File size: 8,037 Bytes
cdb0b4e 88e3654 63c9e83 cdb0b4e 63c9e83 88e3654 999146f 88e3654 63c9e83 88e3654 81368b8 88e3654 2f6e05a 88e3654 81368b8 88e3654 cb10dbd dfb9bd5 81368b8 e41e310 63c9e83 e41e310 63c9e83 e41e310 63c9e83 e41e310 88e3654 e41e310 88e3654 e41e310 88e3654 e41e310 cb10dbd 81368b8 e7de586 2f6e05a e7de586 86f68fe 4da79e9 86f68fe e7de586 dfb9bd5 63c9e83 e7de586 63c9e83 e7de586 2ccf758 63c9e83 2ccf758 63c9e83 2ccf758 e7de586 2ccf758 63c9e83 2ccf758 e7de586 2f6e05a 88e3654 2f6e05a dfb9bd5 63c9e83 75e71e7 88e3654 75e71e7 88e3654 63c9e83 e7de586 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import os
import datasets
import tarfile
_HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"
_LICENSE = "CC-BY-SA 4.0"
_CITATION = """
@article{EMTdataset2025,
title={EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region},
author={Nadya Abdel Madjid and Murad Mebrahtu and Abdelmoamen Nasser and Bilal Hassan and Naoufel Werghi and Jorge Dias and Majid Khonji},
year={2025},
eprint={2502.19260},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2502.19260}
}
"""
_DESCRIPTION = """\
A multi-task dataset for detection, tracking, prediction, and intention prediction.
This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection and tracking.
"""
_TRAIN_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_images.tar.gz"
_TEST_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_images.tar.gz"
_TRAIN_ANNOTATION_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_annotation.tar.gz"
_TEST_ANNOTATION_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_annotation.tar.gz"
class EMT(datasets.GeneratorBasedBuilder):
"""EMT dataset."""
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="full_size",
description="All images are in their original size.",
version=datasets.Version("1.0.0"),
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image": datasets.Image(),
"objects": datasets.Sequence(
{
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
"class_id": datasets.Value("int32"),
"track_id": datasets.Value("int32"),
"class_name": datasets.Value("string"),
}
),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Download (if not cached) and prepare dataset splits."""
image_urls = {
"train": _TRAIN_IMAGE_ARCHIVE_URL,
"test": _TEST_IMAGE_ARCHIVE_URL,
}
annotation_urls = {
"train": _TRAIN_ANNOTATION_ARCHIVE_URL,
"test": _TEST_ANNOTATION_ARCHIVE_URL,
}
# Based on the requested split, we only download the relevant data
split = self.config.name # Determine the requested split (train or test)
# Ensure paths are correctly resolved for the requested split
extracted_paths = dl_manager.download_and_extract({split: annotation_urls[split]})
image_archives = dl_manager.download_and_extract({split: image_urls[split]})
# Ensure annotation paths point to the correct subdirectory
annotation_path = os.path.join(extracted_paths[split], "annotations", split)
image_path = image_archives[split]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN if split == "train" else datasets.Split.TEST,
gen_kwargs={
"images": dl_manager.iter_archive(image_path),
"annotation_path": annotation_path,
},
),
]
# def _split_generators(self, dl_manager):
# """Download (if not cached) and prepare dataset splits."""
# image_urls = {
# "train": _TRAIN_IMAGE_ARCHIVE_URL,
# "test": _TEST_IMAGE_ARCHIVE_URL,
# }
# annotation_urls = {
# "train": _TRAIN_ANNOTATION_ARCHIVE_URL,
# "test": _TEST_ANNOTATION_ARCHIVE_URL,
# }
# # Ensure paths are correctly resolved
# extracted_paths = dl_manager.download_and_extract(annotation_urls)
# image_archives = dl_manager.download_and_extract(image_urls)
# # ✅ Ensure annotation paths point to the correct subdirectory
# train_annotation_path = os.path.join(extracted_paths["train"], "annotations", "train")
# test_annotation_path = os.path.join(extracted_paths["test"], "annotations", "test")
# return [
# datasets.SplitGenerator(
# name=datasets.Split.TRAIN,
# gen_kwargs={
# "images": dl_manager.iter_archive(image_archives["train"]),
# "annotation_path": train_annotation_path, # ✅ Corrected path
# },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.TEST,
# gen_kwargs={
# "images": dl_manager.iter_archive(image_archives["test"]),
# "annotation_path": test_annotation_path, # ✅ Corrected path
# },
# ),
# ]
def _generate_examples(self, images, annotation_path):
"""Generate dataset examples by matching images to their corresponding annotations."""
annotations = {}
# Determine whether we're processing train or test split
if "train" in annotation_path:
annotation_split = "train"
elif "test" in annotation_path:
annotation_split = "test"
else:
raise ValueError(f"Unknown annotation path: {annotation_path}")
ann_dir = annotation_path
print(f"Extracted annotations path: {annotation_path}")
print(f"Looking for annotations in: {ann_dir}")
# Check if annotation directory exists
if not os.path.exists(ann_dir):
raise FileNotFoundError(f"Annotation directory does not exist: {ann_dir}")
# Extract annotation files and read their contents
for ann_file in os.listdir(ann_dir):
video_name = os.path.splitext(ann_file)[0] # Extract video folder name from file
ann_path = os.path.join(ann_dir, ann_file)
if os.path.isdir(ann_path):
continue # Skip directories
print("Processing annotation file:", ann_path)
with open(ann_path, "r", encoding="utf-8") as f:
for line in f:
parts = line.strip().split()
if len(parts) < 8:
continue
frame_id, track_id, class_name = parts[:3]
bbox = list(map(float, parts[4:8]))
class_id = _GT_OBJECT_CLASSES.get(class_name, -1)
img_name = f"{frame_id}.jpg"
# Store annotation in a dictionary
key = f"{video_name}/{img_name}"
if key not in annotations:
annotations[key] = []
annotations[key].append(
{
"bbox": bbox,
"class_id": class_id,
"track_id": int(track_id),
"class_name": class_name,
}
)
# Yield dataset entries
idx = 0
for file_path, file_obj in images:
img_name = os.path.basename(file_path)
video_name = os.path.basename(os.path.dirname(file_path)) # Match the video folder
key = f"{video_name}/{img_name}"
if key in annotations:
yield idx, {
"image": {"path": file_path, "bytes": file_obj.read()},
"objects": annotations[key],
}
idx += 1
|