code
stringlengths 66
870k
| docstring
stringlengths 19
26.7k
| func_name
stringlengths 1
138
| language
stringclasses 1
value | repo
stringlengths 7
68
| path
stringlengths 5
324
| url
stringlengths 46
389
| license
stringclasses 7
values |
---|---|---|---|---|---|---|---|
def getOutputWeightMatrix(self):
""" Sets the weight matrix of the output layer's input connection.
"""
c = self.getOutputConnection()
p = c.getParameters()
return reshape(p, (c.outdim, c.indim))
|
Sets the weight matrix of the output layer's input connection.
|
getOutputWeightMatrix
|
python
|
pybrain/pybrain
|
pybrain/supervised/evolino/networkwrapper.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/networkwrapper.py
|
BSD-3-Clause
|
def injectBackproject(self, injection):
""" Injects a vector into the recurrent connection.
This will be used in the evolino trainingsphase, where the target
values need to be backprojected instead of the real output of the net.
:key injection: vector of length self.network.outdim
"""
outlayer = self.getOutputLayer()
outlayer.outputbuffer[self.network.offset - 1][:] = injection
|
Injects a vector into the recurrent connection.
This will be used in the evolino trainingsphase, where the target
values need to be backprojected instead of the real output of the net.
:key injection: vector of length self.network.outdim
|
injectBackproject
|
python
|
pybrain/pybrain
|
pybrain/supervised/evolino/networkwrapper.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/networkwrapper.py
|
BSD-3-Clause
|
def getOutputConnection(self):
""" Returns the input connection of the output layer. """
if self._output_connection is None:
outlayer = self.getOutputLayer()
lastlayer = self.getLastHiddenLayer()
for c in self.getConnections():
if c.outmod is outlayer:
assert c.inmod is lastlayer
self._output_connection = c
return self._output_connection
|
Returns the input connection of the output layer.
|
getOutputConnection
|
python
|
pybrain/pybrain
|
pybrain/supervised/evolino/networkwrapper.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/networkwrapper.py
|
BSD-3-Clause
|
def _getInputConnectionsOfLayer(self, layer):
""" Returns a list of all input connections for the layer. """
connections = []
for c in sum(list(self.network.connections.values()), []):
if c.outmod is layer:
if not isinstance(c, FullConnection):
raise NotImplementedError("At the time there is only support for FullConnection")
connections.append(c)
return connections
|
Returns a list of all input connections for the layer.
|
_getInputConnectionsOfLayer
|
python
|
pybrain/pybrain
|
pybrain/supervised/evolino/networkwrapper.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/networkwrapper.py
|
BSD-3-Clause
|
def getHiddenLayers(self):
""" Returns a list of all hidden layers. """
layers = []
network = self.network
for m in network.modules:
if m not in network.inmodules and m not in network.outmodules:
layers.append(m)
return layers
|
Returns a list of all hidden layers.
|
getHiddenLayers
|
python
|
pybrain/pybrain
|
pybrain/supervised/evolino/networkwrapper.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/networkwrapper.py
|
BSD-3-Clause
|
def __init__(self, individual, subPopulationSize, nCombinations=1, valueInitializer=Randomization(-0.1, 0.1), **kwargs):
""" :key individual: A prototype individual which is used to determine
the structure of the genome.
:key subPopulationSize: integer describing the size of the subpopulations
"""
Population.__init__(self)
self._subPopulations = []
self.nCombinations = nCombinations
ap = KWArgsProcessor(self, kwargs)
ap.add('verbosity', default=0)
genome = individual.getGenome()
for chromosome in genome:
self._subPopulations.append(
EvolinoSubPopulation(chromosome, subPopulationSize, valueInitializer))
|
:key individual: A prototype individual which is used to determine
the structure of the genome.
:key subPopulationSize: integer describing the size of the subpopulations
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/supervised/evolino/population.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/population.py
|
BSD-3-Clause
|
def getIndividuals(self):
""" Returns a set of individuals of type EvolinoIndividual. The individuals
are generated on the fly. Note that each subpopulation has the same size.
So the number of resulting EvolinoIndividuals is subPopulationSize,
since each chromosome of each subpopulation will be assembled once.
The subpopulation container is a sequence with strict order. This
sequence is iterated subPopulationSize times. In each iteration
one random EvolinoSubIndividual is taken from each sub population.
After each iteration the resulting sequence of sub individuals
is supplied to the constructor of a new EvolinoIndividual.
All EvolinoIndividuals are collected in a set, which is finally returned.
"""
assert len(self._subPopulations)
individuals = set()
for _ in range(self.nCombinations):
subIndividualsList = [ list(sp.getIndividuals()) for sp in self._subPopulations ]
nIndividuals = len(subIndividualsList[0])
for _ in range(nIndividuals):
subIndividualCombination = []
for subIndividuals in subIndividualsList:
sub_individual = subIndividuals.pop(randrange(len(subIndividuals)))
subIndividualCombination.append(sub_individual)
individuals.add(EvolinoIndividual(subIndividualCombination))
return individuals
|
Returns a set of individuals of type EvolinoIndividual. The individuals
are generated on the fly. Note that each subpopulation has the same size.
So the number of resulting EvolinoIndividuals is subPopulationSize,
since each chromosome of each subpopulation will be assembled once.
The subpopulation container is a sequence with strict order. This
sequence is iterated subPopulationSize times. In each iteration
one random EvolinoSubIndividual is taken from each sub population.
After each iteration the resulting sequence of sub individuals
is supplied to the constructor of a new EvolinoIndividual.
All EvolinoIndividuals are collected in a set, which is finally returned.
|
getIndividuals
|
python
|
pybrain/pybrain
|
pybrain/supervised/evolino/population.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/population.py
|
BSD-3-Clause
|
def setIndividualFitness(self, individual, fitness):
""" The fitness value is not stored directly inside this population,
but is propagated to the subpopulations of all the subindividuals
of which the individual consists of.
The individual's fitness value is only adjusted if its bigger than
the old value.
To reset these values use clearFitness().
"""
# additive fitness distribution
# subIndividuals = individual.getSubIndividuals()
# for i,sp in enumerate(self._subPopulations):
# sp.addIndividualFitness( subIndividuals[i], fitness )
# max fitness distribution
subIndividuals = individual.getSubIndividuals()
for i, sp in enumerate(self._subPopulations):
sub_individual = subIndividuals[i]
old_fitness = sp.getIndividualFitness(sub_individual)
if old_fitness < fitness:
sp.setIndividualFitness(sub_individual, fitness)
|
The fitness value is not stored directly inside this population,
but is propagated to the subpopulations of all the subindividuals
of which the individual consists of.
The individual's fitness value is only adjusted if its bigger than
the old value.
To reset these values use clearFitness().
|
setIndividualFitness
|
python
|
pybrain/pybrain
|
pybrain/supervised/evolino/population.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/population.py
|
BSD-3-Clause
|
def __init__(self, chromosome, maxNIndividuals, valueInitializer=Randomization(-0.1, 0.1), **kwargs):
""" :key chromosome: The prototype chromosome
:key maxNIndividuals: The maximum allowed number of individuals
"""
SimplePopulation.__init__(self)
self._prototype = EvolinoSubIndividual(chromosome)
self._maxNIndividuals = maxNIndividuals
self._valueInitializer = valueInitializer
self.setArgs(**kwargs)
for _ in range(maxNIndividuals):
self.addIndividual(self._prototype.copy())
self._valueInitializer.apply(self)
|
:key chromosome: The prototype chromosome
:key maxNIndividuals: The maximum allowed number of individuals
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/supervised/evolino/population.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/population.py
|
BSD-3-Clause
|
def __init__(self, min_val=0., max_val=1.):
""" Initializes the uniform variate with a min and a max value.
"""
self._min_val = min_val
self._max_val = max_val
|
Initializes the uniform variate with a min and a max value.
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/supervised/evolino/variate.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/variate.py
|
BSD-3-Clause
|
def __init__(self, x0=0., alpha=1.):
""" :key x0: Median and mode of the Cauchy distribution
:key alpha: scale
"""
self.x0 = x0
self.alpha = alpha
|
:key x0: Median and mode of the Cauchy distribution
:key alpha: scale
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/supervised/evolino/variate.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/variate.py
|
BSD-3-Clause
|
def __init__(self, x0=0., alpha=1.):
""" :key x0: Mean
:key alpha: standard deviation
"""
self.x0 = x0
self.alpha = alpha
|
:key x0: Mean
:key alpha: standard deviation
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/supervised/evolino/variate.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/evolino/variate.py
|
BSD-3-Clause
|
def arrayPermutation(permutation):
"""Return a permutation function.
The function permutes any array as specified by the supplied permutation.
"""
assert permutation.ndim == 1, \
"Only one dimensional permutaton arrays are supported"
def permute(arr):
assert arr.ndim == 1, "Only one dimensional arrays are supported"
assert arr.shape == permutation.shape, "Array shapes don't match"
return array([arr[i] for i in permutation])
return permute
|
Return a permutation function.
The function permutes any array as specified by the supplied permutation.
|
arrayPermutation
|
python
|
pybrain/pybrain
|
pybrain/supervised/knn/lsh/minhash.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/knn/lsh/minhash.py
|
BSD-3-Clause
|
def jacardCoefficient(a, b):
"""Return the Jacard coefficient of a and b.
The jacard coefficient is defined as the overlap between two sets: the sum
of all equal elements divided by the size of the sets.
Mind that a and b must b in Hamming space, so every element must either be
1 or 0.
"""
if a.shape != b.shape:
raise ValueError("Arrays must be of same shape")
length = a.shape[0]
a = a.astype(bool)
b = b.astype(bool)
return float((a == b).sum()) / length
|
Return the Jacard coefficient of a and b.
The jacard coefficient is defined as the overlap between two sets: the sum
of all equal elements divided by the size of the sets.
Mind that a and b must b in Hamming space, so every element must either be
1 or 0.
|
jacardCoefficient
|
python
|
pybrain/pybrain
|
pybrain/supervised/knn/lsh/minhash.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/knn/lsh/minhash.py
|
BSD-3-Clause
|
def __init__(self, dim, nPermutations):
"""Create a hash structure that can hold arrays of size dim and
hashes with nPermutations permutations.
The number of buckets is dim * nPermutations."""
self.dim = dim
self.permutations = array([permutation(dim)
for _ in range(nPermutations)])
self.buckets = defaultdict(lambda: [])
|
Create a hash structure that can hold arrays of size dim and
hashes with nPermutations permutations.
The number of buckets is dim * nPermutations.
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/supervised/knn/lsh/minhash.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/knn/lsh/minhash.py
|
BSD-3-Clause
|
def _firstOne(self, arr):
"""Return the index of the first 1 in the array."""
for i, elem in enumerate(arr):
if elem == 1:
return i
return i + 1
|
Return the index of the first 1 in the array.
|
_firstOne
|
python
|
pybrain/pybrain
|
pybrain/supervised/knn/lsh/minhash.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/knn/lsh/minhash.py
|
BSD-3-Clause
|
def _hash(self, item):
"""Return a hash for item based on the internal permutations.
That hash is a tuple of ints.
"""
self._checkItem(item)
result = []
for perm in self._permFuncs:
permuted = perm(item)
result.append(self._firstOne(permuted))
return tuple(result)
|
Return a hash for item based on the internal permutations.
That hash is a tuple of ints.
|
_hash
|
python
|
pybrain/pybrain
|
pybrain/supervised/knn/lsh/minhash.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/knn/lsh/minhash.py
|
BSD-3-Clause
|
def put(self, item, satellite):
"""Put an item into the hash structure and attach any object satellite
to it."""
self._checkItem(item)
item = item.astype(bool)
bucket = self._hash(item)
self.buckets[bucket].append((item, satellite))
|
Put an item into the hash structure and attach any object satellite
to it.
|
put
|
python
|
pybrain/pybrain
|
pybrain/supervised/knn/lsh/minhash.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/knn/lsh/minhash.py
|
BSD-3-Clause
|
def knn(self, item, k):
"""Return the k nearest neighbours of the item in the current hash.
Mind that the probabilistic nature of the data structure might not
return a nearest neighbor at all.
"""
self._checkItem(item)
candidates = self.buckets[self._hash(item)]
candidates.sort(key=lambda x: jacardCoefficient(x[0], item),
reverse=True)
return candidates[:k]
|
Return the k nearest neighbours of the item in the current hash.
Mind that the probabilistic nature of the data structure might not
return a nearest neighbor at all.
|
knn
|
python
|
pybrain/pybrain
|
pybrain/supervised/knn/lsh/minhash.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/knn/lsh/minhash.py
|
BSD-3-Clause
|
def __init__(self, dim, omega=4, prob=0.8):
"""Create a hash for arrays of dimension dim.
The hyperspace will be split into hypercubes with a sidelength of
omega * sqrt(sqrt(dim)), that is omega * radius.
Every point in the dim-dimensional euclidean space will be hashed to
its correct bucket with a probability of prob.
"""
message = ("Creating Hash with %i dimensions, sidelength %.2f and " +
"cNN-probability %.2f") % (dim, omega, prob)
logging.debug(message)
self.dim = dim
self.omega = omega
self.prob = prob
self.radius = sqrt(sqrt(min(dim, self.lowerDimensionBound)))
logging.debug("Radius set to %.2f" % self.radius)
self._initializeGrids()
self._initializeProjection()
self.balls = defaultdict(lambda: [])
|
Create a hash for arrays of dimension dim.
The hyperspace will be split into hypercubes with a sidelength of
omega * sqrt(sqrt(dim)), that is omega * radius.
Every point in the dim-dimensional euclidean space will be hashed to
its correct bucket with a probability of prob.
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/supervised/knn/lsh/nearoptimal.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/knn/lsh/nearoptimal.py
|
BSD-3-Clause
|
def _findHypercube(self, point):
"""Return where a point lies in what hypercube.
The result is a pair of two arrays. The first array is an array of
integers that indicate the multidimensional index of the hypercube it
is in. The second array is an array of floats, specifying the
coordinates of the point in that hypercube.
"""
offset = self.omega * self.radius
divmods = (divmod(p, offset) for p in point)
hypercube_indices, relative_point = [], []
for index, rest in divmods:
hypercube_indices.append(index)
relative_point.append(rest)
return array(hypercube_indices, dtype=int), array(relative_point)
|
Return where a point lies in what hypercube.
The result is a pair of two arrays. The first array is an array of
integers that indicate the multidimensional index of the hypercube it
is in. The second array is an array of floats, specifying the
coordinates of the point in that hypercube.
|
_findHypercube
|
python
|
pybrain/pybrain
|
pybrain/supervised/knn/lsh/nearoptimal.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/knn/lsh/nearoptimal.py
|
BSD-3-Clause
|
def _findLocalBall_noinline(self, point):
"""Return the index of the ball that the point lies in."""
for i, ball in enumerate(self.gridBalls):
distance = point - ball
if dot(distance.T, distance) <= self.radiusSquared:
return i
|
Return the index of the ball that the point lies in.
|
_findLocalBall_noinline
|
python
|
pybrain/pybrain
|
pybrain/supervised/knn/lsh/nearoptimal.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/knn/lsh/nearoptimal.py
|
BSD-3-Clause
|
def _findLocalBall_inline(self, point):
"""Return the index of the ball that the point lies in."""
balls = self.gridBalls
nBalls, dim = balls.shape #@UnusedVariable
radiusSquared = self.radiusSquared #@UnusedVariable
code = """
#line 121 "nearoptimal.py"
return_val = -1;
for (long i = 0; i < nBalls; i++)
{
double distance = 0.0;
for (long j = 0; j < dim; j++)
{
double diff = balls(i, j) - point(j);
distance += diff * diff;
}
if (distance <= radiusSquared) {
return_val = i;
break;
}
}
"""
variables = 'point', 'balls', 'nBalls', 'dim', 'radiusSquared',
result = weave.inline(
code,
variables,
type_converters=weave.converters.blitz,
compiler='gcc')
return result if result != -1 else None
|
Return the index of the ball that the point lies in.
|
_findLocalBall_inline
|
python
|
pybrain/pybrain
|
pybrain/supervised/knn/lsh/nearoptimal.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/knn/lsh/nearoptimal.py
|
BSD-3-Clause
|
def insert(self, point, satellite):
"""Put a point and its satellite information into the hash structure.
"""
point = dot(self.projection, point)
index = self.findBall(point)
self.balls[index].append((point, satellite))
|
Put a point and its satellite information into the hash structure.
|
insert
|
python
|
pybrain/pybrain
|
pybrain/supervised/knn/lsh/nearoptimal.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/knn/lsh/nearoptimal.py
|
BSD-3-Clause
|
def _findKnnCandidates(self, point):
"""Return a set of candidates that might be nearest neighbours of a
query point."""
index = self.findBall(point)
logging.debug("Found %i candidates for cNN" % len(self.balls[index]))
return self.balls[index]
|
Return a set of candidates that might be nearest neighbours of a
query point.
|
_findKnnCandidates
|
python
|
pybrain/pybrain
|
pybrain/supervised/knn/lsh/nearoptimal.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/knn/lsh/nearoptimal.py
|
BSD-3-Clause
|
def knn(self, point, k):
"""Return the k approximate nearest neighbours of the item in the
current hash.
Mind that the probabilistic nature of the data structure might not
return a nearest neighbor at all and not the nearest neighbour."""
candidates = self._findKnnCandidates(point)
def sortKey(xxx_todo_changeme):
(point_, satellite_) = xxx_todo_changeme
distance = point - point_
return - dot(distance.T, distance)
return nlargest(k, candidates, key=sortKey)
|
Return the k approximate nearest neighbours of the item in the
current hash.
Mind that the probabilistic nature of the data structure might not
return a nearest neighbor at all and not the nearest neighbour.
|
knn
|
python
|
pybrain/pybrain
|
pybrain/supervised/knn/lsh/nearoptimal.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/knn/lsh/nearoptimal.py
|
BSD-3-Clause
|
def __init__(self, module, dataset=None, learningrate=0.01, lrdecay=1.0,
momentum=0., verbose=False, batchlearning=False,
weightdecay=0.):
"""Create a BackpropTrainer to train the specified `module` on the
specified `dataset`.
The learning rate gives the ratio of which parameters are changed into
the direction of the gradient. The learning rate decreases by `lrdecay`,
which is used to to multiply the learning rate after each training
step. The parameters are also adjusted with respect to `momentum`, which
is the ratio by which the gradient of the last timestep is used.
If `batchlearning` is set, the parameters are updated only at the end of
each epoch. Default is False.
`weightdecay` corresponds to the weightdecay rate, where 0 is no weight
decay at all.
"""
Trainer.__init__(self, module)
self.setData(dataset)
self.verbose = verbose
self.batchlearning = batchlearning
self.weightdecay = weightdecay
self.epoch = 0
self.totalepochs = 0
# set up gradient descender
self.descent = GradientDescent()
self.descent.alpha = learningrate
self.descent.momentum = momentum
self.descent.alphadecay = lrdecay
self.descent.init(module.params)
|
Create a BackpropTrainer to train the specified `module` on the
specified `dataset`.
The learning rate gives the ratio of which parameters are changed into
the direction of the gradient. The learning rate decreases by `lrdecay`,
which is used to to multiply the learning rate after each training
step. The parameters are also adjusted with respect to `momentum`, which
is the ratio by which the gradient of the last timestep is used.
If `batchlearning` is set, the parameters are updated only at the end of
each epoch. Default is False.
`weightdecay` corresponds to the weightdecay rate, where 0 is no weight
decay at all.
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/supervised/trainers/backprop.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/trainers/backprop.py
|
BSD-3-Clause
|
def train(self):
"""Train the associated module for one epoch."""
assert len(self.ds) > 0, "Dataset cannot be empty."
self.module.resetDerivatives()
errors = 0
ponderation = 0.
shuffledSequences = []
for seq in self.ds._provideSequences():
shuffledSequences.append(seq)
shuffle(shuffledSequences)
for seq in shuffledSequences:
e, p = self._calcDerivs(seq)
errors += e
ponderation += p
if not self.batchlearning:
gradient = self.module.derivs - self.weightdecay * self.module.params
new = self.descent(gradient, errors)
if new is not None:
self.module.params[:] = new
self.module.resetDerivatives()
if self.verbose:
print("Total error: {z: .12g}".format(z=errors / ponderation))
if self.batchlearning:
self.module._setParameters(self.descent(self.module.derivs))
self.epoch += 1
self.totalepochs += 1
return errors / ponderation
|
Train the associated module for one epoch.
|
train
|
python
|
pybrain/pybrain
|
pybrain/supervised/trainers/backprop.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/trainers/backprop.py
|
BSD-3-Clause
|
def _calcDerivs(self, seq):
"""Calculate error function and backpropagate output errors to yield
the gradient."""
self.module.reset()
for sample in seq:
self.module.activate(sample[0])
error = 0
ponderation = 0.
for offset, sample in reversed(list(enumerate(seq))):
# need to make a distinction here between datasets containing
# importance, and others
target = sample[1]
outerr = target - self.module.outputbuffer[offset]
if len(sample) > 2:
importance = sample[2]
error += 0.5 * dot(importance, outerr ** 2)
ponderation += sum(importance)
self.module.backActivate(outerr * importance)
else:
error += 0.5 * sum(outerr ** 2)
ponderation += len(target)
# FIXME: the next line keeps arac from producing NaNs. I don't
# know why that is, but somehow the __str__ method of the
# ndarray class fixes something,
str(outerr)
self.module.backActivate(outerr)
return error, ponderation
|
Calculate error function and backpropagate output errors to yield
the gradient.
|
_calcDerivs
|
python
|
pybrain/pybrain
|
pybrain/supervised/trainers/backprop.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/trainers/backprop.py
|
BSD-3-Clause
|
def _checkGradient(self, dataset=None, silent=False):
"""Numeric check of the computed gradient for debugging purposes."""
if dataset:
self.setData(dataset)
res = []
for seq in self.ds._provideSequences():
self.module.resetDerivatives()
self._calcDerivs(seq)
e = 1e-6
analyticalDerivs = self.module.derivs.copy()
numericalDerivs = []
for p in range(self.module.paramdim):
storedoldval = self.module.params[p]
self.module.params[p] += e
righterror, dummy = self._calcDerivs(seq)
self.module.params[p] -= 2 * e
lefterror, dummy = self._calcDerivs(seq)
approxderiv = (righterror - lefterror) / (2 * e)
self.module.params[p] = storedoldval
numericalDerivs.append(approxderiv)
r = list(zip(analyticalDerivs, numericalDerivs))
res.append(r)
if not silent:
print(r)
return res
|
Numeric check of the computed gradient for debugging purposes.
|
_checkGradient
|
python
|
pybrain/pybrain
|
pybrain/supervised/trainers/backprop.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/trainers/backprop.py
|
BSD-3-Clause
|
def testOnData(self, dataset=None, verbose=False):
"""Compute the MSE of the module performance on the given dataset.
If no dataset is supplied, the one passed upon Trainer initialization is
used."""
if dataset == None:
dataset = self.ds
dataset.reset()
if verbose:
print('\nTesting on data:')
errors = []
importances = []
ponderatedErrors = []
for seq in dataset._provideSequences():
self.module.reset()
e, i = dataset._evaluateSequence(self.module.activate, seq, verbose)
importances.append(i)
errors.append(e)
ponderatedErrors.append(e / i)
if verbose:
print(('All errors:', ponderatedErrors))
assert sum(importances) > 0
avgErr = sum(errors) / sum(importances)
if verbose:
print(('Average error:', avgErr))
print(('Max error:', max(ponderatedErrors), 'Median error:',
sorted(ponderatedErrors)[len(errors) // 2]))
return avgErr
|
Compute the MSE of the module performance on the given dataset.
If no dataset is supplied, the one passed upon Trainer initialization is
used.
|
testOnData
|
python
|
pybrain/pybrain
|
pybrain/supervised/trainers/backprop.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/trainers/backprop.py
|
BSD-3-Clause
|
def testOnClassData(self, dataset=None, verbose=False,
return_targets=False):
"""Return winner-takes-all classification output on a given dataset.
If no dataset is given, the dataset passed during Trainer
initialization is used. If return_targets is set, also return
corresponding target classes.
"""
if dataset == None:
dataset = self.ds
dataset.reset()
out = []
targ = []
for seq in dataset._provideSequences():
self.module.reset()
for input, target in seq:
res = self.module.activate(input)
out.append(argmax(res))
targ.append(argmax(target))
if return_targets:
return out, targ
else:
return out
|
Return winner-takes-all classification output on a given dataset.
If no dataset is given, the dataset passed during Trainer
initialization is used. If return_targets is set, also return
corresponding target classes.
|
testOnClassData
|
python
|
pybrain/pybrain
|
pybrain/supervised/trainers/backprop.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/trainers/backprop.py
|
BSD-3-Clause
|
def trainUntilConvergence(self, dataset=None, maxEpochs=None, verbose=None,
continueEpochs=10, validationProportion=0.25,
trainingData=None, validationData=None,
convergence_threshold=10):
"""Train the module on the dataset until it converges.
Return the module with the parameters that gave the minimal validation
error.
If no dataset is given, the dataset passed during Trainer
initialization is used. validationProportion is the ratio of the dataset
that is used for the validation dataset.
If the training and validation data is already set, the splitPropotion is ignored
If maxEpochs is given, at most that many epochs
are trained. Each time validation error hits a minimum, try for
continueEpochs epochs to find a better one."""
epochs = 0
if dataset is None:
dataset = self.ds
if verbose is None:
verbose = self.verbose
if trainingData is None or validationData is None:
# Split the dataset randomly: validationProportion of the samples for
# validation.
trainingData, validationData = (
dataset.splitWithProportion(1 - validationProportion))
if not (len(trainingData) > 0 and len(validationData)):
raise ValueError("Provided dataset too small to be split into training " +
"and validation sets with proportion " + str(validationProportion))
self.ds = trainingData
bestweights = self.module.params.copy()
bestverr = self.testOnData(validationData)
bestepoch = 0
self.trainingErrors = []
self.validationErrors = [bestverr]
while True:
trainingError = self.train()
validationError = self.testOnData(validationData)
if isnan(trainingError) or isnan(validationError):
raise Exception("Training produced NaN results")
self.trainingErrors.append(trainingError)
self.validationErrors.append(validationError)
if epochs == 0 or self.validationErrors[-1] < bestverr:
# one update is always done
bestverr = self.validationErrors[-1]
bestweights = self.module.params.copy()
bestepoch = epochs
if maxEpochs != None and epochs >= maxEpochs:
self.module.params[:] = bestweights
break
epochs += 1
if len(self.validationErrors) >= continueEpochs * 2:
# have the validation errors started going up again?
# compare the average of the last few to the previous few
old = self.validationErrors[-continueEpochs * 2:-continueEpochs]
new = self.validationErrors[-continueEpochs:]
if min(new) > max(old):
self.module.params[:] = bestweights
break
lastnew = round(new[-1], convergence_threshold)
if sum(round(y, convergence_threshold) - lastnew for y in new) == 0:
self.module.params[:] = bestweights
break
#self.trainingErrors.append(self.testOnData(trainingData))
self.ds = dataset
if verbose:
print(('train-errors:', fListToString(self.trainingErrors, 6)))
print(('valid-errors:', fListToString(self.validationErrors, 6)))
return self.trainingErrors[:bestepoch], self.validationErrors[:1 + bestepoch]
|
Train the module on the dataset until it converges.
Return the module with the parameters that gave the minimal validation
error.
If no dataset is given, the dataset passed during Trainer
initialization is used. validationProportion is the ratio of the dataset
that is used for the validation dataset.
If the training and validation data is already set, the splitPropotion is ignored
If maxEpochs is given, at most that many epochs
are trained. Each time validation error hits a minimum, try for
continueEpochs epochs to find a better one.
|
trainUntilConvergence
|
python
|
pybrain/pybrain
|
pybrain/supervised/trainers/backprop.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/trainers/backprop.py
|
BSD-3-Clause
|
def __init__(self, evolino_network, dataset, **kwargs):
"""
:key subPopulationSize: Size of the subpopulations.
:key nCombinations: Number of times each chromosome is built into an individual. default=1
:key nParents: Number of individuals left in a subpopulation after selection.
:key initialWeightRange: Range of the weights of the RNN after initialization. default=(-0.1,0.1)
:key weightInitializer: Initializer object for the weights of the RNN. default=Randomization(...)
:key mutationAlpha: The mutation's intensity. default=0.01
:key mutationVariate: The variate used for mutation. default=CauchyVariate(...)
:key wtRatio: The quotient: washout-time/training-time. Needed to
split the sequences into washout phase and training phase.
:key nBurstMutationEpochs: Number of epochs without increase of fitness in a row,
before burstmutation is applied. default=Infinity
:key backprojectionFactor: Weight of the backprojection. Usually
supplied through evolino_network.
:key selection: Selection object for evolino
:key reproduction: Reproduction object for evolino
:key burstMutation: BurstMutation object for evolino
:key evaluation: Evaluation object for evolino
:key verbosity: verbosity level
"""
Trainer.__init__(self, evolino_network)
self.network = evolino_network
self.setData(dataset)
ap = KWArgsProcessor(self, kwargs)
# misc
ap.add('verbosity', default=0)
# population
ap.add('subPopulationSize', private=True, default=8)
ap.add('nCombinations', private=True, default=4)
ap.add('nParents', private=True, default=None)
ap.add('initialWeightRange', private=True, default=(-0.1, 0.1))
ap.add('weightInitializer', private=True, default=Randomization(self._initialWeightRange[0], self._initialWeightRange[1]))
# mutation
ap.add('mutationAlpha', private=True, default=0.01)
ap.add('mutationVariate', private=True, default=CauchyVariate(0, self._mutationAlpha))
# evaluation
ap.add('wtRatio', private=True, default=(1, 3))
# burst mutation
ap.add('nBurstMutationEpochs', default=Infinity)
# network
ap.add('backprojectionFactor', private=True, default=float(evolino_network.backprojectionFactor))
evolino_network.backprojectionFactor = self._backprojectionFactor
# aggregated objects
ap.add('selection', default=EvolinoSelection())
ap.add('reproduction', default=EvolinoReproduction(mutationVariate=self.mutationVariate))
ap.add('burstMutation', default=EvolinoBurstMutation())
ap.add('evaluation', default=EvolinoEvaluation(evolino_network, self.ds, **kwargs))
self.selection.nParents = self.nParents
self._population = EvolinoPopulation(
EvolinoSubIndividual(evolino_network.getGenome()),
self._subPopulationSize,
self._nCombinations,
self._weightInitializer
)
filters = []
filters.append(self.evaluation)
filters.append(self.selection)
filters.append(self.reproduction)
self._filters = filters
self.totalepochs = 0
self._max_fitness = self.evaluation.max_fitness
self._max_fitness_epoch = self.totalepochs
|
:key subPopulationSize: Size of the subpopulations.
:key nCombinations: Number of times each chromosome is built into an individual. default=1
:key nParents: Number of individuals left in a subpopulation after selection.
:key initialWeightRange: Range of the weights of the RNN after initialization. default=(-0.1,0.1)
:key weightInitializer: Initializer object for the weights of the RNN. default=Randomization(...)
:key mutationAlpha: The mutation's intensity. default=0.01
:key mutationVariate: The variate used for mutation. default=CauchyVariate(...)
:key wtRatio: The quotient: washout-time/training-time. Needed to
split the sequences into washout phase and training phase.
:key nBurstMutationEpochs: Number of epochs without increase of fitness in a row,
before burstmutation is applied. default=Infinity
:key backprojectionFactor: Weight of the backprojection. Usually
supplied through evolino_network.
:key selection: Selection object for evolino
:key reproduction: Reproduction object for evolino
:key burstMutation: BurstMutation object for evolino
:key evaluation: Evaluation object for evolino
:key verbosity: verbosity level
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/supervised/trainers/evolino.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/trainers/evolino.py
|
BSD-3-Clause
|
def gaussian(x, mean, stddev):
""" return value of homogenous Gaussian at given vector point
x: vector, mean: vector, stddev: scalar """
tmp = -0.5 * sum(((x-mean)/stddev)**2)
return np.exp(tmp) / (np.power(2.*np.pi, 0.5*len(x)) * stddev)
|
return value of homogenous Gaussian at given vector point
x: vector, mean: vector, stddev: scalar
|
gaussian
|
python
|
pybrain/pybrain
|
pybrain/supervised/trainers/mixturedensity.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/trainers/mixturedensity.py
|
BSD-3-Clause
|
def _calcDerivs(self, seq):
""" calculate derivatives assuming we have a Network with a MixtureDensityLayer as output """
assert isinstance(self.module.modulesSorted[-1], MixtureDensityLayer)
self.module.reset()
for time, sample in enumerate(seq):
input = sample[0]
self.module.inputbuffer[time] = input
self.module.forward()
error = 0
nDims = self.module.modulesSorted[-1].nDims
nGauss = self.module.modulesSorted[-1].nGaussians
for time, sample in reversed(list(enumerate(seq))):
# Should these three lines be inside this 'for' block
# or outside? I moved them inside - Jack
gamma = []
means = []
stddevs = []
dummy, target = sample
par = self.module.outputbuffer[time] # parameters for mixture
# calculate error contributions from all Gaussians in the mixture
for k in range(nGauss):
coeff = par[k]
stddevs.append(par[k+nGauss])
idxm = 2*nGauss + k*nDims
means.append(par[idxm:idxm+nDims])
gamma.append(coeff * gaussian(target, means[-1], stddevs[-1]))
# calculate error for this pattern, and posterior for target
sumg = sum(gamma)
error -= np.log(sumg)
gamma = np.array(gamma)/sumg
invvariance = 1./par[nGauss:2*nGauss]**2
invstddev = 1./np.array(stddevs)
# calculate gradient wrt. mixture coefficients
grad_c = par[0:nGauss] - gamma
# calculate gradient wrt. standard deviations
grad_m = []
grad_s = []
for k in range(nGauss):
delta = means[k]-target
grad_m.append(gamma[k]*delta*invvariance[k])
grad_s.append(-gamma[k]*(np.dot(delta,delta)*invvariance[k]*invstddev[k] - invstddev[k]))
self.module.outputerror[time] = -np.r_[grad_c,grad_s,np.array(grad_m).flatten()]
self.module.backward()
return error, 1.0
|
calculate derivatives assuming we have a Network with a MixtureDensityLayer as output
|
_calcDerivs
|
python
|
pybrain/pybrain
|
pybrain/supervised/trainers/mixturedensity.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/trainers/mixturedensity.py
|
BSD-3-Clause
|
def __init__(self, module, etaminus=0.5, etaplus=1.2, deltamin=1.0e-6, deltamax=5.0, delta0=0.1, **kwargs):
""" Set up training algorithm parameters, and objects associated with the trainer.
:arg module: the module whose parameters should be trained.
:key etaminus: factor by which step width is decreased when overstepping (0.5)
:key etaplus: factor by which step width is increased when following gradient (1.2)
:key delta: step width for each weight
:key deltamin: minimum step width (1e-6)
:key deltamax: maximum step width (5.0)
:key delta0: initial step width (0.1)
"""
BackpropTrainer.__init__(self, module, **kwargs)
self.epoch = 0
# set descender to RPROP mode and update parameters
self.descent.rprop = True
self.descent.etaplus = etaplus
self.descent.etaminus = etaminus
self.descent.deltamin = deltamin
self.descent.deltamax = deltamax
self.descent.deltanull = delta0
self.descent.init(module.params) # reinitialize, since mode changed
|
Set up training algorithm parameters, and objects associated with the trainer.
:arg module: the module whose parameters should be trained.
:key etaminus: factor by which step width is decreased when overstepping (0.5)
:key etaplus: factor by which step width is increased when following gradient (1.2)
:key delta: step width for each weight
:key deltamin: minimum step width (1e-6)
:key deltamax: maximum step width (5.0)
:key delta0: initial step width (0.1)
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/supervised/trainers/rprop.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/trainers/rprop.py
|
BSD-3-Clause
|
def train(self):
""" Train the network for one epoch """
self.module.resetDerivatives()
errors = 0
ponderation = 0
for seq in self.ds._provideSequences():
e, p = self._calcDerivs(seq)
errors += e
ponderation += p
if self.verbose:
print(("epoch {epoch:6d} total error {error:12.5g} avg weight {weight:12.5g}".format(
epoch=self.epoch,
error=errors / ponderation,
weight=sqrt((self.module.params ** 2).mean()))))
self.module._setParameters(self.descent(self.module.derivs - self.weightdecay * self.module.params))
self.epoch += 1
self.totalepochs += 1
return errors / ponderation
|
Train the network for one epoch
|
train
|
python
|
pybrain/pybrain
|
pybrain/supervised/trainers/rprop.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/trainers/rprop.py
|
BSD-3-Clause
|
def __init__(self, svmunit, dataset, modelfile=None, plot=False):
""" Initialize data and unit to be trained, and load the model, if
provided.
The passed `svmunit` has to be an object of class :class:`SVMUnit`
that is going to be trained on the :class:`ClassificationDataSet` object
dataset.
Compared to FNN training we do not use a test data set, instead 5-fold
cross-validation is performed if needed.
If `modelfile` is provided, this model is loaded instead of training.
If `plot` is True, a grid search is performed and the resulting pattern
is plotted."""
self.svm = svmunit
self.ds = dataset
self.svmtarget = dataset['target'].flatten()
self.plot = plot
self.searchlog = 'gridsearch_results.txt'
# set default parameters for training
self.params = {
'kernel_type':RBF
}
if modelfile is not None: self.load(modelfile)
|
Initialize data and unit to be trained, and load the model, if
provided.
The passed `svmunit` has to be an object of class :class:`SVMUnit`
that is going to be trained on the :class:`ClassificationDataSet` object
dataset.
Compared to FNN training we do not use a test data set, instead 5-fold
cross-validation is performed if needed.
If `modelfile` is provided, this model is loaded instead of training.
If `plot` is True, a grid search is performed and the resulting pattern
is plotted.
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/supervised/trainers/svmtrainer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/trainers/svmtrainer.py
|
BSD-3-Clause
|
def train(self, search=False, **kwargs):
""" Train the SVM on the dataset. For RBF kernels (the default), an optional meta-parameter search can be performed.
:key search: optional name of grid search class to use for RBF kernels: 'GridSearch' or 'GridSearchDOE'
:key log2g: base 2 log of the RBF width parameter
:key log2C: base 2 log of the slack parameter
:key searchlog: filename into which to dump the search log
:key others: ...are passed through to the grid search and/or libsvm
"""
self.setParams(**kwargs)
problem = svm_problem(self.ds['target'].flatten(), self.ds['input'].tolist())
if search:
# this is a bit of a hack...
model = eval(search + "(problem, self.svmtarget, cmin=[0,-7],cmax=[25,1], cstep=[0.5,0.2],plotflag=self.plot,searchlog=self.searchlog,**self.params)")
else:
param = svm_parameter(**self.params)
model = svm_model(problem, param)
logging.info("Training completed with parameters:")
logging.info(repr(param))
self.svm.setModel(model)
|
Train the SVM on the dataset. For RBF kernels (the default), an optional meta-parameter search can be performed.
:key search: optional name of grid search class to use for RBF kernels: 'GridSearch' or 'GridSearchDOE'
:key log2g: base 2 log of the RBF width parameter
:key log2C: base 2 log of the slack parameter
:key searchlog: filename into which to dump the search log
:key others: ...are passed through to the grid search and/or libsvm
|
train
|
python
|
pybrain/pybrain
|
pybrain/supervised/trainers/svmtrainer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/trainers/svmtrainer.py
|
BSD-3-Clause
|
def setParams(self, **kwargs):
""" Set parameters for SVM training. Apart from the ones below, you can use all parameters
defined for the LIBSVM svm_model class, see their documentation.
:key searchlog: Save a list of coordinates and the achieved CV accuracy to this file."""
if 'weight' in kwargs:
self.params['nr_weight'] = len(kwargs['weight'])
if 'log2C' in kwargs:
self.params['C'] = 2 ** kwargs['log2C']
kwargs.pop('log2C')
if 'log2g' in kwargs:
self.params['gamma'] = 2 ** kwargs['log2g']
kwargs.pop('log2g')
if 'searchlog' in kwargs:
self.searchlog = kwargs['searchlog']
kwargs.pop('searchlog')
self.params.update(kwargs)
|
Set parameters for SVM training. Apart from the ones below, you can use all parameters
defined for the LIBSVM svm_model class, see their documentation.
:key searchlog: Save a list of coordinates and the achieved CV accuracy to this file.
|
setParams
|
python
|
pybrain/pybrain
|
pybrain/supervised/trainers/svmtrainer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/trainers/svmtrainer.py
|
BSD-3-Clause
|
def __init__(self, problem, targets, cmin, cmax, cstep=None, crossval=5,
plotflag=False, maxdepth=8, searchlog='gridsearch_results.txt', **params):
""" Set up (log) grid search over the two RBF kernel parameters C and gamma.
:arg problem: the LIBSVM svm_problem to be optimized, ie. the input and target data
:arg targets: unfortunately, the targets used in the problem definition have to be given again here
:arg cmin: lower left corner of the log2C/log2gamma window to search
:arg cmax: upper right corner of the log2C/log2gamma window to search
:key cstep: step width for log2C and log2gamma (ignored for DOE search)
:key crossval: split dataset into this many parts for cross-validation
:key plotflag: if True, plot the error surface contour (regular) or search pattern (DOE)
:key maxdepth: maximum window bisection depth (DOE only)
:key searchlog: Save a list of coordinates and the achieved CV accuracy to this file
:key others: ...are passed through to the cross_validation method of LIBSVM
"""
self.nPars = len(cmin)
self.usermin = cmin
self.usermax = cmax
self.userstep = cstep
self.crossval = crossval
self.plotflag = plotflag
self.maxdepth = maxdepth # number of zoom-in steps (DOE search only!)
# set default parameters for training
self.params = params
if self.plotflag:
import pylab as p
p.ion()
p.figure(figsize=[12, 8])
assert isinstance(problem, svm_problem)
self.problem = problem
self.targets = targets
self.resfile = open(searchlog, 'w')
# do the parameter searching
param = self.search()
if self.plotflag:
p.ioff()
p.show()
self.resfile.close()
svm_model.__init__(self, problem, param)
|
Set up (log) grid search over the two RBF kernel parameters C and gamma.
:arg problem: the LIBSVM svm_problem to be optimized, ie. the input and target data
:arg targets: unfortunately, the targets used in the problem definition have to be given again here
:arg cmin: lower left corner of the log2C/log2gamma window to search
:arg cmax: upper right corner of the log2C/log2gamma window to search
:key cstep: step width for log2C and log2gamma (ignored for DOE search)
:key crossval: split dataset into this many parts for cross-validation
:key plotflag: if True, plot the error surface contour (regular) or search pattern (DOE)
:key maxdepth: maximum window bisection depth (DOE only)
:key searchlog: Save a list of coordinates and the achieved CV accuracy to this file
:key others: ...are passed through to the cross_validation method of LIBSVM
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/supervised/trainers/svmtrainer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/trainers/svmtrainer.py
|
BSD-3-Clause
|
def search(self):
""" iterate successive parameter grid refinement and evaluation; adapted from LIBSVM grid search tool """
jobs = self.calculate_jobs()
scores = []
for line in jobs:
for (c, g) in line:
# run cross-validation for this point
self.setParams(C=2 ** c, gamma=2 ** g)
param = svm_parameter(**self.params)
cvresult = array(cross_validation(self.problem, param, self.crossval))
corr, = where(cvresult == self.targets)
res = (c, g, float(corr.size) / self.targets.size)
scores.append(res)
self._save_points(res)
self._redraw(scores)
scores = array(scores)
best = scores[scores[:, 0].argmax(), 1:]
self.setParams(C=2 ** best[0], gamma=2 ** best[1])
logging.info("best log2C=%12.7g, log2g=%11.7g " % (best[0], best[1]))
param = svm_parameter(**self.params)
return param
|
iterate successive parameter grid refinement and evaluation; adapted from LIBSVM grid search tool
|
search
|
python
|
pybrain/pybrain
|
pybrain/supervised/trainers/svmtrainer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/trainers/svmtrainer.py
|
BSD-3-Clause
|
def _permute_sequence(self, seq):
""" helper function to create a nice sequence of refined regular grids; from LIBSVM grid search tool """
n = len(seq)
if n <= 1: return seq
mid = int(n / 2)
left = self._permute_sequence(seq[:mid])
right = self._permute_sequence(seq[mid + 1:])
ret = [seq[mid]]
while left or right:
if left: ret.append(left.pop(0))
if right: ret.append(right.pop(0))
return ret
|
helper function to create a nice sequence of refined regular grids; from LIBSVM grid search tool
|
_permute_sequence
|
python
|
pybrain/pybrain
|
pybrain/supervised/trainers/svmtrainer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/trainers/svmtrainer.py
|
BSD-3-Clause
|
def _range_f(self, begin, end, step):
""" like range, but works on non-integer too; from LIBSVM grid search tool """
seq = []
while 1:
if step > 0 and begin > end: break
if step < 0 and begin < end: break
seq.append(begin)
begin = begin + step
return seq
|
like range, but works on non-integer too; from LIBSVM grid search tool
|
_range_f
|
python
|
pybrain/pybrain
|
pybrain/supervised/trainers/svmtrainer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/trainers/svmtrainer.py
|
BSD-3-Clause
|
def calculate_jobs(self):
""" like range, but works on non-integer too; from LIBSVM grid search tool """
c_seq = self._permute_sequence(self._range_f(self.usermin[0], self.usermax[0], self.userstep[0]))
g_seq = self._permute_sequence(self._range_f(self.usermin[1], self.usermax[1], self.userstep[1]))
nr_c = float(len(c_seq))
nr_g = float(len(g_seq))
global total_points
total_points = (nr_g + 1) * (nr_g)
i = 0
j = 0
jobs = []
while i < nr_c or j < nr_g:
if i / nr_c < j / nr_g:
# increase C resolution
line = []
for k in range(0, j):
line.append((c_seq[i], g_seq[k]))
i = i + 1
jobs.append(line)
else:
# increase g resolution
line = []
for k in range(0, i):
line.append((c_seq[k], g_seq[j]))
j = j + 1
jobs.append(line)
return jobs
|
like range, but works on non-integer too; from LIBSVM grid search tool
|
calculate_jobs
|
python
|
pybrain/pybrain
|
pybrain/supervised/trainers/svmtrainer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/trainers/svmtrainer.py
|
BSD-3-Clause
|
def _save_points(self, res):
""" save the list of points and corresponding scores into a file """
self.resfile.write("%g, %g, %g\n" % res)
logging.info("log2C=%g, log2g=%g, res=%g" % res)
self.resfile.flush()
|
save the list of points and corresponding scores into a file
|
_save_points
|
python
|
pybrain/pybrain
|
pybrain/supervised/trainers/svmtrainer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/trainers/svmtrainer.py
|
BSD-3-Clause
|
def search(self, cmin=None, cmax=None):
""" iterate parameter grid refinement and evaluation recursively """
if self.depth > self.maxdepth:
# maximum search depth reached - finish up
best = self.allPts[self.allScores.argmax(), :]
logging.info("best log2C=%12.7g, log2g=%11.7g " % (best[0], best[1]))
self.setParams(C=2 ** best[0], gamma=2 ** best[1])
param = svm_parameter(**self.params)
logging.info("Grid search completed! Final parameters:")
logging.info(repr(param))
return param
# generate DOE gridpoints using current range
if cmin is None:
# use initial values, if none given
cmin = array(self.usermin)
cmax = array(self.usermax)
points = self.refineGrid(cmin, cmax)
# calculate scores for all grid points using n-fold cross-validation
scores = []
isnew = array([True] * self.nPts)
for i in range(self.nPts):
idx = self._findIndex(points[i, :])
if idx >= 0:
# point already exists
isnew[i] = False
scores.append(self.allScores[idx])
else:
# new point, run cross-validation
self.setParams(C=2 ** points[i, 0], gamma=2 ** points[i, 1])
param = svm_parameter(**self.params)
cvresult = array(cross_validation(self.problem, param, self.crossval))
# save cross validation result as "% correct"
corr, = where(cvresult == self.targets)
corr = float(corr.size) / self.targets.size
scores.append(corr)
self._save_points((points[i, 0], points[i, 1], corr))
scores = array(scores)
# find max and new ranges by halving the old ones, whereby
# entire search region must lie within original search range
newctr = points[scores.argmax(), :].copy()
newdiff = (cmax - cmin) / 4.0
for i in range(self.nPars):
newctr[i] = min([max([newctr[i], self.usermin[i] + newdiff[i]]), self.usermax[i] - newdiff[i]])
cmin = newctr - newdiff
cmax = newctr + newdiff
logging.info("depth:\t%3d\tcrange:\t%g\tscore:\t%g" % (self.depth, cmax[0] - cmin[0], scores.max()))
# append points and scores to the full list
if self.depth == 0:
self.allPts = points[isnew, :].copy()
self.allScores = scores[isnew].copy()
else:
self.allPts = append(self.allPts, points[isnew, :], axis=0)
self.allScores = append(self.allScores, scores[isnew], axis=0)
if self.plotflag:
import pylab as p
if self.depth == 0:
self.oPlot = p.plot(self.allPts[:, 0], self.allPts[:, 1], 'o')[0]
# insert new data into plot
self.oPlot.set_data(self.allPts[:, 0], self.allPts[:, 1])
p.draw()
# recursively call ourselves
self.depth += 1
return self.search(cmin, cmax)
|
iterate parameter grid refinement and evaluation recursively
|
search
|
python
|
pybrain/pybrain
|
pybrain/supervised/trainers/svmtrainer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/trainers/svmtrainer.py
|
BSD-3-Clause
|
def refineGrid(self, cmin, cmax):
""" given grid boundaries, generate the corresponding DOE pattern from template"""
diff = array((cmax - cmin).tolist()*self.nPts).reshape(self.nPts, self.nPars)
return self.doepat * diff + array(cmin.tolist()*self.nPts).reshape(self.nPts, self.nPars)
|
given grid boundaries, generate the corresponding DOE pattern from template
|
refineGrid
|
python
|
pybrain/pybrain
|
pybrain/supervised/trainers/svmtrainer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/trainers/svmtrainer.py
|
BSD-3-Clause
|
def _findIndex(self, point):
""" determines whether given point already exists in list of all calculated points.
raises exception if more than one point is found, returns -1 if no point is found """
if self.depth == 0: return - 1
check = self.allPts[:, 0] == point[0]
for i in range(1, point.size):
check = check & (self.allPts[:, i] == point[i])
idx, = where(check)
if idx.size == 0:
return - 1
elif idx.size > 1:
logging.error("Something went wrong - found more than one matching point!")
logging.error(str(point))
logging.error(str(self.allPts))
raise
else:
return idx[0]
|
determines whether given point already exists in list of all calculated points.
raises exception if more than one point is found, returns -1 if no point is found
|
_findIndex
|
python
|
pybrain/pybrain
|
pybrain/supervised/trainers/svmtrainer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/trainers/svmtrainer.py
|
BSD-3-Clause
|
def setData(self, dataset):
"""Associate the given dataset with the trainer."""
self.ds = dataset
if dataset:
assert dataset.indim == self.module.indim
assert dataset.outdim == self.module.outdim
|
Associate the given dataset with the trainer.
|
setData
|
python
|
pybrain/pybrain
|
pybrain/supervised/trainers/trainer.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/supervised/trainers/trainer.py
|
BSD-3-Clause
|
def epsilonCheck(x, epsilon=1e-6):
"""Checks that x is in (-epsilon, epsilon)."""
epsilon = abs(epsilon)
return -epsilon < x < epsilon
|
Checks that x is in (-epsilon, epsilon).
|
epsilonCheck
|
python
|
pybrain/pybrain
|
pybrain/tests/helpers.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tests/helpers.py
|
BSD-3-Clause
|
def buildAppropriateDataset(module):
""" build a sequential dataset with 2 sequences of 3 samples, with arndom input and target values,
but the appropriate dimensions to be used on the provided module. """
if module.sequential:
d = SequentialDataSet(module.indim, module.outdim)
for dummy in range(2):
d.newSequence()
for dummy in range(3):
d.addSample(randn(module.indim), randn(module.outdim))
else:
d = SupervisedDataSet(module.indim, module.outdim)
for dummy in range(3):
d.addSample(randn(module.indim), randn(module.outdim))
return d
|
build a sequential dataset with 2 sequences of 3 samples, with arndom input and target values,
but the appropriate dimensions to be used on the provided module.
|
buildAppropriateDataset
|
python
|
pybrain/pybrain
|
pybrain/tests/helpers.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tests/helpers.py
|
BSD-3-Clause
|
def gradientCheck(module, tolerance=0.0001, dataset=None):
""" check the gradient of a module with a randomly generated dataset,
(and, in the case of a network, determine which modules contain incorrect derivatives). """
if module.paramdim == 0:
print('Module has no parameters')
return True
if dataset:
d = dataset
else:
d = buildAppropriateDataset(module)
b = BackpropTrainer(module)
res = b._checkGradient(d, True)
# compute average precision on every parameter
precision = zeros(module.paramdim)
for seqres in res:
for i, p in enumerate(seqres):
if p[0] == 0 and p[1] == 0:
precision[i] = 0
else:
precision[i] += abs((p[0] + p[1]) / (p[0] - p[1]))
precision /= len(res)
if max(precision) < tolerance:
print('Perfect gradient')
return True
else:
print(('Incorrect gradient', precision))
if isinstance(module, Network):
index = 0
for m in module._containerIterator():
if max(precision[index:index + m.paramdim]) > tolerance:
print(('Incorrect module:', m, res[-1][index:index + m.paramdim]))
index += m.paramdim
else:
print(res)
return False
|
check the gradient of a module with a randomly generated dataset,
(and, in the case of a network, determine which modules contain incorrect derivatives).
|
gradientCheck
|
python
|
pybrain/pybrain
|
pybrain/tests/helpers.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tests/helpers.py
|
BSD-3-Clause
|
def xmlInvariance(n, forwardpasses = 1):
""" try writing a network to an xml file, reading it, rewrite it, reread it, and compare
if the result looks the same (compare string representation, and forward processing
of some random inputs) """
# We only use this for file creation.
tmpfile = tempfile.NamedTemporaryFile(dir='.')
f = tmpfile.name
tmpfile.close()
NetworkWriter.writeToFile(n, f)
tmpnet = NetworkReader.readFrom(f)
NetworkWriter.writeToFile(tmpnet, f)
endnet = NetworkReader.readFrom(f)
# Unlink temporary file.
os.unlink(f)
netCompare(tmpnet, endnet, forwardpasses, True)
|
try writing a network to an xml file, reading it, rewrite it, reread it, and compare
if the result looks the same (compare string representation, and forward processing
of some random inputs)
|
xmlInvariance
|
python
|
pybrain/pybrain
|
pybrain/tests/helpers.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tests/helpers.py
|
BSD-3-Clause
|
def testInterface(algo):
""" Tests whether the algorithm is properly implementing the
correct Blackbox-optimization interface."""
# without any arguments, initialization has to work
emptyalgo = algo()
try:
# but not learning
emptyalgo.learn(0)
return "Failed to throw missing evaluator error?"
except AssertionError:
pass
emptyalgo.setEvaluator(sf, xa1)
# not it can run
emptyalgo.learn(0)
# simple functions don't check for dimension mismatch
algo(sf, xa1)
algo(sf, xa100)
# for these, either an initial point or a dimension parameter is required
algo(sf, numParameters=2)
try:
algo(sf)
return "Failed to throw unknown dimension error"
except ValueError:
pass
# FitnessEvaluators do not require that
algo(ife1)
# parameter containers can be used too
algo(ife2, pc2)
return True
|
Tests whether the algorithm is properly implementing the
correct Blackbox-optimization interface.
|
testInterface
|
python
|
pybrain/pybrain
|
pybrain/tests/optimizationtest.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tests/optimizationtest.py
|
BSD-3-Clause
|
def testContinuousInterface(algo):
""" Test the specifics for the interface for ContinuousOptimizers """
if not issubclass(algo, bbo.ContinuousOptimizer):
return True
# list starting points are internally converted to arrays
x = algo(sf, xlist2)
assert isinstance(x.bestEvaluable, ndarray), 'not converted to array'
# check for dimension mismatch
try:
algo(ife1, xa2)
return "Failed to throw dimension mismatch error"
except ValueError:
pass
return True
|
Test the specifics for the interface for ContinuousOptimizers
|
testContinuousInterface
|
python
|
pybrain/pybrain
|
pybrain/tests/optimizationtest.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tests/optimizationtest.py
|
BSD-3-Clause
|
def testMinMax(algo):
""" Verify that the algorithm is doing the minimization/maximization consistently. """
if (issubclass(algo, bbo.TopologyOptimizer)
or algo == allopts.StochasticHillClimber):
# TODO
return True
xa1[0] = 2
evalx = sf(xa1)
amax1 = algo(sf, xa1, minimize=False)
amax2 = algo(sf, xa1)
amax2.minimize = False
amax3 = algo()
amax3.setEvaluator(sf, xa1)
amax3.minimize = False
amax4 = algo()
amax4.minimize = False
amax4.setEvaluator(sf, xa1)
for i, amax in enumerate([amax1, amax2, amax3, amax4]):
assert amax.minimize is False or amax.mustMinimize, 'Max: Attribute not set correctly.' \
+ str(amax.minimize) + str(amax.mustMinimize) + str(i)
x, xv = amax.learn(1)
assert sf(x) == xv, 'Evaluation does not fit: ' + str((sf(x), xv))
assert xv >= evalx, 'Evaluation did not increase: ' + str(xv) + ' (init: ' + str(evalx) + ')'
xa1[0] = 2
amin1 = algo(sf, xa1, minimize=True)
amin2 = algo(sf, xa1)
amin2.minimize = True
amin3 = algo()
amin3.setEvaluator(sf, xa1)
amin3.minimize = True
amin4 = algo()
amin4.minimize = True
amin4.setEvaluator(sf, xa1)
for i, amin in enumerate([amin1, amin2, amin3, amin4]):
assert amin.minimize is True or amin.mustMaximize, 'Min: Attribute not set correctly.' \
+ str(amin.minimize) + str(amin.mustMaximize) + str(i)
x, xv = amin.learn(1)
assert sf(x) == xv, 'Evaluation does not fit: ' + str((sf(x), xv)) + str(i)
assert xv <= evalx, 'Evaluation did not decrease: ' + str(xv) + ' (init: ' + str(evalx) + ')' + str(i)
assert ((amin.minimize is not amax.minimize)
or not (amin._wasOpposed is amax._wasOpposed)), 'Inconsistent flags.'
return True
|
Verify that the algorithm is doing the minimization/maximization consistently.
|
testMinMax
|
python
|
pybrain/pybrain
|
pybrain/tests/optimizationtest.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tests/optimizationtest.py
|
BSD-3-Clause
|
def testImport(module_name):
"""Tell wether a module can be imported.
This function has a cache, so modules are only tested once on
importability.
"""
try:
return testImport.cache[module_name]
except KeyError:
try:
__import__(module_name)
except ImportError:
result = False
else:
result = True
testImport.cache[module_name] = result
return result
|
Tell wether a module can be imported.
This function has a cache, so modules are only tested once on
importability.
|
testImport
|
python
|
pybrain/pybrain
|
pybrain/tests/runtests.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tests/runtests.py
|
BSD-3-Clause
|
def missingDependencies(target_module):
"""Returns a list of dependencies of the module that the current
interpreter cannot import.
This does not inspect the code, but instead check for a list of strings
called _dependencies in the target_module. This list should contain module
names that the module depends on."""
dependencies = getattr(target_module, '_dependencies', [])
return [i for i in dependencies if not testImport(i)]
|
Returns a list of dependencies of the module that the current
interpreter cannot import.
This does not inspect the code, but instead check for a list of strings
called _dependencies in the target_module. This list should contain module
names that the module depends on.
|
missingDependencies
|
python
|
pybrain/pybrain
|
pybrain/tests/runtests.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tests/runtests.py
|
BSD-3-Clause
|
def getSubDirectories(testdir):
"""Recursively builds a list of all subdirectories in the test suite."""
subdirs = [os.path.join(testdir,d) for d in
filter(os.path.isdir,[os.path.join(testdir,dd) for dd in os.listdir(testdir)])]
for d in copy(subdirs):
subdirs.extend(getSubDirectories(os.path.join(testdir,d)))
return subdirs
|
Recursively builds a list of all subdirectories in the test suite.
|
getSubDirectories
|
python
|
pybrain/pybrain
|
pybrain/tests/runtests.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tests/runtests.py
|
BSD-3-Clause
|
def make_test_suite():
"""Load unittests placed in pybrain/tests/unittests, then return a
TestSuite object of those."""
# [...]/pybrain/pybrain [cut] /tests/runtests.py
path = os.path.abspath(__file__).rsplit(os.sep+'tests', 1)[0]
sys.path.append(path.rstrip('pybrain'))
top_testdir = os.path.join(path, 'tests', 'unittests')
testdirs = getSubDirectories(top_testdir)
# Initialize the testsuite to add to
suite = TestSuite()
optionflags = doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE | doctest.IGNORE_EXCEPTION_DETAIL
for testdir in testdirs:
# All unittest modules have to start with 'test_' and have to be, of
# course, python files
module_names = [f[:-3] for f in os.listdir(testdir)
if f.startswith('test_') and f.endswith('.py')]
if not module_names:
logging.info('No tests found in %s' % testdir)
continue
# "Magically" import the tests package and its test-modules that we've
# found
test_package_path = 'pybrain.tests.unittests'
sub_path = os.path.relpath(testdir, top_testdir).split(os.sep)
test_package_path = '.'.join([test_package_path]+sub_path)
test_package = __import__(test_package_path, fromlist=module_names)
# Put the test modules in a list that can be passed to the testsuite
modules = (getattr(test_package, n) for n in module_names)
modules = [(m, missingDependencies(m)) for m in modules]
untests = [(m, md) for m, md in modules if md]
modules = [m for m, md in modules if not md]
# print(out modules that are missing dependencies)
for module, miss_dep in untests: # Mr Dep is not around, though
logging.warning('Module %s is missing dependencies: %s' % (
module.__name__, ', '.join(miss_dep)))
# print(out a list of tests that are found)
for m in modules:
logging.info('Tests found: %s' % m.__name__)
# Build up the testsuite
suite.addTests([TestLoader().loadTestsFromModule(m) for m in modules])
# Add doctests from the unittest modules to the suite
for mod in modules:
try:
suite.addTest(doctest.DocTestSuite(mod, optionflags=optionflags))
except ValueError:
# No tests found.
pass
return suite
|
Load unittests placed in pybrain/tests/unittests, then return a
TestSuite object of those.
|
make_test_suite
|
python
|
pybrain/pybrain
|
pybrain/tests/runtests.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tests/runtests.py
|
BSD-3-Clause
|
def runModuleTestSuite(module):
"""Runs a test suite for all local tests."""
suite = TestSuite([TestLoader().loadTestsFromModule(module)])
# Add local doctests
optionflags = ELLIPSIS | NORMALIZE_WHITESPACE | REPORT_ONLY_FIRST_FAILURE | IGNORE_EXCEPTION_DETAIL
try:
suite.addTest(DocTestSuite(module), optionflags=optionflags)
except ValueError:
# No tests have been found in that module.
pass
TextTestRunner().run(suite)
|
Runs a test suite for all local tests.
|
runModuleTestSuite
|
python
|
pybrain/pybrain
|
pybrain/tests/testsuites.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tests/testsuites.py
|
BSD-3-Clause
|
def buildSharedCrossedNetwork():
""" build a network with shared connections. Two hidden modules are
symmetrically linked, but to a different input neuron than the
output neuron. The weights are random. """
N = FeedForwardNetwork('shared-crossed')
h = 1
a = LinearLayer(2, name = 'a')
b = LinearLayer(h, name = 'b')
c = LinearLayer(h, name = 'c')
d = LinearLayer(2, name = 'd')
N.addInputModule(a)
N.addModule(b)
N.addModule(c)
N.addOutputModule(d)
m1 = MotherConnection(h)
m1.params[:] = scipy.array((1,))
m2 = MotherConnection(h)
m2.params[:] = scipy.array((2,))
N.addConnection(SharedFullConnection(m1, a, b, inSliceTo = 1))
N.addConnection(SharedFullConnection(m1, a, c, inSliceFrom = 1))
N.addConnection(SharedFullConnection(m2, b, d, outSliceFrom = 1))
N.addConnection(SharedFullConnection(m2, c, d, outSliceTo = 1))
N.sortModules()
return N
|
build a network with shared connections. Two hidden modules are
symmetrically linked, but to a different input neuron than the
output neuron. The weights are random.
|
buildSharedCrossedNetwork
|
python
|
pybrain/pybrain
|
pybrain/tests/unittests/structure/connections/test_shared_connections.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tests/unittests/structure/connections/test_shared_connections.py
|
BSD-3-Clause
|
def buildSlicedNetwork():
""" build a network with shared connections. Two hidden modules are
symmetrically linked, but to a different input neuron than the
output neuron. The weights are random. """
N = FeedForwardNetwork('sliced')
a = LinearLayer(2, name = 'a')
b = LinearLayer(2, name = 'b')
N.addInputModule(a)
N.addOutputModule(b)
N.addConnection(FullConnection(a, b, inSliceTo=1, outSliceFrom=1))
N.addConnection(FullConnection(a, b, inSliceFrom=1, outSliceTo=1))
N.sortModules()
return N
|
build a network with shared connections. Two hidden modules are
symmetrically linked, but to a different input neuron than the
output neuron. The weights are random.
|
buildSlicedNetwork
|
python
|
pybrain/pybrain
|
pybrain/tests/unittests/structure/connections/test_sliced_connections.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tests/unittests/structure/connections/test_sliced_connections.py
|
BSD-3-Clause
|
def buildSimpleBorderSwipingNet(size = 3, dim = 3, hsize = 1, predefined = {}):
""" build a simple swiping network,of given size and dimension, using linear inputs and output"""
# assuming identical size in all dimensions
dims = tuple([size]*dim)
# also includes one dimension for the swipes
hdims = tuple(list(dims)+[2**dim])
inmod = LinearLayer(size**dim, name = 'input')
inmesh = ModuleMesh.viewOnFlatLayer(inmod, dims, 'inmesh')
outmod = LinearLayer(size**dim, name = 'output')
outmesh = ModuleMesh.viewOnFlatLayer(outmod, dims, 'outmesh')
hiddenmesh = ModuleMesh.constructWithLayers(TanhLayer, hsize, hdims, 'hidden')
return BorderSwipingNetwork(inmesh, hiddenmesh, outmesh, predefined = predefined)
|
build a simple swiping network,of given size and dimension, using linear inputs and output
|
buildSimpleBorderSwipingNet
|
python
|
pybrain/pybrain
|
pybrain/tests/unittests/structure/networks/test_borderswipingnetwork.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tests/unittests/structure/networks/test_borderswipingnetwork.py
|
BSD-3-Clause
|
def buildCyclicNetwork(recurrent):
""" build a cyclic network with 4 modules
:key recurrent: make one of the connections recurrent """
Network = RecurrentNetwork if recurrent else FeedForwardNetwork
N = Network('cyc')
a = LinearLayer(1, name='a')
b = LinearLayer(2, name='b')
c = LinearLayer(3, name='c')
d = LinearLayer(4, name='d')
N.addInputModule(a)
N.addModule(b)
N.addModule(d)
N.addOutputModule(c)
N.addConnection(FullConnection(a, b))
N.addConnection(FullConnection(b, c))
N.addConnection(FullConnection(c, d))
if recurrent:
N.addRecurrentConnection(FullConnection(d, a))
else:
N.addConnection(FullConnection(d, a))
N.sortModules()
return N
|
build a cyclic network with 4 modules
:key recurrent: make one of the connections recurrent
|
buildCyclicNetwork
|
python
|
pybrain/pybrain
|
pybrain/tests/unittests/structure/networks/test_cyclic_network.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tests/unittests/structure/networks/test_cyclic_network.py
|
BSD-3-Clause
|
def buildMixedNestedNetwork():
""" build a nested network with the inner one being a ffn and the outer one being recurrent. """
N = RecurrentNetwork('outer')
a = LinearLayer(1, name='a')
b = LinearLayer(2, name='b')
c = buildNetwork(2, 3, 1)
c.name = 'inner'
N.addInputModule(a)
N.addModule(c)
N.addOutputModule(b)
N.addConnection(FullConnection(a, b))
N.addConnection(FullConnection(b, c))
N.addRecurrentConnection(FullConnection(c, c))
N.sortModules()
return N
|
build a nested network with the inner one being a ffn and the outer one being recurrent.
|
buildMixedNestedNetwork
|
python
|
pybrain/pybrain
|
pybrain/tests/unittests/structure/networks/test_nested_ffn_and_rnn.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tests/unittests/structure/networks/test_nested_ffn_and_rnn.py
|
BSD-3-Clause
|
def buildDecomposableNetwork():
""" three hidden neurons, with 2 in- and 2 outconnections each. """
n = buildNetwork(2, 3, 2, bias = False)
ndc = NeuronDecomposableNetwork.convertNormalNetwork(n)
# set all the weights to 1
ndc._setParameters(ones(12))
return ndc
|
three hidden neurons, with 2 in- and 2 outconnections each.
|
buildDecomposableNetwork
|
python
|
pybrain/pybrain
|
pybrain/tests/unittests/structure/networks/test_network_decomposition.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tests/unittests/structure/networks/test_network_decomposition.py
|
BSD-3-Clause
|
def buildSomeConnections(modules):
""" add a connection from every second to every third module """
res = []
for i in range(len(modules)//3-1):
res.append(FullConnection(modules[i*2], modules[i*3+1]))
return res
|
add a connection from every second to every third module
|
buildSomeConnections
|
python
|
pybrain/pybrain
|
pybrain/tests/unittests/structure/networks/test_network_sort.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tests/unittests/structure/networks/test_network_sort.py
|
BSD-3-Clause
|
def convertSequenceToTimeWindows(DSseq, NewClass, winsize):
""" Converts a sequential classification dataset into time windows of fixed length.
Assumes the correct class is given at the last timestep of each sequence. Incomplete windows at the
sequence end are pruned. No overlap between windows.
:arg DSseq: the sequential data set to cut up
:arg winsize: size of the data window
:arg NewClass: class of the windowed data set to be returned (gets initialised with indim*winsize, outdim)"""
assert isinstance(DSseq, SequentialDataSet)
#assert isinstance(DSwin, SupervisedDataSet)
DSwin = NewClass(DSseq.indim * winsize, DSseq.outdim)
nsamples = 0
nseqs = 0
si = r_[DSseq['sequence_index'].flatten(), DSseq.endmarker['sequence_index']]
for i in range(DSseq.getNumSequences()):
# get one sequence as arrays
input = DSseq['input'][si[i]:si[i + 1], :]
target = DSseq['target'][si[i]:si[i + 1], :]
nseqs += 1
# cut this sequence into windows, assuming class is given at the last step of each sequence
for k in range(winsize, input.shape[0], winsize):
inp_win = input[k - winsize:k, :]
tar_win = target[k - 1, :]
DSwin.addSample(inp_win.flatten(), tar_win.flatten())
nsamples += 1
##print("added sample %d from sequence %d: %d - %d" %( nsamples, nseqs, k-winsize, k-1))
print(("samples in original dataset: ", len(DSseq)))
print(("window size * nsamples = ", winsize * nsamples))
print(("total data points in original data: ", len(DSseq) * DSseq.indim))
print(("total data points in windowed dataset: ", len(DSwin) * DSwin.indim))
return DSwin
|
Converts a sequential classification dataset into time windows of fixed length.
Assumes the correct class is given at the last timestep of each sequence. Incomplete windows at the
sequence end are pruned. No overlap between windows.
:arg DSseq: the sequential data set to cut up
:arg winsize: size of the data window
:arg NewClass: class of the windowed data set to be returned (gets initialised with indim*winsize, outdim)
|
convertSequenceToTimeWindows
|
python
|
pybrain/pybrain
|
pybrain/tools/datasettools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/datasettools.py
|
BSD-3-Clause
|
def windowSequenceEval(DS, winsz, result):
""" take results of a window-based classification and assess/plot them on the sequence
WARNING: NOT TESTED!"""
si_old = 0
idx = 0
x = []
y = []
seq_res = []
for i, si in enumerate(DS['sequence_index'][1:].astype(int)):
tar = DS['target'][si - 1]
curr_x = si_old
correct = 0.
wrong = 0.
while curr_x < si:
x.append(curr_x)
if result[idx] == tar:
correct += 1.
y += [1., 1.]
else:
wrong += 1.
y += [0., 0.]
idx += 1
#print("winidx: ", idx)
curr_x += winsz
x.append(curr_x)
seq_res.append(100. * correct / (correct + wrong))
print(("sequence %d correct: %g12.2%%" % (i, seq_res[-1])))
seq_res = array(seq_res)
print(("total fraction of correct sequences: ", 100. * float((seq_res >= 0.5).sum()) / seq_res.size))
|
take results of a window-based classification and assess/plot them on the sequence
WARNING: NOT TESTED!
|
windowSequenceEval
|
python
|
pybrain/pybrain
|
pybrain/tools/datasettools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/datasettools.py
|
BSD-3-Clause
|
def normalize(self, ds, field='input'):
""" normalize dataset or vector wrt. to stored min and max """
if self.dim <= 0:
raise IndexError("No normalization parameters defined!")
dsdim = ds[field].shape[1]
if self.dim != dsdim:
raise IndexError("Dimension of normalization params does not match DataSet field!")
newfeat = ds[field]
if self.meanstd:
for i in range(dsdim):
divisor = self.par2[i] if self.par2[i] > 0 else 1.0
newfeat[:, i] = (newfeat[:, i] - self.par1[i]) / divisor
else:
for i in range(dsdim):
scale = self.scale[i] if isfinite(self.scale[i]) else 1.0
newfeat[:, i] = (newfeat[:, i] - self.par1[i]) * scale + self.newmin
ds.setField(field, newfeat)
|
normalize dataset or vector wrt. to stored min and max
|
normalize
|
python
|
pybrain/pybrain
|
pybrain/tools/datasettools.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/datasettools.py
|
BSD-3-Clause
|
def getAllFilesIn(dir, tag='', extension='.pickle'):
""" return a list of all filenames in the specified directory
(with the given tag and/or extension). """
allfiles = os.listdir(dir)
res = []
for f in allfiles:
if f[-len(extension):] == extension and f[:len(tag)] == tag:
res.append(f[:-len(extension)])
return res
|
return a list of all filenames in the specified directory
(with the given tag and/or extension).
|
getAllFilesIn
|
python
|
pybrain/pybrain
|
pybrain/tools/filehandling.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/filehandling.py
|
BSD-3-Clause
|
def selectSome(strings, requiredsubstrings=[], requireAll=True):
""" Filter the list of strings to only contain those that have at least
one of the required substrings. """
if len(requiredsubstrings) == 0:
return strings
res = []
for s in strings:
if requireAll:
bad = False
for rs in requiredsubstrings:
if s.find(rs) < 0:
bad = True
break
if not bad:
res.append(s)
else:
for rs in requiredsubstrings:
if s.find(rs) >= 0:
res.append(s)
break
return res
|
Filter the list of strings to only contain those that have at least
one of the required substrings.
|
selectSome
|
python
|
pybrain/pybrain
|
pybrain/tools/filehandling.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/filehandling.py
|
BSD-3-Clause
|
def pickleReadDict(name):
""" pickle-read a (default: dictionnary) variable from a file """
try:
f = open(name + '.pickle')
val = pickle.load(f)
f.close()
except Exception as e:
print(('Nothing read from', name, ':', str(e)))
val = {}
return val
|
pickle-read a (default: dictionnary) variable from a file
|
pickleReadDict
|
python
|
pybrain/pybrain
|
pybrain/tools/filehandling.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/filehandling.py
|
BSD-3-Clause
|
def calcFisherInformation(sigma, invSigma=None, factorSigma=None):
""" Compute the exact Fisher Information Matrix of a Gaussian distribution,
given its covariance matrix.
Returns a list of the diagonal blocks. """
if invSigma == None:
invSigma = inv(sigma)
if factorSigma == None:
factorSigma = cholesky(sigma)
dim = sigma.shape[0]
fim = [invSigma]
for k in range(dim):
D = invSigma[k:, k:].copy()
D[0, 0] += factorSigma[k, k] ** -2
fim.append(D)
return fim
|
Compute the exact Fisher Information Matrix of a Gaussian distribution,
given its covariance matrix.
Returns a list of the diagonal blocks.
|
calcFisherInformation
|
python
|
pybrain/pybrain
|
pybrain/tools/fisher.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/fisher.py
|
BSD-3-Clause
|
def calcInvFisher(sigma, invSigma=None, factorSigma=None):
""" Efficiently compute the exact inverse of the FIM of a Gaussian.
Returns a list of the diagonal blocks. """
if invSigma == None:
invSigma = inv(sigma)
if factorSigma == None:
factorSigma = cholesky(sigma)
dim = sigma.shape[0]
invF = [mat(1 / (invSigma[-1, -1] + factorSigma[-1, -1] ** -2))]
invD = 1 / invSigma[-1, -1]
for k in reversed(list(range(dim - 1))):
v = invSigma[k + 1:, k]
w = invSigma[k, k]
wr = w + factorSigma[k, k] ** -2
u = dot(invD, v)
s = dot(v, u)
q = 1 / (w - s)
qr = 1 / (wr - s)
t = -(1 + q * s) / w
tr = -(1 + qr * s) / wr
invF.append(blockCombine([[qr, tr * u], [mat(tr * u).T, invD + qr * outer(u, u)]]))
invD = blockCombine([[q , t * u], [mat(t * u).T, invD + q * outer(u, u)]])
invF.append(sigma)
invF.reverse()
return invF
|
Efficiently compute the exact inverse of the FIM of a Gaussian.
Returns a list of the diagonal blocks.
|
calcInvFisher
|
python
|
pybrain/pybrain
|
pybrain/tools/fisher.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/fisher.py
|
BSD-3-Clause
|
def semilinear(x):
""" This function ensures that the values of the array are always positive. It is
x+1 for x=>0 and exp(x) for x<0. """
try:
# assume x is a numpy array
shape = x.shape
x.flatten()
x = x.tolist()
except AttributeError:
# no, it wasn't: build shape from length of list
shape = (1, len(x))
def f(val):
if val < 0:
# exponential function for x<0
return safeExp(val)
else:
# linear function for x>=0
return val + 1.0
return array(list(map(f, x))).reshape(shape)
|
This function ensures that the values of the array are always positive. It is
x+1 for x=>0 and exp(x) for x<0.
|
semilinear
|
python
|
pybrain/pybrain
|
pybrain/tools/functions.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/functions.py
|
BSD-3-Clause
|
def semilinearPrime(x):
""" This function is the first derivative of the semilinear function (above).
It is needed for the backward pass of the module. """
try:
# assume x is a numpy array
shape = x.shape
x.flatten()
x = x.tolist()
except AttributeError:
# no, it wasn't: build shape from length of list
shape = (1, len(x))
def f(val):
if val < 0:
# exponential function for x<0
return safeExp(val)
else:
# linear function for x>=0
return 1.0
return array(list(map(f, x))).reshape(shape)
|
This function is the first derivative of the semilinear function (above).
It is needed for the backward pass of the module.
|
semilinearPrime
|
python
|
pybrain/pybrain
|
pybrain/tools/functions.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/functions.py
|
BSD-3-Clause
|
def ranking(R):
""" Produces a linear ranking of the values in R. """
l = sorted(list(enumerate(R)), cmp=lambda a, b: cmp(a[1], b[1]))
l = sorted(list(enumerate(l)), cmp=lambda a, b: cmp(a[1], b[1]))
return array([kv[0] for kv in l])
|
Produces a linear ranking of the values in R.
|
ranking
|
python
|
pybrain/pybrain
|
pybrain/tools/functions.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/functions.py
|
BSD-3-Clause
|
def expln(x):
""" This continuous function ensures that the values of the array are always positive.
It is ln(x+1)+1 for x >= 0 and exp(x) for x < 0. """
def f(val):
if val < 0:
# exponential function for x < 0
return exp(val)
else:
# natural log function for x >= 0
return log(val + 1.0) + 1
try:
result = array(list(map(f, x)))
except TypeError:
result = array(f(x))
return result
|
This continuous function ensures that the values of the array are always positive.
It is ln(x+1)+1 for x >= 0 and exp(x) for x < 0.
|
expln
|
python
|
pybrain/pybrain
|
pybrain/tools/functions.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/functions.py
|
BSD-3-Clause
|
def explnPrime(x):
""" This function is the first derivative of the expln function (above).
It is needed for the backward pass of the module. """
def f(val):
if val < 0:
# exponential function for x<0
return exp(val)
else:
# linear function for x>=0
return 1.0 / (val + 1.0)
try:
result = array(list(map(f, x)))
except TypeError:
result = array(f(x))
return result
|
This function is the first derivative of the expln function (above).
It is needed for the backward pass of the module.
|
explnPrime
|
python
|
pybrain/pybrain
|
pybrain/tools/functions.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/functions.py
|
BSD-3-Clause
|
def multivariateNormalPdf(z, x, sigma):
""" The pdf of a multivariate normal distribution (not in scipy).
The sample z and the mean x should be 1-dim-arrays, and sigma a square 2-dim-array. """
assert len(z.shape) == 1 and len(x.shape) == 1 and len(x) == len(z) and sigma.shape == (len(x), len(z))
tmp = -0.5 * dot(dot((z - x), inv(sigma)), (z - x))
res = (1. / power(2.0 * pi, len(z) / 2.)) * (1. / sqrt(det(sigma))) * exp(tmp)
return res
|
The pdf of a multivariate normal distribution (not in scipy).
The sample z and the mean x should be 1-dim-arrays, and sigma a square 2-dim-array.
|
multivariateNormalPdf
|
python
|
pybrain/pybrain
|
pybrain/tools/functions.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/functions.py
|
BSD-3-Clause
|
def simpleMultivariateNormalPdf(z, detFactorSigma):
""" Assuming z has been transformed to a mean of zero and an identity matrix of covariances.
Needs to provide the determinant of the factorized (real) covariance matrix. """
dim = len(z)
return exp(-0.5 * dot(z, z)) / (power(2.0 * pi, dim / 2.) * detFactorSigma)
|
Assuming z has been transformed to a mean of zero and an identity matrix of covariances.
Needs to provide the determinant of the factorized (real) covariance matrix.
|
simpleMultivariateNormalPdf
|
python
|
pybrain/pybrain
|
pybrain/tools/functions.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/functions.py
|
BSD-3-Clause
|
def multivariateCauchy(mu, sigma, onlyDiagonal=True):
""" Generates a sample according to a given multivariate Cauchy distribution. """
if not onlyDiagonal:
u, s, d = svd(sigma)
coeffs = sqrt(s)
else:
coeffs = diag(sigma)
r = rand(len(mu))
res = coeffs * tan(pi * (r - 0.5))
if not onlyDiagonal:
res = dot(d, dot(res, u))
return res + mu
|
Generates a sample according to a given multivariate Cauchy distribution.
|
multivariateCauchy
|
python
|
pybrain/pybrain
|
pybrain/tools/functions.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/functions.py
|
BSD-3-Clause
|
def approxChiFunction(dim):
""" Returns Chi (expectation of the length of a normal random vector)
approximation according to: Ostermeier 1997. """
dim = float(dim)
return sqrt(dim) * (1 - 1 / (4 * dim) + 1 / (21 * dim ** 2))
|
Returns Chi (expectation of the length of a normal random vector)
approximation according to: Ostermeier 1997.
|
approxChiFunction
|
python
|
pybrain/pybrain
|
pybrain/tools/functions.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/functions.py
|
BSD-3-Clause
|
def sqrtm(M):
""" Returns the symmetric semi-definite positive square root of a matrix. """
r = real_if_close(expm(0.5 * logm(M)), 1e-8)
return (r + r.T) / 2
|
Returns the symmetric semi-definite positive square root of a matrix.
|
sqrtm
|
python
|
pybrain/pybrain
|
pybrain/tools/functions.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/functions.py
|
BSD-3-Clause
|
def __init__(self, min_params, max_params, n_steps=7, **kwargs):
""" :key min_params: Tuple of two elements specifying the minima
of the two metaparameters
:key max_params: Tuple of two elements specifying the minima
of the two metaparameters
:key max_param: Tuple of two elements, specifying the number of
steps between the minimum and maximum of each search
dimension. Alternative, specify a scalar to set
the same granularity for each dimension.
:key **kwargs: See setArgs()
"""
assert len(min_params) == len(max_params)
self._min_params = array(min_params, float)
self._max_params = array(max_params, float)
self._n_dim = len(min_params)
self._n_steps = append([], n_steps) * ones(self._n_dim)
self._range = self._max_params - self._min_params
self._performances = {}
self._verbosity = 0
self.setArgs(**kwargs)
|
:key min_params: Tuple of two elements specifying the minima
of the two metaparameters
:key max_params: Tuple of two elements specifying the minima
of the two metaparameters
:key max_param: Tuple of two elements, specifying the number of
steps between the minimum and maximum of each search
dimension. Alternative, specify a scalar to set
the same granularity for each dimension.
:key **kwargs: See setArgs()
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/tools/gridsearch.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/gridsearch.py
|
BSD-3-Clause
|
def search(self):
""" The main search method, that validates all calculated metaparameter
settings (=jobs) by calling the abstract _validate() method.
After enough new jobs were validated in order to visualize a grid,
the _onStep() callback method is called.
"""
jobs = self._calculateJobs()
perfs = self._performances
for line in jobs:
for params in line:
perf = self._validate(params)
perfs[params] = perf
if self._verbosity > 0:
print(("validated:", params, " performance = ", perf))
self._onStep()
max_idx = array(list(perfs.values())).argmax()
return list(perfs.keys())[max_idx]
|
The main search method, that validates all calculated metaparameter
settings (=jobs) by calling the abstract _validate() method.
After enough new jobs were validated in order to visualize a grid,
the _onStep() callback method is called.
|
search
|
python
|
pybrain/pybrain
|
pybrain/tools/gridsearch.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/gridsearch.py
|
BSD-3-Clause
|
def _calculateJobs(self):
""" Calculate and return the metaparameter settings to be validated (=jobs).
"""
ndim = len(self._min_params)
linspaces = []
for i in range(ndim):
linspaces.append(
self._permuteSequence(
list(linspace(self._min_params[i], self._max_params[i], self._n_steps[i]))))
# print(linspaces; exit(0))
# linspaces = array(linspaces,float)
nr_c = len(linspaces[0])
nr_g = len(linspaces[1])
i = 0
j = 0
jobs = []
while i < nr_c or j < nr_g:
if i / float(nr_c) < j / float(nr_g):
line = []
for k in range(0, j):
line.append((linspaces[0][i], linspaces[1][k]))
i += 1
jobs.append(line)
else:
line = []
for k in range(0, i):
line.append((linspaces[0][k], linspaces[1][j]))
j += 1
jobs.append(line)
return jobs
|
Calculate and return the metaparameter settings to be validated (=jobs).
|
_calculateJobs
|
python
|
pybrain/pybrain
|
pybrain/tools/gridsearch.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/gridsearch.py
|
BSD-3-Clause
|
def _permuteSequence(self, seq):
""" Helper function for calculating the job list
"""
n = len(seq)
if n <= 1: return seq
mid = int(n / 2)
left = self._permuteSequence(seq[:mid])
right = self._permuteSequence(seq[mid + 1:])
ret = [seq[mid]]
while left or right:
if left: ret.append(left.pop(0))
if right: ret.append(right.pop(0))
return ret
|
Helper function for calculating the job list
|
_permuteSequence
|
python
|
pybrain/pybrain
|
pybrain/tools/gridsearch.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/gridsearch.py
|
BSD-3-Clause
|
def search(self):
""" The main search method, that validates all calculated metaparameter
settings by calling the abstract _validate() method.
"""
self._n_params = len(self._min_params)
center = self._min_params + self._range / 2.
for level in range(self._n_iterations):
grid = self._calcGrid(center, level)
local_perf = apply_along_axis(self._validateWrapper, 1, grid)
max_idx = local_perf.argmax()
center = grid[max_idx]
if self._verbosity > 0:
print()
print(("Found maximum at:", center, " performance = ", local_perf[max_idx]))
print()
return center
|
The main search method, that validates all calculated metaparameter
settings by calling the abstract _validate() method.
|
search
|
python
|
pybrain/pybrain
|
pybrain/tools/gridsearch.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/gridsearch.py
|
BSD-3-Clause
|
def _validateWrapper(self, params):
""" Helper function that wraps the _validate() method.
"""
perf = self._validate(params)
if self._verbosity > 0:
print(("validated:", params, " performance = ", perf))
self._performances[tuple(params)] = perf
return perf
|
Helper function that wraps the _validate() method.
|
_validateWrapper
|
python
|
pybrain/pybrain
|
pybrain/tools/gridsearch.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/gridsearch.py
|
BSD-3-Clause
|
def _calcGrid(self, center, level):
""" Calculate the next grid to validate.
:arg center: The central position of the grid
:arg level: The iteration number
"""
local_range = self._range / (self._refine_factor ** level)
scale = local_range / 2
translation = center
grid = self._doe_pat * scale + translation
grid = self._moveGridIntoBounds(grid)
return grid
|
Calculate the next grid to validate.
:arg center: The central position of the grid
:arg level: The iteration number
|
_calcGrid
|
python
|
pybrain/pybrain
|
pybrain/tools/gridsearch.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/gridsearch.py
|
BSD-3-Clause
|
def _moveGridIntoBounds(self, grid):
""" If the calculated grid is out of bounds,
this method moves it back inside, and returns the new grid.
"""
grid = array(grid)
local_min_params = grid.min(axis=0)
local_max_params = grid.max(axis=0)
tosmall_idxs, = where(local_min_params < self._min_params)
togreat_idxs, = where(local_max_params > self._max_params)
translation = zeros(self._n_params)
for idx in tosmall_idxs:
translation[idx] = self._min_params[idx] - local_min_params[idx]
for idx in togreat_idxs:
translation[idx] = self._max_params[idx] - local_max_params[idx]
grid += translation
return grid
|
If the calculated grid is out of bounds,
this method moves it back inside, and returns the new grid.
|
_moveGridIntoBounds
|
python
|
pybrain/pybrain
|
pybrain/tools/gridsearch.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/gridsearch.py
|
BSD-3-Clause
|
def __init__(self, trainer, dataset, min_params=[-5, -15], max_params=[15, 3], n_steps=7, **kwargs):
""" The parameter boundaries are specified in log2-space.
:arg trainer: The SVM trainer including the SVM module.
(Could be any kind of trainer and module)
:arg dataset: Dataset used for crossvalidation
"""
GridSearch2D.__init__(self, min_params, max_params, n_steps)
self._trainer = trainer
self._dataset = dataset
self._validator_kwargs = {}
self._n_folds = 5
self.setArgs(**kwargs)
|
The parameter boundaries are specified in log2-space.
:arg trainer: The SVM trainer including the SVM module.
(Could be any kind of trainer and module)
:arg dataset: Dataset used for crossvalidation
|
__init__
|
python
|
pybrain/pybrain
|
pybrain/tools/gridsearch.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/gridsearch.py
|
BSD-3-Clause
|
def setArgs(self, **kwargs):
""" :key **kwargs:
nfolds : Number of folds of crossvalidation
max_epochs: Maximum number of epochs for training
verbosity : set verbosity
"""
for key, value in list(kwargs.items()):
if key in ("folds", "nfolds"):
self._n_folds = int(value)
elif key in ("max_epochs"):
self._validator_kwargs['max_epochs'] = value
elif key in ("verbose", "ver", "v"):
self._verbosity = value
else:
GridSearch2D.setArgs(self, **{key:value})
|
:key **kwargs:
nfolds : Number of folds of crossvalidation
max_epochs: Maximum number of epochs for training
verbosity : set verbosity
|
setArgs
|
python
|
pybrain/pybrain
|
pybrain/tools/gridsearch.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/gridsearch.py
|
BSD-3-Clause
|
def _validate(self, params):
""" The overridden validate function, that uses cross-validation in order
to determine the params' performance value.
"""
trainer = self._getTrainerForParams(params)
return CrossValidator(trainer, self._dataset, self._n_folds, **self._validator_kwargs).validate()
|
The overridden validate function, that uses cross-validation in order
to determine the params' performance value.
|
_validate
|
python
|
pybrain/pybrain
|
pybrain/tools/gridsearch.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/gridsearch.py
|
BSD-3-Clause
|
def _getTrainerForParams(self, params):
""" Returns a trainer, loaded with the supplied metaparameters.
"""
trainer = copy.deepcopy(self._trainer)
trainer.setArgs(cost=2 ** params[0], gamma=2 ** params[1], ver=0)
return trainer
|
Returns a trainer, loaded with the supplied metaparameters.
|
_getTrainerForParams
|
python
|
pybrain/pybrain
|
pybrain/tools/gridsearch.py
|
https://github.com/pybrain/pybrain/blob/master/pybrain/tools/gridsearch.py
|
BSD-3-Clause
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.