Validator.classificationPerformance(out, trueclass))
logging.info("Result on evaluation data: %5.2f%%" % r_val)
self.trainCurve = (learncurve_x, learncurve_y, valcurve_y)
|
Trains the network on the stored dataset. If convergence is >0, check after that many epoch increments
whether test error is going down again, and stop training accordingly.
|
runTraining
|
python
|
pybrain/pybrain
|
pybrain/tools/neuralnets.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/neuralnets.py
|
BSD-3-Clause
|
def crowding_distance(individuals, fitnesses):
""" Crowding distance-measure for multiple objectives. """
distances = collections.defaultdict(lambda: 0)
individuals = list(individuals)
# Infer the number of objectives by looking at the fitness of the first.
n_obj = len(fitnesses[individuals[0]])
for i in range(n_obj):
individuals.sort(key=lambda x: fitnesses[x][i])
# normalization between 0 and 1.
normalization = float(fitnesses[individuals[0]][i] - fitnesses[individuals[-1]][i])
# Make sure the boundary points are always selected.
distances[individuals[0]] = 1e100
distances[individuals[-1]] = 1e100
tripled = list(zip(individuals, individuals[1:-1], individuals[2:]))
for pre, ind, post in tripled:
distances[ind] += (fitnesses[pre][i] - fitnesses[post][i]) / normalization
return distances
|
Crowding distance-measure for multiple objectives.
|
crowding_distance
|
python
|
pybrain/pybrain
|
pybrain/tools/nondominated.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/nondominated.py
|
BSD-3-Clause
|
def _non_dominated_front_old(iterable, key=lambda x: x, allowequality=True):
"""Return a subset of items from iterable which are not dominated by any
other item in iterable."""
items = list(iterable)
keys = dict((i, key(i)) for i in items)
dim = len(list(keys.values())[0])
if any(dim != len(k) for k in list(keys.values())):
raise ValueError("Wrong tuple size.")
# Make a dictionary that holds the items another item dominates.
dominations = collections.defaultdict(lambda: [])
for i in items:
for j in items:
if allowequality:
if all(keys[i][k] < keys[j][k] for k in range(dim)):
dominations[i].append(j)
else:
if all(keys[i][k] <= keys[j][k] for k in range(dim)):
dominations[i].append(j)
dominates = lambda i, j: j in dominations[i]
res = set()
items = set(items)
for i in items:
res.add(i)
for j in list(res):
if i is j:
continue
if dominates(j, i):
res.remove(i)
break
elif dominates(i, j):
res.remove(j)
return res
|
Return a subset of items from iterable which are not dominated by any
other item in iterable.
|
_non_dominated_front_old
|
python
|
pybrain/pybrain
|
pybrain/tools/nondominated.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/nondominated.py
|
BSD-3-Clause
|
def _non_dominated_front_fast(iterable, key=lambda x: x, allowequality=True):
"""Return a subset of items from iterable which are not dominated by any
other item in iterable.
Faster version.
"""
items = list(iterable)
keys = dict((i, key(i)) for i in items)
dim = len(list(keys.values())[0])
dominations = {}
for i in items:
for j in items:
good = True
if allowequality:
for k in range(dim):
if keys[i][k] >= keys[j][k]:
good = False
break
else:
for k in range(dim):
if keys[i][k] > keys[j][k]:
good = False
break
if good:
dominations[(i, j)] = None
res = set()
items = set(items)
for i in items:
res.add(i)
for j in list(res):
if i is j:
continue
if (j, i) in dominations:
res.remove(i)
break
elif (i, j) in dominations:
res.remove(j)
return res
|
Return a subset of items from iterable which are not dominated by any
other item in iterable.
Faster version.
|
_non_dominated_front_fast
|
python
|
pybrain/pybrain
|
pybrain/tools/nondominated.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/nondominated.py
|
BSD-3-Clause
|
def _non_dominated_front_arr(iterable, key=lambda x: x, allowequality=True):
"""Return a subset of items from iterable which are not dominated by any
other item in iterable.
Faster version, based on boolean matrix manipulations.
"""
items = list(iterable)
fits = list(map(key, items))
l = len(items)
x = array(fits)
a = tile(x, (l, 1, 1))
b = a.transpose((1, 0, 2))
if allowequality:
ndom = sum(a <= b, axis=2)
else:
ndom = sum(a < b, axis=2)
ndom = array(ndom, dtype=bool)
res = set()
for ii in range(l):
res.add(ii)
for ij in list(res):
if ii == ij:
continue
if not ndom[ij, ii]:
res.remove(ii)
break
elif not ndom[ii, ij]:
res.remove(ij)
return set([items[i] for i in res])
|
Return a subset of items from iterable which are not dominated by any
other item in iterable.
Faster version, based on boolean matrix manipulations.
|
_non_dominated_front_arr
|
python
|
pybrain/pybrain
|
pybrain/tools/nondominated.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/nondominated.py
|
BSD-3-Clause
|
def non_dominated_sort(iterable, key=lambda x: x, allowequality=True):
"""Return a list that is sorted in a non-dominating fashion.
Keys have to be n-tuple."""
items = set(iterable)
fronts = []
while items:
front = non_dominated_front(items, key, allowequality)
items -= front
fronts.append(front)
return fronts
|
Return a list that is sorted in a non-dominating fashion.
Keys have to be n-tuple.
|
non_dominated_sort
|
python
|
pybrain/pybrain
|
pybrain/tools/nondominated.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/nondominated.py
|
BSD-3-Clause
|
def _const_non_dominated_front_arr(iterable, key=lambda x: x, allowequality=True):
"""Return a subset of items from iterable which are not dominated by any
other item in iterable.
Faster version, based on boolean matrix manipulations.
"""
items = list(iterable) # pop
fits = list(map(key, items)) # fitness
x = array([fits[i][0] for i in range(len(fits))])
v = array([fits[i][1] for i in range(len(fits))])
c = array([fits[i][2] for i in range(len(fits))])
l = len(items)
a = tile(x, (l, 1, 1))
b = a.transpose((1, 0, 2))
if allowequality:
ndom = sum(a <= b, axis=2)
else:
ndom = sum(a < b, axis=2)
ndom = array(ndom, dtype=bool)
res = set()
for ii in range(l):
res.add(ii)
for ij in list(res):
if ii == ij:
continue
if not ndom[ij, ii] and v[ij] and v[ii]:
res.remove(ii)
break
elif not ndom[ii, ij] and v[ij] and v[ii]:
res.remove(ij)
elif v[ij] and not v[ii]:
res.remove(ii)
break
elif v[ii] and not v[ij]:
res.remove(ij)
elif not v[ii] and not v[ij]:
cii = abs(sum(c[ii]))
cij = abs(sum(c[ij]))
if cii < cij:
res.remove(ij)
else:
res.remove(ii)
break
return set([items[i] for i in res])
|
Return a subset of items from iterable which are not dominated by any
other item in iterable.
Faster version, based on boolean matrix manipulations.
|
_const_non_dominated_front_arr
|
python
|
pybrain/pybrain
|
pybrain/tools/nondominated.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/nondominated.py
|
BSD-3-Clause
|
def const_non_dominated_sort(iterable, key=lambda x: x, allowequality=True):
"""Return a list that is sorted in a non-dominating fashion.
Keys have to be n-tuple."""
items = set(iterable)
fronts = []
while items:
front = const_non_dominated_front(items, key, allowequality)
items -= front
fronts.append(front)
return fronts
|
Return a list that is sorted in a non-dominating fashion.
Keys have to be n-tuple.
|
const_non_dominated_sort
|
python
|
pybrain/pybrain
|
pybrain/tools/nondominated.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/nondominated.py
|
BSD-3-Clause
|
def const_crowding_distance(individuals, fitnesses):
""" Crowding distance-measure for multiple objectives. """
distances = collections.defaultdict(lambda: 0)
individuals = list(individuals)
# Infer the number of objectives by looking at the fitness of the first.
n_obj = len(fitnesses[individuals[0]][0])
for i in range(n_obj):
individuals.sort(key=lambda x: fitnesses[x][0][i])
# normalization between 0 and 1.
normalization = float(fitnesses[individuals[0]][0][i] - fitnesses[individuals[-1]][0][i])
# Make sure the boundary points are always selected.
distances[individuals[0]] = 1e100
distances[individuals[-1]] = 1e100
tripled = list(zip(individuals, individuals[1:-1], individuals[2:]))
for pre, ind, post in tripled:
distances[ind] += (fitnesses[pre][0][i] - fitnesses[post][0][i]) / normalization
return distances
|
Crowding distance-measure for multiple objectives.
|
const_crowding_distance
|
python
|
pybrain/pybrain
|
pybrain/tools/nondominated.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/nondominated.py
|
BSD-3-Clause
|
def const_number_of_feasible_pop(iterable, key=lambda x: x, allowequality=True):
"""Return a subset of items from iterable which are not dominated by any
other item in iterable.
Faster version, based on boolean matrix manipulations.
"""
items = list(iterable) # pop
fits = list(map(key, items)) # fitness
v = list([fits[i][1] for i in range(len(fits))])
n = v.count(True)
return n
|
Return a subset of items from iterable which are not dominated by any
other item in iterable.
Faster version, based on boolean matrix manipulations.
|
const_number_of_feasible_pop
|
python
|
pybrain/pybrain
|
pybrain/tools/nondominated.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/nondominated.py
|
BSD-3-Clause
|
def rankedFitness(R):
""" produce a linear ranking of the fitnesses in R.
(The highest rank is the best fitness)"""
#l = sorted(list(enumerate(R)), cmp = lambda a,b: cmp(a[1],b[1]))
#l = sorted(list(enumerate(l)), cmp = lambda a,b: cmp(a[1],b[1]))
#return array(map(lambda (r, dummy): r, l))
res = zeros_like(R)
l = list(zip(R, list(range(len(R)))))
l.sort()
for i, (_, j) in enumerate(l):
res[j] = i
return res
|
produce a linear ranking of the fitnesses in R.
(The highest rank is the best fitness)
|
rankedFitness
|
python
|
pybrain/pybrain
|
pybrain/tools/rankingfunctions.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/rankingfunctions.py
|
BSD-3-Clause
|
def __call__(self, R):
""" :key R: one-dimensional array containing fitnesses. """
res = rankedFitness(R)
return res / float(max(res))
|
:key R: one-dimensional array containing fitnesses.
|
__call__
|
python
|
pybrain/pybrain
|
pybrain/tools/rankingfunctions.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/rankingfunctions.py
|
BSD-3-Clause
|
def adaptAgent(agent_klass):
"""Return a factory function that instantiates a pybrain agent and adapts
it to the rlglue framework interface.
:type agent_klass: subclass of some pybrain agent
:key agent_klass: Some class that is to be adapted to the rlglue
framework
"""
# TODO: return a real class instead of a function, so docstrings and such
# are not lost.
def inner(*args, **kwargs):
return RlglueAgentAdapter(agent_klass, *args, **kwargs)
return inner
|
Return a factory function that instantiates a pybrain agent and adapts
it to the rlglue framework interface.
:type agent_klass: subclass of some pybrain agent
:key agent_klass: Some class that is to be adapted to the rlglue
framework
|
adaptAgent
|
python
|
pybrain/pybrain
|
pybrain/tools/rlgluebridge.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/rlgluebridge.py
|
BSD-3-Clause
|
def adaptAgentObject(agent_object):
"""Return an object that adapts a pybrain agent to the rlglue interface.
"""
# This is pretty hacky: We first take a bogus agent with a bogus module
# for our function adaptAgent to work, then substitue the bogus agent with
# our actual agent.
agent = adaptAgent(LearningAgent)(Module(1, 1))
agent.agent = agent_object
return agent
|
Return an object that adapts a pybrain agent to the rlglue interface.
|
adaptAgentObject
|
python
|
pybrain/pybrain
|
pybrain/tools/rlgluebridge.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/rlgluebridge.py
|
BSD-3-Clause
|
def __init__(self, klass, *args, **kwargs):
"""
Create an object that adapts an object of class klass to the
protocol of rlglue agents.
:type klass: subclass of some pybrain agent
:key klass: Some class that is to be adapted to the rlglue
framework
"""
if not issubclass(klass, LearningAgent):
raise ValueError("Supply a LearningAgent as first argument")
self.agent = klass(*args, **kwargs)
# TODO: At the moment, learning is done after a certain amount of
# steps - this is somehow logic of the agent, and not of the wrapper
# Maybe there are some changes in the agent API needed.
self.learnCycle = 1
self.episodeCount = 1
|
Create an object that adapts an object of class klass to the
protocol of rlglue agents.
:type klass: subclass of some pybrain agent
:key klass: Some class that is to be adapted to the rlglue
framework
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/tools/rlgluebridge.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/rlgluebridge.py
|
BSD-3-Clause
|
def agent_init(self, task_specification=None):
"""Give the agent a specification of the action and state space.
Since pybrain agents are not using task specifications
(they are already set up to the problem domain) the task_specification
parameter is only there for API consistency, but it will be ignored.
The specification for the specifications can be found here:
http://rlai.cs.ualberta.ca/RLBB/TaskSpecification.html
:type task_specification: string
"""
# This is (for now) actually a dummy method to satisfy the
# RLGlue interface. It is the programmer's job to check wether an
# experiment fits the agent object.
self.agent.reset()
|
Give the agent a specification of the action and state space.
Since pybrain agents are not using task specifications
(they are already set up to the problem domain) the task_specification
parameter is only there for API consistency, but it will be ignored.
The specification for the specifications can be found here:
http://rlai.cs.ualberta.ca/RLBB/TaskSpecification.html
:type task_specification: string
|
agent_init
|
python
|
pybrain/pybrain
|
pybrain/tools/rlgluebridge.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/rlgluebridge.py
|
BSD-3-Clause
|
def agent_step(self, reward, observation):
"""
Return an action depending on an observation and a reward.
:type reward: number
:type firstObservation: Observation
"""
self._giveReward(reward)
self._integrateObservation(observation)
return self._getAction()
|
Return an action depending on an observation and a reward.
:type reward: number
:type firstObservation: Observation
|
agent_step
|
python
|
pybrain/pybrain
|
pybrain/tools/rlgluebridge.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/rlgluebridge.py
|
BSD-3-Clause
|
def agent_end(self, reward):
"""
Give the last reward to the agent.
:type reward: number
"""
self._giveReward(reward)
self.agent.newEpisode()
self.episodeCount += 1
if self.episodeCount % self.learnCycle == 0:
self.agent.learn()
self.agent.reset()
|
Give the last reward to the agent.
:type reward: number
|
agent_end
|
python
|
pybrain/pybrain
|
pybrain/tools/rlgluebridge.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/rlgluebridge.py
|
BSD-3-Clause
|
def agent_cleanup(self):
"""This is called when an episode ends.
Should be in one ratio to agent_init."""
|
This is called when an episode ends.
Should be in one ratio to agent_init.
|
agent_cleanup
|
python
|
pybrain/pybrain
|
pybrain/tools/rlgluebridge.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/rlgluebridge.py
|
BSD-3-Clause
|
def _getAction(self):
"""
Return a RLGlue action that is made out of a numpy array yielded by
the hold pybrain agent.
"""
action = RLGlueAction()
action.doubleArray = self.agent.getAction().tolist()
action.intArray = []
return action
|
Return a RLGlue action that is made out of a numpy array yielded by
the hold pybrain agent.
|
_getAction
|
python
|
pybrain/pybrain
|
pybrain/tools/rlgluebridge.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/rlgluebridge.py
|
BSD-3-Clause
|
def __init__(self, path, port=None, autoreconnect=None):
"""Instantiate an object with the given variables."""
if os.name not in ('posix', 'mac'):
raise NotImplementedError(
"Killing processes under win32 not supported")
self.path = path
self.port = port
self.autoreconnect = autoreconnect
self.running = False
|
Instantiate an object with the given variables.
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/tools/rlgluebridge.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/rlgluebridge.py
|
BSD-3-Clause
|
def run(self):
"""Run the benchmark. All agents are tested loop times against the
environment and statistics for each run are saved into the benchmark
directory benchmarkDir.
"""
# Create benchmark directory: the desired name plus the current date
# and time.
try:
os.makedirs(self.benchmarkDir)
except OSError as e:
if not "File exists" in str(e):
raise e
for name, agent_klass in self.agents:
todo = range(self.loops)
if not self.overwrite:
# If overwrite is set to false, we will only do the experiments
# that have not been done.
# index gets the index of a benchmark file out of the filename.
index = lambda x: int(x[x.rfind("-") + 1:])
done = set(index(i) for i in os.listdir(self.benchmarkDir)
if i.startswith("%s-" % name))
todo = (i for i in todo if i not in done)
for j in todo:
logging.info("Starting agent %s's loop #%i" % (name, j + 1))
# Make a clean copy of the agent for every run
# Start subprocess that gives us the experiment
agent = agent_klass()
stats = self.testAgent(agent)
# Dump stats to the given directory
self.saveStats(name + "-%i" % j, stats)
|
Run the benchmark. All agents are tested loop times against the
environment and statistics for each run are saved into the benchmark
directory benchmarkDir.
|
run
|
python
|
pybrain/pybrain
|
pybrain/tools/rlgluebridge.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/rlgluebridge.py
|
BSD-3-Clause
|
def testAgent(path, agent, port=DEFAULT_PORT):
"""Test an agent once on a rlcompetition experiment.
Path specifies the executable file of the rl competition.
"""
agent = adaptAgentObject(BenchmarkingAgent(agent))
experiment = RLCExperiment(path, str(port))
experiment.start()
# This method is provided by rlglue and makes a client to be runnable
# over the network.
clientAgent = ClientAgent(agent)
clientAgent.connect(DEFAULT_HOST, port, CLIENT_TIMEOUT)
logging.info("Agent connected")
clientAgent.runAgentEventLoop()
clientAgent.close()
logging.info("Agent finished")
experiment.stop()
return agent.agent.benchmark
|
Test an agent once on a rlcompetition experiment.
Path specifies the executable file of the rl competition.
|
testAgent
|
python
|
pybrain/pybrain
|
pybrain/tools/rlgluebridge.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/rlgluebridge.py
|
BSD-3-Clause
|
def __init__(self, agent):
"""Return a wrapper around the given agent."""
if hasattr(agent, 'benchmark') or hasattr(agent, 'agent'):
raise ValueError("Wrapped agent must not define a benchmark or" +
"an agent attribute.")
self.agent = agent
self.benchmark = BenchmarkDataSet()
# For episodewide statistics
self.__rewards = []
|
Return a wrapper around the given agent.
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/tools/rlgluebridge.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/rlgluebridge.py
|
BSD-3-Clause
|
def buildNetwork(*layers, **options):
"""Build arbitrarily deep networks.
`layers` should be a list or tuple of integers, that indicate how many
neurons the layers should have. `bias` and `outputbias` are flags to
indicate whether the network should have the corresponding biases; both
default to True.
To adjust the classes for the layers use the `hiddenclass` and `outclass`
parameters, which expect a subclass of :class:`NeuronLayer`.
If the `recurrent` flag is set, a :class:`RecurrentNetwork` will be created,
otherwise a :class:`FeedForwardNetwork`.
If the `fast` flag is set, faster arac networks will be used instead of the
pybrain implementations."""
# options
opt = {'bias': True,
'hiddenclass': SigmoidLayer,
'outclass': LinearLayer,
'outputbias': True,
'peepholes': False,
'recurrent': False,
'fast': False,
}
for key in options:
if key not in list(opt.keys()):
raise NetworkError('buildNetwork unknown option: %s' % key)
opt[key] = options[key]
if len(layers) < 2:
raise NetworkError('buildNetwork needs 2 arguments for input and output layers at least.')
# Bind the right class to the Network name
network_map = {
(False, False): FeedForwardNetwork,
(True, False): RecurrentNetwork,
}
try:
network_map[(False, True)] = _FeedForwardNetwork
network_map[(True, True)] = _RecurrentNetwork
except NameError:
if opt['fast']:
raise NetworkError("No fast networks available.")
if opt['hiddenclass'].sequential or opt['outclass'].sequential:
if not opt['recurrent']:
# CHECKME: a warning here?
opt['recurrent'] = True
Network = network_map[opt['recurrent'], opt['fast']]
n = Network()
# linear input layer
n.addInputModule(LinearLayer(layers[0], name='in'))
# output layer of type 'outclass'
n.addOutputModule(opt['outclass'](layers[-1], name='out'))
if opt['bias']:
# add bias module and connection to out module, if desired
n.addModule(BiasUnit(name='bias'))
if opt['outputbias']:
n.addConnection(FullConnection(n['bias'], n['out']))
# arbitrary number of hidden layers of type 'hiddenclass'
for i, num in enumerate(layers[1:-1]):
layername = 'hidden%i' % i
if issubclass(opt['hiddenclass'], LSTMLayer):
n.addModule(opt['hiddenclass'](num, peepholes=opt['peepholes'], name=layername))
else:
n.addModule(opt['hiddenclass'](num, name=layername))
if opt['bias']:
# also connect all the layers with the bias
n.addConnection(FullConnection(n['bias'], n[layername]))
# connections between hidden layers
for i in range(len(layers) - 3):
n.addConnection(FullConnection(n['hidden%i' % i], n['hidden%i' % (i + 1)]))
# other connections
if len(layers) == 2:
# flat network, connection from in to out
n.addConnection(FullConnection(n['in'], n['out']))
else:
# network with hidden layer(s), connections from in to first hidden and last hidden to out
n.addConnection(FullConnection(n['in'], n['hidden0']))
n.addConnection(FullConnection(n['hidden%i' % (len(layers) - 3)], n['out']))
# recurrent connections
if issubclass(opt['hiddenclass'], LSTMLayer):
if len(layers) > 3:
errorexit("LSTM networks with > 1 hidden layers are not supported!")
n.addRecurrentConnection(FullConnection(n['hidden0'], n['hidden0']))
n.sortModules()
return n
|
Build arbitrarily deep networks.
`layers` should be a list or tuple of integers, that indicate how many
neurons the layers should have. `bias` and `outputbias` are flags to
indicate whether the network should have the corresponding biases; both
default to True.
To adjust the classes for the layers use the `hiddenclass` and `outclass`
parameters, which expect a subclass of :class:`NeuronLayer`.
If the `recurrent` flag is set, a :class:`RecurrentNetwork` will be created,
otherwise a :class:`FeedForwardNetwork`.
If the `fast` flag is set, faster arac networks will be used instead of the
pybrain implementations.
|
buildNetwork
|
python
|
pybrain/pybrain
|
pybrain/tools/shortcuts.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/shortcuts.py
|
BSD-3-Clause
|
def _buildNetwork(*layers, **options):
"""This is a helper function to create different kinds of networks.
`layers` is a list of tuples. Each tuple can contain an arbitrary number of
layers, each being connected to the next one with IdentityConnections. Due
to this, all layers have to have the same dimension. We call these tuples
'parts.'
Afterwards, the last layer of one tuple is connected to the first layer of
the following tuple by a FullConnection.
If the keyword argument bias is given, BiasUnits are added additionally with
every FullConnection.
Example:
_buildNetwork(
(LinearLayer(3),),
(SigmoidLayer(4), GaussianLayer(4)),
(SigmoidLayer(3),),
)
"""
bias = options['bias'] if 'bias' in options else False
net = FeedForwardNetwork()
layerParts = iter(layers)
firstPart = iter(next(layerParts))
firstLayer = next(firstPart)
net.addInputModule(firstLayer)
prevLayer = firstLayer
for part in chain(firstPart, layerParts):
new_part = True
for layer in part:
net.addModule(layer)
# Pick class depending on whether we entered a new part
if new_part:
ConnectionClass = FullConnection
if bias:
biasUnit = BiasUnit('BiasUnit for %s' % layer.name)
net.addModule(biasUnit)
net.addConnection(FullConnection(biasUnit, layer))
else:
ConnectionClass = IdentityConnection
new_part = False
conn = ConnectionClass(prevLayer, layer)
net.addConnection(conn)
prevLayer = layer
net.addOutputModule(layer)
net.sortModules()
return net
|
This is a helper function to create different kinds of networks.
`layers` is a list of tuples. Each tuple can contain an arbitrary number of
layers, each being connected to the next one with IdentityConnections. Due
to this, all layers have to have the same dimension. We call these tuples
'parts.'
Afterwards, the last layer of one tuple is connected to the first layer of
the following tuple by a FullConnection.
If the keyword argument bias is given, BiasUnits are added additionally with
every FullConnection.
Example:
_buildNetwork(
(LinearLayer(3),),
(SigmoidLayer(4), GaussianLayer(4)),
(SigmoidLayer(3),),
)
|
_buildNetwork
|
python
|
pybrain/pybrain
|
pybrain/tools/shortcuts.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/shortcuts.py
|
BSD-3-Clause
|
def loadData(self, fname):
""" decide which format the data is in """
self.filename = fname
if fname.find('.mat') >= 0:
self.loadMATdata(fname)
elif fname.find('.svm') >= 0:
self.loadSVMdata(fname)
else:
# dataset consists of raw ascii columns
self.loadRawData(fname)
|
decide which format the data is in
|
loadData
|
python
|
pybrain/pybrain
|
pybrain/tools/svmdata.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/svmdata.py
|
BSD-3-Clause
|
def loadMATdata(self, fname):
""" read Matlab file containing one variable called 'data' which is an array
nSamples x nFeatures+1 and contains the class in the first column """
from mlabwrap import mlab #@UnresolvedImport
from numpy import float
d = mlab.load(fname)
self.nSamples = d.data.shape[0]
x = []
y = []
for i in range(self.nSamples):
label = int(d.data[i, 0])
x.append(d.data[i, 1:].astype(float).tolist())
y.append([ float(label) ])
self._setDataFields(x, y)
|
read Matlab file containing one variable called 'data' which is an array
nSamples x nFeatures+1 and contains the class in the first column
|
loadMATdata
|
python
|
pybrain/pybrain
|
pybrain/tools/svmdata.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/svmdata.py
|
BSD-3-Clause
|
def loadSVMdata(self, fname):
""" read svm sparse format from file 'fname' (with labels only)
output: [attributes[], labels[]] """
x = []
y = []
nFeatMax = 0
for line in open(fname, 'r').readlines():
# format is:
# <class> <featnr>:<featval> <featnr>:<featval> ...
# (whereby featnr starts at 1)
if not line: break
line = line.split()
label = float(line[0])
feat = []
nextidx = 1
for r in line[1:]:
# construct list of features, taking care of sparsity
(idx, val) = r.split(':')
idx = int(idx)
for _ in range(nextidx, idx):
feat.append(0) # zzzzwar hier ein bug??
feat.append(float(val))
nextidx = idx + 1
nFeat = len(feat)
if nFeatMax < nFeat: nFeatMax = nFeat
x.append(feat)
y.append([ label ])
self.nSamples += 1
for xi in x:
while len(xi) < nFeatMax:
xi.append(0.)
self._setDataFields(x, y)
|
read svm sparse format from file 'fname' (with labels only)
output: [attributes[], labels[]]
|
loadSVMdata
|
python
|
pybrain/pybrain
|
pybrain/tools/svmdata.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/svmdata.py
|
BSD-3-Clause
|
def loadRawData(self, fname):
""" read svm sparse format from file 'fname' (with labels only)
output: [attributes[], labels[]] """
targetfile = open(fname.replace('data', 'targets'), 'r')
x = []
y = []
for line in open(fname, 'r').readlines():
if not line: break
targline = targetfile.readline()
targline = list(map(int, targline.split()))
for i, v in enumerate(targline):
if v:
label = i
break
feat = list(map(float, line.split()))
x.append(feat)
y.append([float(label)])
self.nSamples += 1
self.nCls = len(targline)
targetfile.close()
self._setDataFields(x, y)
|
read svm sparse format from file 'fname' (with labels only)
output: [attributes[], labels[]]
|
loadRawData
|
python
|
pybrain/pybrain
|
pybrain/tools/svmdata.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/svmdata.py
|
BSD-3-Clause
|
def getTargets(self):
""" return the targets of the dataset, preserving the current sample pointer """
self.storePointer()
self.reset()
targets = []
while not self.endOfSequences():
input, target, dummy = self.getSample()
targets.append(target)
self.recallPointer()
return targets
|
return the targets of the dataset, preserving the current sample pointer
|
getTargets
|
python
|
pybrain/pybrain
|
pybrain/tools/svmdata.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/svmdata.py
|
BSD-3-Clause
|
def classificationPerformance(cls, output, target):
""" Returns the hit rate of the outputs compared to the targets.
:arg output: array of output values
:arg target: array of target values
"""
output = array(output)
target = array(target)
assert len(output) == len(target)
n_correct = sum(output == target)
return float(n_correct) / float(len(output))
|
Returns the hit rate of the outputs compared to the targets.
:arg output: array of output values
:arg target: array of target values
|
classificationPerformance
|
python
|
pybrain/pybrain
|
pybrain/tools/validation.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/validation.py
|
BSD-3-Clause
|
def MSE(cls, output, target, importance=None):
""" Returns the mean squared error. The multidimensional arrays will get
flattened in order to compare them.
:arg output: array of output values
:arg target: array of target values
:key importance: each squared error will be multiplied with its
corresponding importance value. After summing
up these values, the result will be divided by the
sum of all importance values for normalization
purposes.
"""
# assert equal shapes
output = array(output)
target = array(target)
assert output.shape == target.shape
if importance is not None:
assert importance.shape == target.shape
importance = importance.flatten()
# flatten structures
output = output.flatten()
target = target.flatten()
if importance is None:
importance = ones(len(output))
# calculate mse
squared_error = (output - target) ** 2
mse = dot(squared_error, importance) / sum(importance)
return mse
|
Returns the mean squared error. The multidimensional arrays will get
flattened in order to compare them.
:arg output: array of output values
:arg target: array of target values
:key importance: each squared error will be multiplied with its
corresponding importance value. After summing
up these values, the result will be divided by the
sum of all importance values for normalization
purposes.
|
MSE
|
python
|
pybrain/pybrain
|
pybrain/tools/validation.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/validation.py
|
BSD-3-Clause
|
def getSequenceEnds(cls, dataset):
""" Returns the indices of the last elements of the sequences stored
inside dataset.
:arg dataset: Must implement :class:`SequentialDataSet`
"""
sequence_ends = delete(dataset.getField('sequence_index') - 1, 0)
sequence_ends = append(sequence_ends, dataset.getLength() - 1)
# print(sequence_ends; exit())
sequence_ends = array(sequence_ends)
return sequence_ends
|
Returns the indices of the last elements of the sequences stored
inside dataset.
:arg dataset: Must implement :class:`SequentialDataSet`
|
getSequenceEnds
|
python
|
pybrain/pybrain
|
pybrain/tools/validation.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/validation.py
|
BSD-3-Clause
|
def getSequenceEndsImportance(cls, dataset):
""" Returns the importance values of the last elements of the sequences
stored inside dataset.
:arg dataset: Must implement :class:`ImportanceDataSet`
"""
importance = zeros(dataset.getLength())
importance[cls.getSequenceEnds(dataset)] = 1.
return importance
|
Returns the importance values of the last elements of the sequences
stored inside dataset.
:arg dataset: Must implement :class:`ImportanceDataSet`
|
getSequenceEndsImportance
|
python
|
pybrain/pybrain
|
pybrain/tools/validation.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/validation.py
|
BSD-3-Clause
|
def classificationPerformance(cls, module, dataset):
""" Returns the hit rate of the module's output compared to the targets
stored inside dataset.
:arg module: Object of any subclass of pybrain's Module type
:arg dataset: Dataset object at least containing the fields
'input' and 'target' (for example SupervisedDataSet)
"""
return ModuleValidator.validate(
Validator.classificationPerformance,
module,
dataset)
|
Returns the hit rate of the module's output compared to the targets
stored inside dataset.
:arg module: Object of any subclass of pybrain's Module type
:arg dataset: Dataset object at least containing the fields
'input' and 'target' (for example SupervisedDataSet)
|
classificationPerformance
|
python
|
pybrain/pybrain
|
pybrain/tools/validation.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/validation.py
|
BSD-3-Clause
|
def MSE(cls, module, dataset):
""" Returns the mean squared error.
:arg module: Object of any subclass of pybrain's Module type
:arg dataset: Dataset object at least containing the fields
'input' and 'target' (for example SupervisedDataSet)
"""
return ModuleValidator.validate(
Validator.MSE,
module,
dataset)
|
Returns the mean squared error.
:arg module: Object of any subclass of pybrain's Module type
:arg dataset: Dataset object at least containing the fields
'input' and 'target' (for example SupervisedDataSet)
|
MSE
|
python
|
pybrain/pybrain
|
pybrain/tools/validation.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/validation.py
|
BSD-3-Clause
|
def validate(cls, valfunc, module, dataset):
""" Abstract validate function, that is heavily used by this class.
First, it calculates the module's output on the dataset.
In advance, it compares the output to the target values of the dataset
through the valfunc function and returns the result.
:arg valfunc: A function expecting arrays for output, target and
importance (optional). See Validator.MSE for an example.
:arg module: Object of any subclass of pybrain's Module type
:arg dataset: Dataset object at least containing the fields
'input' and 'target' (for example SupervisedDataSet)
"""
target = dataset.getField('target')
output = ModuleValidator.calculateModuleOutput(module, dataset)
if isinstance(dataset, ImportanceDataSet):
importance = dataset.getField('importance')
return valfunc(output, target, importance)
else:
return valfunc(output, target)
|
Abstract validate function, that is heavily used by this class.
First, it calculates the module's output on the dataset.
In advance, it compares the output to the target values of the dataset
through the valfunc function and returns the result.
:arg valfunc: A function expecting arrays for output, target and
importance (optional). See Validator.MSE for an example.
:arg module: Object of any subclass of pybrain's Module type
:arg dataset: Dataset object at least containing the fields
'input' and 'target' (for example SupervisedDataSet)
|
validate
|
python
|
pybrain/pybrain
|
pybrain/tools/validation.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/validation.py
|
BSD-3-Clause
|
def _calculateModuleOutputSequential(cls, module, dataset):
""" Calculates the module's output on the dataset. Especially designed
for datasets storing sequences.
After a sequence is fed to the module, it has to be resetted.
:arg dataset: Dataset object of type SequentialDataSet or subclass.
"""
outputs = []
for seq in dataset._provideSequences():
module.reset()
for i in range(len(seq)):
output = module.activate(seq[i][0])
outputs.append(output.copy())
outputs = array(outputs)
return outputs
|
Calculates the module's output on the dataset. Especially designed
for datasets storing sequences.
After a sequence is fed to the module, it has to be resetted.
:arg dataset: Dataset object of type SequentialDataSet or subclass.
|
_calculateModuleOutputSequential
|
python
|
pybrain/pybrain
|
pybrain/tools/validation.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/validation.py
|
BSD-3-Clause
|
def calculateModuleOutput(cls, module, dataset):
""" Calculates the module's output on the dataset. Can be called with
any type of dataset.
:arg dataset: Any Dataset object containing an 'input' field.
"""
if isinstance(dataset, SequentialDataSet) or isinstance(dataset, ImportanceDataSet):
return cls._calculateModuleOutputSequential(module, dataset)
else:
module.reset()
input = dataset.getField('input')
output = array([module.activate(inp) for inp in input])
return output
|
Calculates the module's output on the dataset. Can be called with
any type of dataset.
:arg dataset: Any Dataset object containing an 'input' field.
|
calculateModuleOutput
|
python
|
pybrain/pybrain
|
pybrain/tools/validation.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/validation.py
|
BSD-3-Clause
|
def __init__(self, trainer, dataset, n_folds=5, valfunc=ModuleValidator.classificationPerformance, **kwargs):
""" :arg trainer: Trainer containing a module to be trained
:arg dataset: Dataset for training and testing
:key n_folds: Number of pieces, the dataset will be splitted to
:key valfunc: Validation function. Should expect a module and a dataset.
E.g. ModuleValidator.MSE()
:key others: see setArgs() method
"""
self._trainer = trainer
self._dataset = dataset
self._n_folds = n_folds
self._calculatePerformance = valfunc
self._max_epochs = None
self.setArgs(**kwargs)
|
:arg trainer: Trainer containing a module to be trained
:arg dataset: Dataset for training and testing
:key n_folds: Number of pieces, the dataset will be splitted to
:key valfunc: Validation function. Should expect a module and a dataset.
E.g. ModuleValidator.MSE()
:key others: see setArgs() method
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/tools/validation.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/validation.py
|
BSD-3-Clause
|
def setArgs(self, **kwargs):
""" Set the specified member variables.
:key max_epochs: maximum number of epochs the trainer should train the module for.
:key verbosity: set verbosity level
"""
for key, value in list(kwargs.items()):
if key in ("verbose", "ver", "v"):
self._verbosity = value
elif key in ("max_epochs"):
self._max_epochs = value
|
Set the specified member variables.
:key max_epochs: maximum number of epochs the trainer should train the module for.
:key verbosity: set verbosity level
|
setArgs
|
python
|
pybrain/pybrain
|
pybrain/tools/validation.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/validation.py
|
BSD-3-Clause
|
def validate(self):
""" The main method of this class. It runs the crossvalidation process
and returns the validation result (e.g. performance).
"""
dataset = self._dataset
trainer = self._trainer
n_folds = self._n_folds
l = dataset.getLength()
inp = dataset.getField("input")
tar = dataset.getField("target")
indim = dataset.indim
outdim = dataset.outdim
assert l > n_folds
perms = array_split(permutation(l), n_folds)
perf = 0.
for i in range(n_folds):
# determine train indices
train_perms_idxs = list(range(n_folds))
train_perms_idxs.pop(i)
temp_list = []
for train_perms_idx in train_perms_idxs:
temp_list.append(perms[ train_perms_idx ])
train_idxs = concatenate(temp_list)
# determine test indices
test_idxs = perms[i]
# train
#print("training iteration", i)
train_ds = SupervisedDataSet(indim, outdim)
train_ds.setField("input" , inp[train_idxs])
train_ds.setField("target" , tar[train_idxs])
trainer = copy.deepcopy(self._trainer)
trainer.setData(train_ds)
if not self._max_epochs:
trainer.train()
else:
trainer.trainEpochs(self._max_epochs)
# test
#print("testing iteration", i)
test_ds = SupervisedDataSet(indim, outdim)
test_ds.setField("input" , inp[test_idxs])
test_ds.setField("target" , tar[test_idxs])
# perf += self.getPerformance( trainer.module, dataset )
perf += self._calculatePerformance(trainer.module, test_ds)
perf /= n_folds
return perf
|
The main method of this class. It runs the crossvalidation process
and returns the validation result (e.g. performance).
|
validate
|
python
|
pybrain/pybrain
|
pybrain/tools/validation.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/validation.py
|
BSD-3-Clause
|
def testOnSequenceData(module, dataset):
""" Fetch targets and calculate the modules output on dataset.
Output and target are in one-of-many format. The class for each sequence is
determined by first summing the probabilities for each individual sample over
the sequence, and then finding its maximum."""
target = dataset.getField("target")
output = ModuleValidator.calculateModuleOutput(module, dataset)
# determine last indices of the sequences inside dataset
ends = SequenceHelper.getSequenceEnds(dataset)
##format = "%d"*len(ends)
summed_output = zeros(dataset.outdim)
# class_output and class_target will store class labels instead of
# one-of-many values
class_output = []
class_target = []
for j in range(len(output)):
# sum up the output values of one sequence
summed_output += output[j]
# print(j, output[j], " --> ", summed_output)
# if we reached the end of the sequence
if j in ends:
# convert summed_output and target to class labels
class_output.append(argmax(summed_output))
class_target.append(argmax(target[j]))
# reset the summed_output to zeros
summed_output = zeros(dataset.outdim)
##print(format % tuple(class_output))
##print(format % tuple(class_target))
class_output = array(class_output)
class_target = array(class_target)
# print(class_target)
# print(class_output)
return Validator.classificationPerformance(class_output, class_target)
|
Fetch targets and calculate the modules output on dataset.
Output and target are in one-of-many format. The class for each sequence is
determined by first summing the probabilities for each individual sample over
the sequence, and then finding its maximum.
|
testOnSequenceData
|
python
|
pybrain/pybrain
|
pybrain/tools/validation.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/validation.py
|
BSD-3-Clause
|
def __init__(self, filename, newfile):
""" :key newfile: is the file to be read or is it a new file? """
self.filename = filename
if not newfile:
self.dom = parse(filename)
if self.dom.firstChild.nodeName != 'PyBrain':
raise Exception('Not a correct PyBrain XML file')
else:
domimpl = getDOMImplementation()
self.dom = domimpl.createDocument(None, 'PyBrain', None)
self.root = self.dom.documentElement
|
:key newfile: is the file to be read or is it a new file?
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/tools/customxml/handling.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/customxml/handling.py
|
BSD-3-Clause
|
def readAttrDict(self, node, transform = None):
""" read a dictionnary of attributes
:key transform: optionally function transforming the attribute values on reading """
args = {}
for name, val in list(node.attributes.items()):
name = str(name)
if transform != None:
args[name] = transform(val, name)
else:
args[name] = val
return args
|
read a dictionnary of attributes
:key transform: optionally function transforming the attribute values on reading
|
readAttrDict
|
python
|
pybrain/pybrain
|
pybrain/tools/customxml/handling.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/customxml/handling.py
|
BSD-3-Clause
|
def writeAttrDict(self, node, adict, transform = None):
""" read a dictionnary of attributes
:key transform: optionally transform the attribute values on writing """
for name, val in list(adict.items()):
if val != None:
if transform != None:
node.setAttribute(name, transform(val, name))
else:
node.setAttribute(name, val)
|
read a dictionnary of attributes
:key transform: optionally transform the attribute values on writing
|
writeAttrDict
|
python
|
pybrain/pybrain
|
pybrain/tools/customxml/handling.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/customxml/handling.py
|
BSD-3-Clause
|
def newChild(self, node, name):
""" create a new child of node with the provided name. """
elem = self.dom.createElement(name)
node.appendChild(elem)
return elem
|
create a new child of node with the provided name.
|
newChild
|
python
|
pybrain/pybrain
|
pybrain/tools/customxml/handling.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/customxml/handling.py
|
BSD-3-Clause
|
def getChild(self, node, name):
""" get the child with the given name """
for n in node.childNodes:
if name and n.nodeName == name:
return n
|
get the child with the given name
|
getChild
|
python
|
pybrain/pybrain
|
pybrain/tools/customxml/handling.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/customxml/handling.py
|
BSD-3-Clause
|
def findNode(self, name, index = 0, root = None):
""" return the toplevel node with the provided name (if there are more, choose the
index corresponding one). """
if root == None:
root = self.root
for n in root.childNodes:
if n.nodeName == name:
if index == 0:
return n
index -= 1
return None
|
return the toplevel node with the provided name (if there are more, choose the
index corresponding one).
|
findNode
|
python
|
pybrain/pybrain
|
pybrain/tools/customxml/handling.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/customxml/handling.py
|
BSD-3-Clause
|
def findNamedNode(self, name, nameattr, root = None):
""" return the toplevel node with the provided name, and the fitting 'name' attribute. """
if root == None:
root = self.root
for n in root.childNodes:
if n.nodeName == name:
# modif JPQ
# if 'name' in n.attributes:
if n.attributes['name']:
# modif JPQ
# if n.attributes['name'] == nameattr:
if n.attributes['name'].value == nameattr:
return n
return None
|
return the toplevel node with the provided name, and the fitting 'name' attribute.
|
findNamedNode
|
python
|
pybrain/pybrain
|
pybrain/tools/customxml/handling.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/customxml/handling.py
|
BSD-3-Clause
|
def baseTransform(val):
""" back-conversion: modules are encoded by their name
and classes by the classname """
from pybrain.structure.modules.module import Module
from inspect import isclass
if isinstance(val, Module):
return val.name
elif isclass(val):
return val.__name__
else:
return str(val)
|
back-conversion: modules are encoded by their name
and classes by the classname
|
baseTransform
|
python
|
pybrain/pybrain
|
pybrain/tools/customxml/handling.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/customxml/handling.py
|
BSD-3-Clause
|
def readFrom(filename, name = None, index = 0):
""" append the network to an existing xml file
:key name: if this parameter is specified, read the network with this name
:key index: which network in the file shall be read (if there is more than one)
"""
r = NetworkReader(filename, newfile = False)
if name:
netroot = r.findNamedNode('Network', name)
else:
netroot = r.findNode('Network', index)
return r.readNetwork(netroot)
|
append the network to an existing xml file
:key name: if this parameter is specified, read the network with this name
:key index: which network in the file shall be read (if there is more than one)
|
readFrom
|
python
|
pybrain/pybrain
|
pybrain/tools/customxml/networkreader.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/customxml/networkreader.py
|
BSD-3-Clause
|
def appendToFile(net, filename):
""" append the network to an existing xml file """
w = NetworkWriter(filename, newfile = False)
netroot = w.newRootNode('Network')
w.writeNetwork(net, netroot)
w.save()
|
append the network to an existing xml file
|
appendToFile
|
python
|
pybrain/pybrain
|
pybrain/tools/customxml/networkwriter.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/customxml/networkwriter.py
|
BSD-3-Clause
|
def writeToFile(net, filename):
""" write the network as a new xml file """
w = NetworkWriter(filename, newfile = True)
netroot = w.newRootNode('Network')
w.writeNetwork(net, netroot)
w.save()
|
write the network as a new xml file
|
writeToFile
|
python
|
pybrain/pybrain
|
pybrain/tools/customxml/networkwriter.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/customxml/networkwriter.py
|
BSD-3-Clause
|
def writeNetwork(self, net, netroot):
""" write a Network into a new XML node """
netroot.setAttribute('name', net.name)
netroot.setAttribute('class', canonicClassString(net))
if net.argdict:
self.writeArgs(netroot, net.argdict)
# the modules
mods = self.newChild(netroot, 'Modules')
# first write the input modules (in order)
for im in net.inmodules:
self.writeModule(mods, im, True, im in net.outmodules)
# now the output modules (in order)
for om in net.outmodules:
if om not in net.inmodules:
self.writeModule(mods, om, False, True)
# now the rest
for m in net.modulesSorted:
if m not in net.inmodules and m not in net.outmodules:
self.writeModule(mods, m, False, False)
# the motherconnections
if len(net.motherconnections) > 0:
mothers = self.newChild(netroot, 'MotherConnections')
for m in net.motherconnections:
self.writeBuildable(mothers, m)
# the connections
conns = self.newChild(netroot, 'Connections')
for m in net.modulesSorted:
for c in net.connections[m]:
self.writeConnection(conns, c, False)
if hasattr(net, "recurrentConns"):
for c in net.recurrentConns:
self.writeConnection(conns, c, True)
|
write a Network into a new XML node
|
writeNetwork
|
python
|
pybrain/pybrain
|
pybrain/tools/customxml/networkwriter.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/customxml/networkwriter.py
|
BSD-3-Clause
|
def writeBuildable(self, rootnode, m):
""" store the class (with path) and name in a new child. """
mname = m.__class__.__name__
mnode = self.newChild(rootnode, mname)
mnode.setAttribute('name', m.name)
mnode.setAttribute('class', canonicClassString(m))
if m.argdict:
self.writeArgs(mnode, m.argdict)
if m.paramdim > 0 and not isinstance(m, SharedConnection):
self.writeParams(mnode, m.params)
return mnode
|
store the class (with path) and name in a new child.
|
writeBuildable
|
python
|
pybrain/pybrain
|
pybrain/tools/customxml/networkwriter.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/customxml/networkwriter.py
|
BSD-3-Clause
|
def makeMnistDataSets(path):
"""Return a pair consisting of two datasets, the first being the training
and the second being the test dataset."""
test = SupervisedDataSet(28 * 28, 10)
test_image_file = os.path.join(path, 't10k-images-idx3-ubyte')
test_label_file = os.path.join(path, 't10k-labels-idx1-ubyte')
test_images = images(test_image_file)
test_labels = (flaggedArrayByIndex(l, 10) for l in labels(test_label_file))
for image, label in zip(test_images, test_labels):
test.addSample(image, label)
train = SupervisedDataSet(28 * 28, 10)
train_image_file = os.path.join(path, 'train-images-idx3-ubyte')
train_label_file = os.path.join(path, 'train-labels-idx1-ubyte')
train_images = images(train_image_file)
train_labels = (flaggedArrayByIndex(l, 10) for l in labels(train_label_file))
for image, label in zip(train_images, train_labels):
train.addSample(image, label)
return train, test
|
Return a pair consisting of two datasets, the first being the training
and the second being the test dataset.
|
makeMnistDataSets
|
python
|
pybrain/pybrain
|
pybrain/tools/datasets/mnist.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/datasets/mnist.py
|
BSD-3-Clause
|
def plot_module_classification_sequence_performance(module, dataset, sequence_index, bounds=(0, 1)):
"""Plot all outputs and fill the value of the output of the correct category.
The grapth of a good classifier should be like all white, with all other
values very low. A graph with lot of black is a bad sign.
:param module: The module/network to plot.
:type module: pybrain.structure.modules.module.Module
:param dataset: Training dataset used as inputs and expected outputs.
:type dataset: SequenceClassificationDataSet
:param sequence_index: Sequence index to plot in the dataset.
:type sequence_index: int
:param bounds: Outputs lower and upper bound.
:type bounds: list
"""
outputs = []
valid_output = []
module.reset()
for sample in dataset.getSequenceIterator(sequence_index):
out = module.activate(sample[0])
outputs.append(out)
valid_output.append(out[sample[1].argmax()])
plt.fill_between(list(range(len(valid_output))), 1, valid_output, facecolor='k', alpha=0.8)
plt.plot(outputs, linewidth=4, alpha=0.7)
plt.yticks(bounds)
|
Plot all outputs and fill the value of the output of the correct category.
The grapth of a good classifier should be like all white, with all other
values very low. A graph with lot of black is a bad sign.
:param module: The module/network to plot.
:type module: pybrain.structure.modules.module.Module
:param dataset: Training dataset used as inputs and expected outputs.
:type dataset: SequenceClassificationDataSet
:param sequence_index: Sequence index to plot in the dataset.
:type sequence_index: int
:param bounds: Outputs lower and upper bound.
:type bounds: list
|
plot_module_classification_sequence_performance
|
python
|
pybrain/pybrain
|
pybrain/tools/plotting/classification.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/plotting/classification.py
|
BSD-3-Clause
|
def plot_module_classification_dataset_performance(module, dataset, cols=4, bounds=(0, 1)):
"""Do a plot_module_classification_sequence_performance() for all sequences in the dataset.
:param module: The module/network to plot.
:type module: pybrain.structure.modules.module.Module
:param dataset: Training dataset used as inputs and expected outputs.
:type dataset: SequenceClassificationDataSet
:param bounds: Outputs lower and upper bound.
:type bounds: list
"""
# Outputs and detected category error for each sequence.
for i in range(dataset.getNumSequences()):
plt.subplot(ceil(dataset.getNumSequences() / float(cols)), cols, i)
ClassificationDataSetPlot.plot_module_classification_sequence_performance(module, dataset, i, bounds)
|
Do a plot_module_classification_sequence_performance() for all sequences in the dataset.
:param module: The module/network to plot.
:type module: pybrain.structure.modules.module.Module
:param dataset: Training dataset used as inputs and expected outputs.
:type dataset: SequenceClassificationDataSet
:param bounds: Outputs lower and upper bound.
:type bounds: list
|
plot_module_classification_dataset_performance
|
python
|
pybrain/pybrain
|
pybrain/tools/plotting/classification.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/plotting/classification.py
|
BSD-3-Clause
|
def punchcard_module_classification_performance(module, dataset, s=800):
"""Punshcard-like clasification performances.__add__(
Actual dataset target vs. estimated target by the module.
The graph of a good classfier module should a have no red dots visible:
- Red Dots: Target (only visible if the black dot doesn't cover it).
- Green Dots: Estimated classes confidences (size = outputs means).
- Black Dots: Single winnter-takes-all estimated target.
:param module: An object that has at least reset() and activate() methods.
:param dataset: A classification dataset. It should, for any given sequence, have a constant target.
:type dataset: ClassificationDataSet
"""
# TODO: Could also show the variation for each dot
# (e.g., vertical errorbar of 2*stddev).
# TODO: Could keep together all sequences of a given class and somehow
# arrange them closer togther. Could then aggregate them and
# include horizontal errorbar.
def calculate_module_output_mean(module, inputs):
"""Returns the mean of the module's outputs for a given input list."""
outputs = np.zeros(module.outdim)
module.reset()
for inpt in inputs:
outputs += module.activate(inpt)
return outputs / len(inputs)
num_sequences = dataset.getNumSequences()
actual = []
expected = []
confidence_x = []
confidence_s = []
correct = 0
for seq_i in range(num_sequences):
seq = dataset.getSequence(seq_i)
outputs_mean = calculate_module_output_mean(module, seq[0])
actual.append(np.argmax(outputs_mean))
confidence_s.append(np.array(outputs_mean))
confidence_x.append(np.ones(module.outdim) * seq_i)
# FIXME: np.argmax(seq[1]) == dataset.getSequenceClass(seq_i) is bugged for split SequenceClassificationDataSet.
expected.append(np.argmax(seq[1]))
if actual[-1] == expected[-1]:
correct += 1
plt.title('{}% Correct Classification (red dots mean bad classification)'.format(correct * 100 / num_sequences))
plt.xlabel('Sequence')
plt.ylabel('Class')
plt.scatter(list(range(num_sequences)), expected, s=s, c='r', linewidths=0)
plt.scatter(list(range(num_sequences)), actual, s=s, c='k')
plt.scatter(confidence_x, list(range(module.outdim)) * num_sequences, s=s*np.array(confidence_s), c='g', linewidths=0, alpha=0.66)
plt.yticks(list(range(dataset.nClasses)), dataset.class_labels)
|
Punshcard-like clasification performances.__add__(
Actual dataset target vs. estimated target by the module.
The graph of a good classfier module should a have no red dots visible:
- Red Dots: Target (only visible if the black dot doesn't cover it).
- Green Dots: Estimated classes confidences (size = outputs means).
- Black Dots: Single winnter-takes-all estimated target.
:param module: An object that has at least reset() and activate() methods.
:param dataset: A classification dataset. It should, for any given sequence, have a constant target.
:type dataset: ClassificationDataSet
|
punchcard_module_classification_performance
|
python
|
pybrain/pybrain
|
pybrain/tools/plotting/classification.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/plotting/classification.py
|
BSD-3-Clause
|
def calculate_module_output_mean(module, inputs):
"""Returns the mean of the module's outputs for a given input list."""
outputs = np.zeros(module.outdim)
module.reset()
for inpt in inputs:
outputs += module.activate(inpt)
return outputs / len(inputs)
|
Returns the mean of the module's outputs for a given input list.
|
calculate_module_output_mean
|
python
|
pybrain/pybrain
|
pybrain/tools/plotting/classification.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/plotting/classification.py
|
BSD-3-Clause
|
def __init__(self, mat, cmap=None, pixelspervalue=20, minvalue=None, maxvalue=None):
""" Make a colormap image of a matrix
:key mat: the matrix to be used for the colormap.
"""
if minvalue == None:
minvalue = amin(mat)
if maxvalue == None:
maxvalue = amax(mat)
if not cmap:
cmap = cm.hot
figsize = (array(mat.shape) / 100. * pixelspervalue)[::-1]
self.fig = figure(figsize=figsize)
axes([0, 0, 1, 1]) # Make the plot occupy the whole canvas
axis('off')
self.fig.set_size_inches(figsize)
imshow(mat, cmap=cmap, clim=(minvalue, maxvalue), interpolation='nearest')
|
Make a colormap image of a matrix
:key mat: the matrix to be used for the colormap.
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/tools/plotting/colormaps.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/plotting/colormaps.py
|
BSD-3-Clause
|
def __init__(self, f, xmin= -1, xmax=1, ymin= -1, ymax=1, precision=50, newfig=True,
colorbar=False, cblabel=None):
""" :key precision: how many steps along every dimension """
if isinstance(f, FunctionEnvironment):
assert f.xdim == 2
self.f = lambda x, y: f(array([x, y]))
elif isclass(f) and issubclass(f, FunctionEnvironment):
tmp = f(2)
self.f = lambda x, y: tmp(array([x, y]))
else:
self.f = f
self.precision = precision
self.colorbar = colorbar
self.cblabel = cblabel
self.xs = r_[xmin:xmax:self.precision * 1j]
self.ys = r_[ymin:ymax:self.precision * 1j]
self.zs = self._generateValMap()
if newfig:
self.fig = figure()
|
:key precision: how many steps along every dimension
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/tools/plotting/fitnesslandscapes.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/plotting/fitnesslandscapes.py
|
BSD-3-Clause
|
def _generateValMap(self):
""" generate the function fitness values for the current grid of x and y """
vals = zeros((len(self.xs), len(self.ys)))
for i, x in enumerate(self.xs):
for j, y in enumerate(self.ys):
vals[j, i] = self.f(x, y)
return vals
|
generate the function fitness values for the current grid of x and y
|
_generateValMap
|
python
|
pybrain/pybrain
|
pybrain/tools/plotting/fitnesslandscapes.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/plotting/fitnesslandscapes.py
|
BSD-3-Clause
|
def plotAll(self, levels=50, popup=True):
""" :key levels: how many fitness levels should be drawn."""
tmp = contour(self.xs, self.ys, self.zs, levels)
if self.colorbar:
cb = colorbar(tmp)
if self.cblabel != None:
cb.set_label(self.cblabel)
if popup: show()
|
:key levels: how many fitness levels should be drawn.
|
plotAll
|
python
|
pybrain/pybrain
|
pybrain/tools/plotting/fitnesslandscapes.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/plotting/fitnesslandscapes.py
|
BSD-3-Clause
|
def addSamples(self, samples, rescale=True, color=''):
"""plot some sample points on the fitness landscape.
:key rescale: should the plotting ranges be adjusted? """
# split samples into x and y
sx = zeros(len(samples))
sy = zeros(len(samples))
for i, s in enumerate(samples):
sx[i] = s[0]
sy[i] = s[1]
if rescale:
self._rescale(min(sx), max(sx), min(sy), max(sy))
plot(sx, sy, color + '+')
|
plot some sample points on the fitness landscape.
:key rescale: should the plotting ranges be adjusted?
|
addSamples
|
python
|
pybrain/pybrain
|
pybrain/tools/plotting/fitnesslandscapes.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/plotting/fitnesslandscapes.py
|
BSD-3-Clause
|
def plotFitnessProgession(fitdict, batchsize=1, semilog=True,
targetcutoff=1e-10, minimize=True,
title=None, verbose=True,
varyplotsymbols=False,
averageOverEvaluations=True,
onlysuccessful=False,
useMedian=False,
resolution=1000):
""" Plot multiple fitness curves on a single figure, with the following customizations:
:arg fitdict: a dictionary mapping a name to a list of fitness-arrays
:key batchsize: the number of evaluations between two points in fitness-arrays
specific batch sizes can also be given given in fitdict
:key targetcutoff: this gives the cutoff point at the best fitness
:key averageOverEvaluations: averaging is done over fitnesses (for a given number of evaluations)
or over evaluations required to reach a certain fitness.
:key resolution: resolution when averaging over evaluations
:key onlysuccessful: consider only successful runs
:key title: specify a title.
:key varyplotsymbols: used different line types for each curve.
"""
def isSuccessful(l):
""" criterion for successful run """
if targetcutoff == None:
return True
elif minimize:
return min(l) <= targetcutoff
else:
return max(l) >= targetcutoff
def paddedClipped(l, maxLen):
assert len(l) <= maxLen
res = zeros(maxLen)
if targetcutoff == None:
res[:len(l)] += l
elif minimize:
res[:len(l)] += l.clip(min=targetcutoff, max=1e100)
else:
res[:len(l)] += l.clip(max=targetcutoff, min= -1e100)
return res
def relevantPart(l):
""" the part of the vector that's above the cutoff. """
if targetcutoff != None:
for i, val in enumerate(l):
if minimize and val <= targetcutoff:
return l[:i + 1]
elif not minimize and val >= targetcutoff:
return l[:i + 1]
return l
i = 0
for name, flist in sorted(fitdict.items()):
if isinstance(flist, tuple):
batchsize = flist[1]
flist = flist[0]
i += 1
nbRuns = len(flist)
print((name, nbRuns, 'runs',))
if targetcutoff != None:
if onlysuccessful:
# filter out unsuccessful runs
flist = list(filter(isSuccessful, flist))
print((',', len(flist), 'of which were successful.'))
else:
print()
# cut off irrelevant part
flist = list(map(relevantPart, flist))
if len(flist) == 0:
continue
if averageOverEvaluations:
worstPerf = max(list(map(max, flist)))
if semilog:
yPlot = list(reversed(power(10, ((array(list(range(resolution + 1))) / float(resolution)) *
(log10(worstPerf) - log10(targetcutoff)) + log10(targetcutoff)))))
else:
yPlot = list(reversed((array(list(range(resolution + 1))) / float(resolution)) *
(worstPerf - targetcutoff) + targetcutoff))
xPlot = avgFoundAfter(yPlot, flist, batchsize, useMedian=useMedian)
else:
longestRun = max(list(map(len, flist)))
xPlot = array(list(range(longestRun))) * batchsize
summed = zeros(longestRun)
for l in flist:
summed += paddedClipped(l, longestRun)
yPlot = paddedClipped(summed / len(flist), longestRun)
if semilog:
semilogy()
if varyplotsymbols:
psymbol = plotsymbols[i % len(plotsymbols)]
else:
psymbol = '-'
plot(xPlot, yPlot, psymbol, label=name)
ylabel('-fitness')
xlabel('number of evaluations')
pylab.title(title)
legend()
|
Plot multiple fitness curves on a single figure, with the following customizations:
:arg fitdict: a dictionary mapping a name to a list of fitness-arrays
:key batchsize: the number of evaluations between two points in fitness-arrays
specific batch sizes can also be given given in fitdict
:key targetcutoff: this gives the cutoff point at the best fitness
:key averageOverEvaluations: averaging is done over fitnesses (for a given number of evaluations)
or over evaluations required to reach a certain fitness.
:key resolution: resolution when averaging over evaluations
:key onlysuccessful: consider only successful runs
:key title: specify a title.
:key varyplotsymbols: used different line types for each curve.
|
plotFitnessProgession
|
python
|
pybrain/pybrain
|
pybrain/tools/plotting/fitnessprogression.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/plotting/fitnessprogression.py
|
BSD-3-Clause
|
def relevantPart(l):
""" the part of the vector that's above the cutoff. """
if targetcutoff != None:
for i, val in enumerate(l):
if minimize and val <= targetcutoff:
return l[:i + 1]
elif not minimize and val >= targetcutoff:
return l[:i + 1]
return l
|
the part of the vector that's above the cutoff.
|
relevantPart
|
python
|
pybrain/pybrain
|
pybrain/tools/plotting/fitnessprogression.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/plotting/fitnessprogression.py
|
BSD-3-Clause
|
def __init__(self, maxLines=1, autoscale=0.0, **kwargs):
"""
:key maxLines: Number of Plots to draw and so max ID.
:key autoscale: If set to a factor > 1, axes are automatically expanded whenever out-range data points are added
:var indexList: The x-component of the data points
:var DataList: The y-component of the data points"""
self.indexList = []
self.dataList = []
self.Lines = []
self.autoscale = autoscale
clf()
self.Axes = axes(**kwargs)
self.nbLines = 0
self.defaultLineStyle = {}
self._checkMaxId(maxLines - 1)
self.replot = True # is the plot still current?
self.currentID = None
self.offset = 0 # external references to IDs are modified by this
|
:key maxLines: Number of Plots to draw and so max ID.
:key autoscale: If set to a factor > 1, axes are automatically expanded whenever out-range data points are added
:var indexList: The x-component of the data points
:var DataList: The y-component of the data points
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/tools/plotting/multiline.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/plotting/multiline.py
|
BSD-3-Clause
|
def _checkMaxId(self, id):
""" Appends additional lines as necessary
:key id: Lines up to this id are added automatically """
if id >= self.nbLines:
for i in range(self.nbLines, id + 1):
# create a new line with corresponding x/y data, and attach it to the plot
l = Line2D([], [], color=self.graphColor[i % 9], **self.defaultLineStyle)
self.Lines.append(l)
self.Axes.add_line(l)
self.indexList.append([])
self.dataList.append([])
self.nbLines = id + 1
|
Appends additional lines as necessary
:key id: Lines up to this id are added automatically
|
_checkMaxId
|
python
|
pybrain/pybrain
|
pybrain/tools/plotting/multiline.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/plotting/multiline.py
|
BSD-3-Clause
|
def addData(self, id0, x, y):
""" The given data point or points is appended to the given line.
:key id0: The plot ID (counted from 0) the data point(s) belong to.
:key x: The x-component of the data point(s)
:key y: The y-component of the data point(s)"""
id = id0 + self.offset
if not (isinstance(x, list) | isinstance(x, tuple)):
self._checkMaxId(id)
self.indexList[id].append(x)
self.dataList[id].append(y)
self.currentID = id
else:
for i, xi in enumerate(x):
self.addData(id0, xi, y[i])
self.replot = True
|
The given data point or points is appended to the given line.
:key id0: The plot ID (counted from 0) the data point(s) belong to.
:key x: The x-component of the data point(s)
:key y: The y-component of the data point(s)
|
addData
|
python
|
pybrain/pybrain
|
pybrain/tools/plotting/multiline.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/plotting/multiline.py
|
BSD-3-Clause
|
def setData(self, id0, x, y):
""" Data series id0 is replaced by the given lists
:key id0: The plot ID (counted from 0) the data point(s) belong to.
:key x: The x-component of the data points
:key y: The y-component of the data points"""
id = id0 + self.offset
self._checkMaxId(id)
self.indexList[id] = x
self.dataList[id] = y
self.replot = True
|
Data series id0 is replaced by the given lists
:key id0: The plot ID (counted from 0) the data point(s) belong to.
:key x: The x-component of the data points
:key y: The y-component of the data points
|
setData
|
python
|
pybrain/pybrain
|
pybrain/tools/plotting/multiline.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/plotting/multiline.py
|
BSD-3-Clause
|
def saveData(self, filename):
""" Writes the data series for all points to a file
:key filename: The name of the output file """
file = open(filename, "w")
for i in range(self.nbLines):
datLen = len(self.indexList[i])
for j in range(datLen):
file.write(repr(self.indexList[i][j]) + "\n")
file.write(repr(self.dataList[i][j]) + "\n")
file.close()
|
Writes the data series for all points to a file
:key filename: The name of the output file
|
saveData
|
python
|
pybrain/pybrain
|
pybrain/tools/plotting/multiline.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/plotting/multiline.py
|
BSD-3-Clause
|
def setLineStyle(self, id=None, **kwargs):
""" hand parameters to the specified line(s), and set them as default for new lines
:key id: The line or lines (list!) to be modified - defaults to last one added """
if id is None:
id = self.currentID
if isinstance(id, list) | isinstance(id, tuple):
# apply to specified list of lines
self._checkMaxId(max(id) + self.offset)
for i in id:
self.Lines[i + self.offset].set(**kwargs)
elif id >= 0:
# apply to selected line
self._checkMaxId(id + self.offset)
self.Lines[id + self.offset].set(**kwargs)
else:
# apply to all lines
for l in self.Lines:
l.set(**kwargs)
# set as new default linestyle
if 'color' in kwargs:
kwargs.popitem('color')
self.defaultLineStyle = kwargs
|
hand parameters to the specified line(s), and set them as default for new lines
:key id: The line or lines (list!) to be modified - defaults to last one added
|
setLineStyle
|
python
|
pybrain/pybrain
|
pybrain/tools/plotting/multiline.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/plotting/multiline.py
|
BSD-3-Clause
|
def update(self):
""" Updates the current plot, if necessary """
if not self.replot:
return
xr = list(self.Axes.get_xlim())
yr = list(self.Axes.get_ylim())
for i in range(self.nbLines):
self.Lines[i].set_data(self.indexList[i], self.dataList[i])
if self.autoscale > 1.0:
if self.indexList[i][0] < xr[0]:
xr[0] = self.indexList[i][0]
ymn = min(self.dataList[i])
if ymn < yr[0]:
yr[0] = ymn
while self.indexList[i][-1] > xr[1]:
xr[1] = (xr[1] - xr[0]) * self.autoscale + xr[0]
ymx = max(self.dataList[i])
while ymx > yr[1]:
yr[1] = (yr[1] - yr[0]) * self.autoscale + yr[0]
if self.autoscale > 1.0:
self.Axes.set_xlim(tuple(xr))
self.Axes.set_ylim(tuple(yr))
#self.Axes.draw()
#pylab.show()
draw_if_interactive()
self.replot = False
|
Updates the current plot, if necessary
|
update
|
python
|
pybrain/pybrain
|
pybrain/tools/plotting/multiline.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/plotting/multiline.py
|
BSD-3-Clause
|
def show(self, xLabel='', yLabel='', Title='', popup=False, imgfile=None):
""" Plots the data internally and saves an image of it to the plotting directory.
:key title: The title of the plot.
:key xLable: The label for the x-axis
:key yLable: The label for the y-axis
:key popup: also produce a popup window with the image?"""
clf()
for i in range(self.nbLines):
plot(self.indexList[i], self.dataList[i])
xlabel(xLabel)
ylabel(yLabel)
title(Title)
if imgfile == None:
imgfile = imp.find_module('pybrain')[1] + "/tools/plotting/plot.png"
savefig(imgfile)
if popup:
ioff()
show()
|
Plots the data internally and saves an image of it to the plotting directory.
:key title: The title of the plot.
:key xLable: The label for the x-axis
:key yLable: The label for the y-axis
:key popup: also produce a popup window with the image?
|
show
|
python
|
pybrain/pybrain
|
pybrain/tools/plotting/multiline.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/plotting/multiline.py
|
BSD-3-Clause
|
def plotVariations(datalist, titles, genFun, varyperplot=None, prePlotFun=None, postPlotFun=None,
_differentiator=0.0, **optionlists):
""" A tool for quickly generating a lot of variations of a plot.
Generates a number of figures from a list of data (and titles).
For each data item it produces one or more figures, each with one or more plots, while varying
all options in optionlists (trying all combinations).
:arg genFun: is the function that generates the curve to be plotted, for each set of options.
:key varyperplot: determines which options are varied within a figure.
:key prePlotFun: is called before the plots of a figure
:key postPlotFun: is called after the plots of a figure (e.g. for realigning axes).
"""
odl = subDict(optionlists, varyperplot, False)
fdl = subDict(optionlists, varyperplot, True)
# title contains file and non-varying parameters
titadd1 = ''.join([k+'='+str(vs[0])[:min(5, len(str(vs[0])))]+' '
for k,vs in list(odl.items())
if len(vs) == 1])
for x, tit in zip(datalist, titles):
for figdict in sorted(dictCombinations(fdl.copy())):
pylab.figure()
# it also contains the parameters that don't vary per figure
titadd2 = ''.join([k+'='+str(v)[:min(5, len(str(v)))]+' '
for k,v in list(figdict.items())])
pylab.title(tit+'\n'+titadd1+titadd2)
# code initializing the plot
if prePlotFun is not None:
prePlotFun(x)
for i, odict in enumerate(sorted(dictCombinations(odl.copy()))):
# concise labels
lab = ''.join([k[:3]+'='+str(v)[:min(5, len(str(v)))]+'-'
for k,v in list(odict.items())
if len(odl[k]) > 1])
if len(lab) > 0:
lab = lab[:-1] # remove trailing '-'
else:
lab = None
generated = genFun(x, **dict(odict, **figdict))
if generated is not None:
if len(generated) == 2:
xs, ys = generated
else:
ys = generated
xs = list(range(len(ys)))
# the differentiator can slightly move the curves to be able to tell them apart if they overlap
if _differentiator != 0.0:
ys = generated+_differentiator*i
pylab.plot(xs, ys, label=lab)
if postPlotFun is not None:
postPlotFun(tit)
# a legend is only necessary, if there are multiple plots
if lab is not None:
pylab.legend()
|
A tool for quickly generating a lot of variations of a plot.
Generates a number of figures from a list of data (and titles).
For each data item it produces one or more figures, each with one or more plots, while varying
all options in optionlists (trying all combinations).
:arg genFun: is the function that generates the curve to be plotted, for each set of options.
:key varyperplot: determines which options are varied within a figure.
:key prePlotFun: is called before the plots of a figure
:key postPlotFun: is called after the plots of a figure (e.g. for realigning axes).
|
plotVariations
|
python
|
pybrain/pybrain
|
pybrain/tools/plotting/quickvariations.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/plotting/quickvariations.py
|
BSD-3-Clause
|
def iterRbms(self):
"""Yield every two layers as an rbm."""
layers = [i for i in self.net.modulesSorted
if isinstance(i, NeuronLayer) and not isinstance(i, BiasUnit)]
# There will be a single bias.
bias = [i for i in self.net.modulesSorted if isinstance(i, BiasUnit)][0]
layercons = (self.net.connections[i][0] for i in layers)
# The biascons will not be sorted; we have to sort them to zip nicely
# with the corresponding layers.
biascons = self.net.connections[bias]
biascons.sort(key=lambda c: layers.index(c.outmod))
modules = list(zip(layers, layers[1:], layercons, biascons))
for visible, hidden, layercon, biascon in modules:
rbm = Rbm.fromModules(visible, hidden, bias,
layercon, biascon)
yield rbm
|
Yield every two layers as an rbm.
|
iterRbms
|
python
|
pybrain/pybrain
|
pybrain/unsupervised/trainers/deepbelief.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/unsupervised/trainers/deepbelief.py
|
BSD-3-Clause
|
def trainOnDataset(self, dataset):
"""This function trains the RBM using the same algorithm and
implementation presented in:
http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html"""
cfg = self.cfg
for rows in dataset.randomBatches(self.datasetField, cfg.batchSize):
olduw, olduhb, olduvb = \
zeros((self.rbm.visibleDim, self.rbm.hiddenDim)), \
zeros(self.rbm.hiddenDim), zeros(self.rbm.visibleDim)
for t in range(cfg.maxIter):
#print("*** Iteration %2d **************************************" % t)
params = self.rbm.params
params = params.reshape((self.rbm.visibleDim, self.rbm.hiddenDim))
biasParams = self.rbm.biasParams
mm = cfg.iniMm if t < cfg.mmSwitchIter else cfg.finMm
w, hb, vb = self.calcUpdateByRows(rows)
#print("Delta: ")
#print("Weight: ",)
#print(w)
#print("Visible bias: ",)
#print(vb)
#print("Hidden bias: ",)
#print(hb)
#print("")
olduw = uw = olduw * mm + \
cfg.rWeights * (w - cfg.weightCost * params)
olduhb = uhb = olduhb * mm + cfg.rHidBias * hb
olduvb = uvb = olduvb * mm + cfg.rVisBias * vb
#print("Delta after momentum: ")
#print("Weight: ",)
#print(uw)
#print("Visible bias: ",)
#print(uvb)
#print("Hidden bias: ",)
#print(uhb)
#print("")
# update the parameters of the original rbm
params += uw
biasParams += uhb
# Create a new inverted rbm with correct parameters
invBiasParams = self.invRbm.biasParams
invBiasParams += uvb
self.invRbm = self.rbm.invert()
self.invRbm.biasParams[:] = invBiasParams
#print("Updated ")
#print("Weight: ",)
#print(self.rbm.connections[self.rbm['visible']][0].params.reshape( \)
# (self.rbm.indim, self.rbm.outdim))
#print("Visible bias: ",)
#print(self.invRbm.connections[self.invRbm['bias']][0].params)
#print("Hidden bias: ",)
#print(self.rbm.connections[self.rbm['bias']][0].params)
#print("")
|
This function trains the RBM using the same algorithm and
implementation presented in:
http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html
|
trainOnDataset
|
python
|
pybrain/pybrain
|
pybrain/unsupervised/trainers/rbm.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/unsupervised/trainers/rbm.py
|
BSD-3-Clause
|
def calcUpdateByRow(self, row):
"""This function trains the RBM using only one data row.
Return a 3-tuple consiting of updates for (weightmatrix,
hidden bias weights, visible bias weights)."""
# a) positive phase
poshp = self.rbm.activate(row) # compute the posterior probability
pos = outer(row, poshp) # fraction from the positive phase
poshb = poshp
posvb = row
# b) the sampling & reconstruction
sampled = self.sampler(poshp)
recon = self.invRbm.activate(sampled) # the re-construction of data
# c) negative phase
neghp = self.rbm.activate(recon)
neg = outer(recon, neghp)
neghb = neghp
negvb = recon
# compute the raw delta
# !!! note that this delta is only the 'theoretical' delta
return self.updater(pos, neg, poshb, neghb, posvb, negvb)
|
This function trains the RBM using only one data row.
Return a 3-tuple consiting of updates for (weightmatrix,
hidden bias weights, visible bias weights).
|
calcUpdateByRow
|
python
|
pybrain/pybrain
|
pybrain/unsupervised/trainers/rbm.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/unsupervised/trainers/rbm.py
|
BSD-3-Clause
|
def calcUpdateByRows(self, rows):
"""Return a 3-tuple constisting of update for (weightmatrix,
hidden bias weights, visible bias weights)."""
delta_w, delta_hb, delta_vb = \
zeros((self.rbm.visibleDim, self.rbm.hiddenDim)), \
zeros(self.rbm.hiddenDim), zeros(self.rbm.visibleDim)
for row in rows:
dw, dhb, dvb = self.calcUpdateByRow(row)
delta_w += dw
delta_hb += dhb
delta_vb += dvb
delta_w /= len(rows)
delta_hb /= len(rows)
delta_vb /= len(rows)
# !!! note that this delta is only the 'theoretical' delta
return delta_w, delta_hb, delta_vb
|
Return a 3-tuple constisting of update for (weightmatrix,
hidden bias weights, visible bias weights).
|
calcUpdateByRows
|
python
|
pybrain/pybrain
|
pybrain/unsupervised/trainers/rbm.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/unsupervised/trainers/rbm.py
|
BSD-3-Clause
|
def __init__(self, layer, num_layers, encoder_type=None):
'''
@param layer: one encoder layer, i.e., self-attention layer
@param num_layers: number of self-attention layers
@param encoder_type: type differentiation
'''
super(Encoder, self).__init__()
self.encoder_type = encoder_type
self.layers = make_clones(layer, num_layers)
if 'AllRank' == encoder_type:
self.norm = LayerNorm(layer.hid_dim)
|
@param layer: one encoder layer, i.e., self-attention layer
@param num_layers: number of self-attention layers
@param encoder_type: type differentiation
|
__init__
|
python
|
wildltr/ptranking
|
ptranking/base/list_ranker.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/base/list_ranker.py
|
MIT
|
def forward(self, x):
'''
Forward pass through the encoder block.
@param x: input with a shape of [batch_size, ranking_size, num_features]
@return:
'''
for layer in self.layers:
x = layer(x)
if 'AllRank' == self.encoder_type:
return self.norm(x)
elif self.encoder_type in ['AttnDIN', 'DASALC']:
return x
else:
raise NotImplementedError
|
Forward pass through the encoder block.
@param x: input with a shape of [batch_size, ranking_size, num_features]
@return:
|
forward
|
python
|
wildltr/ptranking
|
ptranking/base/list_ranker.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/base/list_ranker.py
|
MIT
|
def __init__(self, hid_dim, encoder_type=None, dropout=None):
'''
@param hid_dim: number of input/output features
@param dropout: dropout probability
'''
super(SublayerConnection, self).__init__()
self.encoder_type = encoder_type
self.norm = LayerNorm(hid_dim=hid_dim)
if 'AllRank' == encoder_type:
self.dropout = nn.Dropout(dropout)
|
@param hid_dim: number of input/output features
@param dropout: dropout probability
|
__init__
|
python
|
wildltr/ptranking
|
ptranking/base/list_ranker.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/base/list_ranker.py
|
MIT
|
def forward(self, x, sublayer):
'''
Foward pass through the sublayer connection module, applying the residual connection to any sublayer with the same size.
@param x: input with a shape of [batch_size, ranking_size, num_features]
@param sublayer: the layer through which to pass the input prior to applying the sum
@return: output with a shape of [batch_size, ranking_size, num_features]
'''
if 'AllRank' == self.encoder_type:
return x + self.dropout(sublayer(self.norm(x)))
elif 'DASALC' == self.encoder_type:
# residual is not clearly mentioned, which is also not specified in Figure 1 of the paper
return self.norm(sublayer(x))
elif 'AttnDIN' == self.encoder_type:
return self.norm(x + sublayer(x))
else:
raise NotImplementedError
|
Foward pass through the sublayer connection module, applying the residual connection to any sublayer with the same size.
@param x: input with a shape of [batch_size, ranking_size, num_features]
@param sublayer: the layer through which to pass the input prior to applying the sum
@return: output with a shape of [batch_size, ranking_size, num_features]
|
forward
|
python
|
wildltr/ptranking
|
ptranking/base/list_ranker.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/base/list_ranker.py
|
MIT
|
def __init__(self, hid_dim, eps=1e-6):
'''
@param hid_dim: shape of normalised features
@param eps: epsilon for standard deviation
'''
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(hid_dim))
self.b_2 = nn.Parameter(torch.zeros(hid_dim))
self.eps = eps
|
@param hid_dim: shape of normalised features
@param eps: epsilon for standard deviation
|
__init__
|
python
|
wildltr/ptranking
|
ptranking/base/list_ranker.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/base/list_ranker.py
|
MIT
|
def forward(self, x):
'''
Forward pass through the layer normalization
@param x: input shape, i.e., [batch_size, ranking_size, num_features]
@return: normalized input with a shape of [batch_size, ranking_size, num_features]
'''
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
|
Forward pass through the layer normalization
@param x: input shape, i.e., [batch_size, ranking_size, num_features]
@return: normalized input with a shape of [batch_size, ranking_size, num_features]
|
forward
|
python
|
wildltr/ptranking
|
ptranking/base/list_ranker.py
|
https://github.com/wildltr/ptranking/blob/master/ptranking/base/list_ranker.py
|
MIT
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.