code
stringlengths 66
870k
| docstring
stringlengths 19
26.7k
| func_name
stringlengths 1
138
| language
stringclasses 1
value | repo
stringlengths 7
68
| path
stringlengths 5
324
| url
stringlengths 46
389
| license
stringclasses 7
values |
---|---|---|---|---|---|---|---|
def nsga2select(population, fitnesses, survivors, allowequality = True):
"""The NSGA-II selection strategy (Deb et al., 2002).
The number of individuals that survive is given by the survivors parameter."""
fronts = non_dominated_sort(population,
key=lambda x: fitnesses[x],
allowequality = allowequality)
individuals = set()
for front in fronts:
remaining = survivors - len(individuals)
if not remaining > 0:
break
if len(front) > remaining:
# If the current front does not fit in the spots left, use those
# that have the biggest crowding distance.
crowd_dist = crowding_distance(front, fitnesses)
front = sorted(front, key=lambda x: crowd_dist[x], reverse=True)
front = set(front[:remaining])
individuals |= front
return list(individuals)
|
The NSGA-II selection strategy (Deb et al., 2002).
The number of individuals that survive is given by the survivors parameter.
|
nsga2select
|
python
|
pybrain/pybrain
|
pybrain/optimization/populationbased/multiobjective/nsga2.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/populationbased/multiobjective/nsga2.py
|
BSD-3-Clause
|
def __init__(self, module, learner = None):
"""
:key module: the acting module
:key learner: the learner (optional) """
LoggingAgent.__init__(self, module.indim, module.outdim)
self.module = module
self.learner = learner
# if learner is available, tell it the module and data
if self.learner is not None:
self.learner.module = self.module
self.learner.dataset = self.history
self.learning = True
|
:key module: the acting module
:key learner: the learner (optional)
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/rl/agents/learning.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/agents/learning.py
|
BSD-3-Clause
|
def _setLearning(self, flag):
""" Set whether or not the agent should learn from its experience """
if self.learner is not None:
self.__learning = flag
else:
self.__learning = False
|
Set whether or not the agent should learn from its experience
|
_setLearning
|
python
|
pybrain/pybrain
|
pybrain/rl/agents/learning.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/agents/learning.py
|
BSD-3-Clause
|
def getAction(self):
""" Activate the module with the last observation, add the exploration from
the explorer object and store the result as last action. """
LoggingAgent.getAction(self)
self.lastaction = self.module.activate(self.lastobs)
if self.learning:
self.lastaction = self.learner.explore(self.lastobs, self.lastaction)
return self.lastaction
|
Activate the module with the last observation, add the exploration from
the explorer object and store the result as last action.
|
getAction
|
python
|
pybrain/pybrain
|
pybrain/rl/agents/learning.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/agents/learning.py
|
BSD-3-Clause
|
def newEpisode(self):
""" Indicate the beginning of a new episode in the training cycle. """
# reset the module when a new episode starts.
self.module.reset()
if self.logging:
self.history.newSequence()
# inform learner about the start of a new episode
if self.learning:
self.learner.newEpisode()
|
Indicate the beginning of a new episode in the training cycle.
|
newEpisode
|
python
|
pybrain/pybrain
|
pybrain/rl/agents/learning.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/agents/learning.py
|
BSD-3-Clause
|
def reset(self):
""" Clear the history of the agent and resets the module and learner. """
LoggingAgent.reset(self)
self.module.reset()
if self.learning:
self.learner.reset()
|
Clear the history of the agent and resets the module and learner.
|
reset
|
python
|
pybrain/pybrain
|
pybrain/rl/agents/learning.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/agents/learning.py
|
BSD-3-Clause
|
def newEpisode(self):
""" Indicate the beginning of a new episode in the training cycle. """
if self.logging:
self.history.newSequence()
if self.learning and not self.learner.batchMode:
self.learner.newEpisode()
else:
self._temperature *= self.temperature_decay
self._expl_proportion *= self.exploration_decay
self.learner.newEpisode()
|
Indicate the beginning of a new episode in the training cycle.
|
newEpisode
|
python
|
pybrain/pybrain
|
pybrain/rl/agents/linearfa.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/agents/linearfa.py
|
BSD-3-Clause
|
def integrateObservation(self, obs):
"""Step 1: store the observation received in a temporary variable until action is called and
reward is given. """
self.lastobs = obs
self.lastaction = None
self.lastreward = None
|
Step 1: store the observation received in a temporary variable until action is called and
reward is given.
|
integrateObservation
|
python
|
pybrain/pybrain
|
pybrain/rl/agents/logging.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/agents/logging.py
|
BSD-3-Clause
|
def getAction(self):
"""Step 2: store the action in a temporary variable until reward is given. """
assert self.lastobs != None
assert self.lastaction == None
assert self.lastreward == None
# implement getAction in subclass and set self.lastaction
|
Step 2: store the action in a temporary variable until reward is given.
|
getAction
|
python
|
pybrain/pybrain
|
pybrain/rl/agents/logging.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/agents/logging.py
|
BSD-3-Clause
|
def giveReward(self, r):
"""Step 3: store observation, action and reward in the history dataset. """
# step 3: assume that state and action have been set
assert self.lastobs != None
assert self.lastaction != None
assert self.lastreward == None
self.lastreward = r
# store state, action and reward in dataset if logging is enabled
if self.logging:
self.history.addSample(self.lastobs, self.lastaction, self.lastreward)
|
Step 3: store observation, action and reward in the history dataset.
|
giveReward
|
python
|
pybrain/pybrain
|
pybrain/rl/agents/logging.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/agents/logging.py
|
BSD-3-Clause
|
def reset(self):
""" Clear the history of the agent. """
self.lastobs = None
self.lastaction = None
self.lastreward = None
self.history.clear()
|
Clear the history of the agent.
|
reset
|
python
|
pybrain/pybrain
|
pybrain/rl/agents/logging.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/agents/logging.py
|
BSD-3-Clause
|
def addReward(self):
""" A filtered mapping towards performAction of the underlying environment. """
# by default, the cumulative reward is just the sum over the episode
if self.discount:
self.cumreward += power(self.discount, self.samples) * self.getReward()
else:
self.cumreward += self.getReward()
|
A filtered mapping towards performAction of the underlying environment.
|
addReward
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/episodic.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/episodic.py
|
BSD-3-Clause
|
def f(self, x):
""" An episodic task can be used as an evaluation function of a module that produces actions
from observations, or as an evaluator of an agent. """
r = 0.
for _ in range(self.batchSize):
if isinstance(x, Module):
x.reset()
self.reset()
while not self.isFinished():
self.performAction(x.activate(self.getObservation()))
elif isinstance(x, Agent):
EpisodicExperiment(self, x).doEpisodes()
else:
raise ValueError(self.__class__.__name__+' cannot evaluate the fitness of '+str(type(x)))
r += self.getTotalReward()
return r / float(self.batchSize)
|
An episodic task can be used as an evaluation function of a module that produces actions
from observations, or as an evaluator of an agent.
|
f
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/episodic.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/episodic.py
|
BSD-3-Clause
|
def __init__(self, environment):
""" All tasks are coupled to an environment. """
self.env = environment
# limits for scaling of sensors and actors (None=disabled)
self.sensor_limits = None
self.actor_limits = None
self.clipping = True
|
All tasks are coupled to an environment.
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/task.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/task.py
|
BSD-3-Clause
|
def setScaling(self, sensor_limits, actor_limits):
""" Expects scaling lists of 2-tuples - e.g. [(-3.14, 3.14), (0, 1), (-0.001, 0.001)] -
one tuple per parameter, giving min and max for that parameter. The functions
normalize and denormalize scale the parameters between -1 and 1 and vice versa.
To disable this feature, use 'None'. """
self.sensor_limits = sensor_limits
self.actor_limits = actor_limits
|
Expects scaling lists of 2-tuples - e.g. [(-3.14, 3.14), (0, 1), (-0.001, 0.001)] -
one tuple per parameter, giving min and max for that parameter. The functions
normalize and denormalize scale the parameters between -1 and 1 and vice versa.
To disable this feature, use 'None'.
|
setScaling
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/task.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/task.py
|
BSD-3-Clause
|
def performAction(self, action):
""" A filtered mapping towards performAction of the underlying environment. """
if self.actor_limits:
action = self.denormalize(action)
self.env.performAction(action)
|
A filtered mapping towards performAction of the underlying environment.
|
performAction
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/task.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/task.py
|
BSD-3-Clause
|
def getObservation(self):
""" A filtered mapping to getSensors of the underlying environment. """
sensors = self.env.getSensors()
if self.sensor_limits:
sensors = self.normalize(sensors)
return sensors
|
A filtered mapping to getSensors of the underlying environment.
|
getObservation
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/task.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/task.py
|
BSD-3-Clause
|
def normalize(self, sensors):
""" The function scales the parameters to be between -1 and 1. e.g. [(-pi, pi), (0, 1), (-0.001, 0.001)] """
assert(len(self.sensor_limits) == len(sensors))
result = []
for l, s in zip(self.sensor_limits, sensors):
if not l:
result.append(s)
else:
result.append((s - l[0]) / (l[1] - l[0]) * 2 - 1.0)
if self.clipping:
clip(result, -1, 1)
return asarray(result)
|
The function scales the parameters to be between -1 and 1. e.g. [(-pi, pi), (0, 1), (-0.001, 0.001)]
|
normalize
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/task.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/task.py
|
BSD-3-Clause
|
def denormalize(self, actors):
""" The function scales the parameters from -1 and 1 to the given interval (min, max) for each actor. """
assert(len(self.actor_limits) == len(actors))
result = []
for l, a in zip(self.actor_limits, actors):
if not l:
result.append(a)
else:
r = (a + 1.0) / 2 * (l[1] - l[0]) + l[0]
if self.clipping:
r = clip(r, l[0], l[1])
result.append(r)
return result
|
The function scales the parameters from -1 and 1 to the given interval (min, max) for each actor.
|
denormalize
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/task.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/task.py
|
BSD-3-Clause
|
def __init__(self, env=None, maxsteps=1000, desiredValue = 0):
"""
:key env: (optional) an instance of a CartPoleEnvironment (or a subclass thereof)
:key maxsteps: maximal number of steps (default: 1000)
"""
self.desiredValue = desiredValue
if env == None:
env = CartPoleEnvironment()
EpisodicTask.__init__(self, env)
self.N = maxsteps
self.t = 0
# scale position and angle, don't scale velocities (unknown maximum)
self.sensor_limits = [(-3, 3)]
for i in range(1, self.outdim):
if isinstance(self.env, NonMarkovPoleEnvironment) and i % 2 == 0:
self.sensor_limits.append(None)
else:
self.sensor_limits.append((-pi, pi))
# self.sensor_limits = [None] * 4
# actor between -10 and 10 Newton
self.actor_limits = [(-50, 50)]
|
:key env: (optional) an instance of a CartPoleEnvironment (or a subclass thereof)
:key maxsteps: maximal number of steps (default: 1000)
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/cartpole/balancetask.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/cartpole/balancetask.py
|
BSD-3-Clause
|
def __init__(self, env=None, maxsteps=1000):
"""
:key env: (optional) an instance of a CartPoleEnvironment (or a subclass thereof)
:key maxsteps: maximal number of steps (default: 1000)
"""
if env == None:
env = CartPoleEnvironment()
EpisodicTask.__init__(self, env)
self.N = maxsteps
self.t = 0
# no scaling of sensors
self.sensor_limits = [None] * self.env.outdim
# scale actor
self.actor_limits = [(-50, 50)]
|
:key env: (optional) an instance of a CartPoleEnvironment (or a subclass thereof)
:key maxsteps: maximal number of steps (default: 1000)
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/cartpole/balancetask.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/cartpole/balancetask.py
|
BSD-3-Clause
|
def getObservation(self):
""" a filtered mapping to getSample of the underlying environment. """
sensors = self.env.getSensors()
if self.sensor_limits:
sensors = self.normalize(sensors)
return sensors
|
a filtered mapping to getSample of the underlying environment.
|
getObservation
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/cartpole/balancetask.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/cartpole/balancetask.py
|
BSD-3-Clause
|
def __init__(self, env=None, maxsteps=1000):
"""
:key env: (optional) an instance of a CartPoleEnvironment (or a subclass thereof)
:key maxsteps: maximal number of steps (default: 1000)
"""
if env == None:
env = CartPoleEnvironment()
EpisodicTask.__init__(self, env)
self.N = maxsteps
self.t = 0
# no scaling of sensors
self.sensor_limits = [None] * 2
# scale actor
self.actor_limits = [(-50, 50)]
|
:key env: (optional) an instance of a CartPoleEnvironment (or a subclass thereof)
:key maxsteps: maximal number of steps (default: 1000)
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/cartpole/balancetask.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/cartpole/balancetask.py
|
BSD-3-Clause
|
def getObservation(self):
""" a filtered mapping to getSample of the underlying environment. """
sensors = [self.env.getSensors()[0], self.env.getSensors()[2]]
if self.sensor_limits:
sensors = self.normalize(sensors)
return sensors
|
a filtered mapping to getSample of the underlying environment.
|
getObservation
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/cartpole/balancetask.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/cartpole/balancetask.py
|
BSD-3-Clause
|
def reset(self):
""" re-initializes the environment, setting the cart back in a random position.
"""
if self.randomInitialization:
angle = random.uniform(-0.2, 0.2)
pos = random.uniform(-0.5, 0.5)
else:
angle = -0.2
pos = 0.2
self.sensors = (angle, 0.0, pos, 0.0)
|
re-initializes the environment, setting the cart back in a random position.
|
reset
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/cartpole/cartpole.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/cartpole/cartpole.py
|
BSD-3-Clause
|
def _derivs(self, x, t):
""" This function is needed for the Runge-Kutta integration approximation method. It calculates the
derivatives of the state variables given in x. for each variable in x, it returns the first order
derivative at time t.
"""
F = self.action
(theta, theta_, _s, s_) = x
u = theta_
sin_theta = sin(theta)
cos_theta = cos(theta)
mp = self.mp
mc = self.mc
l = self.l
u_ = (self.g * sin_theta * (mc + mp) - (F + mp * l * theta_ ** 2 * sin_theta) * cos_theta) / (4 / 3 * l * (mc + mp) - mp * l * cos_theta ** 2)
v = s_
v_ = (F - mp * l * (u_ * cos_theta - (theta_ ** 2 * sin_theta))) / (mc + mp)
return (u, u_, v, v_)
|
This function is needed for the Runge-Kutta integration approximation method. It calculates the
derivatives of the state variables given in x. for each variable in x, it returns the first order
derivative at time t.
|
_derivs
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/cartpole/cartpole.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/cartpole/cartpole.py
|
BSD-3-Clause
|
def getSensors(self):
""" returns the state one step (dt) ahead in the future. stores the state in
self.sensors because it is needed for the next calculation. The sensor return
vector has 6 elements: theta1, theta1', theta2, theta2', s, s'
(s being the distance from the origin).
"""
s1 = self.p1.getSensors()
s2 = self.p2.getSensors()
self.sensors = (s1[0], s1[1], s2[0], s2[1], s2[2], s2[3])
return self.sensors
|
returns the state one step (dt) ahead in the future. stores the state in
self.sensors because it is needed for the next calculation. The sensor return
vector has 6 elements: theta1, theta1', theta2, theta2', s, s'
(s being the distance from the origin).
|
getSensors
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/cartpole/doublepole.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/cartpole/doublepole.py
|
BSD-3-Clause
|
def reset(self):
""" re-initializes the environment, setting the cart back in a random position.
"""
self.p1.reset()
self.p2.reset()
# put cart in the same place:
self.p2.sensors = (self.p2.sensors[0], self.p2.sensors[1], self.p1.sensors[2], self.p1.sensors[3])
self.getSensors()
|
re-initializes the environment, setting the cart back in a random position.
|
reset
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/cartpole/doublepole.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/cartpole/doublepole.py
|
BSD-3-Clause
|
def getSensors(self):
""" returns the state one step (dt) ahead in the future. stores the state in
self.sensors because it is needed for the next calculation. The sensor return
vector has 3 elements: theta1, theta2, s
(s being the distance from the origin).
"""
tmp = DoublePoleEnvironment.getSensors(self)
return (tmp[0], tmp[2], tmp[4])
|
returns the state one step (dt) ahead in the future. stores the state in
self.sensors because it is needed for the next calculation. The sensor return
vector has 3 elements: theta1, theta2, s
(s being the distance from the origin).
|
getSensors
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/cartpole/nonmarkovdoublepole.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/cartpole/nonmarkovdoublepole.py
|
BSD-3-Clause
|
def getSensors(self):
""" returns the state one step (dt) ahead in the future. stores the state in
self.sensors because it is needed for the next calculation. The sensor return
vector has 2 elements: theta, s
(s being the distance from the origin).
"""
tmp = CartPoleEnvironment.getSensors(self)
return (tmp[0], tmp[2])
|
returns the state one step (dt) ahead in the future. stores the state in
self.sensors because it is needed for the next calculation. The sensor return
vector has 2 elements: theta, s
(s being the distance from the origin).
|
getSensors
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/cartpole/nonmarkovpole.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/cartpole/nonmarkovpole.py
|
BSD-3-Clause
|
def __init__(self, numPoles=1, markov=True, verbose=False,
extraObservations=False, extraRandoms=0, maxSteps=100000):
""" @extraObservations: if this flag is true, the observations include the Cartesian coordinates
of the pole(s).
"""
if self.__single != None:
raise Exception('Singleton class - there is already an instance around', self.__single)
self.__single = self
impl.init(markov, numPoles, maxSteps)
self.markov = markov
self.numPoles = numPoles
self.verbose = verbose
self.extraObservations = extraObservations
self.extraRandoms = extraRandoms
self.desiredValue = maxSteps
self.reset()
|
@extraObservations: if this flag is true, the observations include the Cartesian coordinates
of the pole(s).
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/cartpole/fast_version/cartpoleenv.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/cartpole/fast_version/cartpoleenv.py
|
BSD-3-Clause
|
def performAction(self, action):
""" a filtered mapping towards performAction of the underlying environment. """
# scaling
self.incStep()
action = (action + 1.0) / 2.0 * self.dif + self.env.fraktMin * self.env.dists[0]
#Clipping the maximal change in actions (max force clipping)
action = clip(action, self.action - self.maxSpeed, self.action + self.maxSpeed)
EpisodicTask.performAction(self, action)
self.action = action.copy()
|
a filtered mapping towards performAction of the underlying environment.
|
performAction
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/flexcube/tasks.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/flexcube/tasks.py
|
BSD-3-Clause
|
def drawScene(self):
''' This methode describes the complete scene.'''
# clear the buffer
if self.zDis < 10: self.zDis += 0.25
if self.lastz > 200: self.lastz -= self.zDis
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
glLoadIdentity()
# Point of view
glRotatef(self.lastx, 0.0, 1.0, 0.0)
glRotatef(self.lasty, 1.0, 0.0, 0.0)
#glRotatef(15, 0.0, 0.0, 1.0)
# direction of view is aimed to the center of gravity of the cube
glTranslatef(-self.centerOfGrav[0], -self.centerOfGrav[1] - 50.0, -self.centerOfGrav[2] - self.lastz)
#Objects
#Target Ball
glColor3f(1, 0.25, 0.25)
glPushMatrix()
glTranslate(self.target[0], 0.0, self.target[2])
glutSolidSphere(1.5, 8, 8)
glPopMatrix()
#Massstab
for lk in range(41):
if float(lk - 20) / 10.0 == (lk - 20) / 10:
glColor3f(0.75, 0.75, 0.75)
glPushMatrix()
glRotatef(90, 1, 0, 0)
glTranslate(self.worldRadius / 40.0 * float(lk) - self.worldRadius / 2.0, -40.0, -30)
quad = gluNewQuadric()
gluCylinder(quad, 2, 2, 60, 4, 1);
glPopMatrix()
else:
if float(lk - 20) / 5.0 == (lk - 20) / 5:
glColor3f(0.75, 0.75, 0.75)
glPushMatrix()
glRotatef(90, 1, 0, 0)
glTranslate(self.worldRadius / 40.0 * float(lk) - self.worldRadius / 2.0, -40.0, -15.0)
quad = gluNewQuadric()
gluCylinder(quad, 1, 1, 30, 4, 1);
glPopMatrix()
else:
glColor3f(0.75, 0.75, 0.75)
glPushMatrix()
glRotatef(90, 1, 0, 0)
glTranslate(self.worldRadius / 40.0 * float(lk) - self.worldRadius / 2.0, -40.0, -7.5)
quad = gluNewQuadric()
gluCylinder(quad, 0.5, 0.5, 15, 4, 1);
glPopMatrix()
#Mirror Center Ball
glColor3f(1, 1, 1)
glPushMatrix()
glTranslate(self.centerOfGrav[0], -self.centerOfGrav[1], self.centerOfGrav[2])
glutSolidSphere(1.5, 8, 8)
glPopMatrix()
#Mirror Cube
glEnable (GL_BLEND)
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)
glColor4f(0.5, 0.75, 0.5, 0.75)
glPushMatrix()
glTranslatef(0, -0.05, 0)
self.object.drawMirCreat(self.points, self.centerOfGrav)
glPopMatrix()
# Floor
tile = self.worldRadius / 40.0
glEnable (GL_BLEND)
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)
for xF in range(40):
for yF in range(40):
if float(xF + yF) / 2.0 == (xF + yF) / 2: glColor3f(0.8, 0.8, 0.7)
else: glColor4f(0.8, 0.8, 0.8, 0.7)
glPushMatrix()
glTranslatef(0.0, -0.03, 0.0)
glBegin(GL_QUADS)
glNormal(0.0, 1.0, 0.0)
for i in range(2):
for k in range(2):
glVertex3f((i + xF - 20) * tile, 0.0, ((k ^ i) + yF - 20) * tile);
glEnd()
glPopMatrix()
#Center Ball
glColor3f(1, 1, 1)
glPushMatrix()
glTranslate(self.centerOfGrav[0], self.centerOfGrav[1], self.centerOfGrav[2])
glutSolidSphere(1.5, 8, 8)
glPopMatrix()
# Cube
glEnable (GL_BLEND)
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)
glColor4f(0.5, 0.75, 0.5, 0.75)
glPushMatrix()
self.object.drawCreature(self.points, self.centerOfGrav)
glPopMatrix()
glEnable (GL_BLEND)
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)
# Cubes shadow
glColor4f(0, 0, 0, 0.5)
glPushMatrix()
self.object.drawShadow(self.points, self.centerOfGrav)
glPopMatrix()
# swap the buffer
glutSwapBuffers()
|
This methode describes the complete scene.
|
drawScene
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/flexcube/viewer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/flexcube/viewer.py
|
BSD-3-Clause
|
def getSensors(self):
""" the one sensor is the function result. """
tmp = self.result
assert tmp is not None
self.result = None
return array([tmp])
|
the one sensor is the function result.
|
getSensors
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/functions/function.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/functions/function.py
|
BSD-3-Clause
|
def _exampleConfig(self, numatoms, noise=0.05, edge=2.):
""" Arranged in an approximate cube of certain edge length. """
assert numatoms % 8 == 0
x0 = randn(3, 2, 2, 2, numatoms / 8) * noise * edge - edge / 2
x0[0, 0] += edge
x0[1, :, 0] += edge
x0[2, :, :, 0] += edge
x0 = x0.reshape(3, numatoms).T
return x0.flatten()
|
Arranged in an approximate cube of certain edge length.
|
_exampleConfig
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/functions/lennardjones.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/functions/lennardjones.py
|
BSD-3-Clause
|
def __init__(self, basef, distance=0.1, offset=None):
""" by default the offset is random, with a distance of 0.1 to the old one """
FunctionEnvironment.__init__(self, basef.xdim, basef.xopt)
if offset == None:
self._offset = rand(basef.xdim)
self._offset *= distance / norm(self._offset)
else:
self._offset = offset
self.xopt += self._offset
self.desiredValue = basef.desiredValue
self.toBeMinimized = basef.toBeMinimized
def tf(x):
if isinstance(x, ParameterContainer):
x = x.params
return basef.f(x - self._offset)
self.f = tf
|
by default the offset is random, with a distance of 0.1 to the old one
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/functions/transformations.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/functions/transformations.py
|
BSD-3-Clause
|
def __init__(self, basef, rotMat=None):
""" by default the rotation matrix is random. """
FunctionEnvironment.__init__(self, basef.xdim, basef.xopt)
if rotMat == None:
# make a random orthogonal rotation matrix
self._M = orth(rand(basef.xdim, basef.xdim))
else:
self._M = rotMat
self.desiredValue = basef.desiredValue
self.toBeMinimized = basef.toBeMinimized
self.xopt = dot(inv(self._M), self.xopt)
def rf(x):
if isinstance(x, ParameterContainer):
x = x.params
return basef.f(dot(x, self._M))
self.f = rf
|
by default the rotation matrix is random.
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/functions/transformations.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/functions/transformations.py
|
BSD-3-Clause
|
def _freePos(self):
""" produce a list of the free positions. """
res = []
for i, row in enumerate(self.mazeTable):
for j, p in enumerate(row):
if p == False:
res.append((i, j))
return res
|
produce a list of the free positions.
|
_freePos
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/mazes/maze.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/mazes/maze.py
|
BSD-3-Clause
|
def __str__(self):
""" Ascii representation of the maze, with the current state """
s = ''
for r, row in reversed(list(enumerate(self.mazeTable))):
for c, p in enumerate(row):
if (r, c) == self.goal:
s += '*'
elif (r, c) == self.perseus:
s += '@'
elif p == True:
s += '#'
else:
s += ' '
s += '\n'
return s
|
Ascii representation of the maze, with the current state
|
__str__
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/mazes/maze.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/mazes/maze.py
|
BSD-3-Clause
|
def getObservation(self):
""" observations are encoded in a 1-n encoding of possible wall combinations. """
res = zeros(7)
obs = self.env.getSensors()
if self.env.perseus == self.env.goal:
res[6] = 1
elif sum(obs) == 3:
res[0] = 1
elif sum(obs) == 1:
res[5] = 1
elif obs[0] == obs[1]:
res[1] = 1
elif obs[0] == obs[3]:
res[2] = 1
elif obs[0] == obs[2]:
if obs[0] == 1:
res[3] = 1
else:
res[4] = 1
return res
|
observations are encoded in a 1-n encoding of possible wall combinations.
|
getObservation
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/mazes/tasks/cheesemaze.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/mazes/tasks/cheesemaze.py
|
BSD-3-Clause
|
def getObservation(self):
"""only walls on w, E, both or neither are observed. """
res = zeros(4)
all = self.env.getSensors()
res[0] = all[3]
res[1] = all[1]
res[2] = all[3] and all[1]
res[3] = not all[3] and not all[1]
return res
|
only walls on w, E, both or neither are observed.
|
getObservation
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/mazes/tasks/maze4x3.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/mazes/tasks/maze4x3.py
|
BSD-3-Clause
|
def getReward(self):
""" compute and return the current reward (i.e. corresponding to the last action performed) """
if self.env.goal == self.env.perseus:
self.env.reset()
reward = 1.
else:
reward = 0.
return reward
|
compute and return the current reward (i.e. corresponding to the last action performed)
|
getReward
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/mazes/tasks/mdp.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/mazes/tasks/mdp.py
|
BSD-3-Clause
|
def performAction(self, action):
""" POMDP tasks, as they have discrete actions, can me used by providing either an index,
or an array with a 1-in-n coding (which can be stochastic). """
if type(action) == ndarray:
action = drawIndex(action, tolerant = True)
self.steps += 1
EpisodicTask.performAction(self, action)
|
POMDP tasks, as they have discrete actions, can me used by providing either an index,
or an array with a 1-in-n coding (which can be stochastic).
|
performAction
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/mazes/tasks/pomdp.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/mazes/tasks/pomdp.py
|
BSD-3-Clause
|
def getObservation(self):
""" do we think we heard something on the left or on the right? """
if self.tigerLeft:
obs = array([1, 0])
else:
obs = array([0, 1])
if random() < self.stochObs:
obs = 1 - obs
return obs
|
do we think we heard something on the left or on the right?
|
getObservation
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/mazes/tasks/tiger.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/mazes/tasks/tiger.py
|
BSD-3-Clause
|
def __init__(self, render=True, realtime=True, ip="127.0.0.1", port="21590", buf='16384'):
""" initializes the virtual world, variables, the frame rate and the callback functions."""
print("ODEEnvironment -- based on Open Dynamics Engine.")
# initialize base class
self.render = render
if self.render:
self.updateDone = True
self.updateLock = threading.Lock()
self.server = UDPServer(ip, port)
self.realtime = realtime
# initialize attributes
self.resetAttributes()
# initialize the textures dictionary
self.textures = {}
# initialize sensor and exclude list
self.sensors = []
self.excludesensors = []
#initialize actuators list
self.actuators = []
# A joint group for the contact joints that are generated whenever two bodies collide
self.contactgroup = ode.JointGroup()
self.dt = 0.01
self.FricMu = 8.0
self.stepsPerAction = 1
self.stepCounter = 0
|
initializes the virtual world, variables, the frame rate and the callback functions.
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/environment.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/environment.py
|
BSD-3-Clause
|
def resetAttributes(self):
"""resets the class attributes to their default values"""
# initialize root node
self.root = None
# A list with (body, geom) tuples
self.body_geom = []
|
resets the class attributes to their default values
|
resetAttributes
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/environment.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/environment.py
|
BSD-3-Clause
|
def reset(self):
"""resets the model and all its parameters to their original values"""
self.loadXODE(self._currentXODEfile, reload=True)
self.stepCounter = 0
|
resets the model and all its parameters to their original values
|
reset
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/environment.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/environment.py
|
BSD-3-Clause
|
def _setWorldParameters(self):
""" sets parameters for ODE world object: gravity, error correction (ERP, default=0.2),
constraint force mixing (CFM, default=1e-5). """
self.world.setGravity((0, -9.81, 0))
# self.world.setERP(0.2)
# self.world.setCFM(1e-9)
|
sets parameters for ODE world object: gravity, error correction (ERP, default=0.2),
constraint force mixing (CFM, default=1e-5).
|
_setWorldParameters
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/environment.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/environment.py
|
BSD-3-Clause
|
def _create_box(self, space, density, lx, ly, lz):
"""Create a box body and its corresponding geom."""
# Create body and mass
body = ode.Body(self.world)
M = ode.Mass()
M.setBox(density, lx, ly, lz)
body.setMass(M)
body.name = None
# Create a box geom for collision detection
geom = ode.GeomBox(space, lengths=(lx, ly, lz))
geom.setBody(body)
geom.name = None
return (body, geom)
|
Create a box body and its corresponding geom.
|
_create_box
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/environment.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/environment.py
|
BSD-3-Clause
|
def _create_sphere(self, space, density, radius):
"""Create a sphere body and its corresponding geom."""
# Create body and mass
body = ode.Body(self.world)
M = ode.Mass()
M.setSphere(density, radius)
body.setMass(M)
body.name = None
# Create a sphere geom for collision detection
geom = ode.GeomSphere(space, radius)
geom.setBody(body)
geom.name = None
return (body, geom)
|
Create a sphere body and its corresponding geom.
|
_create_sphere
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/environment.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/environment.py
|
BSD-3-Clause
|
def drop_object(self):
"""Drops a random object (box, sphere) into the scene."""
# choose between boxes and spheres
if random.uniform() > 0.5:
(body, geom) = self._create_sphere(self.space, 10, 0.4)
else:
(body, geom) = self._create_box(self.space, 10, 0.5, 0.5, 0.5)
# randomize position slightly
body.setPosition((random.normal(-6.5, 0.5), 6.0, random.normal(-6.5, 0.5)))
# body.setPosition( (0.0, 3.0, 0.0) )
# randomize orientation slightly
#theta = random.uniform(0,2*pi)
#ct = cos (theta)
#st = sin (theta)
# rotate body and append to (body,geom) tuple list
# body.setRotation([ct, 0., -st, 0., 1., 0., st, 0., ct])
self.body_geom.append((body, geom))
|
Drops a random object (box, sphere) into the scene.
|
drop_object
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/environment.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/environment.py
|
BSD-3-Clause
|
def addSensor(self, sensor):
""" adds a sensor object to the list of sensors """
if not isinstance(sensor, sensors.Sensor):
raise TypeError("the given sensor is not an instance of class 'Sensor'.")
# add sensor to sensors list
self.sensors.append(sensor)
# connect sensor and give it the virtual world object
sensor._connect(self)
|
adds a sensor object to the list of sensors
|
addSensor
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/environment.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/environment.py
|
BSD-3-Clause
|
def addActuator(self, actuator):
""" adds a sensor object to the list of sensors """
if not isinstance(actuator, actuators.Actuator):
raise TypeError("the given actuator is not an instance of class 'Actuator'.")
# add sensor to sensors list
self.actuators.append(actuator)
# connect actuator and give it the virtual world object
actuator._connect(self)
|
adds a sensor object to the list of sensors
|
addActuator
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/environment.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/environment.py
|
BSD-3-Clause
|
def loadXODE(self, filename, reload=False):
""" loads an XODE file (xml format) and parses it. """
f = open(filename)
self._currentXODEfile = filename
p = xode.parser.Parser()
self.root = p.parseFile(f)
f.close()
try:
# filter all xode "world" objects from root, take only the first one
world = filter(lambda x: isinstance(x, xode.parser.World), self.root.getChildren())[0]
except IndexError:
# malicious format, no world tag found
print(("no <world> tag found in " + filename + ". quitting."))
sys.exit()
self.world = world.getODEObject()
self._setWorldParameters()
try:
# filter all xode "space" objects from world, take only the first one
space = filter(lambda x: isinstance(x, xode.parser.Space), world.getChildren())[0]
except IndexError:
# malicious format, no space tag found
print(("no <space> tag found in " + filename + ". quitting."))
sys.exit()
self.space = space.getODEObject()
# load bodies and geoms for painting
self.body_geom = []
self._parseBodies(self.root)
if self.verbosity > 0:
print("-------[body/mass list]-----")
for (body, _) in self.body_geom:
try:
print((body.name, body.getMass()))
except AttributeError:
print("<Nobody>")
# now parse the additional parameters at the end of the xode file
self.loadConfig(filename, reload)
|
loads an XODE file (xml format) and parses it.
|
loadXODE
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/environment.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/environment.py
|
BSD-3-Clause
|
def _parseBodies(self, node):
""" parses through the xode tree recursively and finds all bodies and geoms for drawing. """
# body (with nested geom)
if isinstance(node, xode.body.Body):
body = node.getODEObject()
body.name = node.getName()
try:
# filter all xode geom objects and take the first one
xgeom = filter(lambda x: isinstance(x, xode.geom.Geom), node.getChildren())[0]
except IndexError:
return() # no geom object found, skip this node
# get the real ode object
geom = xgeom.getODEObject()
# if geom doesn't have own name, use the name of its body
geom.name = node.getName()
self.body_geom.append((body, geom))
# geom on its own without body
elif isinstance(node, xode.geom.Geom):
try:
node.getFirstAncestor(ode.Body)
except xode.node.AncestorNotFoundError:
body = None
geom = node.getODEObject()
geom.name = node.getName()
self.body_geom.append((body, geom))
# special cases for joints: universal, fixed, amotor
elif isinstance(node, xode.joint.Joint):
joint = node.getODEObject()
if type(joint) == ode.UniversalJoint:
# insert an additional AMotor joint to read the angles from and to add torques
# amotor = ode.AMotor(self.world)
# amotor.attach(joint.getBody(0), joint.getBody(1))
# amotor.setNumAxes(3)
# amotor.setAxis(0, 0, joint.getAxis2())
# amotor.setAxis(2, 0, joint.getAxis1())
# amotor.setMode(ode.AMotorEuler)
# xode_amotor = xode.joint.Joint(node.getName() + '[amotor]', node.getParent())
# xode_amotor.setODEObject(amotor)
# node.getParent().addChild(xode_amotor, None)
pass
if type(joint) == ode.AMotor:
# do the euler angle calculations automatically (ref. ode manual)
joint.setMode(ode.AMotorEuler)
if type(joint) == ode.FixedJoint:
# prevent fixed joints from bouncing to center of first body
joint.setFixed()
# recursive call for all child nodes
for c in node.getChildren():
self._parseBodies(c)
|
parses through the xode tree recursively and finds all bodies and geoms for drawing.
|
_parseBodies
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/environment.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/environment.py
|
BSD-3-Clause
|
def performAction(self, action):
""" sets the values for all actuators combined. """
pointer = 0
for a in self.actuators:
val = a.getNumValues()
a._update(action[pointer:pointer + val])
pointer += val
for _ in range(self.stepsPerAction):
self.step()
|
sets the values for all actuators combined.
|
performAction
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/environment.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/environment.py
|
BSD-3-Clause
|
def _near_callback(self, args, geom1, geom2):
"""Callback function for the collide() method.
This function checks if the given geoms do collide and
creates contact joints if they do."""
# only check parse list, if objects have name
if geom1.name != None and geom2.name != None:
# Preliminary checking, only collide with certain objects
for p in self.passpairs:
g1 = False
g2 = False
for x in p:
g1 = g1 or (geom1.name.find(x) != -1)
g2 = g2 or (geom2.name.find(x) != -1)
if g1 and g2:
return()
# Check if the objects do collide
contacts = ode.collide(geom1, geom2)
# Create contact joints
world, contactgroup = args
for c in contacts:
p = c.getContactGeomParams()
# parameters from Niko Wolf
c.setBounce(0.2)
c.setBounceVel(0.05) #Set the minimum incoming velocity necessary for bounce
c.setSoftERP(0.6) #Set the contact normal "softness" parameter
c.setSoftCFM(0.00005) #Set the contact normal "softness" parameter
c.setSlip1(0.02) #Set the coefficient of force-dependent-slip (FDS) for friction direction 1
c.setSlip2(0.02) #Set the coefficient of force-dependent-slip (FDS) for friction direction 2
c.setMu(self.FricMu) #Set the Coulomb friction coefficient
j = ode.ContactJoint(world, contactgroup, c)
j.name = None
j.attach(geom1.getBody(), geom2.getBody())
|
Callback function for the collide() method.
This function checks if the given geoms do collide and
creates contact joints if they do.
|
_near_callback
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/environment.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/environment.py
|
BSD-3-Clause
|
def step(self):
""" Here the ode physics is calculated by one step. """
# call additional callback functions for all kinds of tasks (e.g. printing)
self._printfunc()
# Detect collisions and create contact joints
self.space.collide((self.world, self.contactgroup), self._near_callback)
# Simulation step
self.world.step(float(self.dt))
# Remove all contact joints
self.contactgroup.empty()
# update all sensors
for s in self.sensors:
s._update()
# update clients
if self.render and self.updateDone:
self.updateClients()
if self.server.clients > 0 and self.realtime:
time.sleep(self.dt)
# increase step counter
self.stepCounter += 1
return self.stepCounter
|
Here the ode physics is calculated by one step.
|
step
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/environment.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/environment.py
|
BSD-3-Clause
|
def _connect(self, world):
""" Connects the sensor to the world and initializes the value list. """
Sensor._connect(self, world)
# initialize object list - this should not change during runtime
self._joints = []
self._parseJoints()
# do initial update to get numValues
self._update()
self._numValues = len(self._values)
|
Connects the sensor to the world and initializes the value list.
|
_connect
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/sensors.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/sensors.py
|
BSD-3-Clause
|
def _connect(self, world):
""" Connects the sensor to the world and initializes the value list. """
Sensor._connect(self, world)
# initialize object list - this should not change during runtime
self._joints = []
self._parseJoints()
# do initial update to get numValues
self._update()
self._numValues = len(self._values)
|
Connects the sensor to the world and initializes the value list.
|
_connect
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/sensors.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/sensors.py
|
BSD-3-Clause
|
def _connect(self, world):
""" Connects the sensor to the world and initializes the value list. """
Sensor._connect(self, world)
# initialize object list - this should not change during runtime
self._bodies = []
self._parseBodies()
# do initial update to get numValues
self._update()
self._numValues = len(self._values)
|
Connects the sensor to the world and initializes the value list.
|
_connect
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/sensors.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/sensors.py
|
BSD-3-Clause
|
def init_GL(self, width=800, height=600):
""" initialize OpenGL. This function has to be called only once before drawing. """
glutInit([])
# Open a window
glutInitDisplayMode (GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH)
self.width = width
self.height = height
glutInitWindowPosition (500, 0)
glutInitWindowSize (self.width, self.height)
self._myWindow = glutCreateWindow ("ODE Viewer")
# Initialize Viewport and Shading
glViewport(0, 0, self.width, self.height)
glShadeModel(GL_SMOOTH)
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST)
glClearColor(1.0, 1.0, 1.0, 0.0)
# Initialize Depth Buffer
glClearDepth(1.0)
glEnable(GL_DEPTH_TEST)
glDepthFunc(GL_LESS)
# Initialize Lighting
glEnable(GL_LIGHTING)
glLightfv(GL_LIGHT1, GL_AMBIENT, [0.5, 0.5, 0.5, 1.0])
glLightfv(GL_LIGHT1, GL_DIFFUSE, [1.0, 1.0, 1.0, 1.0])
glLightfv(GL_LIGHT1, GL_POSITION, [0.0, 5.0, 5.0, 1.0])
glEnable(GL_LIGHT1)
# enable material coloring
glEnable(GL_COLOR_MATERIAL)
glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE)
glEnable(GL_NORMALIZE)
|
initialize OpenGL. This function has to be called only once before drawing.
|
init_GL
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/viewer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/viewer.py
|
BSD-3-Clause
|
def prepare_GL(self):
"""Prepare drawing. This function is called in every step. It clears the screen and sets the new camera position"""
# Clear the screen
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
# Projection mode
glMatrixMode(GL_PROJECTION)
glLoadIdentity()
gluPerspective (45, 1.3333, 0.2, 500)
# Initialize ModelView matrix
glMatrixMode(GL_MODELVIEW)
glLoadIdentity()
# View transformation (if "centerOn(...)" is set, keep camera to specific object)
if self.centerObj is not None:
(centerX, centerY, centerZ) = self.centerObj.getPosition()
else:
centerX = centerY = centerZ = 0
# use the mouse to shift eye sensor on a hemisphere
eyeX = self.viewDistance * self.lastx
eyeY = self.viewDistance * self.lasty + centerY
eyeZ = self.viewDistance * self.lastz
gluLookAt (eyeX, eyeY, eyeZ, centerX, centerY, centerZ, 0, 1, 0)
|
Prepare drawing. This function is called in every step. It clears the screen and sets the new camera position
|
prepare_GL
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/viewer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/viewer.py
|
BSD-3-Clause
|
def draw_item(self, item):
""" draws an object (spere, cube, plane, ...) """
glDisable(GL_TEXTURE_2D)
glPushMatrix()
if item['type'] in ['GeomBox', 'GeomSphere', 'GeomCylinder', 'GeomCCylinder']:
# set color of object (currently dark gray)
if 'color' in item:
glEnable (GL_BLEND)
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)
glColor4f(*(item['color']))
else: glColor3f(0.1, 0.1, 0.1)
# transform (rotate, translate) body accordingly
(x, y, z) = item['position']
R = item['rotation']
rot = [R[0], R[3], R[6], 0.0,
R[1], R[4], R[7], 0.0,
R[2], R[5], R[8], 0.0,
x, y, z, 1.0]
glMultMatrixd(rot)
# switch different geom objects
if item['type'] == 'GeomBox':
# cube
(sx, sy, sz) = item['scale']
glScaled(sx, sy, sz)
glutSolidCube(1)
elif item['type'] == 'GeomSphere':
# sphere
glutSolidSphere(item['radius'], 20, 20)
elif item['type'] == 'GeomCCylinder':
quad = gluNewQuadric()
# draw cylinder and two spheres, one at each end
glTranslate(0.0, 0.0, -item['length'] / 2)
gluCylinder(quad, item['radius'], item['radius'], item['length'], 32, 32)
glutSolidSphere(item['radius'], 20, 20)
glTranslate(0.0, 0.0, item['length'])
glutSolidSphere(item['radius'], 20, 20)
elif item['type'] == 'GeomCylinder':
glTranslate(0.0, 0.0, -item['length'] / 2)
quad = gluNewQuadric()
gluDisk(quad, 0, item['radius'], 32, 1)
quad = gluNewQuadric()
gluCylinder(quad, item['radius'], item['radius'], item['length'], 32, 32)
glTranslate(0.0, 0.0, item['length'])
quad = gluNewQuadric()
gluDisk(quad, 0, item['radius'], 32, 1)
else:
# TODO: add other geoms here
pass
elif item['type'] == 'GeomPlane':
# set color of plane (currently green)
if self.isFloorGreen:
glColor3f(0.2, 0.6, 0.3)
else:
glColor3f(0.2, 0.3, 0.8)
# for planes, we need a Quadric object
quad = gluNewQuadric()
gluQuadricTexture(quad, GL_TRUE)
p = item['normal'] # the normal vector to the plane
d = item['distance'] # the distance to the origin
q = (0.0, 0.0, 1.0) # the normal vector of default gluDisks (z=0 plane)
# calculate the cross product to get the rotation axis
c = crossproduct(p, q)
# calculate the angle between default normal q and plane normal p
theta = acos(dotproduct(p, q) / (norm(p) * norm(q))) / pi * 180
# rotate the plane
glPushMatrix()
glTranslate(d * p[0], d * p[1], d * p[2])
glRotate(-theta, c[0], c[1], c[2])
gluDisk(quad, 0, 20, 20, 1)
glPopMatrix()
glPopMatrix()
|
draws an object (spere, cube, plane, ...)
|
draw_item
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/viewer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/viewer.py
|
BSD-3-Clause
|
def _screenshot(self, path_prefix='.', format='PNG'):
"""Saves a screenshot of the current frame buffer.
The save path is <path_prefix>/.screenshots/shot<num>.png
The path is automatically created if it does not exist.
Shots are automatically numerated based on how many files
are already in the directory."""
if self.counter == self.frameT:
self.counter = 1
dir = os.path.join(path_prefix, 'screenshots')
if not os.path.exists(dir):
os.makedirs(dir)
num_present = len(os.listdir(dir))
num_digits = len(str(num_present))
index = '0' * (5 - num_digits) + str(num_present)
path = os.path.join(dir, 'shot' + index + '.' + format.lower())
glPixelStorei(GL_PACK_ALIGNMENT, 1)
data = glReadPixels(0, 0, self.width, self.height, GL_RGB, GL_UNSIGNED_BYTE)
image = Image.fromstring("RGB", (self.width, self.height), data)
image = image.transpose(Image.FLIP_TOP_BOTTOM)
image.save(path, format)
print(('Image saved to %s' % (os.path.basename(path))))
else:
self.counter += 1
self.isCapturing = False
|
Saves a screenshot of the current frame buffer.
The save path is <path_prefix>/.screenshots/shot<num>.png
The path is automatically created if it does not exist.
Shots are automatically numerated based on how many files
are already in the directory.
|
_screenshot
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/viewer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/viewer.py
|
BSD-3-Clause
|
def _near_callback(self, args, geom1, geom2):
"""Callback function for the collide() method.
This function checks if the given geoms do collide and
creates contact joints if they do."""
# only check parse list, if objects have name
if geom1.name != None and geom2.name != None:
# Preliminary checking, only collide with certain objects
for p in self.passpairs:
g1 = False
g2 = False
for x in p:
g1 = g1 or (geom1.name.find(x) != -1)
g2 = g2 or (geom2.name.find(x) != -1)
if g1 and g2:
return()
# Check if the objects do collide
contacts = ode.collide(geom1, geom2)
tmpStr = geom2.name[:-2]
handStr = geom1.name[:-1]
if geom1.name == 'plate' and tmpStr != 'objectP':
self.tableSum += len(contacts)
if tmpStr == 'objectP' and handStr == 'pressLeft':
if len(contacts) > 0: self.glasSum += 1
tmpStr = geom1.name[:-2]
handStr = geom2.name[:-1]
if geom2.name == 'plate' and tmpStr != 'objectP':
self.tableSum += len(contacts)
if tmpStr == 'objectP' and handStr == 'pressLeft':
if len(contacts) > 0: self.glasSum += 1
# Create contact joints
world, contactgroup = args
for c in contacts:
p = c.getContactGeomParams()
# parameters from Niko Wolf
c.setBounce(0.2)
c.setBounceVel(0.05) #Set the minimum incoming velocity necessary for bounce
c.setSoftERP(0.6) #Set the contact normal "softness" parameter
c.setSoftCFM(0.00005) #Set the contact normal "softness" parameter
c.setSlip1(0.02) #Set the coefficient of force-dependent-slip (FDS) for friction direction 1
c.setSlip2(0.02) #Set the coefficient of force-dependent-slip (FDS) for friction direction 2
c.setMu(self.FricMu) #Set the Coulomb friction coefficient
j = ode.ContactJoint(world, contactgroup, c)
j.name = None
j.attach(geom1.getBody(), geom2.getBody())
|
Callback function for the collide() method.
This function checks if the given geoms do collide and
creates contact joints if they do.
|
_near_callback
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/instances/ccrl.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/instances/ccrl.py
|
BSD-3-Clause
|
def loadXODE(self, filename, reload=False):
""" loads an XODE file (xml format) and parses it. """
f = open(filename)
self._currentXODEfile = filename
p = xode.parser.Parser()
self.root = p.parseFile(f)
f.close()
try:
# filter all xode "world" objects from root, take only the first one
world = filter(lambda x: isinstance(x, xode.parser.World), self.root.getChildren())[0]
except IndexError:
# malicious format, no world tag found
print(("no <world> tag found in " + filename + ". quitting."))
sys.exit()
self.world = world.getODEObject()
self._setWorldParameters()
try:
# filter all xode "space" objects from world, take only the first one
space = filter(lambda x: isinstance(x, xode.parser.Space), world.getChildren())[0]
except IndexError:
# malicious format, no space tag found
print(("no <space> tag found in " + filename + ". quitting."))
sys.exit()
self.space = space.getODEObject()
# load bodies and geoms for painting
self.body_geom = []
self._parseBodies(self.root)
for (body, _) in self.body_geom:
if hasattr(body, 'name'):
tmpStr = body.name[:-2]
if tmpStr == "objectP":
body.setPosition(body.getPosition() + self.pert)
if self.verbosity > 0:
print("-------[body/mass list]-----")
for (body, _) in self.body_geom:
try:
print((body.name, body.getMass()))
except AttributeError:
print("<Nobody>")
# now parse the additional parameters at the end of the xode file
self.loadConfig(filename, reload)
|
loads an XODE file (xml format) and parses it.
|
loadXODE
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/instances/ccrl.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/instances/ccrl.py
|
BSD-3-Clause
|
def getObservation(self):
""" a filtered mapping to getSample of the underlying environment. """
sensors = self.env.getSensors()
#Sensor hand to target object
for i in range(3):
self.dist[i] = ((sensors[self.env.obsLen - 9 + i] + sensors[self.env.obsLen - 6 + i] + sensors[self.env.obsLen - 3 + i]) / 3.0 - (sensors[self.env.obsLen - 12 + i] + self.dif[i])) * 4.0 #sensors[self.env.obsLen-12+i]
#Sensor hand angle to horizontal plane X-Axis
for i in range(3):
self.dist[i + 3] = (sensors[self.env.obsLen - 3 + i] - sensors[self.env.obsLen - 6 + i]) * 5.0
#Sensor hand angle to horizontal plane Y-Axis
for i in range(3):
self.dist[i + 6] = ((sensors[self.env.obsLen - 3 + i] + sensors[self.env.obsLen - 6 + i]) / 2.0 - sensors[self.env.obsLen - 9 + i]) * 10.0
if self.sensor_limits:
sensors = self.normalize(sensors)
sens = []
for i in range(self.env.obsLen - 12):
sens.append(sensors[i])
for i in range(9):
sens.append(self.dist[i])
for i in self.oldAction:
sens.append(i)
return sens
|
a filtered mapping to getSample of the underlying environment.
|
getObservation
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tasks/ccrl.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tasks/ccrl.py
|
BSD-3-Clause
|
def getObservation(self):
""" a filtered mapping to getSample of the underlying environment. """
sensors = self.env.getSensors()
sensSort = []
#Angle and angleVelocity
for i in range(32):
sensSort.append(sensors[i])
#Angles wanted (old action)
for i in self.oldAction:
sensSort.append(i)
#Hand position
for i in range(3):
sensSort.append((sensors[38 + i] + sensors[41 + i]) / 2)
#Hand orientation (Hack - make correkt!!!!)
sensSort.append((sensors[38] - sensors[41]) / 2 - sensors[35]) #pitch
sensSort.append((sensors[38 + 1] - sensors[41 + 1]) / 2 - sensors[35 + 1]) #yaw
sensSort.append((sensors[38 + 1] - sensors[41 + 1])) #roll
#Target position
for i in range(3):
sensSort.append(self.target[i])
#Target orientation
for i in range(3):
sensSort.append(0.0)
#Object type (start with random)
sensSort.append(float(random.randint(-1, 1))) #roll
#normalisation
if self.sensor_limits:
sensors = self.normalize(sensors)
sens = []
for i in range(32):
sens.append(sensors[i])
for i in range(29):
sens.append(sensSort[i + 32])
#calc dist to target
self.dist = array([(sens[54] - sens[48]), (sens[55] - sens[49]), (sens[56] - sens[50]), sens[51], sens[52], sens[53], sens[15]])
return sens
|
a filtered mapping to getSample of the underlying environment.
|
getObservation
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tasks/ccrl.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tasks/ccrl.py
|
BSD-3-Clause
|
def getObservation(self):
""" a filtered mapping to getSample of the underlying environment. """
sensors = self.env.getSensors()
sensSort = []
#Angle and angleVelocity
for i in range(32):
sensSort.append(sensors[i])
#Angles wanted (old action)
for i in self.oldAction:
sensSort.append(i)
#Hand position
for i in range(3):
sensSort.append((sensors[38 + i] + sensors[41 + i]) / 2)
#Hand orientation (Hack - make correkt!!!!)
sensSort.append((sensors[38] - sensors[41]) / 2 - sensors[35]) #pitch
sensSort.append((sensors[38 + 1] - sensors[41 + 1]) / 2 - sensors[35 + 1]) #yaw
sensSort.append((sensors[38 + 1] - sensors[41 + 1])) #roll
#Target position
for i in range(3):
sensSort.append(self.target[i])
#Target orientation
for i in range(3):
sensSort.append(0.0)
#Object type (start with random)
sensSort.append(float(random.randint(-1, 1))) #roll
#normalisation
if self.sensor_limits:
sensors = self.normalize(sensors)
sens = []
for i in range(32):
sens.append(sensors[i])
for i in range(29):
sens.append(sensSort[i + 32])
#calc dist to target
self.dist = array([(sens[54] - sens[48]) * 10.0, (sens[55] - sens[49]) * 10.0, (sens[56] - sens[50]) * 10.0, sens[51], sens[52], sens[53], 1.0 + sens[15]])
return sens
|
a filtered mapping to getSample of the underlying environment.
|
getObservation
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tasks/ccrl.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tasks/ccrl.py
|
BSD-3-Clause
|
def __init__(self, name, attr=None):
"""create a new tag at the topmost level using given name
and (optional) attribute dictionary"""
# XML tag structure is a dictionary containing all attributes plus
# two special tags:
# myName = name of the tag
# Icontain = list of XML tags this one encloses
self.tag = {}
self.tag['myName'] = name
if attr is not None:
self.tag.update(attr)
# to traverse the XML hierarchy, store the current tag and
# the previously visited ones. Start at the top level.
self.top()
|
create a new tag at the topmost level using given name
and (optional) attribute dictionary
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xmltools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xmltools.py
|
BSD-3-Clause
|
def insert(self, name, attr=None):
"""Insert a new tag into the current one. The name can be either the
new tag name or an XMLstruct object (in which case attr is ignored).
Unless name is None, we descend into the new tag as a side effect.
A dictionary is expected for attr."""
if not self.current.hasSubtag():
self.current.tag['Icontain'] = []
if name == None:
# empty subtag list inserted, return now
# (this produces <tag></tag> in the output)
return
elif type(name) == str:
# create a new subtag with given name and attributes
newtag = XMLstruct(name, attr)
else:
# input assumed to be a tag structure
newtag = name
self.current.tag['Icontain'].append(newtag)
self.stack.append(self.current)
self.current = newtag
|
Insert a new tag into the current one. The name can be either the
new tag name or an XMLstruct object (in which case attr is ignored).
Unless name is None, we descend into the new tag as a side effect.
A dictionary is expected for attr.
|
insert
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xmltools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xmltools.py
|
BSD-3-Clause
|
def insertMulti(self, attrlist):
"""Inserts multiple subtags at once. A list of XMLstruct objects
must be given; the tag hierarchy is not descended into."""
if not self.current.hasSubtag():
self.current.tag['Icontain'] = []
self.current.tag['Icontain'] += attrlist
|
Inserts multiple subtags at once. A list of XMLstruct objects
must be given; the tag hierarchy is not descended into.
|
insertMulti
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xmltools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xmltools.py
|
BSD-3-Clause
|
def downTo(self, name, stack=None, current=None):
"""Traverse downward from current tag, until given named tag is found. Returns
true if found and sets stack and current tag correspondingly."""
if stack is None:
stack = self.stack
current = self.current
if self.name == name:
return(True)
else:
if not self.hasSubtag():
return(False)
else:
# descend one level
stack.append(self)
found = self.getSubtag(name)
if found is None:
# no subtag of correct name found; recursively check whether
# any of the subtags contain the looked for tag
for subtag in self.tag['Icontain']:
found = subtag.downTo(name, stack, current)
if found:
# everything was updated recursively, need only return
return(True)
# nothing found, revert stack and return
stack.pop()
return(False)
else:
current.setCurrent(found)
return(True)
|
Traverse downward from current tag, until given named tag is found. Returns
true if found and sets stack and current tag correspondingly.
|
downTo
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xmltools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xmltools.py
|
BSD-3-Clause
|
def up(self, steps=1):
"""traverse upward a number of steps in tag stack"""
for _ in range(steps):
if self.stack != []:
self.current = self.stack.pop()
|
traverse upward a number of steps in tag stack
|
up
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xmltools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xmltools.py
|
BSD-3-Clause
|
def hasSubtag(self, name=None):
"""determine whether current tag contains other tags, and returns
the tag with a matching name (if name is given) or True (if not)"""
if 'Icontain' in self.tag:
if name is None:
return(True)
else:
for subtag in self.tag['Icontain']:
if subtag.name == name: return(True)
return(False)
|
determine whether current tag contains other tags, and returns
the tag with a matching name (if name is given) or True (if not)
|
hasSubtag
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xmltools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xmltools.py
|
BSD-3-Clause
|
def getSubtag(self, name=None):
"""determine whether current tag contains other tags, and returns
the tag with a matching name (if name is given) or None (if not)"""
if 'Icontain' in self.tag:
for subtag in self.tag['Icontain']:
if subtag.name == name: return(subtag)
return(None)
|
determine whether current tag contains other tags, and returns
the tag with a matching name (if name is given) or None (if not)
|
getSubtag
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xmltools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xmltools.py
|
BSD-3-Clause
|
def nbAttributes(self):
"""return number of user attributes the current tag has"""
nAttr = len(list(self.tag.keys())) - 1
if self.hasSubtag():
nAttr -= 1
return nAttr
|
return number of user attributes the current tag has
|
nbAttributes
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xmltools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xmltools.py
|
BSD-3-Clause
|
def scale(self, sc, scaleset=set([]), exclude=set([])):
"""for all tags not in the exclude set, scale all attributes whose names are in scaleset by the given factor"""
if self.name not in exclude:
for name, val in self.tag.items():
if name in scaleset:
self.tag[name] = val * sc
if self.hasSubtag():
for subtag in self.tag['Icontain']:
subtag.scale(sc, scaleset, exclude)
|
for all tags not in the exclude set, scale all attributes whose names are in scaleset by the given factor
|
scale
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xmltools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xmltools.py
|
BSD-3-Clause
|
def write(self, file, depth=0):
"""parse XML structure recursively and append to the output fileID,
increasing the offset (tabs) while descending into the tree"""
if 'myName' not in self.tag:
print("Error parsing XML structure: Tag name missing!")
sys.exit(1)
# find number of attributes (disregarding special keys)
nAttr = self.nbAttributes()
endmark = '/>'
if self.hasSubtag():
endmark = '>'
# print(start tag, with attributes if present)
if nAttr > 0:
file.write(self._tab * depth + "<" + self.tag['myName'] + " " + \
' '.join([name + '="' + str(val) + '"' for name, val in self.tag.items() \
if name != 'myName' and name != 'Icontain']) + endmark + '\n')
else:
file.write(self._tab * depth + "<" + self.tag['myName'] + ">\n")
# print(enclosed tags, if any)
if self.hasSubtag():
for subtag in self.tag['Icontain']:
subtag.write(file, depth=depth + 1)
# finalize tag
file.write(self._tab * depth + "</" + self.tag['myName'] + ">\n")
|
parse XML structure recursively and append to the output fileID,
increasing the offset (tabs) while descending into the tree
|
write
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xmltools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xmltools.py
|
BSD-3-Clause
|
def __init__(self, name, **kwargs):
"""initialize the XODE structure with a name and the world and
space tags"""
self._xodename = name
self._centerOn = None
self._affixToEnvironment = None
# sensors is a list of ['type', [args], {kwargs}]
self.sensors = []
# sensor elements is a list of joints to be used as pressure sensors
self.sensorElements = []
self._nSensorElements = 0
self._pass = {} # dict of sets containing objects allowed to pass
self._colors = [] # list of tuples ('name', (r,g,b))
XMLstruct.__init__(self, 'world')
self.insert('space')
# TODO: insert palm, support, etc. (derived class)
|
initialize the XODE structure with a name and the world and
space tags
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xodetools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xodetools.py
|
BSD-3-Clause
|
def insertBody(self, bname, shape, size, density, pos=[0, 0, 0], passSet=None, euler=None, mass=None, color=None):
"""Inserts a body with the given custom name and one of the standard
shapes. The size and pos parameters are given as xyz-lists or tuples.
euler are three rotation angles (degrees),
if mass is given, density is calculated automatically"""
self.insert('body', {'name': bname})
if color is not None:
self._colors.append((bname, color))
self.insert('transform')
self.insert('position', {'x':pos[0], 'y':pos[1], 'z':pos[2]})
if euler is not None:
self.up()
self.insert('rotation')
self.insert('euler', {'x':euler[0], 'y':euler[1], 'z':euler[2], 'aformat':'degrees'})
self.up()
self.up(2)
self.insert('mass')
if shape == 'box':
dims = {'sizex':size[0], 'sizey':size[1], 'sizez':size[2]}
elif shape == 'cylinder' or shape == 'cappedCylinder':
dims = {'radius':size[0], 'length':size[1]}
elif shape == 'sphere':
dims = {'radius':size[0]}
else:
print(("Unknown shape: " + shape + " not implemented!"))
sys.exit(1)
if mass is not None:
density = self._mass2dens(shape, size, mass)
self.insert('mass_shape', {'density': density})
self.insert(shape, dims)
self.up(3)
self.insert('geom')
self.insert(shape, dims)
self.up(3)
# add the body to a matching pass set
if passSet is not None:
for pset in passSet:
try:
self._pass[pset].add(bname)
except KeyError:
self._pass[pset] = set([bname])
|
Inserts a body with the given custom name and one of the standard
shapes. The size and pos parameters are given as xyz-lists or tuples.
euler are three rotation angles (degrees),
if mass is given, density is calculated automatically
|
insertBody
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xodetools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xodetools.py
|
BSD-3-Clause
|
def insertJoint(self, body1, body2, type, axis=None, anchor=(0, 0, 0), rel=False, name=None):
"""Inserts a joint of given type linking the two bodies. Default name is
a "_"-concatenation of the body names. The anchor is a xyz-tuple, rel is
a boolean specifying whether the anchor coordinates refer to the body's origin,
axis parameters have to be provided as a dictionary."""
if name is None: name = body1 + "_" + body2
if rel:
abs = 'false'
else:
abs = 'true'
self.insert('joint', {'name': name })
self.insert('link1', {'body': body1})
self.up()
self.insert('link2', {'body': body2})
self.up()
self.insert(type)
if type == 'fixed':
self.insert(None) # empty subtag, seems to be needed by xode parser
elif type == 'ball':
self.insert('anchor', {'x':anchor[0], 'y':anchor[1], 'z':anchor[2], 'absolute':abs})
self.up()
elif type == 'slider':
self.insert('axis', axis)
self.up()
elif type == 'hinge':
self.insert('axis', axis)
self.up()
self.insert('anchor', {'x':anchor[0], 'y':anchor[1], 'z':anchor[2], 'absolute':abs})
self.up()
else:
print(("Sorry, joint type " + type + " not yet implemented!"))
sys.exit()
self.up(2)
return name
|
Inserts a joint of given type linking the two bodies. Default name is
a "_"-concatenation of the body names. The anchor is a xyz-tuple, rel is
a boolean specifying whether the anchor coordinates refer to the body's origin,
axis parameters have to be provided as a dictionary.
|
insertJoint
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xodetools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xodetools.py
|
BSD-3-Clause
|
def insertFloor(self, y= -0.5):
"""inserts a bodiless floor at given y offset"""
self.insert('geom', {'name': 'floor'})
self.insert('plane', {'a': 0, 'b': 1, 'c': 0, 'd': y})
self.up(2)
|
inserts a bodiless floor at given y offset
|
insertFloor
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xodetools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xodetools.py
|
BSD-3-Clause
|
def insertPressureSensorElement(self, parent, name=None, shape='cappedCylinder', size=[0.16, 0.5], pos=[0, 0, 0], euler=[0, 0, 0], dens=1, \
mass=None, passSet=[], stiff=10.0):
"""Insert one single pressure sensor element of the given shape, size, density, etc.
The sliding axis is by default oriented along the z-axis, which is also the default for cylinder shapes.
You have to rotate the sensor into the correct orientation - the sliding axis will be rotated accordingly.
Stiffness of the sensor's spring is set via stiff, whereby damping is calculated automatically to prevent
oscillations."""
if name is None:
name = 'psens' + str(self._nSensorElements)
if mass is None:
mass = self._dens2mass(shape, size, dens)
else:
dens = self._mass2dens(shape, size, mass)
self._nSensorElements += 1
h = 0.02 # temporal stepwidth
self.insertBody(name, shape, size, dens, pos=pos, euler=euler, passSet=passSet)
# In the aperiodic limit case, we have
# kp = a kd^2 / 4m i.e. kd = 2 sqrt(m kp/a)
# where kp is the spring constant, kd is the dampening constant, and m is the mass of the oscillator.
# For practical purposes, it is often better if kp is a few percent stronger such that the sensor
# resets itself faster (but still does not oscillate a lot), thus a~=1.02.
# ERP = h kp / (h kp + kd)
# CFM = 1 / (h kp + kd) = ERP / h kp
# For assumed mass of finger of 0.5kg, kp=10, kd=4.5 is approx. the non-oscillatory case.
kd = 2.0 * sqrt(mass * stiff / 1.02)
ERP = h * stiff / (h * stiff + kd)
CFM = ERP / (h * stiff)
# Furthermore, compute the sliding axis direction from the Euler angles (x-convention, see
# http://mathworld.wolfram.com/EulerAngles.html): Without rotation, the axis is along
# the z axis, just like a cylinder's axis
w = array(euler) * pi / 180
#A = matrix([[cos(w[0]), sin(w[0]), 0], [-sin(w[0]),cos(w[0]),0],[0,0,1]])
#A = matrix([[1,0,0], [0,cos(w[1]), sin(w[1])], [0, -sin(w[1]),cos(w[1])]]) * A
#A = matrix([[cos(w[2]), sin(w[2]), 0], [-sin(w[2]),cos(w[2]),0],[0,0,1]]) * A
# hmmm, it seems XODE is rather using the y-convention here:
A = matrix([[-sin(w[0]), cos(w[0]), 0], [-cos(w[0]), -sin(w[0]), 0], [0, 0, 1]])
A = matrix([[1, 0, 0], [0, cos(w[1]), sin(w[1])], [0, -sin(w[1]), cos(w[1])]]) * A
A = matrix([[sin(w[2]), -cos(w[2]), 0], [cos(w[2]), sin(w[2]), 0], [0, 0, 1]]) * A
ax = ((A * matrix([0, 0, 1]).getT()).flatten().tolist())[0]
jname = self.insertJoint(name, parent, 'slider', \
axis={'x':ax[0], 'y':ax[1], 'z':ax[2], "HiStop":0.0, "LowStop":0.0, "StopERP":ERP, "StopCFM":CFM })
self.sensorElements.append(jname)
return name
|
Insert one single pressure sensor element of the given shape, size, density, etc.
The sliding axis is by default oriented along the z-axis, which is also the default for cylinder shapes.
You have to rotate the sensor into the correct orientation - the sliding axis will be rotated accordingly.
Stiffness of the sensor's spring is set via stiff, whereby damping is calculated automatically to prevent
oscillations.
|
insertPressureSensorElement
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xodetools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xodetools.py
|
BSD-3-Clause
|
def merge(self, xodefile, joinLevel='space'):
"""Merge a second XODE file into this one, at the specified
level (which must exist in both files). The passpair lists are
also joined. Upon return, the current tag for both objects
is the one given."""
self.top()
if not self.downTo(joinLevel):
print(("Error: Cannot merge " + self.name + " at level " + joinLevel))
xodefile.top()
if not xodefile.downTo(joinLevel):
print(("Error: Cannot merge " + xodefile.name + " at level " + joinLevel))
self.insertMulti(xodefile.getCurrentSubtags())
self._pass.update(xodefile.getPassList())
|
Merge a second XODE file into this one, at the specified
level (which must exist in both files). The passpair lists are
also joined. Upon return, the current tag for both objects
is the one given.
|
merge
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xodetools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xodetools.py
|
BSD-3-Clause
|
def scaleModel(self, sc):
"""scales all spatial dimensions by the given factor
FIXME: quaternions may cause problems, which are currently ignored"""
# scale these attributes...
scaleset = set(['x', 'y', 'z', 'a', 'b', 'c', 'd', 'sizex', 'sizey', 'sizez', 'length', 'radius'])
# ... unless contained in these tags (in which case they specify angles)
exclude = set(['euler', 'finiteRotation', 'axisangle'])
self.scale(sc, scaleset, exclude)
|
scales all spatial dimensions by the given factor
FIXME: quaternions may cause problems, which are currently ignored
|
scaleModel
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xodetools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xodetools.py
|
BSD-3-Clause
|
def writeCustomParameters(self, f):
"""writes our custom parameters into an XML comment"""
f.write('<!--odeenvironment parameters\n')
if len(self._pass) > 0:
f.write('<passpairs>\n')
for pset in self._pass.values():
f.write(str(tuple(pset)) + '\n')
if self._centerOn is not None:
f.write('<centerOn>\n')
f.write(self._centerOn + '\n')
if self._affixToEnvironment is not None:
f.write('<affixToEnvironment>\n')
f.write(self._affixToEnvironment + '\n')
if self._nSensorElements > 0:
f.write('<sensors>\n')
f.write("SpecificJointSensor(" + str(self.sensorElements) + ",name='PressureElements')\n")
# compile all sensor commands
for sensor in self.sensors:
outstr = sensor[0] + "("
for val in sensor[1]:
outstr += ',' + repr(val)
for key, val in sensor[2].items():
outstr += ',' + key + '=' + repr(val)
outstr = outstr.replace('(,', '(') + ")\n"
f.write(outstr)
if self._colors:
f.write('<colors>\n')
for col in self._colors:
f.write(str(col) + "\n")
f.write('<end>\n')
f.write('-->\n')
|
writes our custom parameters into an XML comment
|
writeCustomParameters
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xodetools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xodetools.py
|
BSD-3-Clause
|
def writeXODE(self, filename=None):
"""writes the created structure (plus header and footer) to file with
the given basename (.xode is appended)"""
if filename is None: filename = self._xodename
f = open(filename + '.xode', 'wb') # <-- wb here ensures Linux compatibility
f.write('<?xml version="1.0" encoding="UTF-8"?>\n')
f.write('<xode version="1.0r23" name="' + self._xodename + '"\n')
f.write('xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://tanksoftware.com/xode/1.0r23/xode.xsd">\n\n')
self.write(f)
f.write('</xode>\n')
self.writeCustomParameters(f)
f.close()
print(("Wrote " + filename + '.xode'))
|
writes the created structure (plus header and footer) to file with
the given basename (.xode is appended)
|
writeXODE
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xodetools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xodetools.py
|
BSD-3-Clause
|
def __init__(self, name, **kwargs):
"""Creates one finger on a fixed palm, and adds some sensors"""
XODEfile.__init__(self, name, **kwargs)
# create the hand and finger
self.insertBody('palm', 'box', [10, 2, 10], 5, pos=[3.75, 4, 0], passSet=['pal'])
self.insertBody('sample', 'box', [10, 0.2, 40], 5, pos=[0, 0.4, 0], passSet=['sam'])
self.insertJoint('palm', 'sample', 'fixed', name='palm_support')
self.insertJoint('palm', 'sample', 'slider', axis={'x':0, 'y':0, 'z':1, 'FMax':11000.0, "HiStop":100.0, "LowStop":-100.0})
self.insertBody('finger1_link0', 'cappedCylinder', [1, 7.5], 5, pos=[0, 4, 8.75], passSet=['pal', 'f1'])
self.insertBody('finger1_link1', 'cappedCylinder', [1, 4], 5, pos=[0, 4, 14.5], passSet=['f1', 'f2'])
self.insertBody('fingertip', 'cappedCylinder', [1, 2.9], 5, pos=[0, 4, 17.95], passSet=['f2', 'haptic'])
self.insertJoint('palm', 'finger1_link0', 'hinge', \
axis={'x':-1, 'y':0, 'z':0, "HiStop":8, "LowStop":0.0}, anchor=(0, 4, 5))
self.insertJoint('finger1_link0', 'finger1_link1', 'hinge', \
axis={'x':-1, 'y':0, 'z':0, "HiStop":15, "LowStop":0.0}, anchor=(0, 4, 12.5))
self.insertJoint('finger1_link1', 'fingertip', 'hinge', \
axis={'x':-1, 'y':0, 'z':0, "HiStop":15, "LowStop":0.0}, anchor=(0, 4, 16.5))
self.centerOn('fingertip')
self.affixToEnvironment('palm_support')
self.insertFloor()
# add one group of haptic sensors
self._nSensorElements = 0
self.sensorElements = []
self.sensorGroupName = None
self.insertHapticSensors()
# give some structure to the sample
self.insertSampleStructure(**kwargs)
|
Creates one finger on a fixed palm, and adds some sensors
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xodetools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xodetools.py
|
BSD-3-Clause
|
def insertHapticSensorsRandom(self):
"""insert haptic sensors at random locations"""
self.sensorGroupName = 'haptic'
for _ in range(5):
self.insertHapticSensor(dx=random.uniform(-0.65, 0.65), dz=random.uniform(-0.4, 0.2))
##self.insertHapticSensor(dx=-0.055)
|
insert haptic sensors at random locations
|
insertHapticSensorsRandom
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xodetools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xodetools.py
|
BSD-3-Clause
|
def insertHapticSensors(self):
"""insert haptic sensors at predetermined locations
(check using testhapticsensorslocations.py)"""
self.sensorGroupName = 'haptic'
x = [0.28484253596392306, -0.59653176701550947, -0.36877718203650889, 0.50549219349016294, -0.22467390532644882, 0.051978612692656596, -0.18287341960589126, 0.40477910340060383, 0.56041266484490182, -0.47806390012776134]
z = [-0.20354546253333045, -0.23178541627964597, 0.04632154813480549, -0.27525024891443889, -0.20352571063065863, -0.07930554411063101, 0.025260779785407084, 0.091906227805625964, -0.031751424859005839, -0.0034220681106161277]
nSens = len(x)
for _ in range(nSens):
self.insertHapticSensor(dx=x.pop(), dz=z.pop())
|
insert haptic sensors at predetermined locations
(check using testhapticsensorslocations.py)
|
insertHapticSensors
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xodetools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xodetools.py
|
BSD-3-Clause
|
def __init__(self, name, **kwargs):
"""Creates hand with fingertip and palm sensors -- palm up"""
XODEfile.__init__(self, name, **kwargs)
# create the hand and finger
self.insertBody('palm', 'box', [10, 2, 10], 30, pos=[0, 0, 0], passSet=['pal'])
self.insertBody('pressure', 'box', [8, 0.5, 8], 30, pos=[0, 1, 0], passSet=['pal'])
self.insertBody('finger0_link0', 'cappedCylinder', [1, 7.5], 5, pos=[-8.75, 0, -2.5], euler=[0, 90, 0], passSet=['pal', 'f01'])
self.insertBody('finger0_link1', 'cappedCylinder', [1, 4], 5, pos=[-14.5, 0, -2.5], euler=[0, 90, 0], passSet=['f01', 'f02'])
self.insertBody('finger0_link2', 'cappedCylinder', [1, 2.9], 5, pos=[-17.95, 0, -2.5], euler=[0, 90, 0], passSet=['f02', 'f03'])
self.insertBody('finger0_link3', 'sphere', [1], 5, pos=[-19, 0, -2.5], passSet=['f03'])
self.insertBody('finger1_link0', 'cappedCylinder', [1, 7.5], 5, pos=[-3.75, 0, 8.75], passSet=['pal', 'f11'])
self.insertBody('finger1_link1', 'cappedCylinder', [1, 4], 5, pos=[-3.75, 0, 14.5], passSet=['f11', 'f12'])
self.insertBody('finger1_link2', 'cappedCylinder', [1, 2.9], 5, pos=[-3.75, 0, 17.95], passSet=['f12', 'f13'])
self.insertBody('finger1_link3', 'sphere', [1], 5, pos=[-3.75, 0, 19], passSet=['f13'])
self.insertBody('finger2_link0', 'cappedCylinder', [1, 7.5], 5, pos=[0, 0, 8.75], passSet=['pal', 'f21'])
self.insertBody('finger2_link1', 'cappedCylinder', [1, 4], 5, pos=[0, 0, 14.5], passSet=['f21', 'f22'])
self.insertBody('finger2_link2', 'cappedCylinder', [1, 2.9], 5, pos=[0, 0, 17.95], passSet=['f22', 'f23'])
self.insertBody('finger2_link3', 'sphere', [1], 5, pos=[0, 0, 19], passSet=['f23'])
self.insertBody('finger3_link0', 'cappedCylinder', [1, 7.5], 5, pos=[3.75, 0, 8.75], passSet=['pal', 'f31'])
self.insertBody('finger3_link1', 'cappedCylinder', [1, 4], 5, pos=[3.75, 0, 14.5], passSet=['f31', 'f32'])
self.insertBody('finger3_link2', 'cappedCylinder', [1, 2.9], 5, pos=[3.75, 0, 17.95], passSet=['f32', 'f33'])
self.insertBody('finger3_link3', 'sphere', [1], 5, pos=[3.75, 0, 19], passSet=['f33'])
self.insertJoint('palm', 'pressure', 'slider', axis={'x':0, 'y':1, 'z':0, "HiStop":0, "LowStop":-0.5, "StopERP":0.999, "StopCFM":0.002})
self.insertJoint('palm', 'finger0_link0', 'hinge', axis={'x':0, 'y':0, 'z':1, "HiStop":1.5, "LowStop":0.0}, anchor=(-5, 0, -2.5))
self.insertJoint('finger0_link0', 'finger0_link1', 'hinge', axis={'x':0, 'y':0, 'z':1, "HiStop":1.5, "LowStop":0.0}, anchor=(-12.5, 0, -2.5))
self.insertJoint('finger0_link1', 'finger0_link2', 'hinge', axis={'x':0, 'y':0, 'z':1, "HiStop":1.5, "LowStop":0.0}, anchor=(-16.5, 0, -2.5))
self.insertJoint('finger0_link2', 'finger0_link3', 'slider', axis={'x':1, 'y':0, 'z':0, "HiStop":0, "LowStop":-0.5, "StopERP":0.999, "StopCFM":0.002})
self.insertJoint('palm', 'finger1_link0', 'hinge', axis={'x':1, 'y':0, 'z':0, "HiStop":1.5, "LowStop":0.0}, anchor=(3.75, 0, 5))
self.insertJoint('finger1_link0', 'finger1_link1', 'hinge', axis={'x':1, 'y':0, 'z':0, "HiStop":1.5, "LowStop":0.0}, anchor=(3.75, 0, 12.5))
self.insertJoint('finger1_link1', 'finger1_link2', 'hinge', axis={'x':1, 'y':0, 'z':0, "HiStop":1.5, "LowStop":0.0}, anchor=(3.75, 0, 16.5))
self.insertJoint('finger1_link2', 'finger1_link3', 'slider', axis={'x':0, 'y':0, 'z':1, "HiStop":0, "LowStop":-0.5, "StopERP":0.999, "StopCFM":0.002})
self.insertJoint('palm', 'finger2_link0', 'hinge', axis={'x':1, 'y':0, 'z':0, "HiStop":1.5, "LowStop":0.0}, anchor=(0, 0, 5))
self.insertJoint('finger2_link0', 'finger2_link1', 'hinge', axis={'x':1, 'y':0, 'z':0, "HiStop":1.5, "LowStop":0.0}, anchor=(0, 0, 12.5))
self.insertJoint('finger2_link1', 'finger2_link2', 'hinge', axis={'x':1, 'y':0, 'z':0, "HiStop":1.5, "LowStop":0.0}, anchor=(0, 0, 16.5))
self.insertJoint('finger2_link2', 'finger2_link3', 'slider', axis={'x':0, 'y':0, 'z':1, "HiStop":0, "LowStop":-0.5, "StopERP":0.999, "StopCFM":0.002})
self.insertJoint('palm', 'finger3_link0', 'hinge', axis={'x':1, 'y':0, 'z':0, "HiStop":1.5, "LowStop":0.0}, anchor=(-3.75, 0, 5))
self.insertJoint('finger3_link0', 'finger3_link1', 'hinge', axis={'x':1, 'y':0, 'z':0, "HiStop":1.5, "LowStop":0.0}, anchor=(-3.75, 0, 12.5))
self.insertJoint('finger3_link1', 'finger3_link2', 'hinge', axis={'x':1, 'y':0, 'z':0, "HiStop":1.5, "LowStop":0.0}, anchor=(-3.75, 0, 16.5))
self.insertJoint('finger3_link2', 'finger3_link3', 'slider', axis={'x':0, 'y':0, 'z':1, "HiStop":0, "LowStop":-0.5, "StopERP":0.999, "StopCFM":0.002})
self.centerOn('palm')
self.insertFloor(y= -1)
# add one group of haptic sensors
self._nSensorElements = 0
self.sensorElements = []
self.sensorGroupName = None
|
Creates hand with fingertip and palm sensors -- palm up
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xodetools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xodetools.py
|
BSD-3-Clause
|
def __init__(self, name, **kwargs):
"""Creates hand with fingertip and palm sensors -- palm down"""
XODEfile.__init__(self, name, **kwargs)
# create the hand and finger
self.insertBody('palm', 'box', [10, 2, 10], 10, pos=[0, 0, 0], passSet=['pal'])
self.insertBody('pressure', 'box', [8, 0.5, 8], 10, pos=[0, -1, 0], passSet=['pal'])
self.insertBody('finger0_link0', 'cappedCylinder', [1, 7.5], 5, pos=[-8.75, 0, -2.5], euler=[0, 90, 0], passSet=['pal', 'f01'])
self.insertBody('finger0_link1', 'cappedCylinder', [1, 4], 5, pos=[-14.5, 0, -2.5], euler=[0, 90, 0], passSet=['f01', 'f02'])
self.insertBody('finger0_link2', 'cappedCylinder', [1, 2.9], 5, pos=[-17.95, 0, -2.5], euler=[0, 90, 0], passSet=['f02', 'f03'])
self.insertBody('finger0_link3', 'sphere', [1], 5, pos=[-19, 0, -2.5], passSet=['f03'])
self.insertBody('finger1_link0', 'cappedCylinder', [1, 7.5], 5, pos=[-3.75, 0, 8.75], passSet=['pal', 'f11'])
self.insertBody('finger1_link1', 'cappedCylinder', [1, 4], 5, pos=[-3.75, 0, 14.5], passSet=['f11', 'f12'])
self.insertBody('finger1_link2', 'cappedCylinder', [1, 2.9], 5, pos=[-3.75, 0, 17.95], passSet=['f12', 'f13'])
self.insertBody('finger1_link3', 'sphere', [1], 5, pos=[-3.75, 0, 19], passSet=['f13'])
self.insertBody('finger2_link0', 'cappedCylinder', [1, 7.5], 5, pos=[0, 0, 8.75], passSet=['pal', 'f21'])
self.insertBody('finger2_link1', 'cappedCylinder', [1, 4], 5, pos=[0, 0, 14.5], passSet=['f21', 'f22'])
self.insertBody('finger2_link2', 'cappedCylinder', [1, 2.9], 5, pos=[0, 0, 17.95], passSet=['f22', 'f23'])
self.insertBody('finger2_link3', 'sphere', [1], 5, pos=[0, 0, 19], passSet=['f23'])
self.insertBody('finger3_link0', 'cappedCylinder', [1, 7.5], 5, pos=[3.75, 0, 8.75], passSet=['pal', 'f31'])
self.insertBody('finger3_link1', 'cappedCylinder', [1, 4], 5, pos=[3.75, 0, 14.5], passSet=['f31', 'f32'])
self.insertBody('finger3_link2', 'cappedCylinder', [1, 2.9], 5, pos=[3.75, 0, 17.95], passSet=['f32', 'f33'])
self.insertBody('finger3_link3', 'sphere', [1], 5, pos=[3.75, 0, 19], passSet=['f33'])
## funny finger config with bestNetwork provided (try it ;)
##self.insertJoint('palm','pressure','slider', axis={'x':0,'y':-1,'z':0,"HiStop":0,"LowStop":-0.5, "StopERP":0.999,"StopCFM":0.002})
self.insertJoint('palm', 'pressure', 'slider', axis={'x':0, 'y':1, 'z':0, "HiStop":0, "LowStop":0, "StopERP":0.999, "StopCFM":0.002})
self.insertJoint('palm', 'finger0_link0', 'hinge', axis={'x':0, 'y':0, 'z':-1, "HiStop":1.5, "LowStop":0.0}, anchor=(-5, 0, -2.5))
self.insertJoint('finger0_link0', 'finger0_link1', 'hinge', axis={'x':0, 'y':0, 'z':-1, "HiStop":1.5, "LowStop":0.0}, anchor=(-12.5, 0, -2.5))
self.insertJoint('finger0_link1', 'finger0_link2', 'hinge', axis={'x':0, 'y':0, 'z':-1, "HiStop":1.5, "LowStop":0.0}, anchor=(-16.5, 0, -2.5))
self.insertJoint('finger0_link2', 'finger0_link3', 'slider', axis={'x':1, 'y':0, 'z':0, "HiStop":0, "LowStop":-0.5, "StopERP":0.999, "StopCFM":0.002})
self.insertJoint('palm', 'finger1_link0', 'hinge', axis={'x':-1, 'y':0, 'z':0, "HiStop":1.5, "LowStop":0.0}, anchor=(3.75, 0, 5))
self.insertJoint('finger1_link0', 'finger1_link1', 'hinge', axis={'x':-1, 'y':0, 'z':0, "HiStop":1.5, "LowStop":0.0}, anchor=(3.75, 0, 12.5))
self.insertJoint('finger1_link1', 'finger1_link2', 'hinge', axis={'x':-1, 'y':0, 'z':0, "HiStop":1.5, "LowStop":0.0}, anchor=(3.75, 0, 16.5))
self.insertJoint('finger1_link2', 'finger1_link3', 'slider', axis={'x':0, 'y':0, 'z':1, "HiStop":0, "LowStop":-0.5, "StopERP":0.999, "StopCFM":0.002})
self.insertJoint('palm', 'finger2_link0', 'hinge', axis={'x':-1, 'y':0, 'z':0, "HiStop":1.5, "LowStop":0.0}, anchor=(0, 0, 5))
self.insertJoint('finger2_link0', 'finger2_link1', 'hinge', axis={'x':-1, 'y':0, 'z':0, "HiStop":1.5, "LowStop":0.0}, anchor=(0, 0, 12.5))
self.insertJoint('finger2_link1', 'finger2_link2', 'hinge', axis={'x':-1, 'y':0, 'z':0, "HiStop":1.5, "LowStop":0.0}, anchor=(0, 0, 16.5))
self.insertJoint('finger2_link2', 'finger2_link3', 'slider', axis={'x':0, 'y':0, 'z':1, "HiStop":0, "LowStop":-0.5, "StopERP":0.999, "StopCFM":0.002})
self.insertJoint('palm', 'finger3_link0', 'hinge', axis={'x':-1, 'y':0, 'z':0, "HiStop":1.5, "LowStop":0.0}, anchor=(-3.75, 0, 5))
self.insertJoint('finger3_link0', 'finger3_link1', 'hinge', axis={'x':-1, 'y':0, 'z':0, "HiStop":1.5, "LowStop":0.0}, anchor=(-3.75, 0, 12.5))
self.insertJoint('finger3_link1', 'finger3_link2', 'hinge', axis={'x':-1, 'y':0, 'z':0, "HiStop":1.5, "LowStop":0.0}, anchor=(-3.75, 0, 16.5))
self.insertJoint('finger3_link2', 'finger3_link3', 'slider', axis={'x':0, 'y':0, 'z':1, "HiStop":0, "LowStop":-0.5, "StopERP":0.999, "StopCFM":0.002})
self.centerOn('palm')
self.insertFloor(y= -1.25)
# add one group of haptic sensors
self._nSensorElements = 0
self.sensorElements = []
self.sensorGroupName = None
|
Creates hand with fingertip and palm sensors -- palm down
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xodetools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xodetools.py
|
BSD-3-Clause
|
def insertSampleStructure(self, angle=30, std=0.05, dist=0.9, **kwargs):
"""create some ridges on the sample"""
for i in range(16):
name = 'ridge' + str(i)
self.insertBody(name, 'cappedCylinder', [0.2, 10], 5, pos=[0, 0.5, random.gauss(15 - dist * i, std)], euler=[0, angle, 0], passSet=['sam'])
self.insertJoint('sample', name, 'fixed')
|
create some ridges on the sample
|
insertSampleStructure
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xodetools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xodetools.py
|
BSD-3-Clause
|
def insertSampleStructure(self, xoffs=0.0, std=0.025, dist=0.9, **kwargs):
"""create four rows of spheres on the sample"""
dx = [dist * k for k in [-1, 0, 1]]
dz = [dist * k * 0.5 for k in [0, 1, 0]]
for i in range(16):
for k in range(3):
x = random.gauss(dx[k] + xoffs, std)
z = random.gauss(15 - dist * i + dz[k], std)
name = 'sphere' + str(i) + str(k)
self.insertBody(name, 'sphere', [0.2], 5, pos=[x, 0.5, z], passSet=['sam'])
self.insertJoint('sample', name, 'fixed')
|
create four rows of spheres on the sample
|
insertSampleStructure
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xodetools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xodetools.py
|
BSD-3-Clause
|
def __init__(self, name, **kwargs):
"""Creates hand with fingertip and palm sensors -- palm up"""
XODEfile.__init__(self, name, **kwargs)
# create the hand and finger
self.insertBody('palm', 'box', [4.12, 3.0, 2], 30, pos=[0, 0, 0], passSet=['total'], mass=3.356)
self.insertBody('neck', 'cappedCylinder', [0.25, 5.6], 5, pos=[0, 2.8, 0], euler=[90, 0, 0], passSet=['total'], mass=0.1)
self.insertBody('head', 'box', [3.0, 1.2, 1.5], 30, pos=[0, 4.0, 0], passSet=['total'], mass=0.1)
self.insertBody('arm_left', 'cappedCylinder', [0.25, 7.5], 5, pos=[2.06, -2.89, 0], euler=[90, 0, 0], passSet=['total'], mass=2.473)
self.insertBody('arm_right', 'cappedCylinder', [0.25, 7.5], 5, pos=[-2.06, -2.89, 0], euler=[90, 0, 0], passSet=['total'], mass=2.473)
self.insertBody('hip', 'cappedCylinder', [0.25, 3.2], 5, pos=[0, -1.6, 0], euler=[90, 0, 0], passSet=['total'], mass=0.192)
self.insertBody('pelvis', 'cappedCylinder', [0.25, 2.4], 5, pos=[0, -3.2, 0], euler=[0, 90, 0], passSet=['total'], mass=1.0)
self.insertBody('pelLeft', 'cappedCylinder', [0.25, 0.8], 5, pos=[1.2, -3.6, 0], euler=[90, 0, 0], passSet=['total'], mass=2.567)
self.insertBody('pelRight', 'cappedCylinder', [0.25, 0.8], 5, pos=[-1.2, -3.6, 0], euler=[90, 0, 0], passSet=['total'], mass=2.567)
self.insertBody('tibiaLeft', 'cappedCylinder', [0.25, 4.4], 5, pos=[1.2, -6.2, 0], euler=[90, 0, 0], passSet=['total'], mass=5.024)
self.insertBody('tibiaRight', 'cappedCylinder', [0.25, 4.4], 5, pos=[-1.2, -6.2, 0], euler=[90, 0, 0], passSet=['total'], mass=5.024)
self.insertBody('sheenLeft', 'cappedCylinder', [0.25, 3.8], 5, pos=[1.2, -10.3, 0], euler=[90, 0, 0], passSet=['total'], mass=3.236)
self.insertBody('sheenRight', 'cappedCylinder', [0.25, 3.8], 5, pos=[-1.2, -10.3, 0], euler=[90, 0, 0], passSet=['total'], mass=3.236)
self.insertBody('footLeft', 'box', [2.2, 0.4, 2.6], 3, pos=[1.2, -12.2, 0.75], passSet=['total'], mass=1.801)
self.insertBody('footRight', 'box', [2.2, 0.4, 2.6], 3, pos=[-1.2, -12.2, 0.75], passSet=['total'], mass=1.801)
self.insertJoint('palm', 'neck', 'fixed', axis={'x':0, 'y':0, 'z':0}, anchor=(0, 0, 0))
self.insertJoint('neck', 'head', 'fixed', axis={'x':0, 'y':0, 'z':0}, anchor=(0, 2.8, 0))
self.insertJoint('palm', 'arm_left', 'hinge', axis={'x':1, 'y':0, 'z':0}, anchor=(2.06, 0.86, 0))
self.insertJoint('palm', 'arm_right', 'hinge', axis={'x':1, 'y':0, 'z':0}, anchor=(-2.06, 0.86, 0))
self.insertJoint('palm', 'hip', 'hinge', axis={'x':0, 'y':1, 'z':0, "HiStop":0.5, "LowStop":-0.5}, anchor=(0, -1.6, 0))
self.insertJoint('hip', 'pelvis', 'fixed', axis={'x':0, 'y':0, 'z':0}, anchor=(0, -3.2, 0))
self.insertJoint('pelvis', 'pelLeft', 'hinge', axis={'x':0, 'y':0, 'z':-1, "HiStop":0.5, "LowStop":0.0}, anchor=(1.2, -3.2, 0))
self.insertJoint('pelvis', 'pelRight', 'hinge', axis={'x':0, 'y':0, 'z':1, "HiStop":0.5, "LowStop":0.0}, anchor=(-1.2, -3.2, 0))
self.insertJoint('pelLeft', 'tibiaLeft', 'hinge', axis={'x':1, 'y':0, 'z':0, "HiStop":1.5, "LowStop":0.0}, anchor=(1.2, -4.0, 0))
self.insertJoint('pelRight', 'tibiaRight', 'hinge', axis={'x':1, 'y':0, 'z':0, "HiStop":1.5, "LowStop":0.0}, anchor=(-1.2, -4.0, 0))
self.insertJoint('tibiaLeft', 'sheenLeft', 'hinge', axis={'x':-1, 'y':0, 'z':0, "HiStop":1.5, "LowStop":0.0}, anchor=(1.2, -8.4, 0))
self.insertJoint('tibiaRight', 'sheenRight', 'hinge', axis={'x':-1, 'y':0, 'z':0, "HiStop":1.5, "LowStop":0.0}, anchor=(-1.2, -8.4, 0))
self.insertJoint('sheenLeft', 'footLeft', 'hinge', axis={'x':1, 'y':0, 'z':0, "HiStop":0.25, "LowStop":-0.25}, anchor=(1.2, -12.2, 0))
self.insertJoint('sheenRight', 'footRight', 'hinge', axis={'x':1, 'y':0, 'z':0, "HiStop":0.25, "LowStop":-0.25}, anchor=(-1.2, -12.2, 0))
self.centerOn('palm')
self.insertFloor(y= -12.7)
# add one group of haptic sensors
self._nSensorElements = 0
self.sensorElements = []
self.sensorGroupName = None
|
Creates hand with fingertip and palm sensors -- palm up
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xodetools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xodetools.py
|
BSD-3-Clause
|
def __init__(self, name, **kwargs):
"""Creates hand with fingertip and palm sensors -- palm up"""
XODEfile.__init__(self, name, **kwargs)
# create the hand and finger
self.insertBody('body', 'box', [7.0, 16.0, 10.0], 30, pos=[0, 0, 2.0], passSet=['total'], mass=15.0, color=(0.5, 0.5, 0.4, 1.0))
#right arm
self.insertBody('shoulderUpRight', 'cappedCylinder', [0.5, 2.0], 5, pos=[2.5, 7.0, -3.5], euler=[0, 90, 0], passSet=['rightSh', 'total'], mass=0.25)
self.insertBody('shoulderLRRight', 'cappedCylinder', [0.5, 2.0], 5, pos=[3.5, 6.0, -3.5], euler=[90, 0, 0], passSet=['rightSh'], mass=0.25)
self.insertBody('shoulderPRRight', 'cappedCylinder', [0.5, 2.0], 5, pos=[3.5, 4.0, -3.5], euler=[90, 0, 0], passSet=['rightSh'], mass=0.25)
self.insertBody('armUpRight', 'cappedCylinder', [0.5, 2.0], 5, pos=[3.5, 2.0, -3.5], euler=[90, 0, 0], passSet=['rightAr', 'rightSh'], mass=0.25)
self.insertBody('armPRRight', 'cappedCylinder', [0.5, 2.0], 5, pos=[3.5, 0.0, -3.5], euler=[90, 0, 0], passSet=['rightAr'], mass=0.25)
self.insertBody('handUpRight', 'cappedCylinder', [0.5, 2.0], 5, pos=[3.5, -2.0, -3.5], euler=[90, 0, 0], passSet=['rightAr', 'rightHa'], mass=0.25)
#right hand
self.insertBody('palmRight', 'box', [1.5, 0.25, 0.5], 30, pos=[3.5, -3.0, -3.5], passSet=['rightHa'], mass=0.1, color=(0.6, 0.6, 0.3, 1.0))
self.insertBody('fingerRight1', 'box', [0.25, 1.0, 0.5], 30, pos=[4.0, -3.5, -3.5], passSet=['rightHa'], mass=0.1, color=(0.6, 0.6, 0.3, 1.0))
self.insertBody('fingerRight2', 'box', [0.25, 1.0, 0.5], 30, pos=[3.0, -3.5, -3.5], passSet=['rightHa'], mass=0.1, color=(0.6, 0.6, 0.3, 1.0))
#left arm
self.insertBody('shoulderUpLeft', 'cappedCylinder', [0.5, 2.0], 5, pos=[-2.5, 7.0, -3.5], euler=[0, 90, 0], passSet=['leftSh', 'total'], mass=0.25)
self.insertBody('shoulderLRLeft', 'cappedCylinder', [0.5, 2.0], 5, pos=[-3.5, 6.0, -3.5], euler=[90, 0, 0], passSet=['leftSh'], mass=0.25)
self.insertBody('shoulderPRLeft', 'cappedCylinder', [0.5, 2.0], 5, pos=[-3.5, 4.0, -3.5], euler=[90, 0, 0], passSet=['leftSh'], mass=0.25)
self.insertBody('armUpLeft', 'cappedCylinder', [0.5, 2.0], 5, pos=[-3.5, 2.0, -3.5], euler=[90, 0, 0], passSet=['leftAr', 'leftSh'], mass=0.25)
self.insertBody('armPRLeft', 'cappedCylinder', [0.5, 2.0], 5, pos=[-3.5, 0.0, -3.5], euler=[90, 0, 0], passSet=['leftAr'], mass=0.25)
self.insertBody('handUpLeft', 'cappedCylinder', [0.5, 2.0], 5, pos=[-3.5, -2.0, -3.5], euler=[90, 0, 0], passSet=['leftAr', 'leftHa'], mass=0.25)
#left hand
self.insertBody('palmLeft', 'box', [1.5, 0.25, 0.5], 30, pos=[-3.5, -3.0, -3.5], passSet=['leftHa'], mass=0.1, color=(0.6, 0.6, 0.3, 1.0))
self.insertBody('fingerLeft1', 'box', [0.25, 1.0, 0.5], 30, pos=[-4.0, -3.5, -3.5], passSet=['leftHa'], mass=0.1, color=(0.6, 0.6, 0.3, 1.0))
self.insertBody('fingerLeft2', 'box', [0.25, 1.0, 0.5], 30, pos=[-3.0, -3.5, -3.5], passSet=['leftHa'], mass=0.1, color=(0.6, 0.6, 0.3, 1.0))
#Joints right
self.insertJoint('body', 'shoulderUpRight', 'hinge', axis={'x':1, 'y':0, 'z':0}, anchor=(2.5, 7.0, -3.5))
self.insertJoint('shoulderUpRight', 'shoulderLRRight', 'hinge', axis={'x':0, 'y':0, 'z':1}, anchor=(3.5, 7.0, -3.5))
self.insertJoint('shoulderLRRight', 'shoulderPRRight', 'hinge', axis={'x':0, 'y':1, 'z':0}, anchor=(3.5, 5.0, -3.5))
self.insertJoint('shoulderPRRight', 'armUpRight', 'hinge', axis={'x':1, 'y':0, 'z':0}, anchor=(3.5, 3.0, -3.5))
self.insertJoint('armUpRight', 'armPRRight', 'hinge', axis={'x':0, 'y':1, 'z':0}, anchor=(3.5, 1.0, -3.5))
self.insertJoint('armPRRight', 'handUpRight', 'hinge', axis={'x':1, 'y':0, 'z':0}, anchor=(3.5, -1.0, -3.5))
self.insertJoint('handUpRight', 'palmRight', 'hinge', axis={'x':0, 'y':1, 'z':0}, anchor=(3.5, -3.0, -3.5))
self.insertJoint('palmRight', 'fingerRight1', 'fixed', axis={'x':0, 'y':0, 'z':0}, anchor=(4.0, -3.5, -3.5))
self.insertJoint('palmRight', 'fingerRight2', 'hinge', axis={'x':0, 'y':0, 'z':1}, anchor=(3.0, -3.0, -3.5))
#Joints left
self.insertJoint('body', 'shoulderUpLeft', 'hinge', axis={'x':1, 'y':0, 'z':0}, anchor=(-2.5, 7.0, -3.5))
self.insertJoint('shoulderUpLeft', 'shoulderLRLeft', 'hinge', axis={'x':0, 'y':0, 'z':1}, anchor=(-3.5, 7.0, -3.5))
self.insertJoint('shoulderLRLeft', 'shoulderPRLeft', 'hinge', axis={'x':0, 'y':1, 'z':0}, anchor=(-3.5, 5.0, -3.5))
self.insertJoint('shoulderPRLeft', 'armUpLeft', 'hinge', axis={'x':1, 'y':0, 'z':0}, anchor=(-3.5, 3.0, -3.5))
self.insertJoint('armUpLeft', 'armPRLeft', 'hinge', axis={'x':0, 'y':1, 'z':0}, anchor=(-3.5, 1.0, -3.5))
self.insertJoint('armPRLeft', 'handUpLeft', 'hinge', axis={'x':1, 'y':0, 'z':0}, anchor=(-3.5, -1.0, -3.5))
self.insertJoint('handUpLeft', 'palmLeft', 'hinge', axis={'x':0, 'y':1, 'z':0}, anchor=(-3.5, -3.0, -3.5))
self.insertJoint('palmLeft', 'fingerLeft1', 'fixed', axis={'x':0, 'y':0, 'z':0}, anchor=(-4.0, -3.5, -3.5))
self.insertJoint('palmLeft', 'fingerLeft2', 'hinge', axis={'x':0, 'y':0, 'z':1}, anchor=(-3.0, -3.0, -3.5))
self.centerOn('body')
self.insertFloor(y= -8.0)
# add one group of haptic sensors
self._nSensorElements = 0
self.sensorElements = []
self.sensorGroupName = None
|
Creates hand with fingertip and palm sensors -- palm up
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/tools/xodetools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/tools/xodetools.py
|
BSD-3-Clause
|
def _setObject(self, kclass, **kwargs):
"""
Create the Geom object and apply transforms. Only call for placeable
Geoms.
"""
if (self._body is None):
# The Geom is independant so it can have its own transform
kwargs['space'] = self._space
obj = kclass(**kwargs)
t = self.getTransform()
obj.setPosition(t.getPosition())
obj.setRotation(t.getRotation())
self.setODEObject(obj)
elif (self._transformed):
# The Geom is attached to a body so to transform it, it must
# by placed in a GeomTransform and its transform is relative
# to the body.
kwargs['space'] = None
obj = kclass(**kwargs)
t = self.getTransform(self._body)
obj.setPosition(t.getPosition())
obj.setRotation(t.getRotation())
trans = ode.GeomTransform(self._space)
trans.setGeom(obj)
trans.setBody(self._body.getODEObject())
self.setODEObject(trans)
else:
kwargs['space'] = self._space
obj = kclass(**kwargs)
obj.setBody(self._body.getODEObject())
self.setODEObject(obj)
|
Create the Geom object and apply transforms. Only call for placeable
Geoms.
|
_setObject
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/ode/xode_changes/geom.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/ode/xode_changes/geom.py
|
BSD-3-Clause
|
def __init__(self, env=None, maxsteps=1000):
"""
:key env: (optional) an instance of a ShipSteeringEnvironment (or a subclass thereof)
:key maxsteps: maximal number of steps (default: 1000)
"""
if env == None:
env = ShipSteeringEnvironment(render=False)
EpisodicTask.__init__(self, env)
self.N = maxsteps
self.t = 0
# scale sensors
# [h, hdot, v]
self.sensor_limits = [(-180.0, +180.0), (-180.0, +180.0), (-10.0, +40.0)]
# actions: thrust, rudder
self.actor_limits = [(-1.0, +2.0), (-90.0, +90.0)]
# scale reward over episode, such that max. return = 100
self.rewardscale = 100. / maxsteps / self.sensor_limits[2][1]
|
:key env: (optional) an instance of a ShipSteeringEnvironment (or a subclass thereof)
:key maxsteps: maximal number of steps (default: 1000)
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/rl/environments/shipsteer/northwardtask.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/rl/environments/shipsteer/northwardtask.py
|
BSD-3-Clause
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.