File size: 8,037 Bytes
cdb0b4e
88e3654
 
63c9e83
cdb0b4e
63c9e83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88e3654
999146f
 
88e3654
63c9e83
 
 
88e3654
 
 
 
81368b8
 
 
 
 
 
 
 
88e3654
 
2f6e05a
88e3654
 
 
 
 
81368b8
88e3654
 
 
 
 
 
 
 
 
 
 
 
 
 
cb10dbd
 
dfb9bd5
 
 
81368b8
e41e310
63c9e83
 
 
 
e41e310
 
 
63c9e83
e41e310
 
 
63c9e83
e41e310
 
 
 
88e3654
 
e41e310
88e3654
e41e310
 
88e3654
 
e41e310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb10dbd
81368b8
 
e7de586
2f6e05a
e7de586
86f68fe
 
 
 
 
 
 
 
4da79e9
86f68fe
 
 
 
 
 
 
e7de586
 
 
 
 
dfb9bd5
63c9e83
 
e7de586
63c9e83
e7de586
2ccf758
 
 
 
 
63c9e83
2ccf758
 
 
 
63c9e83
2ccf758
e7de586
2ccf758
 
63c9e83
2ccf758
 
 
 
 
 
 
 
e7de586
2f6e05a
88e3654
 
2f6e05a
dfb9bd5
 
63c9e83
75e71e7
88e3654
 
75e71e7
88e3654
 
63c9e83
e7de586
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

import os
import datasets
import tarfile

_HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"
_LICENSE = "CC-BY-SA 4.0"
_CITATION = """  
@article{EMTdataset2025,  
      title={EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region},  
      author={Nadya Abdel Madjid and Murad Mebrahtu and Abdelmoamen Nasser and Bilal Hassan and Naoufel Werghi and Jorge Dias and Majid Khonji},  
      year={2025},  
      eprint={2502.19260},  
      archivePrefix={arXiv},  
      primaryClass={cs.CV},  
      url={https://arxiv.org/abs/2502.19260}  
}  
""" 

_DESCRIPTION = """\
A multi-task dataset for detection, tracking, prediction, and intention prediction. 
This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection and tracking.
"""

_TRAIN_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_images.tar.gz"
_TEST_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_images.tar.gz"

_TRAIN_ANNOTATION_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_annotation.tar.gz"
_TEST_ANNOTATION_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_annotation.tar.gz"


class EMT(datasets.GeneratorBasedBuilder):
    """EMT dataset."""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="full_size",
            description="All images are in their original size.",
            version=datasets.Version("1.0.0"),
        )
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "image": datasets.Image(),
                    "objects": datasets.Sequence(
                        {
                            "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
                            "class_id": datasets.Value("int32"),
                            "track_id": datasets.Value("int32"),
                            "class_name": datasets.Value("string"),
                        }
                    ),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Download (if not cached) and prepare dataset splits."""
        
        image_urls = {
            "train": _TRAIN_IMAGE_ARCHIVE_URL,
            "test": _TEST_IMAGE_ARCHIVE_URL,
        }
        
        annotation_urls = {
            "train": _TRAIN_ANNOTATION_ARCHIVE_URL,
            "test": _TEST_ANNOTATION_ARCHIVE_URL,
        }
        
        # Based on the requested split, we only download the relevant data
        split = self.config.name  # Determine the requested split (train or test)
    
        # Ensure paths are correctly resolved for the requested split
        extracted_paths = dl_manager.download_and_extract({split: annotation_urls[split]})
        image_archives = dl_manager.download_and_extract({split: image_urls[split]})
    
        # Ensure annotation paths point to the correct subdirectory
        annotation_path = os.path.join(extracted_paths[split], "annotations", split)
        image_path = image_archives[split]
        
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN if split == "train" else datasets.Split.TEST,
                gen_kwargs={
                    "images": dl_manager.iter_archive(image_path),
                    "annotation_path": annotation_path,
                },
            ),
        ]


    # def _split_generators(self, dl_manager):
    #     """Download (if not cached) and prepare dataset splits."""
        
    #     image_urls = {
    #         "train": _TRAIN_IMAGE_ARCHIVE_URL,
    #         "test": _TEST_IMAGE_ARCHIVE_URL,
    #     }
    
    #     annotation_urls = {
    #         "train": _TRAIN_ANNOTATION_ARCHIVE_URL,
    #         "test": _TEST_ANNOTATION_ARCHIVE_URL,
    #     }
    
    #     # Ensure paths are correctly resolved
    #     extracted_paths = dl_manager.download_and_extract(annotation_urls)
    #     image_archives = dl_manager.download_and_extract(image_urls)
    
    #     # ✅ Ensure annotation paths point to the correct subdirectory
    #     train_annotation_path = os.path.join(extracted_paths["train"], "annotations", "train")
    #     test_annotation_path = os.path.join(extracted_paths["test"], "annotations", "test")
    
    #     return [
    #         datasets.SplitGenerator(
    #             name=datasets.Split.TRAIN,
    #             gen_kwargs={
    #                 "images": dl_manager.iter_archive(image_archives["train"]),
    #                 "annotation_path": train_annotation_path,  # ✅ Corrected path
    #             },
    #         ),
    #         datasets.SplitGenerator(
    #             name=datasets.Split.TEST,
    #             gen_kwargs={
    #                 "images": dl_manager.iter_archive(image_archives["test"]),
    #                 "annotation_path": test_annotation_path,  # ✅ Corrected path
    #             },
    #         ),
    # ]

    def _generate_examples(self, images, annotation_path):
        """Generate dataset examples by matching images to their corresponding annotations."""
    
        annotations = {}
    
        # Determine whether we're processing train or test split
        if "train" in annotation_path:
            annotation_split = "train"
        elif "test" in annotation_path:
            annotation_split = "test"
        else:
            raise ValueError(f"Unknown annotation path: {annotation_path}")
    
        ann_dir = annotation_path
    
        print(f"Extracted annotations path: {annotation_path}")
        print(f"Looking for annotations in: {ann_dir}")
    
        # Check if annotation directory exists
        if not os.path.exists(ann_dir):
            raise FileNotFoundError(f"Annotation directory does not exist: {ann_dir}")
    
        # Extract annotation files and read their contents
        for ann_file in os.listdir(ann_dir):
            video_name = os.path.splitext(ann_file)[0]  # Extract video folder name from file
            ann_path = os.path.join(ann_dir, ann_file)
            
            if os.path.isdir(ann_path):
                continue  # Skip directories
    
            print("Processing annotation file:", ann_path)
    
            with open(ann_path, "r", encoding="utf-8") as f:
                for line in f:
                    parts = line.strip().split()
                    if len(parts) < 8:
                        continue
    
                    frame_id, track_id, class_name = parts[:3]
                    bbox = list(map(float, parts[4:8]))
                    class_id = _GT_OBJECT_CLASSES.get(class_name, -1)
                    img_name = f"{frame_id}.jpg"
    
                    # Store annotation in a dictionary
                    key = f"{video_name}/{img_name}"
                    if key not in annotations:
                        annotations[key] = []
    
                    annotations[key].append(
                        {
                            "bbox": bbox,
                            "class_id": class_id,
                            "track_id": int(track_id),
                            "class_name": class_name,
                        }
                    )
    
        # Yield dataset entries
        idx = 0
        for file_path, file_obj in images:
            img_name = os.path.basename(file_path)
            video_name = os.path.basename(os.path.dirname(file_path))  # Match the video folder
            key = f"{video_name}/{img_name}"
    
            if key in annotations:
                yield idx, {
                    "image": {"path": file_path, "bytes": file_obj.read()},
                    "objects": annotations[key],
                }
                idx += 1