code
stringlengths 66
870k
| docstring
stringlengths 19
26.7k
| func_name
stringlengths 1
138
| language
stringclasses 1
value | repo
stringlengths 7
68
| path
stringlengths 5
324
| url
stringlengths 46
389
| license
stringclasses 7
values |
---|---|---|---|---|---|---|---|
def assignClasses(self):
"""Ensure that the class field is properly defined and nClasses is set.
"""
if len(self['class']) < len(self['target']):
if self.outdim > 1:
raise IndexError('Classes and 1-of-k representation out of sync!')
else:
self.setField('class', self.getField('target').astype(int))
if self.nClasses <= 0:
flat_labels = list(ravel(self['class']))
classes = list(set(flat_labels))
self.nClasses = len(classes)
|
Ensure that the class field is properly defined and nClasses is set.
|
assignClasses
|
python
|
pybrain/pybrain
|
pybrain/datasets/classification.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/classification.py
|
BSD-3-Clause
|
def getClass(self, idx):
"""Return the label of given class."""
try:
return self.class_labels[idx]
except IndexError:
print("error: classes not defined yet!")
|
Return the label of given class.
|
getClass
|
python
|
pybrain/pybrain
|
pybrain/datasets/classification.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/classification.py
|
BSD-3-Clause
|
def _convertToOneOfMany(self, bounds=(0, 1)):
"""Converts the target classes to a 1-of-k representation, retaining the
old targets as a field `class`.
To supply specific bounds, set the `bounds` parameter, which consists of
target values for non-membership and membership."""
if self.outdim != 1:
# we already have the correct representation (hopefully...)
return
if self.nClasses <= 0:
self.calculateStatistics()
oldtarg = self.getField('target')
newtarg = zeros([len(self), self.nClasses], dtype='Int32') + bounds[0]
for i in range(len(self)):
newtarg[i, int(oldtarg[i])] = bounds[1]
self.setField('target', newtarg)
self.setField('class', oldtarg)
# probably better not to link field, otherwise there may be confusion
# if getLinked() is called?
##self.linkFields(self.link.append('class'))
|
Converts the target classes to a 1-of-k representation, retaining the
old targets as a field `class`.
To supply specific bounds, set the `bounds` parameter, which consists of
target values for non-membership and membership.
|
_convertToOneOfMany
|
python
|
pybrain/pybrain
|
pybrain/datasets/classification.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/classification.py
|
BSD-3-Clause
|
def splitByClass(self, cls_select):
"""Produce two new datasets, the first one comprising only the class
selected (0..nClasses-1), the second one containing the remaining
samples."""
leftIndices, dummy = where(self['class'] == cls_select)
rightIndices, dummy = where(self['class'] != cls_select)
leftDs = self.copy()
leftDs.clear()
rightDs = leftDs.copy()
# check which fields to split
splitThis = []
for f in ['input', 'target', 'class', 'importance', 'aux']:
if self.hasField(f):
splitThis.append(f)
# need to synchronize input, target, and class fields
for field in splitThis:
leftDs.setField(field, self[field][leftIndices, :])
leftDs.endmarker[field] = len(leftIndices)
rightDs.setField(field, self[field][rightIndices, :])
rightDs.endmarker[field] = len(rightIndices)
leftDs.assignClasses()
rightDs.assignClasses()
return leftDs, rightDs
|
Produce two new datasets, the first one comprising only the class
selected (0..nClasses-1), the second one containing the remaining
samples.
|
splitByClass
|
python
|
pybrain/pybrain
|
pybrain/datasets/classification.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/classification.py
|
BSD-3-Clause
|
def castToRegression(self, values):
"""Converts data set into a SupervisedDataSet for regression. Classes
are used as indices into the value array given."""
regDs = SupervisedDataSet(self.indim, 1)
fields = self.getFieldNames()
fields.remove('target')
for f in fields:
regDs.setField(f, self[f])
regDs.setField('target', values[self['class'].astype(int)])
return regDs
|
Converts data set into a SupervisedDataSet for regression. Classes
are used as indices into the value array given.
|
castToRegression
|
python
|
pybrain/pybrain
|
pybrain/datasets/classification.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/classification.py
|
BSD-3-Clause
|
def __init__(self, inp, target, nb_classes=0, class_labels=None):
"""Initialize an empty dataset.
`inp` is used to specify the dimensionality of the input. While the
number of targets is given by implicitly by the training samples, it can
also be set explicity by `nb_classes`. To give the classes names, supply
an iterable of strings as `class_labels`."""
# FIXME: hard to keep nClasses synchronized if appendLinked() etc. is used.
SequentialDataSet.__init__(self, inp, target)
# we want integer class numbers as targets
self.convertField('target', int)
if len(self) > 0:
# calculate class histogram, if we already have data
self.calculateStatistics()
self.nClasses = nb_classes
self.class_labels = list(range(self.nClasses)) if class_labels is None else class_labels
# copy classes (targets may be changed into other representation)
self.setField('class', self.getField('target'))
|
Initialize an empty dataset.
`inp` is used to specify the dimensionality of the input. While the
number of targets is given by implicitly by the training samples, it can
also be set explicity by `nb_classes`. To give the classes names, supply
an iterable of strings as `class_labels`.
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/datasets/classification.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/classification.py
|
BSD-3-Clause
|
def stratifiedSplit(self, testfrac=0.15, evalfrac=0):
"""Stratified random split of a sequence data set, i.e. (almost) same
proportion of sequences in each class for all fragments. Return
(training, test[, eval]) data sets.
The parameter `testfrac` specifies the fraction of total sequences in
the test dataset, while `evalfrac` specifies the fraction of sequences
in the validation dataset. If `evalfrac` equals 0, no validationset is
returned.
It is assumed that the last target for each class is the class of the
sequence. Also mind that the data will be sorted by class in the
resulting data sets."""
lastidx = ravel(self['sequence_index'][1:] - 1).astype(int)
classes = ravel(self['class'][lastidx])
trnDs = self.copy()
trnDs.clear()
tstDs = trnDs.copy()
valDs = trnDs.copy()
for c in range(self.nClasses):
# scramble available sequences for current class
idx, = where(classes == c)
nCls = len(idx)
perm = permutation(nCls).tolist()
nTst, nVal = (int(testfrac * nCls), int(evalfrac * nCls))
for count, ds in zip([nTst, nVal, nCls - nTst - nVal], [tstDs, valDs, trnDs]):
for _ in range(count):
feat = self.getSequence(idx[perm.pop()])[0]
ds.newSequence()
for s in feat:
ds.addSample(s, [c])
ds.assignClasses()
assert perm == []
if len(valDs) > 0:
return trnDs, tstDs, valDs
else:
return trnDs, tstDs
|
Stratified random split of a sequence data set, i.e. (almost) same
proportion of sequences in each class for all fragments. Return
(training, test[, eval]) data sets.
The parameter `testfrac` specifies the fraction of total sequences in
the test dataset, while `evalfrac` specifies the fraction of sequences
in the validation dataset. If `evalfrac` equals 0, no validationset is
returned.
It is assumed that the last target for each class is the class of the
sequence. Also mind that the data will be sorted by class in the
resulting data sets.
|
stratifiedSplit
|
python
|
pybrain/pybrain
|
pybrain/datasets/classification.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/classification.py
|
BSD-3-Clause
|
def getSequenceClass(self, index=None):
"""Return a flat array (or single scalar) comprising one class per
sequence as given by last pattern in each sequence."""
lastSeq = self.getNumSequences() - 1
if index is None:
classidx = r_[self['sequence_index'].astype(int)[1:, 0] - 1, len(self) - 1]
return self['class'][classidx, 0]
else:
if index < lastSeq:
return self['class'][self['sequence_index'].astype(int)[index + 1, 0] - 1, 0]
elif index == lastSeq:
return self['class'][len(self) - 1, 0]
raise IndexError("Sequence index out of range!")
|
Return a flat array (or single scalar) comprising one class per
sequence as given by last pattern in each sequence.
|
getSequenceClass
|
python
|
pybrain/pybrain
|
pybrain/datasets/classification.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/classification.py
|
BSD-3-Clause
|
def removeSequence(self, index):
"""Remove sequence (including class field) from the dataset."""
self.assignClasses()
self.linkFields(['input', 'target', 'class'])
SequentialDataSet.removeSequence(self, index)
self.unlinkFields(['class'])
|
Remove sequence (including class field) from the dataset.
|
removeSequence
|
python
|
pybrain/pybrain
|
pybrain/datasets/classification.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/classification.py
|
BSD-3-Clause
|
def save_netcdf(self, flo, **kwargs):
"""Save the current dataset to the given file as a netCDF dataset to be
used with Alex Graves nnl_ndim program in
task="sequence classification" mode."""
# make sure classes are defined properly
assert len(self['class']) == len(self['target'])
if self.nClasses > 10:
raise
from pycdf import CDF, NC
# need to regenerate the file name
filename = flo.name
flo.close()
# Create the file. Raise the automode flag, so that
# we do not need to worry about setting the define/data mode.
d = CDF(filename, NC.WRITE | NC.CREATE | NC.TRUNC)
d.automode()
# Create 2 global attributes, one holding a string,
# and the other one 2 floats.
d.title = 'Sequential data exported from PyBrain (www.pybrain.org)'
# create the dimensions
dimsize = { 'numTimesteps': len(self),
'inputPattSize': self.indim,
'numLabels': self.nClasses,
'numSeqs': self.getNumSequences(),
'maxLabelLength': 2 }
dims = {}
for name, sz in dimsize.items():
dims[name] = d.def_dim(name, sz)
# Create a netCDF record variables
inputs = d.def_var('inputs', NC.FLOAT, (dims['numTimesteps'], dims['inputPattSize']))
targetStrings = d.def_var('targetStrings', NC.CHAR, (dims['numSeqs'], dims['maxLabelLength']))
seqLengths = d.def_var('seqLengths', NC.INT, (dims['numSeqs']))
labels = d.def_var('labels', NC.CHAR, (dims['numLabels'], dims['maxLabelLength']))
# Switch to data mode (automatic)
# assign float and integer arrays directly
inputs.put(self['input'].astype(single))
# strings must be written as scalars (sucks!)
for i in range(dimsize['numSeqs']):
targetStrings.put_1(i, str(self.getSequenceClass(i)))
for i in range(self.nClasses):
labels.put_1(i, str(i))
# need colon syntax for assigning list
seqLengths[:] = [self.getSequenceLength(i) for i in range(self.getNumSequences())]
# Close file
print(("wrote netCDF file " + filename))
d.close()
|
Save the current dataset to the given file as a netCDF dataset to be
used with Alex Graves nnl_ndim program in
task="sequence classification" mode.
|
save_netcdf
|
python
|
pybrain/pybrain
|
pybrain/datasets/classification.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/classification.py
|
BSD-3-Clause
|
def setVectorFormat(self, vf):
"""Determine which format to use for returning vectors. Use the property vectorformat.
:key type: possible types are '1d', '2d', 'list'
'1d' - example: array([1,2,3])
'2d' - example: array([[1,2,3]])
'list' - example: [1,2,3]
'none' - no conversion
"""
switch = {
'1d': self._convertArray1d,
'2d': self._convertArray2d,
'list': self._convertList,
'none': lambda x:x
}
try:
self._convert = switch[vf]
self.__vectorformat = vf
except KeyError:
raise VectorFormatError("vector format must be one of '1d', '2d', 'list'. given: %s" % vf)
|
Determine which format to use for returning vectors. Use the property vectorformat.
:key type: possible types are '1d', '2d', 'list'
'1d' - example: array([1,2,3])
'2d' - example: array([[1,2,3]])
'list' - example: [1,2,3]
'none' - no conversion
|
setVectorFormat
|
python
|
pybrain/pybrain
|
pybrain/datasets/dataset.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/dataset.py
|
BSD-3-Clause
|
def _convertArray2d(self, vector, column=False):
"""Converts the incoming `vector` to a 2d vector with shape (1,x), or
(x,1) if `column` is set, where x is the number of elements."""
a = asarray(vector)
sh = a.shape
# also reshape scalar values to 2d-index
if len(sh) == 0:
sh = (1,)
if len(sh) == 1:
# use reshape to add extra dimension
if column:
return a.reshape((sh[0], 1))
else:
return a.reshape((1, sh[0]))
else:
# vector is not 1d, return a without change
return a
|
Converts the incoming `vector` to a 2d vector with shape (1,x), or
(x,1) if `column` is set, where x is the number of elements.
|
_convertArray2d
|
python
|
pybrain/pybrain
|
pybrain/datasets/dataset.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/dataset.py
|
BSD-3-Clause
|
def addField(self, label, dim):
"""Add a field to the dataset.
A field consists of a string `label` and a numpy ndarray of dimension
`dim`."""
self.data[label] = zeros((0, dim), float)
self.endmarker[label] = 0
|
Add a field to the dataset.
A field consists of a string `label` and a numpy ndarray of dimension
`dim`.
|
addField
|
python
|
pybrain/pybrain
|
pybrain/datasets/dataset.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/dataset.py
|
BSD-3-Clause
|
def setField(self, label, arr):
"""Set the given array `arr` as the new array of field `label`,"""
as_arr = asarray(arr)
self.data[label] = as_arr
self.endmarker[label] = as_arr.shape[0]
|
Set the given array `arr` as the new array of field `label`,
|
setField
|
python
|
pybrain/pybrain
|
pybrain/datasets/dataset.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/dataset.py
|
BSD-3-Clause
|
def linkFields(self, linklist):
"""Link the length of several fields given by the list of strings
`linklist`."""
length = self[linklist[0]].shape[0]
for l in linklist:
if self[l].shape[0] != length:
raise OutOfSyncError
self.link = linklist
|
Link the length of several fields given by the list of strings
`linklist`.
|
linkFields
|
python
|
pybrain/pybrain
|
pybrain/datasets/dataset.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/dataset.py
|
BSD-3-Clause
|
def unlinkFields(self, unlinklist=None):
"""Remove fields from the link list or clears link given by the list of
string `linklist`.
This method has no effect if fields are not linked."""
link = self.link
if unlinklist is not None:
for l in unlinklist:
if l in self.link:
link.remove(l)
self.link = link
else:
self.link = []
|
Remove fields from the link list or clears link given by the list of
string `linklist`.
This method has no effect if fields are not linked.
|
unlinkFields
|
python
|
pybrain/pybrain
|
pybrain/datasets/dataset.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/dataset.py
|
BSD-3-Clause
|
def getDimension(self, label):
"""Return the dimension/number of columns for the field given by
`label`."""
try:
dim = self.data[label].shape[1]
except KeyError:
raise KeyError('dataset field %s not found.' % label)
return dim
|
Return the dimension/number of columns for the field given by
`label`.
|
getDimension
|
python
|
pybrain/pybrain
|
pybrain/datasets/dataset.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/dataset.py
|
BSD-3-Clause
|
def getLength(self):
"""Return the length of the linked data fields. If no linked fields exist,
return the length of the longest field."""
if self.link == []:
try:
length = self.endmarker[max(self.endmarker)]
except ValueError:
return 0
return length
else:
# all linked fields have equal length. return the length of the first.
l = self.link[0]
return self.endmarker[l]
|
Return the length of the linked data fields. If no linked fields exist,
return the length of the longest field.
|
getLength
|
python
|
pybrain/pybrain
|
pybrain/datasets/dataset.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/dataset.py
|
BSD-3-Clause
|
def _resizeArray(self, a):
"""Increase the buffer size. It should always be one longer than the
current sequence length and double on every growth step."""
shape = list(a.shape)
shape[0] = (shape[0] + 1) * 2
return resize(a, shape)
|
Increase the buffer size. It should always be one longer than the
current sequence length and double on every growth step.
|
_resizeArray
|
python
|
pybrain/pybrain
|
pybrain/datasets/dataset.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/dataset.py
|
BSD-3-Clause
|
def _appendUnlinked(self, label, row):
"""Append `row` to the field array with the given `label`.
Do not call this function from outside, use ,append() instead.
Automatically casts vector to a 2d (or higher) shape."""
if self.data[label].shape[0] <= self.endmarker[label]:
self._resize(label)
self.data[label][self.endmarker[label], :] = row
self.endmarker[label] += 1
|
Append `row` to the field array with the given `label`.
Do not call this function from outside, use ,append() instead.
Automatically casts vector to a 2d (or higher) shape.
|
_appendUnlinked
|
python
|
pybrain/pybrain
|
pybrain/datasets/dataset.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/dataset.py
|
BSD-3-Clause
|
def append(self, label, row):
"""Append `row` to the array given by `label`.
If the field is linked with others, the function throws an
`OutOfSyncError` because all linked fields always have to have the same
length. If you want to add a row to all linked fields, use appendLink
instead."""
if label in self.link:
raise OutOfSyncError
self._appendUnlinked(label, row)
|
Append `row` to the array given by `label`.
If the field is linked with others, the function throws an
`OutOfSyncError` because all linked fields always have to have the same
length. If you want to add a row to all linked fields, use appendLink
instead.
|
append
|
python
|
pybrain/pybrain
|
pybrain/datasets/dataset.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/dataset.py
|
BSD-3-Clause
|
def appendLinked(self, *args):
"""Add rows to all linked fields at once."""
assert len(args) == len(self.link)
for i, l in enumerate(self.link):
self._appendUnlinked(l, args[i])
|
Add rows to all linked fields at once.
|
appendLinked
|
python
|
pybrain/pybrain
|
pybrain/datasets/dataset.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/dataset.py
|
BSD-3-Clause
|
def getLinked(self, index=None):
"""Access the dataset randomly or sequential.
If called with `index`, the appropriate line consisting of all linked
fields is returned and the internal marker is set to the next line.
Otherwise the marked line is returned and the marker is moved to the
next line."""
if self.link == []:
raise NoLinkedFieldsError('The dataset does not have any linked fields.')
if index == None:
# no index given, return the currently marked line and step marker one line forward
index = self.index
self.index += 1
else:
# return the indexed line and move marker to next line
self.index = index + 1
if index >= self.getLength():
raise IndexError('index out of bounds of the dataset.')
return [self._convert(self.data[l][index]) for l in self.link]
|
Access the dataset randomly or sequential.
If called with `index`, the appropriate line consisting of all linked
fields is returned and the internal marker is set to the next line.
Otherwise the marked line is returned and the marker is moved to the
next line.
|
getLinked
|
python
|
pybrain/pybrain
|
pybrain/datasets/dataset.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/dataset.py
|
BSD-3-Clause
|
def getField(self, label):
"""Return the entire field given by `label` as an array or list,
depending on user settings."""
# Note: label_data should always be a np.array, so this will never
# actually clone a list (performances are O(1)).
label_data = self.data[label][:self.endmarker[label]]
# Convert to list if requested.
if self.vectorformat == 'list':
label_data = label_data.tolist()
return label_data
|
Return the entire field given by `label` as an array or list,
depending on user settings.
|
getField
|
python
|
pybrain/pybrain
|
pybrain/datasets/dataset.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/dataset.py
|
BSD-3-Clause
|
def convertField(self, label, newtype):
"""Convert the given field to a different data type."""
try:
self.setField(label, self.data[label].astype(newtype))
except KeyError:
raise KeyError('convertField: dataset field %s not found.' % label)
|
Convert the given field to a different data type.
|
convertField
|
python
|
pybrain/pybrain
|
pybrain/datasets/dataset.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/dataset.py
|
BSD-3-Clause
|
def clear(self, unlinked=False):
"""Clear the dataset.
If linked fields exist, only the linked fields will be deleted unless
`unlinked` is set to True. If no fields are linked, all data will be
deleted."""
self.reset()
keys = self.link
if keys == [] or unlinked:
# iterate over all fields instead
keys = self.data
for k in keys:
shape = list(self.data[k].shape)
# set to zero rows
shape[0] = 0
self.data[k] = zeros(shape)
self.endmarker[k] = 0
|
Clear the dataset.
If linked fields exist, only the linked fields will be deleted unless
`unlinked` is set to True. If no fields are linked, all data will be
deleted.
|
clear
|
python
|
pybrain/pybrain
|
pybrain/datasets/dataset.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/dataset.py
|
BSD-3-Clause
|
def reconstruct(cls, filename):
"""Read an incomplete data set (option arraysonly) into the given one. """
# FIXME: Obsolete! Kept here because of some old files...
obj = cls(1, 1)
for key, val in pickle.load(file(filename)).items():
obj.setField(key, val)
return obj
|
Read an incomplete data set (option arraysonly) into the given one.
|
reconstruct
|
python
|
pybrain/pybrain
|
pybrain/datasets/dataset.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/dataset.py
|
BSD-3-Clause
|
def save_pickle(self, flo, protocol=0, compact=False):
"""Save data set as pickle, removing empty space if desired."""
if compact:
# remove padding of zeros for each field
for field in self.getFieldNames():
temp = self[field][0:self.endmarker[field] + 1, :]
self.setField(field, temp)
Serializable.save_pickle(self, flo, protocol)
|
Save data set as pickle, removing empty space if desired.
|
save_pickle
|
python
|
pybrain/pybrain
|
pybrain/datasets/dataset.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/dataset.py
|
BSD-3-Clause
|
def batches(self, label, n, permutation=None):
"""Yield batches of the size of n from the dataset.
A single batch is an array of with dim columns and n rows. The last
batch is possibly smaller.
If permutation is given, batches are yielded in the corresponding
order."""
# First calculate how many batches we will have
full_batches, rest = divmod(len(self), n)
number_of_batches = full_batches if rest == 0 else full_batches + 1
# We make one iterator for the startindexes ...
startindexes = (i * n for i in range(number_of_batches))
# ... and one for the stop indexes
stopindexes = (((i + 1) * n) for i in range(number_of_batches - 1))
# The last stop index is the last element of the list (last batch
# might not be filled completely)
stopindexes = chain(stopindexes, [len(self)])
# Now combine them
indexes = list(zip(startindexes, stopindexes))
# Shuffle them according to the permutation if one is given
if permutation is not None:
indexes = [indexes[i] for i in permutation]
for start, stop in indexes:
yield self.data[label][start:stop]
|
Yield batches of the size of n from the dataset.
A single batch is an array of with dim columns and n rows. The last
batch is possibly smaller.
If permutation is given, batches are yielded in the corresponding
order.
|
batches
|
python
|
pybrain/pybrain
|
pybrain/datasets/dataset.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/dataset.py
|
BSD-3-Clause
|
def randomBatches(self, label, n):
"""Like .batches(), but the order is random."""
permutation = random.shuffle(list(range(len(self))))
return self.batches(label, n, permutation)
|
Like .batches(), but the order is random.
|
randomBatches
|
python
|
pybrain/pybrain
|
pybrain/datasets/dataset.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/dataset.py
|
BSD-3-Clause
|
def replaceNansByMeans(self):
"""Replace all not-a-number entries in the dataset by the means of the
corresponding column."""
for d in self.data.values():
means = scipy.nansum(d[:self.getLength()], axis=0) / self.getLength()
for i in range(self.getLength()):
for j in range(d.dim):
if not scipy.isfinite(d[i, j]):
d[i, j] = means[j]
|
Replace all not-a-number entries in the dataset by the means of the
corresponding column.
|
replaceNansByMeans
|
python
|
pybrain/pybrain
|
pybrain/datasets/dataset.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/dataset.py
|
BSD-3-Clause
|
def addSample(self, inp, target, importance=None):
""" adds a new sample consisting of input, target and importance.
:arg inp: the input of the sample
:arg target: the target of the sample
:key importance: the importance of the sample. If left None, the
importance will be set to 1.0
"""
if importance == None:
importance = ones(len(target))
self.appendLinked(inp, target, importance)
|
adds a new sample consisting of input, target and importance.
:arg inp: the input of the sample
:arg target: the target of the sample
:key importance: the importance of the sample. If left None, the
importance will be set to 1.0
|
addSample
|
python
|
pybrain/pybrain
|
pybrain/datasets/importance.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/importance.py
|
BSD-3-Clause
|
def _evaluateSequence(self, f, seq, verbose = False):
""" return the importance-ponderated MSE over one sequence. """
totalError = 0
ponderation = 0.
for input, target, importance in seq:
res = f(input)
e = 0.5 * dot(importance.flatten(), ((target-res).flatten()**2))
totalError += e
ponderation += sum(importance)
if verbose:
print(( 'out: ', fListToString(list(res))))
print(( 'correct: ', fListToString(target)))
print(( 'importance:', fListToString(importance)))
print(( 'error: % .8f' % e))
return totalError, ponderation
|
return the importance-ponderated MSE over one sequence.
|
_evaluateSequence
|
python
|
pybrain/pybrain
|
pybrain/datasets/importance.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/importance.py
|
BSD-3-Clause
|
def __init__(self, statedim, actiondim):
""" initialize the reinforcement dataset, add the 3 fields state, action and
reward, and create an index marker. This class is basically a wrapper function
that renames the fields of SupervisedDataSet into the more common reinforcement
learning names. Instead of 'episodes' though, we deal with 'sequences' here. """
DataSet.__init__(self)
# add 3 fields: input, target, importance
self.addField('state', statedim)
self.addField('action', actiondim)
self.addField('reward', 1)
# link these 3 fields
self.linkFields(['state', 'action', 'reward'])
# reset the index marker
self.index = 0
# add field that stores the beginning of a new episode
self.addField('sequence_index', 1)
self.append('sequence_index', 0)
self.currentSeq = 0
self.statedim = statedim
self.actiondim = actiondim
# the input and target dimensions (for compatibility)
self.indim = self.statedim
self.outdim = self.actiondim
|
initialize the reinforcement dataset, add the 3 fields state, action and
reward, and create an index marker. This class is basically a wrapper function
that renames the fields of SupervisedDataSet into the more common reinforcement
learning names. Instead of 'episodes' though, we deal with 'sequences' here.
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/datasets/reinforcement.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/reinforcement.py
|
BSD-3-Clause
|
def newSequence(self):
"""Marks the beginning of a new sequence. this function does nothing if
called at the very start of the data set. Otherwise, it starts a new
sequence. Empty sequences are not allowed, and an EmptySequenceError
exception will be raised."""
length = self.getLength()
if length != 0:
if ravel(self.getField('sequence_index'))[-1] == length:
raise EmptySequenceError
self._appendUnlinked('sequence_index', length)
|
Marks the beginning of a new sequence. this function does nothing if
called at the very start of the data set. Otherwise, it starts a new
sequence. Empty sequences are not allowed, and an EmptySequenceError
exception will be raised.
|
newSequence
|
python
|
pybrain/pybrain
|
pybrain/datasets/sequential.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/sequential.py
|
BSD-3-Clause
|
def _getSequenceField(self, index, field):
"""Return a sequence of one single field given by `field` and indexed by
`index`."""
seq = ravel(self.getField('sequence_index'))
if len(seq) == index + 1:
# user wants to access the last sequence, return until end of data
return self.getField(field)[int(seq[index]):]
if len(seq) < index + 1:
# sequence index beyond number of sequences. raise exception
raise IndexError('sequence does not exist.')
return self.getField(field)[seq[index]:seq[index + 1]]
|
Return a sequence of one single field given by `field` and indexed by
`index`.
|
_getSequenceField
|
python
|
pybrain/pybrain
|
pybrain/datasets/sequential.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/sequential.py
|
BSD-3-Clause
|
def endOfSequence(self, index):
"""Return True if the marker was moved over the last element of
sequence `index`, False otherwise.
Mostly used like .endOfData() with while loops."""
seq = ravel(self.getField('sequence_index'))
if len(seq) == index + 1:
# user wants to access the last sequence, return until end of data
return self.endOfData()
if len(seq) < index + 1:
# sequence index beyond number of sequences. raise exception
raise IndexError('sequence does not exist.')
else:
return self.index >= seq[index + 1]
|
Return True if the marker was moved over the last element of
sequence `index`, False otherwise.
Mostly used like .endOfData() with while loops.
|
endOfSequence
|
python
|
pybrain/pybrain
|
pybrain/datasets/sequential.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/sequential.py
|
BSD-3-Clause
|
def gotoSequence(self, index):
"""Move the internal marker to the beginning of sequence `index`."""
try:
self.index = ravel(self.getField('sequence_index'))[index]
except IndexError:
raise IndexError('sequence does not exist')
|
Move the internal marker to the beginning of sequence `index`.
|
gotoSequence
|
python
|
pybrain/pybrain
|
pybrain/datasets/sequential.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/sequential.py
|
BSD-3-Clause
|
def getCurrentSequence(self):
"""Return the current sequence, according to the marker position."""
seq = ravel(self.getField('sequence_index'))
return len(seq) - sum(seq > self.index) - 1
|
Return the current sequence, according to the marker position.
|
getCurrentSequence
|
python
|
pybrain/pybrain
|
pybrain/datasets/sequential.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/sequential.py
|
BSD-3-Clause
|
def getSequenceLength(self, index):
"""Return the length of the given sequence. If `index` is pointing
to the last sequence, the sequence is considered to go until the end
of the dataset."""
seq = ravel(self.getField('sequence_index'))
if len(seq) == index + 1:
# user wants to access the last sequence, return until end of data
return int(self.getLength() - seq[index])
if len(seq) < index + 1:
# sequence index beyond number of sequences. raise exception
raise IndexError('sequence does not exist.')
return int(seq[index + 1] - seq[index])
|
Return the length of the given sequence. If `index` is pointing
to the last sequence, the sequence is considered to go until the end
of the dataset.
|
getSequenceLength
|
python
|
pybrain/pybrain
|
pybrain/datasets/sequential.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/sequential.py
|
BSD-3-Clause
|
def removeSequence(self, index):
"""Remove the `index`'th sequence from the dataset and places the
marker to the sample following the removed sequence."""
if index >= self.getNumSequences():
# sequence doesn't exist, raise exception
raise IndexError('sequence does not exist.')
sequences = ravel(self.getField('sequence_index'))
seqstart = sequences[index]
if index == self.getNumSequences() - 1:
# last sequence is going to be removed
lastSeqDeleted = True
seqend = self.getLength()
else:
lastSeqDeleted = False
# sequence to remove is not last one (sequence_index exists)
seqend = sequences[index + 1]
# cut out data from all fields
for label in self.link:
# concatenate rows from start to seqstart and from seqend to end
self.data[label] = r_[self.data[label][:seqstart, :], self.data[label][seqend:, :]]
# update endmarkers of linked fields
self.endmarker[label] -= seqend - seqstart
# update sequence indices
for i, val in enumerate(sequences):
if val > seqstart:
self.data['sequence_index'][i, :] -= seqend - seqstart
# remove sequence index of deleted sequence and reduce its endmarker
self.data['sequence_index'] = r_[self.data['sequence_index'][:index, :], self.data['sequence_index'][index + 1:, :]]
self.endmarker['sequence_index'] -= 1
if lastSeqDeleted:
# last sequence was removed
# move sequence marker to last remaining sequence
self.currentSeq = index - 1
# move sample marker to end of dataset
self.index = self.getLength()
# if there was only 1 sequence left, re-initialize sequence index
if self.getLength() == 0:
self.clear()
else:
# removed sequence was not last one (sequence_index exists)
# move sequence marker to the new sequence at position 'index'
self.currentSeq = index
# move sample marker to beginning of sequence at position 'index'
self.index = ravel(self.getField('sequence_index'))[index]
|
Remove the `index`'th sequence from the dataset and places the
marker to the sample following the removed sequence.
|
removeSequence
|
python
|
pybrain/pybrain
|
pybrain/datasets/sequential.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/sequential.py
|
BSD-3-Clause
|
def evaluateModuleMSE(self, module, averageOver=1, **args):
"""Evaluate the predictions of a module on a sequential dataset
and return the MSE (potentially average over a number of epochs)."""
res = 0.
for dummy in range(averageOver):
ponderation = 0.
totalError = 0
for seq in self._provideSequences():
module.reset()
e, p = self._evaluateSequence(module.activate, seq, **args)
totalError += e
ponderation += p
assert ponderation > 0
res += totalError / ponderation
return res / averageOver
|
Evaluate the predictions of a module on a sequential dataset
and return the MSE (potentially average over a number of epochs).
|
evaluateModuleMSE
|
python
|
pybrain/pybrain
|
pybrain/datasets/sequential.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/sequential.py
|
BSD-3-Clause
|
def splitWithProportion(self, proportion=0.5):
"""Produce two new datasets, each containing a part of the sequences.
The first dataset will have a fraction given by `proportion` of the
dataset."""
l = self.getNumSequences()
leftIndices = sample(list(range(l)), int(l * proportion))
leftDs = self.copy()
leftDs.clear()
rightDs = leftDs.copy()
index = 0
for seq in iter(self):
if index in leftIndices:
leftDs.newSequence()
for sp in seq:
leftDs.addSample(*sp)
else:
rightDs.newSequence()
for sp in seq:
rightDs.addSample(*sp)
index += 1
return leftDs, rightDs
|
Produce two new datasets, each containing a part of the sequences.
The first dataset will have a fraction given by `proportion` of the
dataset.
|
splitWithProportion
|
python
|
pybrain/pybrain
|
pybrain/datasets/sequential.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/sequential.py
|
BSD-3-Clause
|
def __init__(self, inp, target):
"""Initialize an empty supervised dataset.
Pass `inp` and `target` to specify the dimensions of the input and
target vectors."""
DataSet.__init__(self)
if isscalar(inp):
# add input and target fields and link them
self.addField('input', inp)
self.addField('target', target)
else:
self.setField('input', inp)
self.setField('target', target)
self.linkFields(['input', 'target'])
# reset the index marker
self.index = 0
# the input and target dimensions
self.indim = self.getDimension('input')
self.outdim = self.getDimension('target')
|
Initialize an empty supervised dataset.
Pass `inp` and `target` to specify the dimensions of the input and
target vectors.
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/datasets/supervised.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/supervised.py
|
BSD-3-Clause
|
def setField(self, label, arr, **kwargs):
"""Set the given array `arr` as the new array of the field specfied by
`label`."""
DataSet.setField(self, label, arr, **kwargs)
# refresh dimensions, in case any of these fields were modified
if label == 'input':
self.indim = self.getDimension('input')
elif label == 'target':
self.outdim = self.getDimension('target')
|
Set the given array `arr` as the new array of the field specfied by
`label`.
|
setField
|
python
|
pybrain/pybrain
|
pybrain/datasets/supervised.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/supervised.py
|
BSD-3-Clause
|
def evaluateMSE(self, f, **args):
"""Evaluate the predictions of a function on the dataset and return the
Mean Squared Error, incorporating importance."""
ponderation = 0.
totalError = 0
for seq in self._provideSequences():
e, p = self._evaluateSequence(f, seq, **args)
totalError += e
ponderation += p
assert ponderation > 0
return totalError/ponderation
|
Evaluate the predictions of a function on the dataset and return the
Mean Squared Error, incorporating importance.
|
evaluateMSE
|
python
|
pybrain/pybrain
|
pybrain/datasets/supervised.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/supervised.py
|
BSD-3-Clause
|
def _evaluateSequence(self, f, seq, verbose = False):
"""Return the ponderated MSE over one sequence."""
totalError = 0.
ponderation = 0.
for input, target in seq:
res = f(input)
e = 0.5 * sum((target-res).flatten()**2)
totalError += e
ponderation += len(target)
if verbose:
print(( 'out: ', fListToString( list( res ) )))
print(( 'correct:', fListToString( target )))
print(( 'error: % .8f' % e))
return totalError, ponderation
|
Return the ponderated MSE over one sequence.
|
_evaluateSequence
|
python
|
pybrain/pybrain
|
pybrain/datasets/supervised.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/supervised.py
|
BSD-3-Clause
|
def evaluateModuleMSE(self, module, averageOver = 1, **args):
"""Evaluate the predictions of a module on a dataset and return the MSE
(potentially average over a number of epochs)."""
res = 0.
for dummy in range(averageOver):
module.reset()
res += self.evaluateMSE(module.activate, **args)
return res/averageOver
|
Evaluate the predictions of a module on a dataset and return the MSE
(potentially average over a number of epochs).
|
evaluateModuleMSE
|
python
|
pybrain/pybrain
|
pybrain/datasets/supervised.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/supervised.py
|
BSD-3-Clause
|
def splitWithProportion(self, proportion = 0.5):
"""Produce two new datasets, the first one containing the fraction given
by `proportion` of the samples."""
indicies = random.permutation(len(self))
separator = int(len(self) * proportion)
leftIndicies = indicies[:separator]
rightIndicies = indicies[separator:]
leftDs = SupervisedDataSet(inp=self['input'][leftIndicies].copy(),
target=self['target'][leftIndicies].copy())
rightDs = SupervisedDataSet(inp=self['input'][rightIndicies].copy(),
target=self['target'][rightIndicies].copy())
return leftDs, rightDs
|
Produce two new datasets, the first one containing the fraction given
by `proportion` of the samples.
|
splitWithProportion
|
python
|
pybrain/pybrain
|
pybrain/datasets/supervised.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/supervised.py
|
BSD-3-Clause
|
def __init__(self, dim):
"""Initialize an empty unsupervised dataset.
Pass `dim` to specify the dimensionality of the samples."""
super(UnsupervisedDataSet, self).__init__()
self.addField('sample', dim)
self.linkFields(['sample'])
self.dim = dim
# reset the index marker
self.index = 0
|
Initialize an empty unsupervised dataset.
Pass `dim` to specify the dimensionality of the samples.
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/datasets/unsupervised.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/datasets/unsupervised.py
|
BSD-3-Clause
|
def _learnStep(self):
""" generate a new evaluable by mutation, compare them, and keep the best. """
# re-evaluate the current individual in case the evaluator is noisy
if self.evaluatorIsNoisy:
self.bestEvaluation = self._oneEvaluation(self.bestEvaluable)
# hill-climbing
challenger = self.bestEvaluable.copy()
challenger.mutate()
self._oneEvaluation(challenger)
|
generate a new evaluable by mutation, compare them, and keep the best.
|
_learnStep
|
python
|
pybrain/pybrain
|
pybrain/optimization/hillclimber.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/hillclimber.py
|
BSD-3-Clause
|
def __init__(self, evaluator = None, initEvaluable = None, **kwargs):
""" The evaluator is any callable object (e.g. a lambda function).
Algorithm parameters can be set here if provided as keyword arguments. """
# set all algorithm-specific parameters in one go:
self.__minimize = None
self.__evaluator = None
setAllArgs(self, kwargs)
# bookkeeping
self.numEvaluations = 0
self.numLearningSteps = 0
if self.storeAllEvaluated:
self._allEvaluated = []
self._allEvaluations = []
elif self.storeAllEvaluations:
self._allEvaluations = []
if evaluator is not None:
self.setEvaluator(evaluator, initEvaluable)
|
The evaluator is any callable object (e.g. a lambda function).
Algorithm parameters can be set here if provided as keyword arguments.
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/optimization/optimizer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/optimizer.py
|
BSD-3-Clause
|
def _setMinimize(self, flag):
""" Minimization vs. maximization: priority to algorithm requirements,
then evaluator, default = maximize."""
self.__minimize = flag
opp = False
if flag is True:
if self.mustMaximize:
opp = True
self.__minimize = False
if flag is False:
if self.mustMinimize:
opp = True
self.__minimize = True
if self.__evaluator is not None:
if opp is not self._wasOpposed:
self._flipDirection()
self._wasOpposed = opp
|
Minimization vs. maximization: priority to algorithm requirements,
then evaluator, default = maximize.
|
_setMinimize
|
python
|
pybrain/pybrain
|
pybrain/optimization/optimizer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/optimizer.py
|
BSD-3-Clause
|
def setEvaluator(self, evaluator, initEvaluable = None):
""" If not provided upon construction, the objective function can be given through this method.
If necessary, also provide an initial evaluable."""
# default settings, if provided by the evaluator:
if isinstance(evaluator, FitnessEvaluator):
if self.desiredEvaluation is None:
self.desiredEvaluation = evaluator.desiredValue
if self.minimize is None:
self.minimize = evaluator.toBeMinimized
# in some cases, we can deduce the dimension from the provided evaluator:
if isinstance(evaluator, FunctionEnvironment):
if self.numParameters is None:
self.numParameters = evaluator.xdim
elif self.numParameters is not evaluator.xdim:
raise ValueError("Parameter dimension mismatch: evaluator expects "+str(evaluator.xdim)\
+" but it was set to "+str(self.numParameters)+".")
'''added by JPQ to handle boundaries on the parameters'''
self.evaluator = evaluator
if self.xBound is None:
self.xBound = evaluator.xbound
if self.feasible is None:
self.feasible = evaluator.feasible
if self.constrained is None:
self.constrained = evaluator.constrained
if self.violation is None:
self.violation = evaluator.violation
# ---
# default: maximize
if self.minimize is None:
self.minimize = False
self.__evaluator = evaluator
if self._wasOpposed:
self._flipDirection()
#set the starting point for optimization (as provided, or randomly)
self._setInitEvaluable(initEvaluable)
self.bestEvaluation = None
self._additionalInit()
self.bestEvaluable = self._initEvaluable
|
If not provided upon construction, the objective function can be given through this method.
If necessary, also provide an initial evaluable.
|
setEvaluator
|
python
|
pybrain/pybrain
|
pybrain/optimization/optimizer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/optimizer.py
|
BSD-3-Clause
|
def learn(self, additionalLearningSteps = None):
""" The main loop that does the learning. """
assert self.__evaluator is not None, "No evaluator has been set. Learning cannot start."
if additionalLearningSteps is not None:
self.maxLearningSteps = self.numLearningSteps + additionalLearningSteps - 1
while not self._stoppingCriterion():
try:
self._learnStep()
self._notify()
self.numLearningSteps += 1
except DivergenceError:
logging.warning("Algorithm diverged. Stopped after "+str(self.numLearningSteps)+" learning steps.")
break
except ValueError:
logging.warning("Something numerical went wrong. Stopped after "+str(self.numLearningSteps)+" learning steps.")
break
return self._bestFound()
|
The main loop that does the learning.
|
learn
|
python
|
pybrain/pybrain
|
pybrain/optimization/optimizer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/optimizer.py
|
BSD-3-Clause
|
def _bestFound(self):
""" return the best found evaluable and its associated fitness. """
bestE = self.bestEvaluable.params.copy() if self._wasWrapped else self.bestEvaluable
if self._wasOpposed and isscalar(self.bestEvaluation):
bestF = -self.bestEvaluation
else:
bestF = self.bestEvaluation
return bestE, bestF
|
return the best found evaluable and its associated fitness.
|
_bestFound
|
python
|
pybrain/pybrain
|
pybrain/optimization/optimizer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/optimizer.py
|
BSD-3-Clause
|
def _oneEvaluation(self, evaluable):
""" This method should be called by all optimizers for producing an evaluation. """
if self._wasUnwrapped:
self.wrappingEvaluable._setParameters(evaluable)
res = self.__evaluator(self.wrappingEvaluable)
elif self._wasWrapped:
res = self.__evaluator(evaluable.params)
else:
res = self.__evaluator(evaluable)
''' added by JPQ '''
if self.constrained :
self.feasible = self.__evaluator.outfeasible
self.violation = self.__evaluator.outviolation
# ---
if isscalar(res):
# detect numerical instability
if isnan(res) or isinf(res):
raise DivergenceError
# always keep track of the best
if (self.numEvaluations == 0
or self.bestEvaluation is None
or (self.minimize and res <= self.bestEvaluation)
or (not self.minimize and res >= self.bestEvaluation)):
self.bestEvaluation = res
self.bestEvaluable = evaluable.copy()
self.numEvaluations += 1
# if desired, also keep track of all evaluables and/or their fitness.
if self.storeAllEvaluated:
if self._wasUnwrapped:
self._allEvaluated.append(self.wrappingEvaluable.copy())
elif self._wasWrapped:
self._allEvaluated.append(evaluable.params.copy())
else:
self._allEvaluated.append(evaluable.copy())
if self.storeAllEvaluations:
if self._wasOpposed and isscalar(res):
''' added by JPQ '''
if self.constrained :
self._allEvaluations.append([-res,self.feasible,self.violation])
# ---
else:
self._allEvaluations.append(-res)
else:
''' added by JPQ '''
if self.constrained :
self._allEvaluations.append([res,self.feasible,self.violation])
# ---
else:
self._allEvaluations.append(res)
''' added by JPQ '''
if self.constrained :
return [res,self.feasible,self.violation]
else:
# ---
return res
|
This method should be called by all optimizers for producing an evaluation.
|
_oneEvaluation
|
python
|
pybrain/pybrain
|
pybrain/optimization/optimizer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/optimizer.py
|
BSD-3-Clause
|
def _notify(self):
""" Provide some feedback during the run. """
if self.verbose:
print(('Step:', self.numLearningSteps, 'best:', self.bestEvaluation))
if self.listener is not None:
self.listener(self.bestEvaluable, self.bestEvaluation)
|
Provide some feedback during the run.
|
_notify
|
python
|
pybrain/pybrain
|
pybrain/optimization/optimizer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/optimizer.py
|
BSD-3-Clause
|
def _setInitEvaluable(self, evaluable):
""" If the parameters are wrapped, we keep track of the wrapper explicitly. """
if isinstance(evaluable, ParameterContainer):
self.wrappingEvaluable = evaluable.copy()
self._wasUnwrapped = True
elif not (evaluable is None
or isinstance(evaluable, list)
or isinstance(evaluable, ndarray)):
raise ValueError('Continuous optimization algorithms require a list, array or'+\
' ParameterContainer as evaluable.')
BlackBoxOptimizer._setInitEvaluable(self, evaluable)
self._wasWrapped = False
self._initEvaluable = self._initEvaluable.params.copy()
|
If the parameters are wrapped, we keep track of the wrapper explicitly.
|
_setInitEvaluable
|
python
|
pybrain/pybrain
|
pybrain/optimization/optimizer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/optimizer.py
|
BSD-3-Clause
|
def _bestFound(self):
""" return the best found evaluable and its associated fitness. """
bestE, bestF = BlackBoxOptimizer._bestFound(self)
if self._wasUnwrapped:
self.wrappingEvaluable._setParameters(bestE)
bestE = self.wrappingEvaluable.copy()
return bestE, bestF
|
return the best found evaluable and its associated fitness.
|
_bestFound
|
python
|
pybrain/pybrain
|
pybrain/optimization/optimizer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/optimizer.py
|
BSD-3-Clause
|
def sorti(vect):
""" sort, but also return the indices-changes """
tmp = sorted([(x_y[1], x_y[0]) for x_y in enumerate(ravel(vect))])
res1 = array([x[0] for x in tmp])
res2 = array([int(x[1]) for x in tmp])
return res1, res2
|
sort, but also return the indices-changes
|
sorti
|
python
|
pybrain/pybrain
|
pybrain/optimization/distributionbased/cmaes.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/distributionbased/cmaes.py
|
BSD-3-Clause
|
def _generateConformingBatch(self):
""" Generate a batch of samples that conforms to the current distribution.
If importance mixing is enabled, this can reuse old samples. """
|
Generate a batch of samples that conforms to the current distribution.
If importance mixing is enabled, this can reuse old samples.
|
_generateConformingBatch
|
python
|
pybrain/pybrain
|
pybrain/optimization/distributionbased/distributionbased.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/distributionbased/distributionbased.py
|
BSD-3-Clause
|
def _produceNewSample(self):
""" returns a new sample, its fitness and its densities """
chosenOne = drawIndex(self.alphas, True)
mu = self.mus[chosenOne]
if self.useAnticipatedMeanShift:
if len(self.allsamples) % 2 == 1 and len(self.allsamples) > 1:
if not(self.elitism and chosenOne == self.bestChosenCenter):
mu += self.meanShifts[chosenOne]
if self.diagonalOnly:
sample = normal(mu, self.sigmas[chosenOne])
else:
sample = multivariate_normal(mu, self.sigmas[chosenOne])
if self.sampleElitism and len(self.allsamples) > self.windowSize and len(self.allsamples) % self.windowSize == 0:
sample = self.bestEvaluable.copy()
fit = self._oneEvaluation(sample)
if ((not self.minimize and fit >= self.bestEvaluation)
or (self.minimize and fit <= self.bestEvaluation)
or len(self.allsamples) == 0):
# used to determine which center produced the current best
self.bestChosenCenter = chosenOne
self.bestSigma = self.sigmas[chosenOne].copy()
if self.minimize:
fit = -fit
self.allfitnesses.append(fit)
self.allsamples.append(sample)
return sample, fit
|
returns a new sample, its fitness and its densities
|
_produceNewSample
|
python
|
pybrain/pybrain
|
pybrain/optimization/distributionbased/fem.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/distributionbased/fem.py
|
BSD-3-Clause
|
def _computeUpdateSize(self, densities, sampleIndex):
""" compute the the center-update-size for each sample
using transformed fitnesses """
# determine (transformed) fitnesses
transformedfitnesses = self.shapingFunction(self.fitnesses)
# force renormaliziation
transformedfitnesses /= max(transformedfitnesses)
updateSize = transformedfitnesses[sampleIndex] * densities
return updateSize * self.forgetFactor
|
compute the the center-update-size for each sample
using transformed fitnesses
|
_computeUpdateSize
|
python
|
pybrain/pybrain
|
pybrain/optimization/distributionbased/fem.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/distributionbased/fem.py
|
BSD-3-Clause
|
def _updateShaping(self):
""" Daan: "This won't work. I like it!" """
assert self.numberOfCenters == 1
possible = self.shapingFunction.getPossibleParameters(self.windowSize)
matchValues = []
pdfs = [multivariateNormalPdf(s, self.mus[0], self.sigmas[0])
for s in self.samples]
for p in possible:
self.shapingFunction.setParameter(p)
transformedFitnesses = self.shapingFunction(self.fitnesses)
#transformedFitnesses /= sum(transformedFitnesses)
sumValue = sum([x * log(y) for x, y in zip(pdfs, transformedFitnesses) if y > 0])
normalization = sum([x * y for x, y in zip(pdfs, transformedFitnesses) if y > 0])
matchValues.append(sumValue / normalization)
self.shapingFunction.setParameter(possible[argmax(matchValues)])
if len(self.allsamples) % 100 == 0:
print((possible[argmax(matchValues)]))
print((fListToString(matchValues, 3)))
|
Daan: "This won't work. I like it!"
|
_updateShaping
|
python
|
pybrain/pybrain
|
pybrain/optimization/distributionbased/fem.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/distributionbased/fem.py
|
BSD-3-Clause
|
def _logDerivsFactorSigma(self, samples, mu, invSigma, factorSigma):
""" Compute the log-derivatives w.r.t. the factorized covariance matrix components.
This implementation should be faster than the one in Vanilla. """
res = zeros((len(samples), self.numDistrParams - self.numParameters))
invA = inv(factorSigma)
diagInvA = diag(diag(invA))
for i, sample in enumerate(samples):
s = dot(invA.T, (sample - mu))
R = outer(s, dot(invA, s)) - diagInvA
res[i] = triu2flat(R)
return res
|
Compute the log-derivatives w.r.t. the factorized covariance matrix components.
This implementation should be faster than the one in Vanilla.
|
_logDerivsFactorSigma
|
python
|
pybrain/pybrain
|
pybrain/optimization/distributionbased/nes.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/distributionbased/nes.py
|
BSD-3-Clause
|
def _produceSamples(self):
""" Append batch size new samples and evaluate them. """
tmp = [self._sample2base(self._produceSample()) for _ in range(self.batchSize)]
list(map(self._oneEvaluation, tmp))
self._pointers = list(range(len(self._allEvaluated) - self.batchSize, len(self._allEvaluated)))
|
Append batch size new samples and evaluate them.
|
_produceSamples
|
python
|
pybrain/pybrain
|
pybrain/optimization/distributionbased/rank1.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/distributionbased/rank1.py
|
BSD-3-Clause
|
def _notify(self):
""" Provide some feedback during the run. """
if self.verbose:
if self.numEvaluations % self.verboseGaps == 0:
print(('Step:', self.numLearningSteps, 'best:', self.bestEvaluation,
'logVar', round(self._logDetA, 3),
'log|vector|', round(log(dot(self._principalVector, self._principalVector))/2, 3)))
if self.listener is not None:
self.listener(self.bestEvaluable, self.bestEvaluation)
|
Provide some feedback during the run.
|
_notify
|
python
|
pybrain/pybrain
|
pybrain/optimization/distributionbased/rank1.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/distributionbased/rank1.py
|
BSD-3-Clause
|
def test():
""" Rank-1 NEX easily solves high-dimensional Rosenbrock functions. """
from pybrain.rl.environments.functions.unimodal import RosenbrockFunction
dim = 40
f = RosenbrockFunction(dim)
x0 = -ones(dim)
l = Rank1NES(f, x0, verbose=True, verboseGaps=500)
l.learn()
|
Rank-1 NEX easily solves high-dimensional Rosenbrock functions.
|
test
|
python
|
pybrain/pybrain
|
pybrain/optimization/distributionbased/rank1.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/distributionbased/rank1.py
|
BSD-3-Clause
|
def _produceSamples(self):
""" Append batch size new samples and evaluate them. """
if self.clearStorage:
self._allEvaluated = []
self._allEvaluations = []
tmp = [self._sample2base(self._produceSample()) for _ in range(self.batchSize)]
list(map(self._oneEvaluation, tmp))
self._pointers = list(range(len(self._allEvaluated) - self.batchSize, len(self._allEvaluated)))
|
Append batch size new samples and evaluate them.
|
_produceSamples
|
python
|
pybrain/pybrain
|
pybrain/optimization/distributionbased/snes.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/distributionbased/snes.py
|
BSD-3-Clause
|
def _produceSamples(self):
""" Append batchsize new samples and evaluate them. """
if self.numLearningSteps == 0 or not self.importanceMixing:
for _ in range(self.batchSize):
self._produceNewSample()
self.allGenerated.append(self.batchSize + self.allGenerated[-1])
# using new importance mixing code
else:
oldpoints = self.allSamples[-self.batchSize:]
oldDetFactorSigma = det(self.allFactorSigmas[-2])
newDetFactorSigma = det(self.factorSigma)
invA = inv(self.factorSigma)
offset = len(self.allSamples) - self.batchSize
oldInvA = inv(self.allFactorSigmas[-2])
oldX = self.allCenters[-2]
def oldpdf(s):
p = dot(oldInvA.T, (s- oldX))
return exp(-0.5 * dot(p, p)) / oldDetFactorSigma
def newpdf(s):
p = dot(invA.T, (s - self.x))
return exp(-0.5 * dot(p, p)) / newDetFactorSigma
def newSample():
p = randn(self.numParameters)
return dot(self.factorSigma.T, p) + self.x
reused, newpoints = importanceMixing(oldpoints, oldpdf, newpdf,
newSample, self.forcedRefresh)
self.allGenerated.append(self.allGenerated[-1]+len(newpoints))
for i in reused:
self.allSamples.append(self.allSamples[offset+i])
self.allFitnesses.append(self.allFitnesses[offset+i])
for s in newpoints:
self._produceNewSample(s)
|
Append batchsize new samples and evaluate them.
|
_produceSamples
|
python
|
pybrain/pybrain
|
pybrain/optimization/distributionbased/ves.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/distributionbased/ves.py
|
BSD-3-Clause
|
def _hasConverged(self):
""" When the largest eigenvalue is smaller than 10e-20, we assume the
algorithms has converged. """
eigs = abs(diag(self.factorSigma))
return min(eigs) < 1e-10
|
When the largest eigenvalue is smaller than 10e-20, we assume the
algorithms has converged.
|
_hasConverged
|
python
|
pybrain/pybrain
|
pybrain/optimization/distributionbased/ves.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/distributionbased/ves.py
|
BSD-3-Clause
|
def _revertToSafety(self):
""" When encountering a bad matrix, this is how we revert to a safe one. """
self.factorSigma = eye(self.numParameters)
self.x = self.bestEvaluable
self.allFactorSigmas[-1][:] = self.factorSigma
self.sigma = dot(self.factorSigma.T, self.factorSigma)
|
When encountering a bad matrix, this is how we revert to a safe one.
|
_revertToSafety
|
python
|
pybrain/pybrain
|
pybrain/optimization/distributionbased/ves.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/distributionbased/ves.py
|
BSD-3-Clause
|
def _produceSamples(self):
""" Append batch size new samples and evaluate them. """
reuseindices = []
if self.numLearningSteps == 0 or not self.importanceMixing:
[self._oneEvaluation(self._sample2base(self._produceSample())) for _ in range(self.batchSize)]
self._pointers = list(range(len(self._allEvaluated)-self.batchSize, len(self._allEvaluated)))
else:
reuseindices, newpoints = importanceMixing(list(map(self._base2sample, self._currentEvaluations)),
self._oldpdf, self._newpdf, self._produceSample, self.forcedRefresh)
[self._oneEvaluation(self._sample2base(s)) for s in newpoints]
self._pointers = ([self._pointers[i] for i in reuseindices]+
list(range(len(self._allEvaluated)-self.batchSize+len(reuseindices), len(self._allEvaluated))))
self._allGenSteps.append(self._allGenSteps[-1]+self.batchSize-len(reuseindices))
self._allPointers.append(self._pointers)
|
Append batch size new samples and evaluate them.
|
_produceSamples
|
python
|
pybrain/pybrain
|
pybrain/optimization/distributionbased/xnes.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/distributionbased/xnes.py
|
BSD-3-Clause
|
def _learnStep(self):
""" calls the gradient calculation function and executes a step in direction
of the gradient, scaled with a small learning rate alpha. """
# initialize matrix D and vector R
D = ones((self.batchSize, self.numParameters))
R = zeros((self.batchSize, 1))
# calculate the gradient with pseudo inverse
for i in range(self.batchSize):
deltas = self.perturbation()
x = self.current + deltas
D[i, :] = deltas
R[i, :] = self._oneEvaluation(x)
beta = dot(pinv(D), R)
gradient = ravel(beta)
# update the weights
self.current = self.gd(gradient)
|
calls the gradient calculation function and executes a step in direction
of the gradient, scaled with a small learning rate alpha.
|
_learnStep
|
python
|
pybrain/pybrain
|
pybrain/optimization/finitedifference/fd.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/finitedifference/fd.py
|
BSD-3-Clause
|
def _learnStep(self):
""" calculates the gradient and executes a step in the direction
of the gradient, scaled with a learning rate alpha. """
deltas = self.perturbation()
#reward of positive and negative perturbations
reward1 = self._oneEvaluation(self.current + deltas)
reward2 = self._oneEvaluation(self.current - deltas)
self.mreward = (reward1 + reward2) / 2.
if self.baseline is None:
# first learning step
self.baseline = self.mreward
fakt = 0.
fakt2 = 0.
else:
#calc the gradients
if reward1 != reward2:
#gradient estimate alla SPSA but with likelihood gradient and normalization
fakt = (reward1 - reward2) / (2. * self.bestEvaluation - reward1 - reward2)
else:
fakt=0.
#normalized sigma gradient with moving average baseline
norm = (self.bestEvaluation-self.baseline)
if norm != 0.0:
fakt2=(self.mreward-self.baseline)/(self.bestEvaluation-self.baseline)
else:
fakt2 = 0.0
#update baseline
self.baseline = 0.9 * self.baseline + 0.1 * self.mreward
# update parameters and sigmas
self.current = self.gd(fakt * deltas - self.current * self.sigList * self.wDecay)
if fakt2 > 0.: #for sigma adaption alg. follows only positive gradients
if self.exploration == "global":
#apply sigma update globally
self.sigList = self.gdSig(fakt2 * ((self.deltas ** 2).sum() - (self.sigList ** 2).sum())
/ (self.sigList * float(self.numParameters)))
elif self.exploration == "local":
#apply sigma update locally
self.sigList = self.gdSig(fakt2 * (deltas * deltas - self.sigList * self.sigList) / self.sigList)
elif self.exploration == "cma":
#I have to think about that - needs also an option in perturbation
raise NotImplementedError()
else:
raise NotImplementedError(str(self.exploration) + " not a known exploration parameter setting.")
|
calculates the gradient and executes a step in the direction
of the gradient, scaled with a learning rate alpha.
|
_learnStep
|
python
|
pybrain/pybrain
|
pybrain/optimization/finitedifference/pgpe.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/finitedifference/pgpe.py
|
BSD-3-Clause
|
def _learnStep(self):
""" calculates the gradient and executes a step in the direction
of the gradient, scaled with a learning rate alpha. """
deltas = self.perturbation()
#reward of positive and negative perturbations
reward1 = self._oneEvaluation(self.current + deltas)
reward2 = self._oneEvaluation(self.current - deltas)
self.mreward = (reward1 + reward2) / 2.
if self.baseline is None:
# first learning step
self.baseline = self.mreward * 0.99
fakt = 0.
else:
#calc the gradients
if reward1 != reward2:
#gradient estimate alla SPSA but with likelihood gradient and normalization (see also "update parameters")
fakt = (reward1 - reward2) / (2.0 * self.bestEvaluation - reward1 - reward2)
else:
fakt = 0.0
self.baseline = 0.9 * self.baseline + 0.1 * self.mreward #update baseline
# update parameters
# as a simplification we use alpha = alpha * epsilon**2 for decaying the stepsize instead of the usual use method from SPSA
# resulting in the same update rule like for PGPE
self.current = self.gd(fakt * self.epsilon * self.epsilon / deltas)
|
calculates the gradient and executes a step in the direction
of the gradient, scaled with a learning rate alpha.
|
_learnStep
|
python
|
pybrain/pybrain
|
pybrain/optimization/finitedifference/spsa.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/finitedifference/spsa.py
|
BSD-3-Clause
|
def switchMutations(self):
""" interchange the mutate() and topologyMutate() operators """
tm = self._initEvaluable.__class__.topologyMutate
m = self._initEvaluable.__class__.mutate
self._initEvaluable.__class__.topologyMutate = m
self._initEvaluable.__class__.mutate = tm
|
interchange the mutate() and topologyMutate() operators
|
switchMutations
|
python
|
pybrain/pybrain
|
pybrain/optimization/memetic/memetic.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/memetic/memetic.py
|
BSD-3-Clause
|
def crossOverOld(self, parents, nbChildren):
""" generate a number of children by doing 1-point cross-over """
xdim = self.numParameters
children = []
for _ in range(nbChildren):
p1 = choice(parents)
if xdim < 2:
children.append(p1)
else:
p2 = choice(parents)
point = choice(list(range(xdim-1)))
point += 1
res = zeros(xdim)
res[:point] = p1[:point]
res[point:] = p2[point:]
children.append(res)
return children
|
generate a number of children by doing 1-point cross-over
|
crossOverOld
|
python
|
pybrain/pybrain
|
pybrain/optimization/populationbased/ga.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/populationbased/ga.py
|
BSD-3-Clause
|
def mutatedOld(self, indiv):
""" mutate some genes of the given individual """
res = indiv.copy()
for i in range(self.numParameters):
if random() < self.mutationProb:
res[i] = indiv[i] + gauss(0, self.mutationStdDev)
return res
|
mutate some genes of the given individual
|
mutatedOld
|
python
|
pybrain/pybrain
|
pybrain/optimization/populationbased/ga.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/populationbased/ga.py
|
BSD-3-Clause
|
def crossOver(self, parents, nbChildren):
""" generate a number of children by doing 1-point cross-over """
""" change as the <choice> return quite often the same p1 and even
several time p2 was return the same than p1 """
xdim = self.numParameters
shuffle(parents)
children = []
for i in range(len(parents)//2):
p1 = parents[i]
p2 = parents[i+(len(parents)//2)]
if xdim < 2:
children.append(p1)
children.append(p2)
else:
point = choice(list(range(xdim-1)))
point += 1
res = zeros(xdim)
res[:point] = p1[:point]
res[point:] = p2[point:]
children.append(res)
res = zeros(xdim)
res[:point] = p2[:point]
res[point:] = p1[point:]
children.append(res)
shuffle(children)
if len(children) > nbChildren:
children = children[:nbChildren]
else:
while (len(children) < nbChildren):
children += sample(children,1)
return children
|
generate a number of children by doing 1-point cross-over
|
crossOver
|
python
|
pybrain/pybrain
|
pybrain/optimization/populationbased/ga.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/populationbased/ga.py
|
BSD-3-Clause
|
def mutated(self, indiv):
""" mutate some genes of the given individual """
res = indiv.copy()
#to avoid having a child identical to one of the currentpopulation'''
for i in range(self.numParameters):
if random() < self.mutationProb:
if self.xBound is None:
res[i] = indiv[i] + gauss(0, self.mutationStdDev)
else:
res[i] = max(min(indiv[i] + gauss(0, self.mutationStdDev),self.maxs[i]),
self.mins[i])
return res
|
mutate some genes of the given individual
|
mutated
|
python
|
pybrain/pybrain
|
pybrain/optimization/populationbased/ga.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/populationbased/ga.py
|
BSD-3-Clause
|
def old_jpq_mutated(self, indiv, pop):
""" mutate some genes of the given individual """
res = indiv.copy()
#to avoid having a child identical to one of the currentpopulation'''
in_pop = self.childexist(indiv,pop)
for i in range(self.numParameters):
if random() < self.mutationProb:
res[i] = max(min(indiv[i] + gauss(0, self.mutationStdDev),self.maxs[i]),
self.mins[i])
if random() < self.mutationProb or in_pop:
if self.xBound is None:
res[i] = indiv[i] + gauss(0, self.mutationStdDev)
else:
if in_pop:
cmin = abs(indiv[i] - self.mins[i])/(self.maxs[i]-self.mins[i])
cmax = abs(indiv[i] - self.maxs[i])/(self.maxs[i]-self.mins[i])
if cmin < 1.e-7 or cmax < 1.e-7:
res[i] = self.mins[i] + random()*random()*(self.maxs[i]-self.mins[i])
else:
res[i] = max(min(indiv[i] + gauss(0, self.mutationStdDev),self.maxs[i]),
self.mins[i])
else:
res[i] = max(min(indiv[i] + gauss(0, self.mutationStdDev),self.maxs[i]),
self.mins[i])
return res
|
mutate some genes of the given individual
|
old_jpq_mutated
|
python
|
pybrain/pybrain
|
pybrain/optimization/populationbased/ga.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/populationbased/ga.py
|
BSD-3-Clause
|
def select(self):
""" select some of the individuals of the population, taking into account their fitnesses
:return: list of selected parents """
if not self.tournament:
tmp = list(zip(self.fitnesses, self.currentpop))
tmp.sort(key = lambda x: x[0])
tmp2 = list(reversed(tmp))[:self.selectionSize]
return [x[1] for x in tmp2]
else:
# TODO: tournament selection
raise NotImplementedError()
|
select some of the individuals of the population, taking into account their fitnesses
:return: list of selected parents
|
select
|
python
|
pybrain/pybrain
|
pybrain/optimization/populationbased/ga.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/populationbased/ga.py
|
BSD-3-Clause
|
def produceOffspring(self):
""" produce offspring by selection, mutation and crossover. """
parents = self.select()
es = min(self.eliteSize, self.selectionSize)
self.currentpop = parents[:es]
'''Modified by JPQ '''
nbchildren = self.populationSize - es
if self.populationSize - es <= 0:
nbchildren = len(parents)
for child in self.crossOver(parents, nbchildren ):
self.currentpop.append(self.mutated(child))
# ---
|
produce offspring by selection, mutation and crossover.
|
produceOffspring
|
python
|
pybrain/pybrain
|
pybrain/optimization/populationbased/ga.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/populationbased/ga.py
|
BSD-3-Clause
|
def best(self, particlelist):
"""Return the particle with the best fitness from a list of particles.
"""
picker = min if self.minimize else max
return picker(particlelist, key=lambda p: p.fitness)
|
Return the particle with the best fitness from a list of particles.
|
best
|
python
|
pybrain/pybrain
|
pybrain/optimization/populationbased/pso.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/populationbased/pso.py
|
BSD-3-Clause
|
def __init__(self, start, minimize):
"""Initialize a Particle at the given start vector."""
self.minimize = minimize
self.dim = scipy.size(start)
self.position = start
self.velocity = scipy.zeros(scipy.size(start))
self.bestPosition = scipy.zeros(scipy.size(start))
self._fitness = None
if self.minimize:
self.bestFitness = scipy.inf
else:
self.bestFitness = -scipy.inf
|
Initialize a Particle at the given start vector.
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/optimization/populationbased/pso.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/populationbased/pso.py
|
BSD-3-Clause
|
def __init__(self, relEvaluator, seeds, **args):
"""
:arg relevaluator: an anti-symmetric function that can evaluate 2 elements
:arg seeds: a list of initial guesses
"""
# set parameters
self.setArgs(**args)
self.relEvaluator = relEvaluator
if self.tournamentSize == None:
self.tournamentSize = self.populationSize
# initialize algorithm variables
self.steps = 0
self.generation = 0
# the best host and the best parasite from each generation
self.hallOfFame = []
# the relative fitnesses from each generation (of the selected individuals)
self.hallOfFitnesses = []
# this dictionary stores all the results between 2 players (first one starting):
# { (player1, player2): [games won, total games, cumulative score, list of scores] }
self.allResults = {}
# this dictionary stores the opponents a player has played against.
self.allOpponents = {}
# a list of all previous populations
self.oldPops = []
# build initial populations
self._initPopulation(seeds)
|
:arg relevaluator: an anti-symmetric function that can evaluate 2 elements
:arg seeds: a list of initial guesses
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/optimization/populationbased/coevolution/coevolution.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/populationbased/coevolution/coevolution.py
|
BSD-3-Clause
|
def learn(self, maxSteps=None):
""" Toplevel function, can be called iteratively.
:return: best evaluable found in the last generation. """
if maxSteps != None:
maxSteps += self.steps
while True:
if maxSteps != None and self.steps + self._stepsPerGeneration() > maxSteps:
break
if self.maxEvaluations != None and self.steps + self._stepsPerGeneration() > self.maxEvaluations:
break
if self.maxGenerations != None and self.generation >= self.maxGenerations:
break
self._oneGeneration()
return self.hallOfFame[-1]
|
Toplevel function, can be called iteratively.
:return: best evaluable found in the last generation.
|
learn
|
python
|
pybrain/pybrain
|
pybrain/optimization/populationbased/coevolution/coevolution.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/populationbased/coevolution/coevolution.py
|
BSD-3-Clause
|
def _extendPopulation(self, seeds, size):
""" build a population, with mutated copies from the provided
seed pool until it has the desired size. """
res = seeds[:]
for dummy in range(size - len(seeds)):
chosen = choice(seeds)
tmp = chosen.copy()
tmp.mutate()
if self.parentChildAverage < 1:
tmp.parent = chosen
res.append(tmp)
return res
|
build a population, with mutated copies from the provided
seed pool until it has the desired size.
|
_extendPopulation
|
python
|
pybrain/pybrain
|
pybrain/optimization/populationbased/coevolution/coevolution.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/populationbased/coevolution/coevolution.py
|
BSD-3-Clause
|
def _selectAndReproduce(self, pop, fits):
""" apply selection and reproduction to host population, according to their fitness."""
# combine population with their fitness, then sort, only by fitness
s = list(zip(fits, pop))
shuffle(s)
s.sort(key=lambda x:-x[0])
# select...
selected = [x[1] for x in s[:self._numSelected()]]
# ... and reproduce
if self.elitism:
newpop = self._extendPopulation(selected, self.populationSize)
if self.parentChildAverage < 1:
self._averageWithParents(newpop, self.parentChildAverage)
else:
newpop = self._extendPopulation(selected, self.populationSize
+ self._numSelected()) [self._numSelected():]
if self.parentChildAverage < 1:
self._averageWithParents(newpop[self._numSelected():], self.parentChildAverage)
return newpop
|
apply selection and reproduction to host population, according to their fitness.
|
_selectAndReproduce
|
python
|
pybrain/pybrain
|
pybrain/optimization/populationbased/coevolution/coevolution.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/populationbased/coevolution/coevolution.py
|
BSD-3-Clause
|
def _beats(self, h, p):
""" determine the empirically observed score of p playing opp (starting or not).
If they never played, assume 0. """
if (h, p) not in self.allResults:
return 0
else:
hpgames, hscore = self.allResults[(h, p)][1:3]
phgames, pscore = self.allResults[(p, h)][1:3]
return (hscore - pscore) / float(hpgames + phgames)
|
determine the empirically observed score of p playing opp (starting or not).
If they never played, assume 0.
|
_beats
|
python
|
pybrain/pybrain
|
pybrain/optimization/populationbased/coevolution/coevolution.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/populationbased/coevolution/coevolution.py
|
BSD-3-Clause
|
def _doTournament(self, pop1, pop2, tournamentSize=None):
""" Play a tournament.
:key tournamentSize: If unspecified, play all-against-all
"""
# TODO: Preferably select high-performing opponents?
for p in pop1:
pop3 = pop2[:]
while p in pop3:
pop3.remove(p)
if tournamentSize != None and tournamentSize < len(pop3):
opps = sample(pop3, tournamentSize)
else:
opps = pop3
for opp in opps:
self._relEval(p, opp)
self._relEval(opp, p)
|
Play a tournament.
:key tournamentSize: If unspecified, play all-against-all
|
_doTournament
|
python
|
pybrain/pybrain
|
pybrain/optimization/populationbased/coevolution/coevolution.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/populationbased/coevolution/coevolution.py
|
BSD-3-Clause
|
def _globalScore(self, p):
""" The average score over all evaluations for a player. """
if p not in self.allOpponents:
return 0.
scoresum, played = 0., 0
for opp in self.allOpponents[p]:
scoresum += self.allResults[(p, opp)][2]
played += self.allResults[(p, opp)][1]
scoresum -= self.allResults[(opp, p)][2]
played += self.allResults[(opp, p)][1]
# slightly bias the global score in favor of players with more games (just for tie-breaking)
played += 0.01
return scoresum / played
|
The average score over all evaluations for a player.
|
_globalScore
|
python
|
pybrain/pybrain
|
pybrain/optimization/populationbased/coevolution/coevolution.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/populationbased/coevolution/coevolution.py
|
BSD-3-Clause
|
def _sharedSampling(self, numSelect, selectFrom, relativeTo):
""" Build a shared sampling set of opponents """
if numSelect < 1:
return []
# determine the player of selectFrom with the most wins against players from relativeTo (and which ones)
tmp = {}
for p in selectFrom:
beaten = []
for opp in relativeTo:
if self._beats(p, opp) > 0:
beaten.append(opp)
tmp[p] = beaten
beatlist = [(len(p_beaten[1]), self._globalScore(p_beaten[0]), p_beaten[0]) for p_beaten in list(tmp.items())]
shuffle(beatlist)
beatlist.sort(key=lambda x: x[:2])
best = beatlist[-1][2]
unBeaten = list(set(relativeTo).difference(tmp[best]))
otherSelect = selectFrom[:]
otherSelect.remove(best)
return [best] + self._sharedSampling(numSelect - 1, otherSelect, unBeaten)
|
Build a shared sampling set of opponents
|
_sharedSampling
|
python
|
pybrain/pybrain
|
pybrain/optimization/populationbased/coevolution/coevolution.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/populationbased/coevolution/coevolution.py
|
BSD-3-Clause
|
def _relEval(self, p, opp):
""" a single relative evaluation (in one direction) with the involved bookkeeping."""
if p not in self.allOpponents:
self.allOpponents[p] = []
self.allOpponents[p].append(opp)
if (p, opp) not in self.allResults:
self.allResults[(p, opp)] = [0, 0, 0., []]
res = self.relEvaluator(p, opp)
if res > 0:
self.allResults[(p, opp)][0] += 1
self.allResults[(p, opp)][1] += 1
self.allResults[(p, opp)][2] += res
self.allResults[(p, opp)][3].append(res)
self.steps += 1
|
a single relative evaluation (in one direction) with the involved bookkeeping.
|
_relEval
|
python
|
pybrain/pybrain
|
pybrain/optimization/populationbased/coevolution/coevolution.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/populationbased/coevolution/coevolution.py
|
BSD-3-Clause
|
def _competitiveSharedFitness(self, hosts, parasites):
""" determine the competitive shared fitness for the population of hosts, w.r. to
the population of parasites. """
if len(parasites) == 0:
return [0] * len(hosts)
# determine beat-sum for parasites (nb of games lost)
beatsums = {}
for p in parasites:
beatsums[p] = 0.
for h in hosts:
if self._beats(h, p) > 0:
beatsums[p] += 1
# determine fitnesses for hosts
fitnesses = []
for h in hosts:
hsum = 0
unplayed = 0
for p in parasites:
if self._beats(h, p) > 0:
assert beatsums[p] > 0
hsum += 1. / beatsums[p]
elif self._beats(h, p) == 0:
unplayed += 1
# take into account the number of parasites played, to avoid
# biasing for old agents in the elitist case
if len(parasites) > unplayed:
hsum /= float(len(parasites) - unplayed)
# this is purely for breaking ties in favor of globally better players:
hsum += 1e-5 * self._globalScore(h)
fitnesses.append(hsum)
return fitnesses
|
determine the competitive shared fitness for the population of hosts, w.r. to
the population of parasites.
|
_competitiveSharedFitness
|
python
|
pybrain/pybrain
|
pybrain/optimization/populationbased/coevolution/competitivecoevolution.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/populationbased/coevolution/competitivecoevolution.py
|
BSD-3-Clause
|
def _initPopulation(self, seeds):
""" one part of the seeds for each population, if there's not enough: randomize. """
for s in seeds:
s.parent = None
while len(seeds) < self.numPops:
tmp = choice(seeds).copy()
tmp.randomize()
seeds.append(tmp)
self.pops = []
for i in range(self.numPops):
si = seeds[i::self.numPops]
self.pops.append(self._extendPopulation(si, self.populationSize))
self.mainpop = 0
self.pop = self.pops[self.mainpop]
|
one part of the seeds for each population, if there's not enough: randomize.
|
_initPopulation
|
python
|
pybrain/pybrain
|
pybrain/optimization/populationbased/coevolution/multipopulationcoevolution.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/populationbased/coevolution/multipopulationcoevolution.py
|
BSD-3-Clause
|
def _evaluatePopulation(self):
"""Each individual in main pop plays against
tournSize others of each other population (the best part of them). """
for other in self.pops:
if other == self.pop:
continue
# TODO: parametrize
bestPart = len(other)//2
if bestPart < 1:
bestPart = 1
self._doTournament(self.pop, other[:bestPart], self.tournamentSize)
fitnesses = []
for p in self.pop:
fit = 0
for other in self.pops:
if other == self.pop:
continue
for opp in other:
fit += self._beats(p, opp)
if self.absEvalProportion > 0 and self.absEvaluator != None:
fit = (1-self.absEvalProportion) * fit + self.absEvalProportion * self.absEvaluator(p)
fitnesses.append(fit)
return fitnesses
|
Each individual in main pop plays against
tournSize others of each other population (the best part of them).
|
_evaluatePopulation
|
python
|
pybrain/pybrain
|
pybrain/optimization/populationbased/coevolution/multipopulationcoevolution.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/populationbased/coevolution/multipopulationcoevolution.py
|
BSD-3-Clause
|
def nsga2select(population, fitnesses, survivors, allowequality = True):
"""The NSGA-II selection strategy (Deb et al., 2002).
The number of individuals that survive is given by the survivors parameter."""
fronts = const_non_dominated_sort(population,
key=lambda x: fitnesses[x],
allowequality = allowequality)
individuals = set()
for front in fronts:
remaining = survivors - len(individuals)
if not remaining > 0:
break
if len(front) > remaining:
# If the current front does not fit in the spots left, use those
# that have the biggest crowding distance.
crowd_dist = const_crowding_distance(front, fitnesses)
front = sorted(front, key=lambda x: crowd_dist[x], reverse=True)
front = set(front[:remaining])
individuals |= front
return list(individuals)
|
The NSGA-II selection strategy (Deb et al., 2002).
The number of individuals that survive is given by the survivors parameter.
|
nsga2select
|
python
|
pybrain/pybrain
|
pybrain/optimization/populationbased/multiobjective/constnsga2.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/populationbased/multiobjective/constnsga2.py
|
BSD-3-Clause
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.