code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def washout(self, sequence): """ Force the network to process the sequence instead of the backprojection values. Used for adjusting the RNN's state. Returns the outputs of the RNN that are needed for linear regression.""" assert len(sequence) != 0 assert self.outdim == len(sequence[0]) raw_outputs = [] for val in sequence: backprojection = self._getLastOutput() backprojection *= self.backprojectionFactor self._activateNetwork(backprojection) raw_out = self._getRawOutput() raw_outputs.append(raw_out) self._setLastOutput(val) return array(raw_outputs)
Force the network to process the sequence instead of the backprojection values. Used for adjusting the RNN's state. Returns the outputs of the RNN that are needed for linear regression.
washout
python
pybrain/pybrain
pybrain/structure/modules/evolinonetwork.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/evolinonetwork.py
BSD-3-Clause
def _activateNetwork(self, input): """ Run the activate method of the underlying network.""" assert len(input) == self._network.indim output = array(self._network.activate(input)) self.offset = self._network.offset return output
Run the activate method of the underlying network.
_activateNetwork
python
pybrain/pybrain
pybrain/structure/modules/evolinonetwork.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/evolinonetwork.py
BSD-3-Clause
def extrapolate(self, sequence, length): """ Extrapolate 'sequence' for 'length' steps and return the extrapolated sequence as array. Extrapolating is realized by reseting the network, then washing it out with the supplied sequence, and then generating a sequence.""" self.reset() self.washout(sequence) return self.generate(length)
Extrapolate 'sequence' for 'length' steps and return the extrapolated sequence as array. Extrapolating is realized by reseting the network, then washing it out with the supplied sequence, and then generating a sequence.
extrapolate
python
pybrain/pybrain
pybrain/structure/modules/evolinonetwork.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/evolinonetwork.py
BSD-3-Clause
def generate(self, length): """ Generate a sequence of specified length. Use .reset() and .washout() before.""" generated_sequence = [] #empty(length) for _ in range(length): backprojection = self._getLastOutput() backprojection *= self.backprojectionFactor out = self._activateNetwork(backprojection) generated_sequence.append(out) return array(generated_sequence)
Generate a sequence of specified length. Use .reset() and .washout() before.
generate
python
pybrain/pybrain
pybrain/structure/modules/evolinonetwork.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/evolinonetwork.py
BSD-3-Clause
def _getLastOutput(self): """Return the current output of the linear output layer.""" if self.offset == 0: return zeros(self.outdim) else: return self._out_layer.outputbuffer[self.offset - 1]
Return the current output of the linear output layer.
_getLastOutput
python
pybrain/pybrain
pybrain/structure/modules/evolinonetwork.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/evolinonetwork.py
BSD-3-Clause
def _validateGenomeLayer(self, layer): """Validate the type and state of a layer.""" assert isinstance(layer, LSTMLayer) assert not layer.peepholes
Validate the type and state of a layer.
_validateGenomeLayer
python
pybrain/pybrain
pybrain/structure/modules/evolinonetwork.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/evolinonetwork.py
BSD-3-Clause
def _getGenomeOfLayer(self, layer): """Return the genome of a single layer.""" self._validateGenomeLayer(layer) connections = self._getInputConnectionsOfLayer(layer) layer_weights = [] # iterate cells of layer for cell_idx in range(layer.outdim): # todo: the evolino paper uses a different order of weights for the genotype of a lstm cell cell_weights = [] # iterate weight types (ingate, forgetgate, cell and outgate) for t in range(4): # iterate connections for c in connections: # iterate sources of connection for i in range(c.indim): idx = i + cell_idx * c.indim + t * layer.outdim * c.indim cell_weights.append(c.params[idx]) layer_weights.append(cell_weights) return layer_weights
Return the genome of a single layer.
_getGenomeOfLayer
python
pybrain/pybrain
pybrain/structure/modules/evolinonetwork.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/evolinonetwork.py
BSD-3-Clause
def _setGenomeOfLayer(self, layer, weights): """Set the genome of a single layer.""" self._validateGenomeLayer(layer) connections = self._getInputConnectionsOfLayer(layer) # iterate cells of layer for cell_idx in range(layer.outdim): # todo: the evolino paper uses a different order of weights for the genotype of a lstm cell cell_weights = weights[cell_idx] # iterate weight types (ingate, forgetgate, cell and outgate) for t in range(4): # iterate connections for c in connections: # iterate sources of connection for i in range(c.indim): idx = i + cell_idx * c.indim + t * layer.outdim * c.indim c.params[idx] = cell_weights.pop(0)
Set the genome of a single layer.
_setGenomeOfLayer
python
pybrain/pybrain
pybrain/structure/modules/evolinonetwork.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/evolinonetwork.py
BSD-3-Clause
def setOutputWeightMatrix(self, W): """Set the weight matrix of the linear output layer.""" c = self._hid_to_out_connection c.params[:] = W.flatten()
Set the weight matrix of the linear output layer.
setOutputWeightMatrix
python
pybrain/pybrain
pybrain/structure/modules/evolinonetwork.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/evolinonetwork.py
BSD-3-Clause
def getOutputWeightMatrix(self): """Return the weight matrix of the linear output layer.""" c = self._hid_to_out_connection p = c.params return reshape(p, (c.outdim, c.indim))
Return the weight matrix of the linear output layer.
getOutputWeightMatrix
python
pybrain/pybrain
pybrain/structure/modules/evolinonetwork.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/evolinonetwork.py
BSD-3-Clause
def _getInputConnectionsOfLayer(self, layer): """Return a list of all input connections for the layer.""" connections = [] all_cons = list(self._network.recurrentConns) all_cons += sum(list(self._network.connections.values()), []) for c in all_cons: if c.outmod is layer: if not isinstance(c, FullConnection): raise NotImplementedError( "Only FullConnections are supported") connections.append(c) return connections
Return a list of all input connections for the layer.
_getInputConnectionsOfLayer
python
pybrain/pybrain
pybrain/structure/modules/evolinonetwork.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/evolinonetwork.py
BSD-3-Clause
def setSigma(self, sigma): """Wrapper method to set the sigmas (the parameters of the module) to a certain value. """ assert len(sigma) == self.indim self._params *= 0 self._params += sigma
Wrapper method to set the sigmas (the parameters of the module) to a certain value.
setSigma
python
pybrain/pybrain
pybrain/structure/modules/gaussianlayer.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/gaussianlayer.py
BSD-3-Clause
def _forwardImplementation(self, inbuf, outbuf): """ assigns one of the neurons to the input given in inbuf and writes the neuron's coordinates to outbuf. """ # calculate the winner neuron with lowest error (square difference) self.difference = self.neurons - tile(inbuf, (self.nNeurons, self.nNeurons, 1)) error = sum(self.difference ** 2, 2) self.winner = array(minimum_position(error)) if not self.outputFullMap: outbuf[:] = self.winner
assigns one of the neurons to the input given in inbuf and writes the neuron's coordinates to outbuf.
_forwardImplementation
python
pybrain/pybrain
pybrain/structure/modules/kohonen.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/kohonen.py
BSD-3-Clause
def _backwardImplementation(self, outerr, inerr, outbuf, inbuf): """ trains the kohonen map in unsupervised manner, moving the closest neuron and its neighbours closer to the input pattern. """ # calculate neighbourhood and limit to edge of matrix n = floor(self.neighbours) self.neighbours *= self.neighbourdecay tl = (self.winner - n) br = (self.winner + n + 1) tl[tl < 0] = 0 br[br > self.nNeurons + 1] = self.nNeurons + 1 # calculate distance matrix tempm = 1 - sum(abs(self.distmatrix - self.winner.reshape(1, 1, 2)), 2) / self.nNeurons tempm[tempm < 0] = 0 distm = zeros((self.nNeurons, self.nNeurons, self.nInput)) for i in range(self.nInput): distm[:, :, i] = tempm distm[:, :, i] = tempm self.neurons[tl[0]:br[0], tl[1]:br[1]] -= self.learningrate * self.difference[tl[0]:br[0], tl[1]:br[1]] * distm[tl[0]:br[0], tl[1]:br[1]]
trains the kohonen map in unsupervised manner, moving the closest neuron and its neighbours closer to the input pattern.
_backwardImplementation
python
pybrain/pybrain
pybrain/structure/modules/kohonen.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/kohonen.py
BSD-3-Clause
def __init__(self, dim, peepholes = False, name = None): """ :arg dim: number of cells :key peepholes: enable peephole connections (from state to gates)? """ self.setArgs(dim = dim, peepholes = peepholes) # Internal buffers, created dynamically: self.bufferlist = [ ('ingate', dim), ('outgate', dim), ('forgetgate', dim), ('ingatex', dim), ('outgatex', dim), ('forgetgatex', dim), ('state', dim), ('ingateError', dim), ('outgateError', dim), ('forgetgateError', dim), ('stateError', dim), ] Module.__init__(self, 4*dim, dim, name) if self.peepholes: ParameterContainer.__init__(self, dim*3) self._setParameters(self.params) self._setDerivatives(self.derivs)
:arg dim: number of cells :key peepholes: enable peephole connections (from state to gates)?
__init__
python
pybrain/pybrain
pybrain/structure/modules/lstm.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/lstm.py
BSD-3-Clause
def meatSlice(self): """Return a moduleslice that wraps the meat part of the layer.""" return ModuleSlice(self, inSliceTo=self.dim * (3 + self.dimensions), outSliceTo=self.dim)
Return a moduleslice that wraps the meat part of the layer.
meatSlice
python
pybrain/pybrain
pybrain/structure/modules/mdlstm.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/mdlstm.py
BSD-3-Clause
def stateSlice(self): """Return a moduleslice that wraps the state transfer part of the layer. """ return ModuleSlice(self, inSliceFrom=self.dim * (3 + self.dimensions), outSliceFrom=self.dim)
Return a moduleslice that wraps the state transfer part of the layer.
stateSlice
python
pybrain/pybrain
pybrain/structure/modules/mdlstm.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/mdlstm.py
BSD-3-Clause
def __init__(self, timedim, shape, hiddendim, outsize, blockshape=None, name=None): """Initialize an MdrnnLayer. The dimensionality of the sequence - for example 2 for a picture or 3 for a video - is given by `timedim`, while the sidelengths along each dimension are given by the tuple `shape`. The layer will have `hiddendim` hidden units per swiping direction. The number of swiping directions is given by 2**timedim, which corresponds to one swipe from each corner to its opposing corner and back. To indicate how many outputs per timesteps are used, you have to specify `outsize`. In order to treat blocks of the input and not single voxels, you can also specify `blockshape`. For example the layer will then feed (2, 2) chunks into the network at each timestep which correspond to the (2, 2) rectangles that the input can be split into. """ self.timedim = timedim self.shape = shape blockshape = tuple([1] * timedim) if blockshape is None else blockshape self.blockshape = shape self.hiddendim = hiddendim self.outsize = outsize self.indim = reduce(operator.mul, shape, 1) self.blocksize = reduce(operator.mul, blockshape, 1) self.sequenceLength = self.indim // self.blocksize self.outdim = self.sequenceLength * self.outsize self.bufferlist = [('cellStates', self.sequenceLength * self.hiddendim)] Module.__init__(self, self.indim, self.outdim, name=name) # Amount of parameters that are required for the input to the hidden self.num_in_params = self.blocksize * self.hiddendim * (3 + self.timedim) # Amount of parameters that are needed for the recurrent connections. # There is one of the parameter for every time dimension. self.num_rec_params = outsize * hiddendim * (3 + self.timedim) # Amount of parameters that are needed for the output. self.num_out_params = outsize * hiddendim # Amount of parameters that are needed from the bias to the hidden and # the output self.num_bias_params = (3 + self.timedim) * self.hiddendim + self.outsize # Total list of parameters. self.num_params = sum((self.num_in_params, self.timedim * self.num_rec_params, self.num_out_params, self.num_bias_params)) ParameterContainer.__init__(self, self.num_params) # Some layers for internal use. self.hiddenlayer = MDLSTMLayer(self.hiddendim, self.timedim) # Every point in the sequence has timedim predecessors. self.predlayers = [LinearLayer(self.outsize) for _ in range(timedim)] # We need a single layer to hold the input. We will swipe a connection # over the corrects part of it, in order to feed the correct input in. self.inlayer = LinearLayer(self.indim) # Make some layers the same to save memory. self.inlayer.inputbuffer = self.inlayer.outputbuffer = self.inputbuffer # In order to allocate not too much memory, we just set the size of the # layer to 1 and correct it afterwards. self.outlayer = LinearLayer(self.outdim) self.outlayer.inputbuffer = self.outlayer.outputbuffer = self.outputbuffer self.bias = BiasUnit()
Initialize an MdrnnLayer. The dimensionality of the sequence - for example 2 for a picture or 3 for a video - is given by `timedim`, while the sidelengths along each dimension are given by the tuple `shape`. The layer will have `hiddendim` hidden units per swiping direction. The number of swiping directions is given by 2**timedim, which corresponds to one swipe from each corner to its opposing corner and back. To indicate how many outputs per timesteps are used, you have to specify `outsize`. In order to treat blocks of the input and not single voxels, you can also specify `blockshape`. For example the layer will then feed (2, 2) chunks into the network at each timestep which correspond to the (2, 2) rectangles that the input can be split into.
__init__
python
pybrain/pybrain
pybrain/structure/modules/mdrnnlayer.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/mdrnnlayer.py
BSD-3-Clause
def __init__(self, dim, name = None, mix=5): """Initialize mixture density layer - mix gives the number of Gaussians to mix, dim is the dimension of the target(!) vector.""" nUnits = mix * (dim + 2) # mean vec + stddev and mixing coeff NeuronLayer.__init__(self, nUnits, name) self.nGaussians = mix self.nDims = dim
Initialize mixture density layer - mix gives the number of Gaussians to mix, dim is the dimension of the target(!) vector.
__init__
python
pybrain/pybrain
pybrain/structure/modules/mixturedensity.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/mixturedensity.py
BSD-3-Clause
def _forwardImplementation(self, inbuf, outbuf): """Calculate layer outputs (Gaussian parameters etc., not function values!) from given activations """ K = self.nGaussians # Mixing parameters and stddevs outbuf[0:K*2] = safeExp(inbuf[0:K*2]) outbuf[0:K] /= sum(outbuf[0:K]) # Means outbuf[K*2:] = inbuf[K*2:]
Calculate layer outputs (Gaussian parameters etc., not function values!) from given activations
_forwardImplementation
python
pybrain/pybrain
pybrain/structure/modules/mixturedensity.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/mixturedensity.py
BSD-3-Clause
def _backwardImplementation(self, outerr, inerr, outbuf, inbuf): """Calculate the derivatives of output wrt. corresponding input activations.""" # Cannot calculate because we would need the targets! # ==> we just pass through the stuff from the trainer, who takes care # of the rest inerr[:] = outerr
Calculate the derivatives of output wrt. corresponding input activations.
_backwardImplementation
python
pybrain/pybrain
pybrain/structure/modules/mixturedensity.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/mixturedensity.py
BSD-3-Clause
def __init__(self, indim, outdim, name=None, **args): """Create a Module with an input dimension of indim and an output dimension of outdim.""" self.setArgs(name=name, **args) # Make sure that it does not matter whether Module.__init__ is called # before or after adding elements to bufferlist in subclasses. # TODO: it should be possible to use less than these buffers. For some # methods, an error is not completely necessary. (e.g. evolution) self.bufferlist = [] if not self.bufferlist else self.bufferlist self.bufferlist += [('inputbuffer', indim), ('inputerror', indim), ('outputbuffer', outdim), ('outputerror', outdim), ] self.indim = indim self.outdim = outdim # Those buffers are 2D arrays (time, dim) self._resetBuffers()
Create a Module with an input dimension of indim and an output dimension of outdim.
__init__
python
pybrain/pybrain
pybrain/structure/modules/module.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/module.py
BSD-3-Clause
def _resetBuffers(self, length=1): """Reset buffers to a length (in time dimension) of 1.""" for buffername, dim in self.bufferlist: setattr(self, buffername, zeros((length, dim))) if length==1: self.offset = 0
Reset buffers to a length (in time dimension) of 1.
_resetBuffers
python
pybrain/pybrain
pybrain/structure/modules/module.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/module.py
BSD-3-Clause
def _growBuffers(self): """Double the size of the modules buffers in its first dimension and keep the current values.""" currentlength = getattr(self, self.bufferlist[0][0]).shape[0] # Save the current buffers tmp = [getattr(self, n) for n, _ in self.bufferlist] Module._resetBuffers(self, currentlength * 2) for previous, (buffername, _dim) in zip(tmp, self.bufferlist): buffer_ = getattr(self, buffername) buffer_[:currentlength] = previous
Double the size of the modules buffers in its first dimension and keep the current values.
_growBuffers
python
pybrain/pybrain
pybrain/structure/modules/module.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/module.py
BSD-3-Clause
def backward(self): """Produce the input error from the output error.""" self._backwardImplementation(self.outputerror[self.offset], self.inputerror[self.offset], self.outputbuffer[self.offset], self.inputbuffer[self.offset])
Produce the input error from the output error.
backward
python
pybrain/pybrain
pybrain/structure/modules/module.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/module.py
BSD-3-Clause
def reset(self): """Set all buffers, past and present, to zero.""" self.offset = 0 for buffername, l in self.bufferlist: buf = getattr(self, buffername) buf[:] = zeros(l)
Set all buffers, past and present, to zero.
reset
python
pybrain/pybrain
pybrain/structure/modules/module.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/module.py
BSD-3-Clause
def shift(self, items): """Shift all buffers up or down a defined number of items on offset axis. Negative values indicate backward shift.""" if items == 0: return self.offset += items for buffername, _ in self.bufferlist: buf = getattr(self, buffername) assert abs(items) <= len(buf), "Cannot shift further than length of buffer." fill = zeros((abs(items), len(buf[0]))) if items < 0: buf[:] = append(buf[-items:], fill, 0) else: buf[:] = append(fill ,buf[0:-items] , 0)
Shift all buffers up or down a defined number of items on offset axis. Negative values indicate backward shift.
shift
python
pybrain/pybrain
pybrain/structure/modules/module.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/module.py
BSD-3-Clause
def activateOnDataset(self, dataset): """Run the module's forward pass on the given dataset unconditionally and return the output.""" dataset.reset() self.reset() out = zeros((len(dataset), self.outdim)) for i, sample in enumerate(dataset): # FIXME: Can we always assume that sample[0] is the input data? out[i, :] = self.activate(sample[0]) self.reset() dataset.reset() return out
Run the module's forward pass on the given dataset unconditionally and return the output.
activateOnDataset
python
pybrain/pybrain
pybrain/structure/modules/module.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/module.py
BSD-3-Clause
def activate(self, inpt): """Do one transformation of an input and return the result.""" assert len(self.inputbuffer[self.offset]) == len(inpt), str((len(self.inputbuffer[self.offset]), len(inpt))) self.inputbuffer[self.offset] = inpt self.forward() return self.outputbuffer[self.offset].copy()
Do one transformation of an input and return the result.
activate
python
pybrain/pybrain
pybrain/structure/modules/module.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/module.py
BSD-3-Clause
def backActivate(self, outerr): """Do one transformation of an output error outerr backward and return the error on the input.""" self.outputerror[self.offset] = outerr self.backward() return self.inputerror[self.offset].copy()
Do one transformation of an output error outerr backward and return the error on the input.
backActivate
python
pybrain/pybrain
pybrain/structure/modules/module.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/module.py
BSD-3-Clause
def _backwardImplementation(self, outerr, inerr, outbuf, inbuf): """Converse of the module's transformation function. Can be overwritten in subclasses, does not have to. Should also compute the derivatives of the parameters."""
Converse of the module's transformation function. Can be overwritten in subclasses, does not have to. Should also compute the derivatives of the parameters.
_backwardImplementation
python
pybrain/pybrain
pybrain/structure/modules/module.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/module.py
BSD-3-Clause
def whichNeuron(self, inputIndex=None, outputIndex=None): """Determine which neuron a position in the input/output buffer corresponds to. """ if inputIndex is not None: return inputIndex if outputIndex is not None: return outputIndex
Determine which neuron a position in the input/output buffer corresponds to.
whichNeuron
python
pybrain/pybrain
pybrain/structure/modules/neuronlayer.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/neuronlayer.py
BSD-3-Clause
def __init__(self, indim=0, outdim=0, model=None): """ Initializes as empty module. If `model` is given, initialize using this LIBSVM model instead. `indim` and `outdim` are for compatibility only, and ignored.""" self.reset() # set some dummy input/ouput dimensions - these become obsolete when # the SVM is initialized self.indim = 0 self.outdim = 0 self.setModel(model)
Initializes as empty module. If `model` is given, initialize using this LIBSVM model instead. `indim` and `outdim` are for compatibility only, and ignored.
__init__
python
pybrain/pybrain
pybrain/structure/modules/svmunit.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/svmunit.py
BSD-3-Clause
def forwardPass(self, values=False): """ Produce the output from the current input vector, or process a dataset. If `values` is False or 'class', output is set to the number of the predicted class. If True or 'raw', produces decision values instead. These are stored in a dictionary for multi-class SVM. If `prob`, class probabilities are produced. This works only if probability option was set for SVM training.""" if values == "class" or values == False: # predict the output class right away self.output = self.model.predict(self.input) elif values == 'raw' or values == True: # return a dict of decision values for each one-on-one class # combination (i,j) self.output = self.model.predict_values(self.input) else: # values == "prob" # return probability (works only for multiclass!) self.output = self.model.predict_probability(self.input)
Produce the output from the current input vector, or process a dataset. If `values` is False or 'class', output is set to the number of the predicted class. If True or 'raw', produces decision values instead. These are stored in a dictionary for multi-class SVM. If `prob`, class probabilities are produced. This works only if probability option was set for SVM training.
forwardPass
python
pybrain/pybrain
pybrain/structure/modules/svmunit.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/svmunit.py
BSD-3-Clause
def activateOnDataset(self, dataset, values=False): """ Run the module's forward pass on the given dataset unconditionally and return the output as a list. :arg dataset: A non-sequential supervised data set. :key values: Passed trough to forwardPass() method.""" out = [] inp = dataset['input'] for i in range(inp.shape[0]): self.input = inp[i, :] # carry out forward pass to get decision values for each class combo self.forwardPass(values=values) out.append(self.output) return out
Run the module's forward pass on the given dataset unconditionally and return the output as a list. :arg dataset: A non-sequential supervised data set. :key values: Passed trough to forwardPass() method.
activateOnDataset
python
pybrain/pybrain
pybrain/structure/modules/svmunit.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/svmunit.py
BSD-3-Clause
def __init__(self, numRows, numColumns, name=None): """ initialize with the number of rows and columns. the table values are all set to zero. """ Module.__init__(self, 2, 1, name) ParameterContainer.__init__(self, numRows*numColumns) self.numRows = numRows self.numColumns = numColumns
initialize with the number of rows and columns. the table values are all set to zero.
__init__
python
pybrain/pybrain
pybrain/structure/modules/table.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/modules/table.py
BSD-3-Clause
def __init__(self, predefined = None, **kwargs): """ For the current implementation, the sequence length needs to be fixed, and given at construction time. """ if predefined is not None: self.predefined = predefined else: self.predefined = {} FeedForwardNetwork.__init__(self, **kwargs) assert self.seqlen is not None # the input is a 1D-mesh (as a view on a flat input layer) inmod = LinearLayer(self.inputsize * self.seqlen, name='input') inmesh = ModuleMesh.viewOnFlatLayer(inmod, (self.seqlen,), 'inmesh') # the output is also a 1D-mesh outmod = self.outcomponentclass(self.outputsize * self.seqlen, name='output') outmesh = ModuleMesh.viewOnFlatLayer(outmod, (self.seqlen,), 'outmesh') # the hidden layers are places in a 2xseqlen mesh hiddenmesh = ModuleMesh.constructWithLayers(self.componentclass, self.hiddensize, (2, self.seqlen), 'hidden') # add the modules for c in inmesh: self.addInputModule(c) for c in outmesh: self.addOutputModule(c) for c in hiddenmesh: self.addModule(c) # set the connections weights to be shared inconnf = MotherConnection(inmesh.componentOutdim * hiddenmesh.componentIndim, name='inconn') outconnf = MotherConnection(outmesh.componentIndim * hiddenmesh.componentOutdim, name='outconn') forwardconn = MotherConnection(hiddenmesh.componentIndim * hiddenmesh.componentOutdim, name='fconn') if self.symmetric: backwardconn = forwardconn inconnb = inconnf outconnb = outconnf else: backwardconn = MotherConnection(hiddenmesh.componentIndim * hiddenmesh.componentOutdim, name='bconn') inconnb = MotherConnection(inmesh.componentOutdim * hiddenmesh.componentIndim, name='inconn') outconnb = MotherConnection(outmesh.componentIndim * hiddenmesh.componentOutdim, name='outconn') # build the connections for i in range(self.seqlen): # input to hidden self.addConnection(SharedFullConnection(inconnf, inmesh[(i,)], hiddenmesh[(0, i)])) self.addConnection(SharedFullConnection(inconnb, inmesh[(i,)], hiddenmesh[(1, i)])) # hidden to output self.addConnection(SharedFullConnection(outconnf, hiddenmesh[(0, i)], outmesh[(i,)])) self.addConnection(SharedFullConnection(outconnb, hiddenmesh[(1, i)], outmesh[(i,)])) if i > 0: # forward in time self.addConnection(SharedFullConnection(forwardconn, hiddenmesh[(0, i - 1)], hiddenmesh[(0, i)])) if i < self.seqlen - 1: # backward in time self.addConnection(SharedFullConnection(backwardconn, hiddenmesh[(1, i + 1)], hiddenmesh[(1, i)])) self.sortModules()
For the current implementation, the sequence length needs to be fixed, and given at construction time.
__init__
python
pybrain/pybrain
pybrain/structure/networks/bidirectional.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/bidirectional.py
BSD-3-Clause
def _canonicForm(self, tup, dim): """ determine if there is a symmetrical tuple of lower coordinates :key dim: the removed coordinate. """ if not self.symmetricdimensions: return tup canonic = [] for dim, maxval in enumerate(tupleRemoveItem(self.dims, dim)): canonic.append(min(maxval-1-tup[dim], tup[dim])) return tuple(canonic)
determine if there is a symmetrical tuple of lower coordinates :key dim: the removed coordinate.
_canonicForm
python
pybrain/pybrain
pybrain/structure/networks/borderswiping.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/borderswiping.py
BSD-3-Clause
def _extrapolateBorderAt(self, t, using): """ maybe we can use weights that are similar to neighboring borderconnections as initialization. """ closest = reachable(decrementAny, [t], list(using.keys())) if len(closest) > 0: params = zeros(using[list(closest.keys())[0]].paramdim) normalize = 0. for c, dist in list(closest.items()): params += using[c].params / dist normalize += 1./dist params /= normalize return params return None
maybe we can use weights that are similar to neighboring borderconnections as initialization.
_extrapolateBorderAt
python
pybrain/pybrain
pybrain/structure/networks/borderswiping.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/borderswiping.py
BSD-3-Clause
def activate(self, inpt): """Do one transformation of an input and return the result.""" self.reset() return super(FeedForwardNetworkComponent, self).activate(inpt)
Do one transformation of an input and return the result.
activate
python
pybrain/pybrain
pybrain/structure/networks/feedforward.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/feedforward.py
BSD-3-Clause
def _permsForSwiping(self): """Return the correct permutations of blocks for all swiping direction. """ # We use an identity permutation to generate the permutations from by # slicing correctly. return [self._standardPermutation()]
Return the correct permutations of blocks for all swiping direction.
_permsForSwiping
python
pybrain/pybrain
pybrain/structure/networks/mdrnn.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/mdrnn.py
BSD-3-Clause
def _permsForSwiping(self): """Return the correct permutations of blocks for all swiping direction. """ # We use an identity permutation to generate the permutations from by # slicing correctly. identity = scipy.array(list(range(self.sequenceLength))) identity.shape = tuple(s // b for s, b in zip(self.shape, self.blockshape)) permutations = [] # Loop over all possible directions: from each corner to each corner for direction in crossproduct([('+', '-')] * self.timedim): axises = [] for _, axisdir in enumerate(direction): # Use a normal complete slice for forward... if axisdir == '+': indices = slice(None, None, 1) # ...and a reversed complete slice for backward else: indices = slice(None, None, -1) axises.append(indices) permutations.append(operator.getitem(identity, axises).flatten()) return permutations
Return the correct permutations of blocks for all swiping direction.
_permsForSwiping
python
pybrain/pybrain
pybrain/structure/networks/mdrnn.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/mdrnn.py
BSD-3-Clause
def __init__(self, dims, **args): """ The one required argument specifies the sizes of each dimension (minimum 2) """ SwipingNetwork.__init__(self, dims = dims, **args) pdims = product(dims) # the input is a 2D-mesh (as a view on a flat input layer) inmod = LinearLayer(self.insize*pdims, name = 'input') inmesh = ModuleMesh.viewOnFlatLayer(inmod, dims, 'inmesh') # the output is a 2D-mesh (as a view on a flat sigmoid output layer) outmod = self.outcomponentclass(self.outputs*pdims, name = 'output') outmesh = ModuleMesh.viewOnFlatLayer(outmod, dims, 'outmesh') if self.componentclass is MDLSTMLayer: c = lambda: MDLSTMLayer(self.hsize, 2, self.peepholes).meatSlice() adims = tuple(list(dims)+[4]) hiddenmesh = ModuleMesh(c, adims, 'hidden', baserename = True) else: hiddenmesh = ModuleMesh.constructWithLayers(self.componentclass, self.hsize, tuple(list(dims)+[self.swipes]), 'hidden') self._buildSwipingStructure(inmesh, hiddenmesh, outmesh) # add the identity connections for the states for m in self.modules: if isinstance(m, MDLSTMLayer): tmp = m.stateSlice() index = 0 for c in list(self.connections[m]): if isinstance(c.outmod, MDLSTMLayer): self.addConnection(IdentityConnection(tmp, c.outmod.stateSlice(), outSliceFrom = self.hsize*(index), outSliceTo = self.hsize*(index+1))) index += 1 self.sortModules()
The one required argument specifies the sizes of each dimension (minimum 2)
__init__
python
pybrain/pybrain
pybrain/structure/networks/multidimensional.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/multidimensional.py
BSD-3-Clause
def __getitem__(self, name): """Return the module with the given name.""" for m in self.modules: if m.name == name: return m return None
Return the module with the given name.
__getitem__
python
pybrain/pybrain
pybrain/structure/networks/network.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/network.py
BSD-3-Clause
def _containerIterator(self): """Return an iterator over the non-empty ParameterContainers of the network. The order IS deterministic.""" for m in self.modulesSorted: if m.paramdim: yield m for c in self.connections[m]: if c.paramdim and not isinstance(c, SharedConnection): yield c for mc in self.motherconnections: if mc.paramdim: yield mc
Return an iterator over the non-empty ParameterContainers of the network. The order IS deterministic.
_containerIterator
python
pybrain/pybrain
pybrain/structure/networks/network.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/network.py
BSD-3-Clause
def addModule(self, m): """Add the given module to the network.""" if isinstance(m, ModuleSlice): m = m.base if m not in self.modules: self.modules.add(m) if not m in self.connections: self.connections[m] = [] if m.paramdim > 0: m.owner = self if m.sequential and not self.sequential: logging.warning( ("Module %s is sequential, and added to a FFN. Are you sure " + "you know what you're doing?") % m) self.sorted = False
Add the given module to the network.
addModule
python
pybrain/pybrain
pybrain/structure/networks/network.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/network.py
BSD-3-Clause
def addInputModule(self, m): """Add the given module to the network and mark it as an input module. """ if isinstance(m, ModuleSlice): m = m.base if m not in self.inmodules: self.inmodules.append(m) self.addModule(m)
Add the given module to the network and mark it as an input module.
addInputModule
python
pybrain/pybrain
pybrain/structure/networks/network.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/network.py
BSD-3-Clause
def addOutputModule(self, m): """Add the given module to the network and mark it as an output module. """ if isinstance(m, ModuleSlice): m = m.base if m not in self.outmodules: self.outmodules.append(m) self.addModule(m)
Add the given module to the network and mark it as an output module.
addOutputModule
python
pybrain/pybrain
pybrain/structure/networks/network.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/network.py
BSD-3-Clause
def addConnection(self, c): """Add the given connection to the network.""" if not c.inmod in self.connections: self.connections[c.inmod] = [] self.connections[c.inmod].append(c) if isinstance(c, SharedConnection): if c.mother not in self.motherconnections: self.motherconnections.append(c.mother) c.mother.owner = self elif c.paramdim > 0: c.owner = self self.sorted = False
Add the given connection to the network.
addConnection
python
pybrain/pybrain
pybrain/structure/networks/network.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/network.py
BSD-3-Clause
def reset(self): """Reset all component modules and the network.""" Module.reset(self) for m in self.modules: m.reset()
Reset all component modules and the network.
reset
python
pybrain/pybrain
pybrain/structure/networks/network.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/network.py
BSD-3-Clause
def _setParameters(self, p, owner=None): """ put slices of this array back into the modules """ ParameterContainer._setParameters(self, p, owner) index = 0 for x in self._containerIterator(): x._setParameters(self.params[index:index + x.paramdim], self) index += x.paramdim
put slices of this array back into the modules
_setParameters
python
pybrain/pybrain
pybrain/structure/networks/network.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/network.py
BSD-3-Clause
def _setDerivatives(self, d, owner=None): """ put slices of this array back into the modules """ ParameterContainer._setDerivatives(self, d, owner) index = 0 for x in self._containerIterator(): x._setDerivatives(self.derivs[index:index + x.paramdim], self) index += x.paramdim
put slices of this array back into the modules
_setDerivatives
python
pybrain/pybrain
pybrain/structure/networks/network.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/network.py
BSD-3-Clause
def _topologicalSort(self): """Update the network structure and make .modulesSorted a topologically sorted list of the modules.""" # Algorithm: R. E. Tarjan (1972), stolen from: # http://www.bitformation.com/art/python_toposort.html # Create a directed graph, including a counter of incoming connections. graph = {} for node in self.modules: if node not in graph: # Zero incoming connections. graph[node] = [0] for c in chain(*list(self.connections.values())): graph[c.inmod].append(c.outmod) # Update the count of incoming arcs in outnode. graph[c.outmod][0] += 1 # Find all roots (nodes with zero incoming arcs). roots = [node for (node, nodeinfo) in list(graph.items()) if nodeinfo[0] == 0] # Make sure the ordering on all runs is the same. roots.sort(key=lambda x: x.name) # Repeatedly emit a root and remove it from the graph. Removing # a node may convert some of the node's direct children into roots. # Whenever that happens, we append the new roots to the list of # current roots. self.modulesSorted = [] while len(roots) != 0: root = roots[0] roots = roots[1:] self.modulesSorted.append(root) for child in graph[root][1:]: graph[child][0] -= 1 if graph[child][0] == 0: roots.append(child) del graph[root] if graph: raise NetworkConstructionException("Loop in network graph.")
Update the network structure and make .modulesSorted a topologically sorted list of the modules.
_topologicalSort
python
pybrain/pybrain
pybrain/structure/networks/network.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/network.py
BSD-3-Clause
def sortModules(self): """Prepare the network for activation by sorting the internal datastructure. Needs to be called before activation.""" if self.sorted: return # Sort the modules. self._topologicalSort() # Sort the connections by name. for m in self.modules: self.connections[m].sort(key=lambda x: x.name) self.motherconnections.sort(key=lambda x: x.name) # Create a single array with all parameters. tmp = [pc.params for pc in self._containerIterator()] total_size = sum(scipy.size(i) for i in tmp) ParameterContainer.__init__(self, total_size) if total_size > 0: self.params[:] = scipy.concatenate(tmp) self._setParameters(self.params) # Create a single array with all derivatives. tmp = [pc.derivs for pc in self._containerIterator()] self.resetDerivatives() self.derivs[:] = scipy.concatenate(tmp) self._setDerivatives(self.derivs) # TODO: make this a property; indim and outdim are invalid before # .sortModules is called! # Determine the input and output dimensions of the network. self.indim = int(sum(m.indim for m in self.inmodules)) self.outdim = int(sum(m.outdim for m in self.outmodules)) self.indim = 0 for m in self.inmodules: self.indim += m.indim self.outdim = 0 for m in self.outmodules: self.outdim += m.outdim # Initialize the network buffers. self.bufferlist = [] Module.__init__(self, self.indim, self.outdim, name=self.name) self.sorted = True
Prepare the network for activation by sorting the internal datastructure. Needs to be called before activation.
sortModules
python
pybrain/pybrain
pybrain/structure/networks/network.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/network.py
BSD-3-Clause
def convertToFastNetwork(self): """ Attempt to transform the network into a fast network. If fast networks are not available, or the network cannot be converted, it returns None. """ from pybrain.structure.networks import FeedForwardNetwork, RecurrentNetwork try: from arac.pybrainbridge import _RecurrentNetwork, _FeedForwardNetwork #@UnresolvedImport except: print("No fast networks available.") return None net = self.copy() if isinstance(net, FeedForwardNetwork): cnet = _FeedForwardNetwork() elif isinstance(net, RecurrentNetwork): cnet = _RecurrentNetwork() for m in net.inmodules: cnet.addInputModule(m) for m in net.outmodules: cnet.addOutputModule(m) for m in net.modules: cnet.addModule(m) for clist in list(net.connections.values()): for c in clist: cnet.addConnection(c) if isinstance(net, RecurrentNetwork): for c in net.recurrentConns: cnet.addRecurrentConnection(c) try: cnet.sortModules() except ValueError: print("Network cannot be converted.") return None cnet.owner = cnet return cnet
Attempt to transform the network into a fast network. If fast networks are not available, or the network cannot be converted, it returns None.
convertToFastNetwork
python
pybrain/pybrain
pybrain/structure/networks/network.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/network.py
BSD-3-Clause
def _constructParameterInfo(self): """ construct a dictionnary with information about each parameter: The key is the index in self.params, and the value is a tuple containing (inneuron, outneuron), where a neuron is a tuple of it's module and an index. """ self.paramInfo = {} index = 0 for x in self._containerIterator(): if isinstance(x, FullConnection): for w in range(x.paramdim): inbuf, outbuf = x.whichBuffers(w) self.paramInfo[index + w] = ((x.inmod, x.inmod.whichNeuron(outputIndex=inbuf)), (x.outmod, x.outmod.whichNeuron(inputIndex=outbuf))) elif isinstance(x, NeuronLayer): for n in range(x.paramdim): self.paramInfo[index + n] = ((x, n), (x, n)) else: raise index += x.paramdim
construct a dictionnary with information about each parameter: The key is the index in self.params, and the value is a tuple containing (inneuron, outneuron), where a neuron is a tuple of it's module and an index.
_constructParameterInfo
python
pybrain/pybrain
pybrain/structure/networks/neurondecomposable.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/neurondecomposable.py
BSD-3-Clause
def getDecomposition(self): """ return a list of arrays, each corresponding to one neuron's relevant parameters """ res = [] for neuron in self._neuronIterator(): nIndices = self.decompositionIndices[neuron] if len(nIndices) > 0: tmp = zeros(len(nIndices)) for i, ni in enumerate(nIndices): tmp[i] = self.params[ni] res.append(tmp) return res
return a list of arrays, each corresponding to one neuron's relevant parameters
getDecomposition
python
pybrain/pybrain
pybrain/structure/networks/neurondecomposable.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/neurondecomposable.py
BSD-3-Clause
def setDecomposition(self, decomposedParams): """ set parameters by neuron decomposition, each corresponding to one neuron's relevant parameters """ nindex = 0 for neuron in self._neuronIterator(): nIndices = self.decompositionIndices[neuron] if len(nIndices) > 0: for i, ni in enumerate(nIndices): self.params[ni] = decomposedParams[nindex][i] nindex += 1
set parameters by neuron decomposition, each corresponding to one neuron's relevant parameters
setDecomposition
python
pybrain/pybrain
pybrain/structure/networks/neurondecomposable.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/neurondecomposable.py
BSD-3-Clause
def convertNormalNetwork(n): """ convert a normal network into a decomposable one """ if isinstance(n, RecurrentNetwork): res = RecurrentDecomposableNetwork() for c in n.recurrentConns: res.addRecurrentConnection(c) else: res = FeedForwardDecomposableNetwork() for m in n.inmodules: res.addInputModule(m) for m in n.outmodules: res.addOutputModule(m) for m in n.modules: res.addModule(m) for c in chain(*list(n.connections.values())): res.addConnection(c) res.name = n.name res.sortModules() return res
convert a normal network into a decomposable one
convertNormalNetwork
python
pybrain/pybrain
pybrain/structure/networks/neurondecomposable.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/neurondecomposable.py
BSD-3-Clause
def fromDims(cls, visibledim, hiddendim, params=None, biasParams=None): """Return a restricted Boltzmann machine of the given dimensions with the given distributions.""" net = FeedForwardNetwork() bias = BiasUnit('bias') visible = LinearLayer(visibledim, 'visible') hidden = SigmoidLayer(hiddendim, 'hidden') con1 = FullConnection(visible, hidden) con2 = FullConnection(bias, hidden) if params is not None: con1.params[:] = params if biasParams is not None: con2.params[:] = biasParams net.addInputModule(visible) net.addModule(bias) net.addOutputModule(hidden) net.addConnection(con1) net.addConnection(con2) net.sortModules() return cls(net)
Return a restricted Boltzmann machine of the given dimensions with the given distributions.
fromDims
python
pybrain/pybrain
pybrain/structure/networks/rbm.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/rbm.py
BSD-3-Clause
def addRecurrentConnection(self, c): """Add a connection to the network and mark it as a recurrent one.""" if isinstance(c, SharedConnection): if c.mother not in self.motherconnections: self.motherconnections.append(c.mother) c.mother.owner = self elif c.paramdim > 0: c.owner = self self.recurrentConns.append(c) self.sorted = False
Add a connection to the network and mark it as a recurrent one.
addRecurrentConnection
python
pybrain/pybrain
pybrain/structure/networks/recurrent.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/recurrent.py
BSD-3-Clause
def activate(self, inpt): """Do one transformation of an input and return the result.""" self.inputbuffer[self.offset] = inpt self.forward() if self.forget: return self.outputbuffer[self.offset].copy() else: return self.outputbuffer[self.offset - 1].copy()
Do one transformation of an input and return the result.
activate
python
pybrain/pybrain
pybrain/structure/networks/recurrent.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/recurrent.py
BSD-3-Clause
def backActivate(self, outerr): """Do one transformation of an output error outerr backward and return the error on the input.""" self.outputerror[self.offset - 1] = outerr self.backward() return self.inputerror[self.offset].copy()
Do one transformation of an output error outerr backward and return the error on the input.
backActivate
python
pybrain/pybrain
pybrain/structure/networks/recurrent.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/recurrent.py
BSD-3-Clause
def forward(self): """Produce the output from the input.""" if not (self.offset + 1 < self.inputbuffer.shape[0]): self._growBuffers() super(RecurrentNetworkComponent, self).forward() self.offset += 1 self.maxoffset = max(self.offset, self.maxoffset)
Produce the output from the input.
forward
python
pybrain/pybrain
pybrain/structure/networks/recurrent.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/recurrent.py
BSD-3-Clause
def _verifyDimensions(self, inmesh, hiddenmesh, outmesh): """ verify dimension matching between the meshes """ assert self.dims == inmesh.dims assert outmesh.dims == self.dims assert tuple(hiddenmesh.dims[:-1]) == self.dims, '%s <-> %s' % ( hiddenmesh.dims[:-1], self.dims) assert hiddenmesh.dims[-1] == self.swipes assert min(self.dims) > 1
verify dimension matching between the meshes
_verifyDimensions
python
pybrain/pybrain
pybrain/structure/networks/swiping.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/swiping.py
BSD-3-Clause
def _buildSwipingStructure(self, inmesh, hiddenmesh, outmesh): """ :key inmesh: a mesh of input units :key hiddenmesh: a mesh of hidden units :key outmesh: a mesh of output units """ self._verifyDimensions(inmesh, hiddenmesh, outmesh) # add the modules for c in inmesh: self.addInputModule(c) for c in outmesh: self.addOutputModule(c) for c in hiddenmesh: self.addModule(c) # create the motherconnections if they are not provided if 'inconn' not in self.predefined: self.predefined['inconn'] = MotherConnection(inmesh.componentOutdim * hiddenmesh.componentIndim, name='inconn') if 'outconn' not in self.predefined: self.predefined['outconn'] = MotherConnection(outmesh.componentIndim * hiddenmesh.componentOutdim, name='outconn') if 'hconns' not in self.predefined: self.predefined['hconns'] = {} for s in range(len(self.dims)): if self.symmetricdirections: if s > 0 and self.symmetricdimensions: self.predefined['hconns'][s] = self.predefined['hconns'][0] else: self.predefined['hconns'][s] = MotherConnection(hiddenmesh.componentIndim * hiddenmesh.componentOutdim, name='hconn' + str(s)) else: for dir in ['-', '+']: if s > 0 and self.symmetricdimensions: self.predefined['hconns'][(s, dir)] = self.predefined['hconns'][(0, dir)] else: self.predefined['hconns'][(s, dir)] = MotherConnection(hiddenmesh.componentIndim * hiddenmesh.componentOutdim, name='hconn' + str(s) + dir) # establish the connections for unit in self._iterateOverUnits(): for swipe in range(self.swipes): hunit = tuple(list(unit) + [swipe]) self.addConnection(SharedFullConnection(self.predefined['inconn'], inmesh[unit], hiddenmesh[hunit])) self.addConnection(SharedFullConnection(self.predefined['outconn'], hiddenmesh[hunit], outmesh[unit])) # one swiping connection along every dimension for dim, maxval in enumerate(self.dims): # determine where the swipe is coming from in this direction: # swipe directions are towards higher coordinates on dim D if the swipe%(2**D) = 0 # and towards lower coordinates otherwise. previousunit = list(hunit) if (swipe // 2 ** dim) % 2 == 0: previousunit[dim] -= 1 dir = '+' else: previousunit[dim] += 1 dir = '-' if self.symmetricdirections: hconn = self.predefined['hconns'][dim] else: hconn = self.predefined['hconns'][(dim, dir)] previousunit = tuple(previousunit) if previousunit[dim] >= 0 and previousunit[dim] < maxval: self.addConnection(SharedFullConnection(hconn, hiddenmesh[previousunit], hiddenmesh[hunit]))
:key inmesh: a mesh of input units :key hiddenmesh: a mesh of hidden units :key outmesh: a mesh of output units
_buildSwipingStructure
python
pybrain/pybrain
pybrain/structure/networks/swiping.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/swiping.py
BSD-3-Clause
def _printPredefined(self, dic=None, indent=0): """ print the weights of the Motherconnections in the self.predefined dictionary (recursively)""" if dic == None: dic = self.predefined for k, val in sorted(dic.items()): print((' ' * indent, k,)) if isinstance(val, dict): print(':') self._printPredefined(val, indent + 2) elif isinstance(val, MotherConnection): print((val.params)) else: print(val)
print the weights of the Motherconnections in the self.predefined dictionary (recursively)
_printPredefined
python
pybrain/pybrain
pybrain/structure/networks/swiping.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/swiping.py
BSD-3-Clause
def __init__(self, **args): """ :key clusterssize: the side of the square for clustering: if > 1, an extra layer for cluster-construction is added :key clusteroverlap: by how much should the cluster overlap (default = 0) :key directlink: should connections from the input directly to the bottleneck be included? """ if 'size' in args: self.size = args['size'] args['dims'] = (self.size, self.size) assert self.size > 1, 'Minimal board size is 2.' BorderSwipingNetwork.__init__(self, **args) if not self.rebuilt: self._buildCaptureNetwork() self.sortModules() self.rebuilt = True self.setArgs(rebuilt = True)
:key clusterssize: the side of the square for clustering: if > 1, an extra layer for cluster-construction is added :key clusteroverlap: by how much should the cluster overlap (default = 0) :key directlink: should connections from the input directly to the bottleneck be included?
__init__
python
pybrain/pybrain
pybrain/structure/networks/custom/capturegame.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/custom/capturegame.py
BSD-3-Clause
def _generateName(self): """ generate a quasi unique name, using construction parameters """ name = self.__class__.__name__ #if self.size != 5: name += '-s'+str(self.size) name += '-h'+str(self.hsize) if self.directlink: name += '-direct' if self.componentclass != TanhLayer: name += '-'+self.componentclass.__name__ if self.outputs > 1: name += '-o'+str(self.outputs) if self.combinputs > 0: name += '-combin'+str(self.combinputs) #if self.bnecksize != 1: # name += '-bn'+str(self.bnecksize) #if self.combbnecksize > 0: # name += '-combbn'+str(self.combbnecksize) #if self.clusterssize != 1: # name += '-cluster'+str(self.clusterssize)+'ov'+str(self.clusteroverlap) # add a 6-digit random number, for distinction: name += '--'+str(int(random.random()*9e5+1e5)) # TODO: use hash of the weights. return name
generate a quasi unique name, using construction parameters
_generateName
python
pybrain/pybrain
pybrain/structure/networks/custom/capturegame.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/custom/capturegame.py
BSD-3-Clause
def resizedTo(self, newsize): """ Produce a copy of the network, with a different size but with the same (shared) weights, extrapolating on the borders as necessary. """ if newsize == self.size: return self.copy() else: import copy # TODO: ugly hack! # remove recurrent references for mc in self.motherconnections: mc.owner = None # copy the connections from the self.predefined dictionnary: cdict = copy.deepcopy(self.predefined) args = self.argdict.copy() args['size'] = newsize del args['rebuilt'] # put the references back in for mc in self.motherconnections: mc.owner = self return CaptureGameNetwork(predefined = cdict, **args)
Produce a copy of the network, with a different size but with the same (shared) weights, extrapolating on the borders as necessary.
resizedTo
python
pybrain/pybrain
pybrain/structure/networks/custom/capturegame.py
https://github.com/pybrain/pybrain/blob/master/pybrain/structure/networks/custom/capturegame.py
BSD-3-Clause
def __init__(self, evolino_network, dataset, **kwargs): """ :key evolino_network: an instance of NetworkWrapper() :key dataset: The evaluation dataset :key evalfunc: Compares output to target values and returns a scalar, denoting the fitness. Defaults to -mse(output, target). :key wtRatio: Float array of two values denoting the ratio between washout and training length. Defaults to [1,2] :key verbosity: Verbosity level. Defaults to 0 """ Filter.__init__(self) ap = KWArgsProcessor(self, kwargs) ap.add('verbosity', default=0) ap.add('evalfunc', default=lambda output, target:-Validator.MSE(output, target)) ap.add('wtRatio', default=array([1, 2], float)) self.network = evolino_network self.dataset = dataset self.max_fitness = -Infinity
:key evolino_network: an instance of NetworkWrapper() :key dataset: The evaluation dataset :key evalfunc: Compares output to target values and returns a scalar, denoting the fitness. Defaults to -mse(output, target). :key wtRatio: Float array of two values denoting the ratio between washout and training length. Defaults to [1,2] :key verbosity: Verbosity level. Defaults to 0
__init__
python
pybrain/pybrain
pybrain/supervised/evolino/filter.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/filter.py
BSD-3-Clause
def _evaluateNet(self, net, dataset, wtRatio): """ Evaluates the performance of net on the given dataset. Returns the fitness value. :key net: Instance of EvolinoNetwork to evaluate :key dataset: Sequences to test the net on :key wtRatio: See __init__ """ # === extract sequences from dataset === numSequences = dataset.getNumSequences() washout_sequences = [] training_sequences = [] for i in range(numSequences): sequence = dataset.getSequence(i)[1] training_start = int(wtRatio * len(sequence)) washout_sequences.append(sequence[ : training_start ]) training_sequences.append(sequence[ training_start : ]) # === collect raw output (denoted by phi) === phis = [] for i in range(numSequences): net.reset() net.washout(washout_sequences[i]) phi = net.washout(training_sequences[i]) phis.append(phi) # === calculate and set weights of linear output layer === PHI = concatenate(phis).T PHI_INV = pinv2(PHI) TARGET = concatenate(training_sequences).T W = dot(TARGET, PHI_INV) net.setOutputWeightMatrix(W) # === collect outputs by applying the newly configured network === outputs = [] for i in range(numSequences): out = net.extrapolate(washout_sequences[i], len(training_sequences[i])) outputs.append(out) # === calculate fitness value === OUTPUT = concatenate(outputs) TARGET = concatenate(training_sequences) fitness = self.evalfunc(OUTPUT, TARGET) return fitness
Evaluates the performance of net on the given dataset. Returns the fitness value. :key net: Instance of EvolinoNetwork to evaluate :key dataset: Sequences to test the net on :key wtRatio: See __init__
_evaluateNet
python
pybrain/pybrain
pybrain/supervised/evolino/filter.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/filter.py
BSD-3-Clause
def apply(self, population): """ Evaluate each individual, and store fitness inside population. Also calculate and set the weight matrix W of the linear output layer. :arg population: Instance of EvolinoPopulation """ net = self.network dataset = self.dataset population.clearFitness() best_W = None best_fitness = -Infinity # iterate all individuals. Note, that these individuals are created on the fly for individual in population.getIndividuals(): # load the individual's genome into the weights of the net net.setGenome(individual.getGenome()) fitness = self._evaluateNet(net, dataset, self.wtRatio) if self.verbosity > 1: print(("Calculated fitness for individual", id(individual), " is ", fitness)) # set the individual fitness population.setIndividualFitness(individual, fitness) if best_fitness < fitness: best_fitness = fitness best_genome = deepcopy(individual.getGenome()) best_W = deepcopy(net.getOutputWeightMatrix()) net.reset() net.setGenome(best_genome) net.setOutputWeightMatrix(best_W) # store fitness maximum to use it for triggering burst mutation self.max_fitness = best_fitness
Evaluate each individual, and store fitness inside population. Also calculate and set the weight matrix W of the linear output layer. :arg population: Instance of EvolinoPopulation
apply
python
pybrain/pybrain
pybrain/supervised/evolino/filter.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/filter.py
BSD-3-Clause
def apply(self, population): """ The subpopulations of the EvolinoPopulation are iterated and forwarded to the EvolinoSubSelection() operator. :arg population: object of type EvolinoPopulation """ self.sub_selection.nParents = self.nParents for sp in population.getSubPopulations(): self.sub_selection.apply(sp)
The subpopulations of the EvolinoPopulation are iterated and forwarded to the EvolinoSubSelection() operator. :arg population: object of type EvolinoPopulation
apply
python
pybrain/pybrain
pybrain/supervised/evolino/filter.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/filter.py
BSD-3-Clause
def __init__(self, **kwargs): """ :key **kwargs: will be forwarded to the EvolinoSubReproduction constructor """ Filter.__init__(self) self._kwargs = kwargs
:key **kwargs: will be forwarded to the EvolinoSubReproduction constructor
__init__
python
pybrain/pybrain
pybrain/supervised/evolino/filter.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/filter.py
BSD-3-Clause
def apply(self, population): """ The subpopulations of the EvolinoPopulation are iterated and forwarded to the EvolinoSubReproduction() operator. :arg population: object of type EvolinoPopulation """ sps = population.getSubPopulations() reproduction = EvolinoSubReproduction(**self._kwargs) for sp in sps: reproduction.apply(sp)
The subpopulations of the EvolinoPopulation are iterated and forwarded to the EvolinoSubReproduction() operator. :arg population: object of type EvolinoPopulation
apply
python
pybrain/pybrain
pybrain/supervised/evolino/filter.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/filter.py
BSD-3-Clause
def __init__(self, **kwargs): """ :key **kwargs: will be forwarded to the EvolinoSubReproduction constructor """ Filter.__init__(self) self._kwargs = kwargs
:key **kwargs: will be forwarded to the EvolinoSubReproduction constructor
__init__
python
pybrain/pybrain
pybrain/supervised/evolino/filter.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/filter.py
BSD-3-Clause
def apply(self, population): """ Keeps just the best fitting individual of each subpopulation. All other individuals are erased. After that, the kept best fitting individuals will be used for reproduction, in order to refill the sub-populations. """ sps = population.getSubPopulations() for sp in sps: n_toremove = sp.getIndividualsN() - 1 sp.removeWorstIndividuals(n_toremove) reproduction = EvolinoSubReproduction(**self._kwargs) reproduction.apply(sp)
Keeps just the best fitting individual of each subpopulation. All other individuals are erased. After that, the kept best fitting individuals will be used for reproduction, in order to refill the sub-populations.
apply
python
pybrain/pybrain
pybrain/supervised/evolino/filter.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/filter.py
BSD-3-Clause
def apply(self, population): """ Simply removes some individuals with lowest fitness values """ n = population.getIndividualsN() if self.nParents is None: nKeep = n // 4 else: nKeep = self.nParents assert nKeep >= 0 assert nKeep <= n population.removeWorstIndividuals(n - nKeep)
Simply removes some individuals with lowest fitness values
apply
python
pybrain/pybrain
pybrain/supervised/evolino/filter.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/filter.py
BSD-3-Clause
def __init__(self, **kwargs): """ :key verbosity: Verbosity level :key mutationVariate: Variate used for mutation. Defaults to None :key mutation: Defaults to EvolinoSubMutation """ Filter.__init__(self) ap = KWArgsProcessor(self, kwargs) ap.add('verbosity', default=0) ap.add('mutationVariate', default=None) ap.add('mutation', default=EvolinoSubMutation()) if self.mutationVariate is not None: self.mutation.mutationVariate = self.mutationVariate
:key verbosity: Verbosity level :key mutationVariate: Variate used for mutation. Defaults to None :key mutation: Defaults to EvolinoSubMutation
__init__
python
pybrain/pybrain
pybrain/supervised/evolino/filter.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/filter.py
BSD-3-Clause
def apply(self, population): """ First determines the number of individuals to be created. Then clones the fittest individuals (=parents), mutates these clones and adds them to the population. """ max_n = population.getMaxNIndividuals() n = population.getIndividualsN() freespace = max_n - n best = population.getBestIndividualsSorted(freespace) children = set() while True: if len(children) >= freespace: break for parent in best: children.add(parent.copy()) if len(children) >= freespace: break dummy_population = SimplePopulation() dummy_population.addIndividuals(children) self.mutation.apply(dummy_population) population.addIndividuals(dummy_population.getIndividuals()) assert population.getMaxNIndividuals() == population.getIndividualsN()
First determines the number of individuals to be created. Then clones the fittest individuals (=parents), mutates these clones and adds them to the population.
apply
python
pybrain/pybrain
pybrain/supervised/evolino/filter.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/filter.py
BSD-3-Clause
def __init__(self): """ :key kwargs: See setArgs() method documentation """ SimpleGenomeManipulation.__init__(self) self.mutationVariate = GaussianVariate() self.mutationVariate.alpha = 0.1 self.verbosity = 0
:key kwargs: See setArgs() method documentation
__init__
python
pybrain/pybrain
pybrain/supervised/evolino/gfilter.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/gfilter.py
BSD-3-Clause
def _manipulateValue(self, value): """ Implementation of the abstract method of class SimpleGenomeManipulation Set's the x0 value of the variate to value and takes a new sample value and returns it. """ self.mutationVariate.x0 = value newval = self.mutationVariate.getSample() # print("MUTATED: ", value, "--->", newval) return newval
Implementation of the abstract method of class SimpleGenomeManipulation Set's the x0 value of the variate to value and takes a new sample value and returns it.
_manipulateValue
python
pybrain/pybrain
pybrain/supervised/evolino/gfilter.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/gfilter.py
BSD-3-Clause
def getSortedIndividualList(self): """ Returns a sorted list of all individuals with descending fitness values. """ fitness = self._fitness return sorted(iter(fitness.keys()), key=lambda k:-fitness[k])
Returns a sorted list of all individuals with descending fitness values.
getSortedIndividualList
python
pybrain/pybrain
pybrain/supervised/evolino/gpopulation.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/gpopulation.py
BSD-3-Clause
def getGenome(self): """ Returns the genome created by concatenating the chromosomes supplied by the sub-individuals. """ genome = [] for sub_individual in self._sub_individuals: genome.append(deepcopy(sub_individual.getGenome())) return genome
Returns the genome created by concatenating the chromosomes supplied by the sub-individuals.
getGenome
python
pybrain/pybrain
pybrain/supervised/evolino/individual.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/individual.py
BSD-3-Clause
def __init__(self, genome): """ :key genome: Any kind of nested iteratable container containing floats as leafs """ self.setGenome(genome) self.id = EvolinoSubIndividual._next_id EvolinoSubIndividual._next_id += 1
:key genome: Any kind of nested iteratable container containing floats as leafs
__init__
python
pybrain/pybrain
pybrain/supervised/evolino/individual.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/individual.py
BSD-3-Clause
def _validateGenomeLayer(self, layer): """ Validates the type and state of a layer """ assert isinstance(layer, LSTMLayer) assert not layer.peepholes
Validates the type and state of a layer
_validateGenomeLayer
python
pybrain/pybrain
pybrain/supervised/evolino/networkwrapper.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/networkwrapper.py
BSD-3-Clause
def _getGenomeOfLayer(self, layer): """ Returns the genome of a single layer. """ self._validateGenomeLayer(layer) dim = layer.outdim layer_weights = [] connections = self._getInputConnectionsOfLayer(layer) for cell_idx in range(dim): # todo: the evolino paper uses a different order of weights for the genotype of a lstm cell cell_weights = [] for c in connections: cell_weights += [ c.params[ cell_idx + 0 * dim ], c.params[ cell_idx + 1 * dim ], c.params[ cell_idx + 2 * dim ], c.params[ cell_idx + 3 * dim ] ] layer_weights.append(cell_weights) return layer_weights
Returns the genome of a single layer.
_getGenomeOfLayer
python
pybrain/pybrain
pybrain/supervised/evolino/networkwrapper.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/networkwrapper.py
BSD-3-Clause
def _setGenomeOfLayer(self, layer, weights): """ Sets the genome of a single layer. """ self._validateGenomeLayer(layer) dim = layer.outdim connections = self._getInputConnectionsOfLayer(layer) for cell_idx in range(dim): cell_weights = weights.pop(0) for c in connections: params = c.params params[cell_idx + 0 * dim] = cell_weights.pop(0) params[cell_idx + 1 * dim] = cell_weights.pop(0) params[cell_idx + 2 * dim] = cell_weights.pop(0) params[cell_idx + 3 * dim] = cell_weights.pop(0) assert not len(cell_weights)
Sets the genome of a single layer.
_setGenomeOfLayer
python
pybrain/pybrain
pybrain/supervised/evolino/networkwrapper.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/networkwrapper.py
BSD-3-Clause
def setOutputWeightMatrix(self, W): """ Sets the weight matrix of the output layer's input connection. """ c = self._hid_to_out_connection c.params[:] = W.flatten()
Sets the weight matrix of the output layer's input connection.
setOutputWeightMatrix
python
pybrain/pybrain
pybrain/supervised/evolino/networkwrapper.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/networkwrapper.py
BSD-3-Clause
def getOutputWeightMatrix(self): """ Sets the weight matrix of the output layer's input connection. """ c = self._hid_to_out_connection p = c.getParameters() return reshape(p, (c.outdim, c.indim))
Sets the weight matrix of the output layer's input connection.
getOutputWeightMatrix
python
pybrain/pybrain
pybrain/supervised/evolino/networkwrapper.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/networkwrapper.py
BSD-3-Clause
def _getInputConnectionsOfLayer(self, layer): """ Returns a list of all input connections for the layer. """ connections = [] for c in sum(list(self._network.connections.values()), []): if c.outmod is layer: if not isinstance(c, FullConnection): raise NotImplementedError("At the time there is only support for FullConnection") connections.append(c) return connections
Returns a list of all input connections for the layer.
_getInputConnectionsOfLayer
python
pybrain/pybrain
pybrain/supervised/evolino/networkwrapper.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/networkwrapper.py
BSD-3-Clause
def __init__(self, network): """ :key network: The network to be wrapped """ self.network = network self._output_connection = None self._last_hidden_layer = None self._first_hidden_layer = None self._establishRecurrence()
:key network: The network to be wrapped
__init__
python
pybrain/pybrain
pybrain/supervised/evolino/networkwrapper.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/networkwrapper.py
BSD-3-Clause
def _establishRecurrence(self): """ Adds a recurrent full connection from the output layer to the first hidden layer. """ network = self.network outlayer = self.getOutputLayer() hid1layer = self.getFirstHiddenLayer() network.addRecurrentConnection(FullConnection(outlayer, hid1layer))
Adds a recurrent full connection from the output layer to the first hidden layer.
_establishRecurrence
python
pybrain/pybrain
pybrain/supervised/evolino/networkwrapper.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/networkwrapper.py
BSD-3-Clause
def _validateGenomeLayer(self, layer): """ Validates the type and state of a layer """ assert isinstance(layer, LSTMLayer) assert not layer.peepholes
Validates the type and state of a layer
_validateGenomeLayer
python
pybrain/pybrain
pybrain/supervised/evolino/networkwrapper.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/networkwrapper.py
BSD-3-Clause
def getGenome(self): """ Returns the Genome of the network. See class description for more details. """ weights = [] for layer in self.getHiddenLayers(): if isinstance(layer, LSTMLayer): # if layer is not self._recurrence_layer: weights += self._getGenomeOfLayer(layer) return weights
Returns the Genome of the network. See class description for more details.
getGenome
python
pybrain/pybrain
pybrain/supervised/evolino/networkwrapper.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/networkwrapper.py
BSD-3-Clause
def setGenome(self, weights): """ Sets the Genome of the network. See class description for more details. """ weights = deepcopy(weights) for layer in self.getHiddenLayers(): if isinstance(layer, LSTMLayer): # if layer is not self._recurrence_layer: self._setGenomeOfLayer(layer, weights)
Sets the Genome of the network. See class description for more details.
setGenome
python
pybrain/pybrain
pybrain/supervised/evolino/networkwrapper.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/networkwrapper.py
BSD-3-Clause
def _getGenomeOfLayer(self, layer): """ Returns the genome of a single layer. """ self._validateGenomeLayer(layer) dim = layer.outdim layer_weights = [] connections = self._getInputConnectionsOfLayer(layer) for cell_idx in range(dim): # todo: the evolino paper uses a different order of weights for the genotype of a lstm cell cell_weights = [] for c in connections: cell_weights += [ c.getParameters()[ cell_idx + 0 * dim ], c.getParameters()[ cell_idx + 1 * dim ], c.getParameters()[ cell_idx + 2 * dim ], c.getParameters()[ cell_idx + 3 * dim ] ] layer_weights.append(cell_weights) return layer_weights
Returns the genome of a single layer.
_getGenomeOfLayer
python
pybrain/pybrain
pybrain/supervised/evolino/networkwrapper.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/networkwrapper.py
BSD-3-Clause
def _setGenomeOfLayer(self, layer, weights): """ Sets the genome of a single layer. """ self._validateGenomeLayer(layer) dim = layer.outdim connections = self._getInputConnectionsOfLayer(layer) for cell_idx in range(dim): cell_weights = weights.pop(0) for c in connections: params = c.getParameters() params[cell_idx + 0 * dim] = cell_weights.pop(0) params[cell_idx + 1 * dim] = cell_weights.pop(0) params[cell_idx + 2 * dim] = cell_weights.pop(0) params[cell_idx + 3 * dim] = cell_weights.pop(0) assert not len(cell_weights)
Sets the genome of a single layer.
_setGenomeOfLayer
python
pybrain/pybrain
pybrain/supervised/evolino/networkwrapper.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/networkwrapper.py
BSD-3-Clause
def setOutputWeightMatrix(self, W): """ Sets the weight matrix of the output layer's input connection. """ c = self.getOutputConnection() p = c.getParameters() p[:] = W.flatten()
Sets the weight matrix of the output layer's input connection.
setOutputWeightMatrix
python
pybrain/pybrain
pybrain/supervised/evolino/networkwrapper.py
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/networkwrapper.py
BSD-3-Clause