repo_name
stringlengths
6
79
path
stringlengths
5
236
copies
stringclasses
54 values
size
stringlengths
1
8
content
stringlengths
0
1.04M
license
stringclasses
15 values
siavooshpayandehazad/TTU_CPU_Project
pico_CPU/Adder.vhd
2
1122
library IEEE; use IEEE.std_logic_1164.all; USE ieee.std_logic_unsigned.ALL; USE IEEE.NUMERIC_STD.ALL; use work.pico_cpu.all; --Adder entity entity Adder_Sub is generic (BitWidth: integer); port ( A: in std_logic_vector (BitWidth-1 downto 0); B: in std_logic_vector (BitWidth-1 downto 0); Add_Sub: in std_logic; result: out std_logic_vector (BitWidth-1 downto 0); Cout: out std_logic ); end Adder_Sub; --Architecture of the Adder architecture RTL of Adder_Sub is --------------------------------------------- -- Signals --------------------------------------------- signal carry : std_logic_vector (bitwidth downto 0) := (others => '0'); --------------------------------------------- begin carry(0) <= Add_Sub; --------------------------------------------- -- component instantiation --------------------------------------------- g_counter: for N in 0 to bitwidth-1 generate ADDN : FullAdderSub port map (carry(N),A(N),B(N),Add_Sub,carry(N+1),result(N)); end generate; --------------------------------------------- Cout <= carry(bitwidth); end RTL;
gpl-2.0
siavooshpayandehazad/TTU_CPU_Project
pico_CPU_pipelined/Memory.vhd
1
1387
library IEEE; use IEEE.STD_LOGIC_1164.all; use IEEE.Numeric_Std.all; use work.pico_cpu.all; entity Mem is generic (BitWidth: integer); port ( RdAddress: in std_logic_vector (BitWidth-1 downto 0); Data_in: in std_logic_vector (BitWidth-1 downto 0); WrtAddress: in std_logic_vector (BitWidth-1 downto 0); clk: in std_logic; RW: in std_logic; rst: in std_logic; Data_Out: out std_logic_vector (BitWidth-1 downto 0) ); end Mem; architecture beh of Mem is type Mem_type is array (0 to DataMem_depth-1) of std_logic_vector(BitWidth-1 downto 0) ; signal Mem : Mem_type := ((others=> (others=>'0'))); begin MemProcess: process(clk,rst) is begin if rst = '1' then Mem<= ((others=> (others=>'0'))); elsif rising_edge(clk) then if RW = '1' then if to_integer(unsigned(WrtAddress(BitWidth-1 downto 0))) <= DataMem_depth-1 then Mem(to_integer(unsigned(WrtAddress(BitWidth-1 downto 0)))) <= Data_in; end if; end if; end if; end process MemProcess; process(RdAddress,clk)begin if rising_edge(clk) then if to_integer(unsigned(RdAddress(BitWidth-1 downto 0))) <= DataMem_depth-1 then Data_Out <= Mem(to_integer(unsigned(RdAddress(BitWidth-1 downto 0)))); else Data_Out <= (others=> '0'); end if; end if; end process; end beh;
gpl-2.0
siavooshpayandehazad/TTU_CPU_Project
pico_CPU_pipelined/RegisterFile.vhd
2
3346
library IEEE; use IEEE.STD_LOGIC_1164.ALL; use ieee.math_real.all; entity RegisterFile is generic (BitWidth: integer); port ( clk : in std_logic; rst: in std_logic; Data_in_mem: in std_logic_vector (BitWidth-1 downto 0); Data_in_CU: in std_logic_vector (BitWidth-1 downto 0); Data_in_ACC: in std_logic_vector (BitWidth-1 downto 0); Data_in_sel: in std_logic_vector (1 downto 0); Register_in_sel: in std_logic_vector (7 downto 0); Register_out_sel: in std_logic_vector (2 downto 0); Data_out: out std_logic_vector (BitWidth-1 downto 0) ); end RegisterFile; architecture Behavioral of RegisterFile is Signal R0_in,R0_out: std_logic_vector (BitWidth-1 downto 0):= (others=>'0'); Signal R1_in,R1_out: std_logic_vector (BitWidth-1 downto 0):= (others=>'0'); Signal R2_in,R2_out: std_logic_vector (BitWidth-1 downto 0):= (others=>'0'); Signal R3_in,R3_out: std_logic_vector (BitWidth-1 downto 0):= (others=>'0'); Signal R4_in,R4_out: std_logic_vector (BitWidth-1 downto 0):= (others=>'0'); Signal R5_in,R5_out: std_logic_vector (BitWidth-1 downto 0):= (others=>'0'); Signal R6_in,R6_out: std_logic_vector (BitWidth-1 downto 0):= (others=>'0'); Signal R7_in,R7_out: std_logic_vector (BitWidth-1 downto 0):= (others=>'0'); signal Data_in: std_logic_vector (BitWidth-1 downto 0):= (others=>'0'); begin process (clk,rst)begin if rst = '1' then R0_out <= (others=>'0'); R1_out <= (others=>'0'); R2_out <= (others=>'0'); R3_out <= (others=>'0'); R4_out <= (others=>'0'); R5_out <= (others=>'0'); R6_out <= (others=>'0'); R7_out <= (others=>'0'); elsif clk'event and clk='1' then R0_out <= R0_in; R1_out <= R1_in; R2_out <= R2_in; R3_out <= R3_in; R4_out <= R4_in; R5_out <= R5_in; R6_out <= R6_in; R7_out <= R7_in; end if; end process; process(Data_in_mem,Data_in_CU,Data_in_ACC,Data_in_sel)begin case Data_in_sel is when "01" => Data_in <= Data_in_CU; when "10" => Data_in <= Data_in_ACC; when "11" => Data_in <= Data_in_mem; when others => Data_in <= (others=>'0'); end case; end process; process(Data_in ,Register_in_sel,R7_out,R6_out,R5_out,R4_out,R3_out,R2_out,R1_out,R0_out)begin if Register_in_sel(0) = '0' then R0_in <= R0_out; else R0_in <= Data_in; end if; if Register_in_sel(1) = '0' then R1_in <= R1_out; else R1_in <= Data_in; end if; if Register_in_sel(2) = '0' then R2_in <= R2_out; else R2_in <= Data_in; end if; if Register_in_sel(3) = '0' then R3_in <= R3_out; else R3_in <= Data_in; end if; if Register_in_sel(4) = '0' then R4_in <= R4_out; else R4_in <= Data_in; end if; if Register_in_sel(5) = '0' then R5_in <= R5_out; else R5_in <= Data_in; end if; if Register_in_sel(6) = '0' then R6_in <= R6_out; else R6_in <= Data_in; end if; if Register_in_sel(7) = '0' then R7_in <= R7_out; else R7_in <= Data_in; end if; end process; process (Register_out_sel,R7_out,R6_out,R5_out,R4_out,R3_out,R2_out,R1_out,R0_out)begin case Register_out_sel is when "000" => Data_out<= R0_out; when "001" => Data_out<= R1_out; when "010" => Data_out<= R2_out; when "011" => Data_out<= R3_out; when "100" => Data_out<= R4_out; when "101" => Data_out<= R5_out; when "110" => Data_out<= R6_out; when "111" => Data_out<= R7_out; when others => Data_out<= (others =>'0'); end case; end process; end Behavioral;
gpl-2.0
Logistic1994/CPU
module_RAM.vhd
1
1842
---------------------------------------------------------------------------------- -- Company: -- Engineer: -- -- Create Date: 16:30:23 05/29/2015 -- Design Name: -- Module Name: module_ram - Behavioral -- Project Name: -- Target Devices: -- Tool versions: -- Description: -- -- Dependencies: -- -- Revision: -- Revision 0.01 - File Created -- Additional Comments: -- ---------------------------------------------------------------------------------- library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_UNSIGNED.ALL; -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values --use IEEE.NUMERIC_STD.ALL; -- Uncomment the following library declaration if instantiating -- any Xilinx primitives in this code. --library UNISIM; --use UNISIM.VComponents.all; entity module_RAM is port( clk_RAM: in std_logic; nreset: in std_logic; RAM_CS: in std_logic; -- RAMƬѡ nRAM_EN: in std_logic; -- RAMÊä³öʹÄÜ WR_nRD: in std_logic; -- 1Ϊд£¬0Ϊ¶Á ARi: in std_logic_vector(6 downto 0); -- RAMµØÖ·ÐźŠdatai: in std_logic_vector(7 downto 0); datao: out std_logic_vector(7 downto 0); do: out std_logic); -- Êý¾Ý×ÜÏß end module_RAM; architecture Behavioral of module_RAM is type matrix is array (integer range<>) of std_logic_vector(7 downto 0); -- ¶¨ÒåÕâÑùµÄÀàÐÍ signal ram: matrix(0 to 2**7-1); begin process(nreset, clk_RAM) begin if nreset = '0' then -- do nothing elsif rising_edge(clk_RAM) then if RAM_CS = '1' and nRAM_EN = '0' then if WR_nRD = '1' then ram(conv_integer(ARi)) <= datai; datao <= (others => 'Z'); do <= '0'; else datao <= ram(conv_integer(ARi)); do <= '1'; end if; else datao <= (others => 'Z'); do <= '0'; end if; end if; end process; end Behavioral;
gpl-2.0
Logistic1994/CPU
cpu_test.vhd
1
4781
-------------------------------------------------------------------------------- -- Company: -- Engineer: -- -- Create Date: 16:28:24 06/04/2015 -- Design Name: -- Module Name: F:/WorkSpace/workspace_ise/Exp/CPU/cpu_test.vhd -- Project Name: CPU -- Target Device: -- Tool versions: -- Description: -- -- VHDL Test Bench Created by ISE for module: module_CPU -- -- Dependencies: -- -- Revision: -- Revision 0.01 - File Created -- Additional Comments: -- -- Notes: -- This testbench has been automatically generated using types std_logic and -- std_logic_vector for the ports of the unit under test. Xilinx recommends -- that these types always be used for the top-level I/O of a design in order -- to guarantee that the testbench will bind correctly to the post-implementation -- simulation model. -------------------------------------------------------------------------------- LIBRARY ieee; USE ieee.std_logic_1164.ALL; -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values --USE ieee.numeric_std.ALL; ENTITY cpu_test IS END cpu_test; ARCHITECTURE behavior OF cpu_test IS -- Component Declaration for the Unit Under Test (UUT) COMPONENT module_CPU PORT( clk : IN std_logic; nreset : IN std_logic; io_input : IN std_logic_vector(7 downto 0); io_output : OUT std_logic_vector(7 downto 0); data_test : OUT std_logic_vector(7 downto 0); ar_test : OUT std_logic_vector(6 downto 0); cm_test : OUT std_logic_vector(47 downto 0); addr_test : OUT std_logic_vector(11 downto 0); ir_test : OUT std_logic_vector(7 downto 0); pc_test : OUT std_logic_vector(11 downto 0); c1_test : OUT std_logic; c2_test : OUT std_logic; n1_test : OUT std_logic; n2_test : OUT std_logic; w0_test : OUT std_logic; w1_test : OUT std_logic; w2_test : OUT std_logic; w3_test : OUT std_logic; ir_ctest : OUT std_logic; rs_test : OUT std_logic; rd_test : OUT std_logic; pc_ntest : OUT std_logic; nload_test : OUT std_logic; x_test : OUT std_logic; z_test : OUT std_logic; count_test : OUT integer ); END COMPONENT; --Inputs signal clk : std_logic := '0'; signal nreset : std_logic := '0'; signal io_input : std_logic_vector(7 downto 0) := (others => '0'); --Outputs signal io_output : std_logic_vector(7 downto 0); signal data_test : std_logic_vector(7 downto 0); signal ar_test : std_logic_vector(6 downto 0); signal cm_test : std_logic_vector(47 downto 0); signal addr_test : std_logic_vector(11 downto 0); signal ir_test : std_logic_vector(7 downto 0); signal pc_test : std_logic_vector(11 downto 0); signal c1_test : std_logic; signal c2_test : std_logic; signal n1_test : std_logic; signal n2_test : std_logic; signal w0_test : std_logic; signal w1_test : std_logic; signal w2_test : std_logic; signal w3_test : std_logic; signal ir_ctest : std_logic; signal rs_test : std_logic; signal rd_test : std_logic; signal pc_ntest : std_logic; signal nload_test : std_logic; signal x_test : std_logic; signal z_test : std_logic; signal count_test : integer; -- Clock period definitions constant clk_period : time := 2 ns; BEGIN -- Instantiate the Unit Under Test (UUT) uut: module_CPU PORT MAP ( clk => clk, nreset => nreset, io_input => io_input, io_output => io_output, data_test => data_test, ar_test => ar_test, cm_test => cm_test, addr_test => addr_test, ir_test => ir_test, pc_test => pc_test, c1_test => c1_test, c2_test => c2_test, n1_test => n1_test, n2_test => n2_test, w0_test => w0_test, w1_test => w1_test, w2_test => w2_test, w3_test => w3_test, ir_ctest => ir_ctest, rs_test => rs_test, rd_test => rd_test, pc_ntest => pc_ntest, nload_test => nload_test, x_test => x_test, z_test => z_test, count_test => count_test ); -- Clock process definitions clk_process :process begin clk <= '0'; wait for clk_period/2; clk <= '1'; wait for clk_period/2; end process; -- Stimulus process stim_proc: process begin -- hold reset state for 100 ns. wait for 100 ns; nreset <= '1'; io_input <= X"23"; wait for clk_period*100; -- insert stimulus here wait for clk_period*1000; end process; END;
gpl-2.0
codebrainz/geany
data/filedefs/filetypes.vhdl
22
3042
# For complete documentation of this file, please see Geany's main documentation [styling] # Edit these in the colorscheme .conf file instead default=default comment=comment comment_line_bang=comment_line block_comment=comment number=number_1 string=string_1 operator=operator identifier=identifier_1 stringeol=string_eol keyword=keyword_1 stdoperator=operator attribute=attribute stdfunction=function stdpackage=preprocessor stdtype=type userword=keyword_2 [keywords] # all items must be in one line keywords=access after alias all architecture array assert attribute begin block body buffer bus case component configuration constant disconnect downto else elsif end entity exit file for function generate generic group guarded if impure in inertial inout is label library linkage literal loop map new next null of on open others out package port postponed procedure process pure range record register reject report return select severity shared signal subtype then to transport type unaffected units until use variable wait when while with operators=abs and mod nand nor not or rem rol ror sla sll sra srl xnor xor attributes=left right low high ascending image value pos val succ pred leftof rightof base range reverse_range length delayed stable quiet transaction event active last_event last_active last_value driving driving_value simple_name path_name instance_name std_functions=now readline read writeline write endfile resolved to_bit to_bitvector to_stdulogic to_stdlogicvector to_stdulogicvector to_x01 to_x01z to_UX01 rising_edge falling_edge is_x shift_left shift_right rotate_left rotate_right resize to_integer to_unsigned to_signed std_match to_01 std_packages=std ieee work standard textio std_logic_1164 std_logic_arith std_logic_misc std_logic_signed std_logic_textio std_logic_unsigned numeric_bit numeric_std math_complex math_real vital_primitives vital_timing std_types=boolean bit character severity_level integer real time delay_length natural positive string bit_vector file_open_kind file_open_status line text side width std_ulogic std_ulogic_vector std_logic std_logic_vector X01 X01Z UX01 UX01Z unsigned signed userwords= [settings] # default extension used when saving files extension=vhd # MIME type mime_type=text/x-vhdl # the following characters are these which a "word" can contains, see documentation #wordchars=_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 # single comments, like # in this file comment_single=-- # multiline comments #comment_open= #comment_close= # set to false if a comment character/string should start at column 0 of a line, true uses any # indentation of the line, e.g. setting to true causes the following on pressing CTRL+d #command_example(); # setting to false would generate this # command_example(); # This setting works only for single line comments comment_use_indent=true # context action command (please see Geany's main documentation for details) context_action_cmd= [indentation] #width=4 # 0 is spaces, 1 is tabs, 2 is tab & spaces #type=1
gpl-2.0
xylnao/w11a-extra
rtl/sys_gen/tst_rlink/nexys2/sys_conf.vhd
2
1721
-- $Id: sys_conf.vhd 351 2010-12-30 21:50:54Z mueller $ -- -- Copyright 2010- by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Package Name: sys_conf -- Description: Definitions for sys_tst_rlink_n2 (for synthesis) -- -- Dependencies: - -- Tool versions: xst 12.1; ghdl 0.29 -- Revision History: -- Date Rev Version Comment -- 2010-12-29 351 1.0 Initial version ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use work.slvtypes.all; package sys_conf is constant sys_conf_clkfx_divide : positive := 1; constant sys_conf_clkfx_multiply : positive := 1; -- constant sys_conf_ser2rri_defbaud : integer := 115200; -- default 115k baud constant sys_conf_hio_debounce : boolean := true; -- instantiate debouncers -- derived constants constant sys_conf_clksys : integer := (50000000/sys_conf_clkfx_divide)*sys_conf_clkfx_multiply; constant sys_conf_clksys_mhz : integer := sys_conf_clksys/1000000; constant sys_conf_ser2rri_cdinit : integer := (sys_conf_clksys/sys_conf_ser2rri_defbaud)-1; end package sys_conf;
gpl-2.0
xylnao/w11a-extra
rtl/vlib/memlib/ram_1swar_gen_unisim.vhd
2
3629
-- $Id: ram_1swar_gen_unisim.vhd 314 2010-07-09 17:38:41Z mueller $ -- -- Copyright 2008- by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Module Name: ram_1swar_gen_unisim - syn -- Description: Single-Port RAM with with one synchronous write and one -- asynchronius read port (as distributed RAM). -- Direct instantiation of Xilinx UNISIM primitives -- -- Dependencies: - -- Test bench: - -- Target Devices: generic Spartan, Virtex -- Tool versions: xst 8.1, 8.2, 9.1, 9.2; ghdl 0.18-0.25 -- Revision History: -- Date Rev Version Comment -- 2008-03-08 123 1.0.1 use shorter label names -- 2008-03-02 122 1.0 Initial version -- ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; library unisim; use unisim.vcomponents.ALL; use work.slvtypes.all; entity ram_1swar_gen is -- RAM, 1 sync w asyn r port generic ( AWIDTH : positive := 4; -- address port width DWIDTH : positive := 16); -- data port width port ( CLK : in slbit; -- clock WE : in slbit; -- write enable ADDR : in slv(AWIDTH-1 downto 0); -- address port DI : in slv(DWIDTH-1 downto 0); -- data in port DO : out slv(DWIDTH-1 downto 0) -- data out port ); end ram_1swar_gen; architecture syn of ram_1swar_gen is begin assert AWIDTH>=4 and AWIDTH<=6 report "assert(AWIDTH>=4 and AWIDTH<=6): only 4..6 bit AWIDTH supported" severity failure; AW_4: if AWIDTH = 4 generate GL: for i in DWIDTH-1 downto 0 generate MEM : RAM16X1S generic map ( INIT => X"0000") port map ( O => DO(i), A0 => ADDR(0), A1 => ADDR(1), A2 => ADDR(2), A3 => ADDR(3), D => DI(i), WCLK => CLK, WE => WE ); end generate GL; end generate AW_4; AW_5: if AWIDTH = 5 generate GL: for i in DWIDTH-1 downto 0 generate MEM : RAM32X1S generic map ( INIT => X"00000000") port map ( O => DO(i), A0 => ADDR(0), A1 => ADDR(1), A2 => ADDR(2), A3 => ADDR(3), A4 => ADDR(4), D => DI(i), WCLK => CLK, WE => WE ); end generate GL; end generate AW_5; AW_6: if AWIDTH = 6 generate GL: for i in DWIDTH-1 downto 0 generate MEM : RAM64X1S generic map ( INIT => X"0000000000000000") port map ( O => DO(i), A0 => ADDR(0), A1 => ADDR(1), A2 => ADDR(2), A3 => ADDR(3), A4 => ADDR(4), A5 => ADDR(5), D => DI(i), WCLK => CLK, WE => WE ); end generate GL; end generate AW_6; end syn;
gpl-2.0
xylnao/w11a-extra
rtl/bplib/s3board/tb/tb_s3board_fusp.vhd
1
6721
-- $Id: tb_s3board_fusp.vhd 427 2011-11-19 21:04:11Z mueller $ -- -- Copyright 2010-2011 by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Module Name: tb_s3board_fusp - sim -- Description: Test bench for s3board (base+fusp) -- -- Dependencies: vlib/rlink/tb/tbcore_rlink_dcm -- tb_s3board_core -- vlib/serport/serport_uart_rxtx -- s3board_fusp_aif [UUT] -- -- To test: generic, any s3board_fusp_aif target -- -- Target Devices: generic -- Tool versions: xst 8.2, 9.1, 9.2, 11.4, 12.1, 13.1; ghdl 0.18-0.29 -- Revision History: -- Date Rev Version Comment -- 2011-11-19 427 3.0.1 now numeric_std clean -- 2010-12-30 351 3.0 use rlink/tb now -- 2010-11-06 336 1.0.4 rename input pin CLK -> I_CLK50 -- 2010-05-21 292 1.0.3 rename _PM1_ -> _FUSP_ -- 2010-05-16 291 1.0.2 rename tb_s3board_usp->tb_s3board_fusp -- 2010-05-02 287 1.0.1 add sbaddr_portsel def, now sbus addr 8 -- 2010-05-01 286 1.0 Initial version (derived from tb_s3board) ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; use ieee.std_logic_textio.all; use std.textio.all; use work.slvtypes.all; use work.rlinklib.all; use work.rlinktblib.all; use work.serport.all; use work.s3boardlib.all; use work.simlib.all; use work.simbus.all; entity tb_s3board_fusp is end tb_s3board_fusp; architecture sim of tb_s3board_fusp is signal CLK : slbit := '0'; signal RESET : slbit := '0'; signal CLKDIV : slv2 := "00"; -- run with 1 clocks / bit !! signal RXDATA : slv8 := (others=>'0'); signal RXVAL : slbit := '0'; signal RXERR : slbit := '0'; signal RXACT : slbit := '0'; signal TXDATA : slv8 := (others=>'0'); signal TXENA : slbit := '0'; signal TXBUSY : slbit := '0'; signal RX_HOLD : slbit := '0'; signal I_RXD : slbit := '1'; signal O_TXD : slbit := '1'; signal I_SWI : slv8 := (others=>'0'); signal I_BTN : slv4 := (others=>'0'); signal O_LED : slv8 := (others=>'0'); signal O_ANO_N : slv4 := (others=>'0'); signal O_SEG_N : slv8 := (others=>'0'); signal O_MEM_CE_N : slv2 := (others=>'1'); signal O_MEM_BE_N : slv4 := (others=>'1'); signal O_MEM_WE_N : slbit := '1'; signal O_MEM_OE_N : slbit := '1'; signal O_MEM_ADDR : slv18 := (others=>'Z'); signal IO_MEM_DATA : slv32 := (others=>'0'); signal O_FUSP_RTS_N : slbit := '0'; signal I_FUSP_CTS_N : slbit := '0'; signal I_FUSP_RXD : slbit := '1'; signal O_FUSP_TXD : slbit := '1'; signal UART_RESET : slbit := '0'; signal UART_RXD : slbit := '1'; signal UART_TXD : slbit := '1'; signal CTS_N : slbit := '0'; signal RTS_N : slbit := '0'; signal R_PORTSEL : slbit := '0'; constant sbaddr_portsel: slv8 := slv(to_unsigned( 8,8)); constant clock_period : time := 20 ns; constant clock_offset : time := 200 ns; constant setup_time : time := 5 ns; constant c2out_time : time := 10 ns; begin TBCORE : tbcore_rlink generic map ( CLK_PERIOD => clock_period, CLK_OFFSET => clock_offset, SETUP_TIME => setup_time, C2OUT_TIME => c2out_time) port map ( CLK => CLK, RX_DATA => TXDATA, RX_VAL => TXENA, RX_HOLD => RX_HOLD, TX_DATA => RXDATA, TX_ENA => RXVAL ); RX_HOLD <= TXBUSY or RTS_N; -- back preasure for data flow to tb S3CORE : entity work.tb_s3board_core port map ( I_SWI => I_SWI, I_BTN => I_BTN, O_MEM_CE_N => O_MEM_CE_N, O_MEM_BE_N => O_MEM_BE_N, O_MEM_WE_N => O_MEM_WE_N, O_MEM_OE_N => O_MEM_OE_N, O_MEM_ADDR => O_MEM_ADDR, IO_MEM_DATA => IO_MEM_DATA ); UUT : s3board_fusp_aif port map ( I_CLK50 => CLK, I_RXD => I_RXD, O_TXD => O_TXD, I_SWI => I_SWI, I_BTN => I_BTN, O_LED => O_LED, O_ANO_N => O_ANO_N, O_SEG_N => O_SEG_N, O_MEM_CE_N => O_MEM_CE_N, O_MEM_BE_N => O_MEM_BE_N, O_MEM_WE_N => O_MEM_WE_N, O_MEM_OE_N => O_MEM_OE_N, O_MEM_ADDR => O_MEM_ADDR, IO_MEM_DATA => IO_MEM_DATA, O_FUSP_RTS_N => O_FUSP_RTS_N, I_FUSP_CTS_N => I_FUSP_CTS_N, I_FUSP_RXD => I_FUSP_RXD, O_FUSP_TXD => O_FUSP_TXD ); UART : serport_uart_rxtx generic map ( CDWIDTH => CLKDIV'length) port map ( CLK => CLK, RESET => UART_RESET, CLKDIV => CLKDIV, RXSD => UART_RXD, RXDATA => RXDATA, RXVAL => RXVAL, RXERR => RXERR, RXACT => RXACT, TXSD => UART_TXD, TXDATA => TXDATA, TXENA => TXENA, TXBUSY => TXBUSY ); proc_port_mux: process (R_PORTSEL, UART_TXD, CTS_N, O_TXD, O_FUSP_TXD, O_FUSP_RTS_N) begin if R_PORTSEL = '0' then -- use main board rs232, no flow cntl I_RXD <= UART_TXD; -- write port 0 inputs UART_RXD <= O_TXD; -- get port 0 outputs RTS_N <= '0'; I_FUSP_RXD <= '1'; -- port 1 inputs to idle state I_FUSP_CTS_N <= '0'; else -- otherwise use pmod1 rs232 I_FUSP_RXD <= UART_TXD; -- write port 1 inputs I_FUSP_CTS_N <= CTS_N; UART_RXD <= O_FUSP_TXD; -- get port 1 outputs RTS_N <= O_FUSP_RTS_N; I_RXD <= '1'; -- port 0 inputs to idle state end if; end process proc_port_mux; proc_moni: process variable oline : line; begin loop wait until rising_edge(CLK); wait for c2out_time; if RXERR = '1' then writetimestamp(oline, SB_CLKCYCLE, " : seen RXERR=1"); writeline(output, oline); end if; end loop; end process proc_moni; proc_simbus: process (SB_VAL) begin if SB_VAL'event and to_x01(SB_VAL)='1' then if SB_ADDR = sbaddr_portsel then R_PORTSEL <= to_x01(SB_DATA(0)); end if; end if; end process proc_simbus; end sim;
gpl-2.0
xylnao/w11a-extra
rtl/vlib/memlib/ram_1swsr_xfirst_gen_unisim.vhd
2
10103
-- $Id: ram_1swsr_xfirst_gen_unisim.vhd 406 2011-08-14 21:06:44Z mueller $ -- -- Copyright 2008-2011 by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Module Name: ram_1swsr_xfirst_gen_unisim - syn -- Description: Single-Port RAM with with one synchronous read/write port -- Direct instantiation of Xilinx UNISIM primitives -- -- Dependencies: - -- Test bench: - -- Target Devices: Spartan-3, Virtex-2,-4 -- Tool versions: xst 8.1, 8.2, 9.1, 9.2,.., 13.1; ghdl 0.18-0.25 -- Revision History: -- Date Rev Version Comment -- 2011-08-14 406 1.0.2 cleaner code for L_DI initialization -- 2008-04-13 135 1.0.1 fix range error for AW_14_S1 -- 2008-03-08 123 1.0 Initial version ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; library unisim; use unisim.vcomponents.ALL; use work.slvtypes.all; entity ram_1swsr_xfirst_gen_unisim is -- RAM, 1 sync r/w ports generic ( AWIDTH : positive := 11; -- address port width DWIDTH : positive := 9; -- data port width WRITE_MODE : string := "READ_FIRST"); -- write mode: (READ|WRITE)_FIRST port( CLK : in slbit; -- clock EN : in slbit; -- enable WE : in slbit; -- write enable ADDR : in slv(AWIDTH-1 downto 0); -- address DI : in slv(DWIDTH-1 downto 0); -- data in DO : out slv(DWIDTH-1 downto 0) -- data out ); end ram_1swsr_xfirst_gen_unisim; architecture syn of ram_1swsr_xfirst_gen_unisim is constant ok_mod32 : boolean := (DWIDTH mod 32)=0 and ((DWIDTH+35)/36)=((DWIDTH+31)/32); constant ok_mod16 : boolean := (DWIDTH mod 16)=0 and ((DWIDTH+17)/18)=((DWIDTH+16)/16); constant ok_mod08 : boolean := (DWIDTH mod 32)=0 and ((DWIDTH+8)/9)=((DWIDTH+7)/8); begin assert AWIDTH>=9 and AWIDTH<=14 report "assert(AWIDTH>=9 and AWIDTH<=14): unsupported BRAM from factor" severity failure; AW_09_S36: if AWIDTH=9 and not ok_mod32 generate constant dw_mem : positive := ((DWIDTH+35)/36)*36; signal L_DO : slv(dw_mem-1 downto 0) := (others=> '0'); signal L_DI : slv(dw_mem-1 downto 0) := (others=> '0'); begin DI_PAD: if dw_mem>DWIDTH generate L_DI(dw_mem-1 downto DWIDTH) <= (others=>'0'); end generate DI_PAD; L_DI(DI'range) <= DI; GL: for i in dw_mem/36-1 downto 0 generate MEM : RAMB16_S36 generic map ( INIT => O"000000000000", SRVAL => O"000000000000", WRITE_MODE => WRITE_MODE) port map ( DO => L_DO(36*i+31 downto 36*i), DOP => L_DO(36*i+35 downto 36*i+32), ADDR => ADDR, CLK => CLK, DI => L_DI(36*i+31 downto 36*i), DIP => L_DI(36*i+35 downto 36*i+32), EN => EN, SSR => '0', WE => WE ); end generate GL; DO <= L_DO(DO'range); end generate AW_09_S36; AW_09_S32: if AWIDTH=9 and ok_mod32 generate GL: for i in DWIDTH/32-1 downto 0 generate MEM : RAMB16_S36 generic map ( INIT => X"00000000", SRVAL => X"00000000", WRITE_MODE => WRITE_MODE) port map ( DO => DO(32*i+31 downto 32*i), DOP => open, ADDR => ADDR, CLK => CLK, DI => DI(32*i+31 downto 32*i), DIP => "0000", EN => EN, SSR => '0', WE => WE ); end generate GL; end generate AW_09_S32; AW_10_S18: if AWIDTH=10 and not ok_mod16 generate constant dw_mem : positive := ((DWIDTH+17)/18)*18; signal L_DO : slv(dw_mem-1 downto 0) := (others=> '0'); signal L_DI : slv(dw_mem-1 downto 0) := (others=> '0'); begin DI_PAD: if dw_mem>DWIDTH generate L_DI(dw_mem-1 downto DWIDTH) <= (others=>'0'); end generate DI_PAD; L_DI(DI'range) <= DI; GL: for i in dw_mem/18-1 downto 0 generate MEM : RAMB16_S18 generic map ( INIT => O"000000", SRVAL => O"000000", WRITE_MODE => WRITE_MODE) port map ( DO => L_DO(18*i+15 downto 18*i), DOP => L_DO(18*i+17 downto 18*i+16), ADDR => ADDR, CLK => CLK, DI => L_DI(18*i+15 downto 18*i), DIP => L_DI(18*i+17 downto 18*i+16), EN => EN, SSR => '0', WE => WE ); end generate GL; DO <= L_DO(DO'range); end generate AW_10_S18; AW_10_S16: if AWIDTH=10 and ok_mod16 generate GL: for i in DWIDTH/16-1 downto 0 generate MEM : RAMB16_S18 generic map ( INIT => X"0000", SRVAL => X"0000", WRITE_MODE => WRITE_MODE) port map ( DO => DO(16*i+15 downto 16*i), DOP => open, ADDR => ADDR, CLK => CLK, DI => DI(16*i+15 downto 16*i), DIP => "00", EN => EN, SSR => '0', WE => WE ); end generate GL; end generate AW_10_S16; AW_11_S9: if AWIDTH=11 and not ok_mod08 generate constant dw_mem : positive := ((DWIDTH+8)/9)*9; signal L_DO : slv(dw_mem-1 downto 0) := (others=> '0'); signal L_DI : slv(dw_mem-1 downto 0) := (others=> '0'); begin DI_PAD: if dw_mem>DWIDTH generate L_DI(dw_mem-1 downto DWIDTH) <= (others=>'0'); end generate DI_PAD; L_DI(DI'range) <= DI; GL: for i in dw_mem/9-1 downto 0 generate MEM : RAMB16_S9 generic map ( INIT => O"000", SRVAL => O"000", WRITE_MODE => WRITE_MODE) port map ( DO => L_DO(9*i+7 downto 9*i), DOP => L_DO(9*i+8 downto 9*i+8), ADDR => ADDR, CLK => CLK, DI => L_DI(9*i+7 downto 9*i), DIP => L_DI(9*i+8 downto 9*i+8), EN => EN, SSR => '0', WE => WE ); end generate GL; DO <= L_DO(DO'range); end generate AW_11_S9; AW_11_S8: if AWIDTH=11 and ok_mod08 generate GL: for i in DWIDTH/8-1 downto 0 generate MEM : RAMB16_S9 generic map ( INIT => X"00", SRVAL => X"00", WRITE_MODE => WRITE_MODE) port map ( DO => DO(8*i+7 downto 8*i), DOP => open, ADDR => ADDR, CLK => CLK, DI => DI(8*i+7 downto 8*i), DIP => "0", EN => EN, SSR => '0', WE => WE ); end generate GL; end generate AW_11_S8; AW_12_S4: if AWIDTH = 12 generate constant dw_mem : positive := ((DWIDTH+3)/4)*4; signal L_DO : slv(dw_mem-1 downto 0) := (others=> '0'); signal L_DI : slv(dw_mem-1 downto 0) := (others=> '0'); begin DI_PAD: if dw_mem>DWIDTH generate L_DI(dw_mem-1 downto DWIDTH) <= (others=>'0'); end generate DI_PAD; L_DI(DI'range) <= DI; GL: for i in dw_mem/4-1 downto 0 generate MEM : RAMB16_S4 generic map ( INIT => X"0", SRVAL => X"0", WRITE_MODE => WRITE_MODE) port map ( DO => L_DO(4*i+3 downto 4*i), ADDR => ADDR, CLK => CLK, DI => L_DI(4*i+3 downto 4*i), EN => EN, SSR => '0', WE => WE ); end generate GL; DO <= L_DO(DO'range); end generate AW_12_S4; AW_13_S2: if AWIDTH = 13 generate constant dw_mem : positive := ((DWIDTH+1)/2)*2; signal L_DO : slv(dw_mem-1 downto 0) := (others=> '0'); signal L_DI : slv(dw_mem-1 downto 0) := (others=> '0'); begin DI_PAD: if dw_mem>DWIDTH generate L_DI(dw_mem-1 downto DWIDTH) <= (others=>'0'); end generate DI_PAD; L_DI(DI'range) <= DI; GL: for i in dw_mem/2-1 downto 0 generate MEM : RAMB16_S2 generic map ( INIT => "00", SRVAL => "00", WRITE_MODE => WRITE_MODE) port map ( DO => L_DO(2*i+1 downto 2*i), ADDR => ADDR, CLK => CLK, DI => L_DI(2*i+1 downto 2*i), EN => EN, SSR => '0', WE => WE ); end generate GL; DO <= L_DO(DO'range); end generate AW_13_S2; AW_14_S1: if AWIDTH = 14 generate GL: for i in DWIDTH-1 downto 0 generate MEM : RAMB16_S1 generic map ( INIT => "0", SRVAL => "0", WRITE_MODE => WRITE_MODE) port map ( DO => DO(i downto i), ADDR => ADDR, CLK => CLK, DI => DI(i downto i), EN => EN, SSR => '0', WE => WE ); end generate GL; end generate AW_14_S1; end syn; -- Note: in XST 8.2 the defaults for INIT_(A|B) and SRVAL_(A|B) are -- nonsense: INIT_A : bit_vector := X"000"; -- This is a 12 bit value, while a 9 bit one is needed. Thus the -- explicit definition above.
gpl-2.0
xylnao/w11a-extra
rtl/sys_gen/tst_snhumanio/tst_snhumanio.vhd
2
7536
-- $Id: tst_snhumanio.vhd 416 2011-10-15 13:32:57Z mueller $ -- -- Copyright 2011- by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Module Name: tst_snhumanio - syn -- Description: simple stand-alone tester for sn_humanio -- -- Dependencies: - -- Test bench: - -- -- Target Devices: generic -- Tool versions: xst 13.1; ghdl 0.29 -- -- Revision History: -- Date Rev Version Comment -- 2011-10-15 416 1.0.2 fix sensitivity list of proc_next -- 2011-10-08 412 1.0.1 use better rndm init (so that swi=0 is non-const) -- 2011-09-17 410 1.0 Initial version ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; use work.slvtypes.all; use work.comlib.all; -- ---------------------------------------------------------------------------- entity tst_snhumanio is -- tester for rlink generic ( BWIDTH : positive := 4); -- BTN port width port ( CLK : in slbit; -- clock RESET : in slbit; -- reset CE_MSEC : in slbit; -- msec pulse SWI : in slv8; -- switch settings BTN : in slv(BWIDTH-1 downto 0); -- button settings LED : out slv8; -- led data DSP_DAT : out slv16; -- display data DSP_DP : out slv4 -- display decimal points ); end tst_snhumanio; architecture syn of tst_snhumanio is constant c_mode_rndm : slv2 := "00"; constant c_mode_cnt : slv2 := "01"; constant c_mode_swi : slv2 := "10"; constant c_mode_btst : slv2 := "11"; type regs_type is record mode : slv2; -- current mode allon : slbit; -- all LEDs on if set cnt : slv16; -- counter tcnt : slv16; -- swi/btn toggle counter rndm : slv8; -- random number swi_1 : slv8; -- last SWI state btn_1 : slv(BWIDTH-1 downto 0); -- last BTN state led : slv8; -- LED output state dsp : slv16; -- display data dp : slv4; -- display decimal points end record regs_type; -- the rndm start value is /= 0 because a seed of 0 with a SWI setting of 0 -- will result in a 0-0-0 sequence. The 01010101 start will get trapped in a -- constant sequence with a 01100011 switch setting, which is rather unlikely. constant rndminit : slv8 := "01010101"; constant btnzero : slv(BWIDTH-1 downto 0) := (others=>'0'); constant regs_init : regs_type := ( c_mode_rndm, -- mode '0', -- allon (others=>'0'), -- cnt (others=>'0'), -- tcnt rndminit, -- rndm (others=>'0'), -- swi_1 btnzero, -- btn_1 (others=>'0'), -- led (others=>'0'), -- dsp (others=>'0') -- dp ); signal R_REGS : regs_type := regs_init; -- state registers signal N_REGS : regs_type := regs_init; -- next value state regs signal BTN4 : slbit := '0'; begin assert BWIDTH>=4 report "assert(BWIDTH>=4): at least 4 BTNs available" severity failure; B4YES: if BWIDTH > 4 generate BTN4 <= BTN(4); end generate B4YES; B4NO: if BWIDTH = 4 generate BTN4 <= '0'; end generate B4NO; proc_regs: process (CLK) begin if rising_edge(CLK) then if RESET = '1' then R_REGS <= regs_init; else R_REGS <= N_REGS; end if; end if; end process proc_regs; proc_next: process (R_REGS, CE_MSEC, SWI, BTN, BTN4) variable r : regs_type := regs_init; variable n : regs_type := regs_init; variable btn03 : slv4 := (others=>'0'); begin r := R_REGS; n := R_REGS; n.swi_1 := SWI; n.btn_1 := BTN; if SWI/=r.swi_1 or BTN/=r.btn_1 then n.tcnt := slv(unsigned(r.tcnt) + 1); end if; btn03 := BTN(3 downto 0); n.allon := BTN4; if unsigned(BTN) /= 0 then -- is a button being pressed ? if r.mode /= c_mode_btst then -- not in btst mode case btn03 is when "0001" => -- 0001 single button -> rndm mode n.mode := c_mode_rndm; n.rndm := rndminit; when "0010" => -- 0010 single button -> cnt mode n.mode := c_mode_cnt; when "0100" => -- 0100 single button -> swi mode n.mode := c_mode_swi; when "1000" => -- 1001 single button -> btst mode n.mode := c_mode_btst; n.tcnt := (others=>'0'); when others => -- any 2+ button combo -> led test n.allon := '1'; end case; else -- button press in btst mode case btn03 is when "1001" => -- 1001 double btn -> rndm mode n.mode := c_mode_rndm; when "1010" => -- 1010 double btn -> rndm cnt n.mode := c_mode_cnt; when "1100" => -- 1100 double btn -> rndm swi n.mode := c_mode_swi; when others => null; end case; end if; else -- no button being pressed if CE_MSEC = '1' then -- on every usec n.cnt := slv(unsigned(r.cnt) + 1); -- inc counter if unsigned(r.cnt(8 downto 0)) = 0 then -- every 1/2 sec (approx.) n.rndm := crc8_update(r.rndm, SWI); -- update rndm state end if; end if; end if; if r.allon = '1' then -- if led test selected n.led := (others=>'1'); -- all led,dsp,dp on n.dsp := (others=>'1'); n.dp := (others=>'1'); else -- no led test, normal output case r.mode is when c_mode_rndm => n.led := r.rndm; n.dsp(7 downto 0) := r.rndm; n.dsp(15 downto 8) := not r.rndm; when c_mode_cnt => n.led := r.cnt(14 downto 7); n.dsp := r.cnt; when c_mode_swi => n.led := SWI; n.dsp(7 downto 0) := SWI; n.dsp(15 downto 8) := not SWI; when c_mode_btst => n.led := SWI; n.dsp := r.tcnt; when others => null; end case; n.dp := BTN(3 downto 0); end if; N_REGS <= n; LED <= r.led; DSP_DAT <= r.dsp; DSP_DP <= r.dp; end process proc_next; end syn;
gpl-2.0
wgml/sysrek
skin_color_segm/ipcore_dir/BINARYZACJA/simulation/BINARYZACJA_tb.vhd
4
4237
-------------------------------------------------------------------------------- -- -- DIST MEM GEN Core - Top File for the Example Testbench -- -------------------------------------------------------------------------------- -- -- (c) Copyright 2006_3010 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -------------------------------------------------------------------------------- -- Filename: BINARYZACJA_tb.vhd -- Description: -- Testbench Top -------------------------------------------------------------------------------- -- Author: IP Solutions Division -- -- History: Sep 12, 2011 - First Release -------------------------------------------------------------------------------- -- -------------------------------------------------------------------------------- -- Library Declarations -------------------------------------------------------------------------------- LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_ARITH.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; LIBRARY work; USE work.ALL; ENTITY BINARYZACJA_tb IS END ENTITY; ARCHITECTURE BINARYZACJA_tb_ARCH OF BINARYZACJA_tb IS SIGNAL STATUS : STD_LOGIC_VECTOR(8 DOWNTO 0); SIGNAL CLK : STD_LOGIC := '1'; SIGNAL RESET : STD_LOGIC; BEGIN CLK_GEN: PROCESS BEGIN CLK <= NOT CLK; WAIT FOR 100 NS; CLK <= NOT CLK; WAIT FOR 100 NS; END PROCESS; RST_GEN: PROCESS BEGIN RESET <= '1'; WAIT FOR 1000 NS; RESET <= '0'; WAIT; END PROCESS; --STOP_SIM: PROCESS BEGIN -- WAIT FOR 200 US; -- STOP SIMULATION AFTER 1 MS -- ASSERT FALSE -- REPORT "END SIMULATION TIME REACHED" -- SEVERITY FAILURE; --END PROCESS; -- PROCESS BEGIN WAIT UNTIL STATUS(8)='1'; IF( STATUS(7 downto 0)/="0") THEN ASSERT false REPORT "Simulation Failed" SEVERITY FAILURE; ELSE ASSERT false REPORT "Test Completed Successfully" SEVERITY FAILURE; END IF; END PROCESS; BINARYZACJA_tb_synth_inst:ENTITY work.BINARYZACJA_tb_synth GENERIC MAP (C_ROM_SYNTH => 0) PORT MAP( CLK_IN => CLK, RESET_IN => RESET, STATUS => STATUS ); END ARCHITECTURE;
gpl-2.0
xylnao/w11a-extra
rtl/w11a/pdp11_gpr.vhd
2
5517
-- $Id: pdp11_gpr.vhd 427 2011-11-19 21:04:11Z mueller $ -- -- Copyright 2006-2011 by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Module Name: pdp11_gpr - syn -- Description: pdp11: general purpose registers -- -- Dependencies: memlib/ram_1swar_1ar_gen -- -- Test bench: tb/tb_pdp11_core (implicit) -- Target Devices: generic -- Tool versions: xst 8.2, 9.1, 9.2, 13.1; ghdl 0.18-0.29 -- Revision History: -- Date Rev Version Comment -- 2011-11-18 427 1.0.4 now numeric_std clean -- 2008-08-22 161 1.0.3 rename ubf_ -> ibf_; use iblib -- 2007-12-30 108 1.0.2 use ubf_byte[01] -- 2007-06-14 56 1.0.1 Use slvtypes.all -- 2007-05-12 26 1.0 Initial version ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; use work.slvtypes.all; use work.memlib.all; use work.iblib.all; use work.pdp11.all; -- ---------------------------------------------------------------------------- entity pdp11_gpr is -- general purpose registers port ( CLK : in slbit; -- clock DIN : in slv16; -- input data ASRC : in slv3; -- source register number ADST : in slv3; -- destination register number MODE : in slv2; -- processor mode (k=>00,s=>01,u=>11) RSET : in slbit; -- register set WE : in slbit; -- write enable BYTOP : in slbit; -- byte operation (write low byte only) PCINC : in slbit; -- increment PC DSRC : out slv16; -- source register data DDST : out slv16; -- destination register data PC : out slv16 -- current PC value ); end pdp11_gpr; architecture syn of pdp11_gpr is -- -------------------------------------- -- the register map determines the internal register file storage address -- of a register. The mapping is -- ADDR RNUM SET MODE -- 0000 000 0 -- R0 set 0 -- 0001 001 0 -- R1 set 0 -- 0010 010 0 -- R2 set 0 -- 0011 011 0 -- R3 set 0 -- 0100 100 0 -- R4 set 0 -- 0101 101 0 -- R5 set 0 -- 0110 110 - 00 SP kernel mode -- 0111 110 - 01 SP supervisor mode -- 1000 000 1 -- R0 set 1 -- 1001 001 1 -- R1 set 1 -- 1010 010 1 -- R2 set 1 -- 1011 011 1 -- R3 set 1 -- 1100 100 1 -- R4 set 1 -- 1101 101 1 -- R5 set 1 -- 1110 111 - -- PC -- 1111 110 - 11 SP user mode procedure do_regmap ( signal RNUM : in slv3; -- register number signal MODE : in slv2; -- processor mode (k=>00,s=>01,u=>11) signal RSET : in slbit; -- register set signal ADDR : out slv4 -- internal address in regfile ) is begin if RNUM = c_gpr_pc then ADDR <= "1110"; elsif RNUM = c_gpr_sp then ADDR <= MODE(1) & "11" & MODE(0); else ADDR <= RSET & RNUM; end if; end procedure do_regmap; -- -------------------------------------- signal MASRC : slv4 := (others=>'0'); -- mapped source register address signal MADST : slv4 := (others=>'0'); -- mapped destination register address signal WE1 : slbit := '0'; -- write enable high byte signal MEMSRC : slv16 := (others=>'0');-- source reg data from memory signal MEMDST : slv16 := (others=>'0');-- destination reg data from memory signal R_PC : slv16 := (others=>'0'); -- PC register begin do_regmap(RNUM => ASRC, MODE => MODE, RSET => RSET, ADDR => MASRC); do_regmap(RNUM => ADST, MODE => MODE, RSET => RSET, ADDR => MADST); WE1 <= WE and not BYTOP; GPR_LOW : ram_1swar_1ar_gen generic map ( AWIDTH => 4, DWIDTH => 8) port map ( CLK => CLK, WE => WE, ADDRA => MADST, ADDRB => MASRC, DI => DIN(ibf_byte0), DOA => MEMDST(ibf_byte0), DOB => MEMSRC(ibf_byte0)); GPR_HIGH : ram_1swar_1ar_gen generic map ( AWIDTH => 4, DWIDTH => 8) port map ( CLK => CLK, WE => WE1, ADDRA => MADST, ADDRB => MASRC, DI => DIN(ibf_byte1), DOA => MEMDST(ibf_byte1), DOB => MEMSRC(ibf_byte1)); proc_pc : process (CLK) alias R_PC15 : slv15 is R_PC(15 downto 1); -- upper 15 bit of PC begin if rising_edge(CLK) then if WE='1' and ADST=c_gpr_pc then R_PC(ibf_byte0) <= DIN(ibf_byte0); if BYTOP = '0' then R_PC(ibf_byte1) <= DIN(ibf_byte1); end if; elsif PCINC = '1' then R_PC15 <= slv(unsigned(R_PC15) + 1); end if; end if; end process proc_pc; DSRC <= R_PC when ASRC=c_gpr_pc else MEMSRC; DDST <= R_PC when ADST=c_gpr_pc else MEMDST; PC <= R_PC; end syn;
gpl-2.0
xylnao/w11a-extra
rtl/sys_gen/tst_rlink/nexys3/tb/sys_conf_sim.vhd
1
1605
-- $Id: sys_conf_sim.vhd 433 2011-11-27 22:04:39Z mueller $ -- -- Copyright 2011- by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Package Name: sys_conf -- Description: Definitions for sys_tst_rlink_n3 (for simulation) -- -- Dependencies: - -- Tool versions: xst 13.1; ghdl 0.29 -- Revision History: -- Date Rev Version Comment -- 2011-11-26 433 1.0 Initial version ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use work.slvtypes.all; package sys_conf is constant sys_conf_clkfx_divide : positive := 1; constant sys_conf_clkfx_multiply : positive := 1; constant sys_conf_ser2rri_cdinit : integer := 1-1; -- 1 cycle/bit in sim constant sys_conf_hio_debounce : boolean := false; -- no debouncers -- derived constants constant sys_conf_clksys : integer := (100000000/sys_conf_clkfx_divide)*sys_conf_clkfx_multiply; constant sys_conf_clksys_mhz : integer := sys_conf_clksys/1000000; end package sys_conf;
gpl-2.0
wgml/sysrek
hdmi_example/ipcore_dir/BINARYZACJA/example_design/BINARYZACJA_prod_exdes.vhd
4
5325
-------------------------------------------------------------------------------- -- -- Distributed Memory Generator v6.3 Core - Top-level core wrapper -- -------------------------------------------------------------------------------- -- -- (c) Copyright 2009 - 2010 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -- -------------------------------------------------------------------------------- -- -- -- Description: -- This is the actual DMG core wrapper. -- -------------------------------------------------------------------------------- -- Library Declarations -------------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all; use ieee.std_logic_unsigned.all; library unisim; use unisim.vcomponents.all; -------------------------------------------------------------------------------- -- Entity Declaration -------------------------------------------------------------------------------- entity BINARYZACJA_exdes is PORT ( A : IN STD_LOGIC_VECTOR(8-1-(4*0*boolean'pos(8>4)) downto 0) := (OTHERS => '0'); D : IN STD_LOGIC_VECTOR(8-1 downto 0) := (OTHERS => '0'); DPRA : IN STD_LOGIC_VECTOR(8-1 downto 0) := (OTHERS => '0'); SPRA : IN STD_LOGIC_VECTOR(8-1 downto 0) := (OTHERS => '0'); CLK : IN STD_LOGIC := '0'; WE : IN STD_LOGIC := '0'; I_CE : IN STD_LOGIC := '1'; QSPO_CE : IN STD_LOGIC := '1'; QDPO_CE : IN STD_LOGIC := '1'; QDPO_CLK : IN STD_LOGIC := '0'; QSPO_RST : IN STD_LOGIC := '0'; QDPO_RST : IN STD_LOGIC := '0'; QSPO_SRST : IN STD_LOGIC := '0'; QDPO_SRST : IN STD_LOGIC := '0'; SPO : OUT STD_LOGIC_VECTOR(8-1 downto 0); DPO : OUT STD_LOGIC_VECTOR(8-1 downto 0); QSPO : OUT STD_LOGIC_VECTOR(8-1 downto 0); QDPO : OUT STD_LOGIC_VECTOR(8-1 downto 0) ); end BINARYZACJA_exdes; architecture xilinx of BINARYZACJA_exdes is SIGNAL CLK_i : std_logic; component BINARYZACJA is PORT ( CLK : IN STD_LOGIC; QSPO : OUT STD_LOGIC_VECTOR(8-1 downto 0); A : IN STD_LOGIC_VECTOR(8-1-(4*0*boolean'pos(8>4)) downto 0) := (OTHERS => '0') ); end component; begin dmg0 : BINARYZACJA port map ( CLK => CLK_i, QSPO => QSPO, A => A ); clk_buf: bufg PORT map( i => CLK, o => CLK_i ); end xilinx;
gpl-2.0
wgml/sysrek
hdmi_example/ipcore_dir/BINARYZACJA/simulation/BINARYZACJA_tb_stim_gen.vhd
4
10579
-------------------------------------------------------------------------------- -- -- DIST MEM GEN Core - Stimulus Generator For ROM Configuration -- -------------------------------------------------------------------------------- -- -- (c) Copyright 2006_3010 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -------------------------------------------------------------------------------- -- -- Filename: BINARYZACJA_tb_stim_gen.vhd -- -- Description: -- Stimulus Generation For ROM -- -------------------------------------------------------------------------------- -- Author: IP Solutions Division -- -- History: Sep 12, 2011 - First Release -------------------------------------------------------------------------------- -- -------------------------------------------------------------------------------- -- Library Declarations -------------------------------------------------------------------------------- LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_ARITH.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; USE IEEE.STD_LOGIC_MISC.ALL; LIBRARY work; USE work.ALL; USE work.BINARYZACJA_TB_PKG.ALL; ENTITY REGISTER_LOGIC_ROM IS PORT( Q : OUT STD_LOGIC; CLK : IN STD_LOGIC; RST : IN STD_LOGIC; D : IN STD_LOGIC ); END REGISTER_LOGIC_ROM; ARCHITECTURE REGISTER_ARCH OF REGISTER_LOGIC_ROM IS SIGNAL Q_O : STD_LOGIC :='0'; BEGIN Q <= Q_O; FF_BEH: PROCESS(CLK) BEGIN IF(RISING_EDGE(CLK)) THEN IF(RST /= '0' ) THEN Q_O <= '0'; ELSE Q_O <= D; END IF; END IF; END PROCESS; END REGISTER_ARCH; LIBRARY STD; USE STD.TEXTIO.ALL; LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_ARITH.ALL; --USE IEEE.NUMERIC_STD.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; USE IEEE.STD_LOGIC_MISC.ALL; LIBRARY work; USE work.ALL; USE work.BINARYZACJA_TB_PKG.ALL; ENTITY BINARYZACJA_TB_STIM_GEN IS GENERIC ( C_ROM_SYNTH : INTEGER := 0 ); PORT ( CLK : IN STD_LOGIC; RST : IN STD_LOGIC; A : OUT STD_LOGIC_VECTOR(8-1 downto 0) := (OTHERS => '0'); DATA_IN : IN STD_LOGIC_VECTOR (7 DOWNTO 0); --OUTPUT VECTOR STATUS : OUT STD_LOGIC:= '0' ); END BINARYZACJA_TB_STIM_GEN; ARCHITECTURE BEHAVIORAL OF BINARYZACJA_TB_STIM_GEN IS FUNCTION std_logic_vector_len( hex_str : STD_LOGIC_VECTOR; return_width : INTEGER) RETURN STD_LOGIC_VECTOR IS VARIABLE tmp : STD_LOGIC_VECTOR(return_width DOWNTO 0) := (OTHERS => '0'); VARIABLE tmp_z : STD_LOGIC_VECTOR(return_width-(hex_str'LENGTH) DOWNTO 0) := (OTHERS => '0'); BEGIN tmp := tmp_z & hex_str; RETURN tmp(return_width-1 DOWNTO 0); END std_logic_vector_len; CONSTANT ZERO : STD_LOGIC_VECTOR(31 DOWNTO 0) := (OTHERS => '0'); SIGNAL READ_ADDR_INT : STD_LOGIC_VECTOR(7 DOWNTO 0) := (OTHERS => '0'); SIGNAL READ_ADDR : STD_LOGIC_VECTOR(31 DOWNTO 0) := (OTHERS => '0'); SIGNAL CHECK_READ_ADDR : STD_LOGIC_VECTOR(31 DOWNTO 0) := (OTHERS => '0'); SIGNAL EXPECTED_DATA : STD_LOGIC_VECTOR(7 DOWNTO 0) := (OTHERS => '0'); SIGNAL DO_READ : STD_LOGIC := '0'; SIGNAL CHECK_DATA : STD_LOGIC_VECTOR(3 DOWNTO 0) := (OTHERS => '0'); CONSTANT DEFAULT_DATA : STD_LOGIC_VECTOR(7 DOWNTO 0):= std_logic_vector_len("0",8); BEGIN SYNTH_COE: IF(C_ROM_SYNTH =0 ) GENERATE type mem_type is array (255 downto 0) of std_logic_vector(7 downto 0); FUNCTION bit_to_sl(input: BIT) RETURN STD_LOGIC IS VARIABLE temp_return : STD_LOGIC; BEGIN IF(input = '0') THEN temp_return := '0'; ELSE temp_return := '1'; END IF; RETURN temp_return; END bit_to_sl; function char_to_std_logic ( char : in character) return std_logic is variable data : std_logic; begin if char = '0' then data := '0'; elsif char = '1' then data := '1'; elsif char = 'X' then data := 'X'; else assert false report "character which is not '0', '1' or 'X'." severity warning; data := 'U'; end if; return data; end char_to_std_logic; impure FUNCTION init_memory( C_USE_DEFAULT_DATA : INTEGER; C_LOAD_INIT_FILE : INTEGER ; C_INIT_FILE_NAME : STRING ; DEFAULT_DATA : STD_LOGIC_VECTOR(7 DOWNTO 0); width : INTEGER; depth : INTEGER) RETURN mem_type IS VARIABLE init_return : mem_type := (OTHERS => (OTHERS => '0')); FILE init_file : TEXT; VARIABLE mem_vector : BIT_VECTOR(width-1 DOWNTO 0); VARIABLE bitline : LINE; variable bitsgood : boolean := true; variable bitchar : character; VARIABLE i : INTEGER; VARIABLE j : INTEGER; BEGIN --Display output message indicating that the behavioral model is being --initialized ASSERT (NOT (C_USE_DEFAULT_DATA=1 OR C_LOAD_INIT_FILE=1)) REPORT " Distributed Memory Generator CORE Generator module loading initial data..." SEVERITY NOTE; -- Setup the default data -- Default data is with respect to write_port_A and may be wider -- or narrower than init_return width. The following loops map -- default data into the memory IF (C_USE_DEFAULT_DATA=1) THEN FOR i IN 0 TO depth-1 LOOP init_return(i) := DEFAULT_DATA; END LOOP; END IF; -- Read in the .mif file -- The init data is formatted with respect to write port A dimensions. -- The init_return vector is formatted with respect to minimum width and -- maximum depth; the following loops map the .mif file into the memory IF (C_LOAD_INIT_FILE=1) THEN file_open(init_file, C_INIT_FILE_NAME, read_mode); i := 0; WHILE (i < depth AND NOT endfile(init_file)) LOOP mem_vector := (OTHERS => '0'); readline(init_file, bitline); -- read(file_buffer, mem_vector(file_buffer'LENGTH-1 DOWNTO 0)); FOR j IN 0 TO width-1 LOOP read(bitline,bitchar,bitsgood); init_return(i)(width-1-j) := char_to_std_logic(bitchar); END LOOP; i := i + 1; END LOOP; file_close(init_file); END IF; RETURN init_return; END FUNCTION; --*************************************************************** -- convert bit to STD_LOGIC --*************************************************************** constant c_init : mem_type := init_memory(1, 1, "BINARYZACJA.mif", DEFAULT_DATA, 8, 256); constant rom : mem_type := c_init; BEGIN EXPECTED_DATA <= rom(conv_integer(unsigned(check_read_addr))); CHECKER_RD_AGEN_INST:ENTITY work.BINARYZACJA_TB_AGEN GENERIC MAP( C_MAX_DEPTH =>256 ) PORT MAP( CLK => CLK, RST => RST, EN => CHECK_DATA(3), LOAD => '0', LOAD_VALUE => ZERO, ADDR_OUT => check_read_addr ); PROCESS(CLK) BEGIN IF(RISING_EDGE(CLK)) THEN IF(CHECK_DATA(3) ='1') THEN IF(EXPECTED_DATA = DATA_IN) THEN STATUS<='0'; ELSE STATUS <= '1'; END IF; END IF; END IF; END PROCESS; END GENERATE; -- Simulatable ROM --Synthesizable ROM SYNTH_CHECKER: IF(C_ROM_SYNTH = 1) GENERATE PROCESS(CLK) BEGIN IF(RISING_EDGE(CLK)) THEN IF(CHECK_DATA(3)='1') THEN IF(DATA_IN=DEFAULT_DATA) THEN STATUS <= '0'; ELSE STATUS <= '1'; END IF; END IF; END IF; END PROCESS; END GENERATE; READ_ADDR_INT(7 DOWNTO 0) <= READ_ADDR(7 DOWNTO 0); A <= READ_ADDR_INT ; CHECK_DATA(0) <= DO_READ; RD_AGEN_INST:ENTITY work.BINARYZACJA_TB_AGEN GENERIC MAP( C_MAX_DEPTH => 256 ) PORT MAP( CLK => CLK, RST => RST, EN => DO_READ, LOAD => '0', LOAD_VALUE => ZERO, ADDR_OUT => READ_ADDR ); RD_PROCESS: PROCESS (CLK) BEGIN IF (RISING_EDGE(CLK)) THEN IF(RST='1') THEN DO_READ <= '0'; ELSE DO_READ <= '1'; END IF; END IF; END PROCESS; BEGIN_EN_REG: FOR I IN 0 TO 3 GENERATE BEGIN DFF_RIGHT: IF I=0 GENERATE BEGIN SHIFT_INST_0: ENTITY work.REGISTER_LOGIC_ROM PORT MAP( Q => CHECK_DATA(1), CLK => CLK, RST => RST, D => CHECK_DATA(0) ); END GENERATE DFF_RIGHT; DFF_CE_OTHERS: IF ((I>0) AND (I<3)) GENERATE BEGIN SHIFT_INST: ENTITY work.REGISTER_LOGIC_ROM PORT MAP( Q => CHECK_DATA(I+1), CLK => CLK, RST => RST, D => CHECK_DATA(I) ); END GENERATE DFF_CE_OTHERS; END GENERATE BEGIN_EN_REG; END ARCHITECTURE;
gpl-2.0
xylnao/w11a-extra
rtl/w11a/pdp11_sys70.vhd
2
3917
-- $Id: pdp11_sys70.vhd 427 2011-11-19 21:04:11Z mueller $ -- -- Copyright 2008-2011 by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Module Name: pdp11_sys70 - syn -- Description: pdp11: 11/70 system registers -- -- Dependencies: - -- Test bench: tb/tb_pdp11_core (implicit) -- Target Devices: generic -- Tool versions: xst 8.2, 9.1, 9.2, 12.1, 13.1; ghdl 0.18-0.29 -- -- Revision History: -- Date Rev Version Comment -- 2011-11-18 427 1.1.1 now numeric_std clean -- 2010-10-17 333 1.1 use ibus V2 interface -- 2008-08-22 161 1.0.1 use iblib -- 2008-04-20 137 1.0 Initial version ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; use work.slvtypes.all; use work.pdp11.all; use work.iblib.all; use work.sys_conf.all; -- ---------------------------------------------------------------------------- entity pdp11_sys70 is -- 11/70 memory system registers port ( CLK : in slbit; -- clock CRESET : in slbit; -- console reset IB_MREQ : in ib_mreq_type; -- ibus request IB_SRES : out ib_sres_type -- ibus response ); end pdp11_sys70; architecture syn of pdp11_sys70 is constant ibaddr_mbrk : slv16 := slv(to_unsigned(8#177770#,16)); constant ibaddr_sysid : slv16 := slv(to_unsigned(8#177764#,16)); type regs_type is record -- state registers ibsel_mbrk : slbit; -- ibus select mbrk ibsel_sysid : slbit; -- ibus select sysid mbrk : slv8; -- status of mbrk register end record regs_type; constant regs_init : regs_type := ( '0','0', -- ibsel_* mbrk=>(others=>'0') -- mbrk ); signal R_REGS : regs_type := regs_init; signal N_REGS : regs_type := regs_init; begin proc_regs: process (CLK) begin if rising_edge(CLK) then if CRESET = '1' then R_REGS <= regs_init; else R_REGS <= N_REGS; end if; end if; end process proc_regs; proc_next: process (R_REGS, IB_MREQ) variable r : regs_type := regs_init; variable n : regs_type := regs_init; variable idout : slv16 := (others=>'0'); variable ibreq : slbit := '0'; variable ibw0 : slbit := '0'; begin r := R_REGS; n := R_REGS; idout := (others=>'0'); ibreq := IB_MREQ.re or IB_MREQ.we; ibw0 := IB_MREQ.we and IB_MREQ.be0; -- ibus address decoder n.ibsel_mbrk := '0'; n.ibsel_sysid := '0'; if IB_MREQ.aval = '1' then if IB_MREQ.addr = ibaddr_mbrk(12 downto 1) then n.ibsel_mbrk := '1'; end if; if IB_MREQ.addr = ibaddr_sysid(12 downto 1) then n.ibsel_sysid := '1'; end if; end if; -- ibus transactions if r.ibsel_mbrk = '1' then idout(r.mbrk'range) := r.mbrk; end if; if r.ibsel_sysid = '1' then idout := slv(to_unsigned(8#123456#,16)); end if; if r.ibsel_mbrk='1' and ibw0='1' then n.mbrk := IB_MREQ.din(n.mbrk'range); end if; N_REGS <= n; IB_SRES.dout <= idout; IB_SRES.ack <= (r.ibsel_mbrk or r.ibsel_sysid) and ibreq; IB_SRES.busy <= '0'; end process proc_next; end syn;
gpl-2.0
wgml/sysrek
hdmi_example/ipcore_dir/LUT/example_design/LUT_exdes.vhd
6
4054
-------------------------------------------------------------------------------- -- -- Distributed Memory Generator Core - Top-level core wrapper -- -------------------------------------------------------------------------------- -- -- (c) Copyright 2009 - 2010 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -- -------------------------------------------------------------------------------- -- -- -- Description: -- This is the actual DMG core wrapper. -- -------------------------------------------------------------------------------- -- Library Declarations -------------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all; use ieee.std_logic_unsigned.all; library unisim; use unisim.vcomponents.all; -------------------------------------------------------------------------------- -- Entity Declaration -------------------------------------------------------------------------------- entity LUT_exdes is PORT ( CLK : IN STD_LOGIC := '0'; QSPO : OUT STD_LOGIC_VECTOR(8-1 downto 0); A : IN STD_LOGIC_VECTOR(8-1-(4*0*boolean'pos(8>4)) downto 0) := (OTHERS => '0') ); end LUT_exdes; architecture xilinx of LUT_exdes is SIGNAL CLK_i : std_logic; component LUT is PORT ( CLK : IN STD_LOGIC; QSPO : OUT STD_LOGIC_VECTOR(8-1 downto 0); A : IN STD_LOGIC_VECTOR(8-1-(4*0*boolean'pos(8>4)) downto 0) := (OTHERS => '0') ); end component; begin dmg0 : LUT port map ( CLK => CLK_i, QSPO => QSPO, A => A ); clk_buf: bufg PORT MAP( i => CLK, o => CLK_i ); end xilinx;
gpl-2.0
wgml/sysrek
skin_color_segm/ipcore_dir/BINARYZACJA/simulation/BINARYZACJA_tb_agen.vhd
4
4340
-------------------------------------------------------------------------------- -- -- DIST MEM GEN Core - Address Generator -- -------------------------------------------------------------------------------- -- -- (c) Copyright 2006_3010 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -------------------------------------------------------------------------------- -- -- Filename: BINARYZACJA_tb_agen.vhd -- -- Description: -- Address Generator -- -------------------------------------------------------------------------------- -- Author: IP Solutions Division -- -- History: Sep 12, 2011 - First Release -------------------------------------------------------------------------------- -- -------------------------------------------------------------------------------- -- Library Declarations -------------------------------------------------------------------------------- LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_ARITH.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; LIBRARY work; USE work.ALL; ENTITY BINARYZACJA_TB_AGEN IS GENERIC ( C_MAX_DEPTH : INTEGER := 1024 ; RST_VALUE : STD_LOGIC_VECTOR(31 DOWNTO 0) := (OTHERS=> '0'); RST_INC : INTEGER := 0); PORT ( CLK : IN STD_LOGIC; RST : IN STD_LOGIC; EN : IN STD_LOGIC; LOAD :IN STD_LOGIC; LOAD_VALUE : IN STD_LOGIC_VECTOR (31 DOWNTO 0) := (OTHERS => '0'); ADDR_OUT : OUT STD_LOGIC_VECTOR (31 DOWNTO 0) --OUTPUT VECTOR ); END BINARYZACJA_TB_AGEN; ARCHITECTURE BEHAVIORAL OF BINARYZACJA_TB_AGEN IS SIGNAL ADDR_TEMP : STD_LOGIC_VECTOR(31 DOWNTO 0) := (OTHERS =>'0'); BEGIN ADDR_OUT <= ADDR_TEMP; PROCESS(CLK) BEGIN IF(RISING_EDGE(CLK)) THEN IF(RST='1') THEN ADDR_TEMP<= RST_VALUE + conv_std_logic_vector(RST_INC,32 ); ELSE IF(EN='1') THEN IF(LOAD='1') THEN ADDR_TEMP <=LOAD_VALUE; ELSE IF(ADDR_TEMP = C_MAX_DEPTH-1) THEN ADDR_TEMP<= RST_VALUE + conv_std_logic_vector(RST_INC,32 ); ELSE ADDR_TEMP <= ADDR_TEMP + '1'; END IF; END IF; END IF; END IF; END IF; END PROCESS; END ARCHITECTURE;
gpl-2.0
xylnao/w11a-extra
rtl/w11a/pdp11_tmu.vhd
1
8622
-- $Id: pdp11_tmu.vhd 427 2011-11-19 21:04:11Z mueller $ -- -- Copyright 2008-2011 by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Module Name: pdp11_tmu - sim -- Description: pdp11: trace and monitor unit -- -- Dependencies: - -- -- Test bench: tb/tb_pdp11_core (implicit) -- Target Devices: generic -- Tool versions: ghdl 0.18-0.29 -- -- Revision History: -- Date Rev Version Comment -- 2011-11-18 427 1.0.7 now numeric_std clean -- 2010-10-17 333 1.0.6 use ibus V2 interface -- 2010-06-26 309 1.0.5 add ibmreq.dip,.cacc,.racc to trace -- 2009-05-10 214 1.0.4 add ENA signal (trace enable) -- 2008-12-14 177 1.0.3 write gpr_* of DM_STAT_DP and dp_ireg_we_last -- 2008-12-13 176 1.0.2 write only cycle currently used by tmu_conf -- 2008-08-22 161 1.0.1 rename ubf_ -> ibf_ -- 2008-04-19 137 1.0 Initial version ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; use ieee.std_logic_textio.all; use std.textio.all; use work.slvtypes.all; use work.simlib.all; use work.simbus.all; use work.pdp11.all; -- ---------------------------------------------------------------------------- entity pdp11_tmu is -- trace and monitor unit port ( CLK : in slbit; -- clock ENA : in slbit := '0'; -- enable trace output DM_STAT_DP : in dm_stat_dp_type; -- DM dpath DM_STAT_VM : in dm_stat_vm_type; -- DM vmbox DM_STAT_CO : in dm_stat_co_type; -- DM core DM_STAT_SY : in dm_stat_sy_type -- DM system ); end pdp11_tmu; architecture sim of pdp11_tmu is signal R_FIRST : slbit := '1'; begin proc_tm: process (CLK) variable oline : line; variable ipsw : slv16 := (others=>'0'); variable ibaddr : slv16 := (others=>'0'); variable emaddr : slv22 := (others=>'0'); variable dp_ireg_we_last : slbit := '0'; variable vm_ibsres_busy_last : slbit := '0'; variable vm_ibsres_ack_last : slbit := '0'; variable wcycle : boolean := false; file ofile : text open write_mode is "tmu_ofile"; begin if rising_edge(CLK) then if R_FIRST = '1' then R_FIRST <= '0'; write(oline, string'("#")); write(oline, string'(" clkcycle:d")); write(oline, string'(" cpu:o")); write(oline, string'(" dp.pc:o")); write(oline, string'(" dp.psw:o")); write(oline, string'(" dp.ireg:o")); write(oline, string'(" dp.ireg_we:b")); write(oline, string'(" dp.ireg_we_last:b")); -- is ireg_we last cycle write(oline, string'(" dp.dsrc:o")); write(oline, string'(" dp.ddst:o")); write(oline, string'(" dp.dtmp:o")); write(oline, string'(" dp.dres:o")); write(oline, string'(" dp.gpr_adst:o")); write(oline, string'(" dp.gpr_mode:o")); write(oline, string'(" dp.gpr_bytop:b")); write(oline, string'(" dp.gpr_we:b")); write(oline, string'(" vm.ibmreq.aval:b")); write(oline, string'(" vm.ibmreq.re:b")); write(oline, string'(" vm.ibmreq.we:b")); write(oline, string'(" vm.ibmreq.rmw:b")); write(oline, string'(" vm.ibmreq.be0:b")); write(oline, string'(" vm.ibmreq.be1:b")); write(oline, string'(" vm.ibmreq.cacc:b")); write(oline, string'(" vm.ibmreq.racc:b")); write(oline, string'(" vm.ibmreq.addr:o")); write(oline, string'(" vm.ibmreq.din:o")); write(oline, string'(" vm.ibsres.ack:b")); write(oline, string'(" vm.ibsres.busy:b")); write(oline, string'(" vm.ibsres.dout:o")); write(oline, string'(" co.cpugo:b")); write(oline, string'(" co.cpuhalt:b")); write(oline, string'(" sy.emmreq.req:b")); write(oline, string'(" sy.emmreq.we:b")); write(oline, string'(" sy.emmreq.be:b")); write(oline, string'(" sy.emmreq.cancel:b")); write(oline, string'(" sy.emmreq.addr:o")); write(oline, string'(" sy.emmreq.din:o")); write(oline, string'(" sy.emsres.ack_r:b")); write(oline, string'(" sy.emsres.ack_w:b")); write(oline, string'(" sy.emsres.dout:o")); write(oline, string'(" sy.chit:b")); writeline(ofile, oline); end if; ipsw := (others=>'0'); ipsw(psw_ibf_cmode) := DM_STAT_DP.psw.cmode; ipsw(psw_ibf_pmode) := DM_STAT_DP.psw.pmode; ipsw(psw_ibf_rset) := DM_STAT_DP.psw.rset; ipsw(psw_ibf_pri) := DM_STAT_DP.psw.pri; ipsw(psw_ibf_tflag) := DM_STAT_DP.psw.tflag; ipsw(psw_ibf_cc) := DM_STAT_DP.psw.cc; ibaddr := "1110000000000000"; ibaddr(DM_STAT_VM.ibmreq.addr'range) := DM_STAT_VM.ibmreq.addr; emaddr := (others=>'0'); emaddr(DM_STAT_SY.emmreq.addr'range) := DM_STAT_SY.emmreq.addr; wcycle := false; if dp_ireg_we_last='1' or DM_STAT_DP.gpr_we='1' or DM_STAT_SY.emmreq.req='1' or DM_STAT_SY.emsres.ack_r='1' or DM_STAT_SY.emsres.ack_w='1' or DM_STAT_SY.emmreq.cancel='1' or DM_STAT_VM.ibmreq.re='1' or DM_STAT_VM.ibmreq.we='1' or DM_STAT_VM.ibsres.ack='1' then wcycle := true; end if; if DM_STAT_VM.ibsres.busy='0' and (vm_ibsres_busy_last='1' and vm_ibsres_ack_last='0') then wcycle := true; end if; if ENA = '0' then -- if not enabled wcycle := false; -- force to not logged... end if; if wcycle then write(oline, to_integer(unsigned(SB_CLKCYCLE)), right, 9); write(oline, string'(" 0")); writeoct(oline, DM_STAT_DP.pc, right, 7); writeoct(oline, ipsw, right, 7); writeoct(oline, DM_STAT_DP.ireg, right, 7); write(oline, DM_STAT_DP.ireg_we, right, 2); write(oline, dp_ireg_we_last, right, 2); writeoct(oline, DM_STAT_DP.dsrc, right, 7); writeoct(oline, DM_STAT_DP.ddst, right, 7); writeoct(oline, DM_STAT_DP.dtmp, right, 7); writeoct(oline, DM_STAT_DP.dres, right, 7); writeoct(oline, DM_STAT_DP.gpr_adst, right, 2); writeoct(oline, DM_STAT_DP.gpr_mode, right, 2); write(oline, DM_STAT_DP.gpr_bytop, right, 2); write(oline, DM_STAT_DP.gpr_we, right, 2); write(oline, DM_STAT_VM.ibmreq.aval, right, 2); write(oline, DM_STAT_VM.ibmreq.re, right, 2); write(oline, DM_STAT_VM.ibmreq.we, right, 2); write(oline, DM_STAT_VM.ibmreq.rmw, right, 2); write(oline, DM_STAT_VM.ibmreq.be0, right, 2); write(oline, DM_STAT_VM.ibmreq.be1, right, 2); write(oline, DM_STAT_VM.ibmreq.cacc, right, 2); write(oline, DM_STAT_VM.ibmreq.racc, right, 2); writeoct(oline, ibaddr, right, 7); writeoct(oline, DM_STAT_VM.ibmreq.din, right, 7); write(oline, DM_STAT_VM.ibsres.ack, right, 2); write(oline, DM_STAT_VM.ibsres.busy, right, 2); writeoct(oline, DM_STAT_VM.ibsres.dout, right, 7); write(oline, DM_STAT_CO.cpugo, right, 2); write(oline, DM_STAT_CO.cpuhalt, right, 2); write(oline, DM_STAT_SY.emmreq.req, right, 2); write(oline, DM_STAT_SY.emmreq.we, right, 2); write(oline, DM_STAT_SY.emmreq.be, right, 3); write(oline, DM_STAT_SY.emmreq.cancel, right, 2); writeoct(oline, emaddr, right, 9); writeoct(oline, DM_STAT_SY.emmreq.din, right, 7); write(oline, DM_STAT_SY.emsres.ack_r, right, 2); write(oline, DM_STAT_SY.emsres.ack_w, right, 2); writeoct(oline, DM_STAT_SY.emsres.dout, right, 7); write(oline, DM_STAT_SY.chit, right, 2); writeline(ofile, oline); end if; dp_ireg_we_last := DM_STAT_DP.ireg_we; vm_ibsres_busy_last := DM_STAT_VM.ibsres.busy; vm_ibsres_ack_last := DM_STAT_VM.ibsres.ack; end if; end process proc_tm; end sim;
gpl-2.0
xylnao/w11a-extra
rtl/sys_gen/tst_snhumanio/atlys/sys_conf.vhd
2
1235
-- $Id: sys_conf.vhd 414 2011-10-11 19:38:12Z mueller $ -- -- Copyright 2011- by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Package Name: sys_conf -- Description: Definitions for sys_tst_snhumanio_atlys (for synthesis) -- -- Dependencies: - -- Tool versions: xst 13.1; ghdl 0.29 -- Revision History: -- Date Rev Version Comment -- 2011-10-11 414 1.0 Initial version ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use work.slvtypes.all; package sys_conf is constant sys_conf_hio_debounce : boolean := true; -- instantiate debouncers end package sys_conf;
gpl-2.0
xylnao/w11a-extra
rtl/vlib/xlib/iob_reg_o_gen.vhd
2
2069
-- $Id: iob_reg_o_gen.vhd 426 2011-11-18 18:14:08Z mueller $ -- -- Copyright 2007- by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Module Name: iob_reg_o_gen - syn -- Description: Registered IOB, output only, vector -- -- Dependencies: - -- Test bench: - -- Target Devices: generic Spartan, Virtex -- Tool versions: xst 8.1, 8.2, 9.1, 9.2; ghdl 0.18-0.25 -- Revision History: -- Date Rev Version Comment -- 2007-12-16 101 1.0.1 add INIT generic port -- 2007-12-08 100 1.0 Initial version ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use work.slvtypes.all; use work.xlib.all; entity iob_reg_o_gen is -- registered IOB, output, vector generic ( DWIDTH : positive := 16; -- data port width INIT : slbit := '0'); -- initial state port ( CLK : in slbit; -- clock CE : in slbit := '1'; -- clock enable DO : in slv(DWIDTH-1 downto 0); -- output data PAD : out slv(DWIDTH-1 downto 0) -- i/o pad ); end iob_reg_o_gen; architecture syn of iob_reg_o_gen is signal R_DO : slv(DWIDTH-1 downto 0) := (others=>INIT); attribute iob : string; attribute iob of R_DO : signal is "true"; begin proc_regs: process (CLK) begin if rising_edge(CLK) then if CE = '1' then R_DO <= DO; end if; end if; end process proc_regs; PAD <= R_DO; end syn;
gpl-2.0
xylnao/w11a-extra
rtl/sys_gen/tst_serloop/nexys3/tb/sys_conf1_sim.vhd
2
1829
-- $Id: sys_conf1_sim.vhd 441 2011-12-20 17:01:16Z mueller $ -- -- Copyright 2011- by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Package Name: sys_conf -- Description: Definitions for sys_tst_serloop1_n3 (for test bench) -- -- Dependencies: - -- Tool versions: xst 13.1; ghdl 0.29 -- Revision History: -- Date Rev Version Comment -- 2011-12-11 438 1.0 Initial version ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use work.slvtypes.all; package sys_conf is -- in simulation a usec is shortened to 20 cycles (0.2 usec) and a msec -- to 100 cycles (1 usec). This affects the pulse generators (usec) and -- mainly the autobauder. A break will be detected after 128 msec periods, -- this in simulation after 128 usec or 6400 cycles. This is compatible with -- bitrates of 115200 baud or higher (115200 <-> 8.68 usec <-> 521 cycles) constant sys_conf_clkdiv_usecdiv : integer := 20; -- default usec constant sys_conf_clkdiv_msecdiv : integer := 5; -- shortened ! constant sys_conf_hio_debounce : boolean := false; -- no debouncers constant sys_conf_uart_cdinit : integer := 1-1; -- 1 cycle/bit in sim end package sys_conf;
gpl-2.0
wgml/sysrek
skin_color_segm/ipcore_dir/delayLineBRAM/example_design/delayLineBRAM_exdes.vhd
2
4641
-------------------------------------------------------------------------------- -- -- BLK MEM GEN v7.1 Core - Top-level core wrapper -- -------------------------------------------------------------------------------- -- -- (c) Copyright 2006-2010 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -------------------------------------------------------------------------------- -- -- Filename: delayLineBRAM_exdes.vhd -- -- Description: -- This is the actual BMG core wrapper. -- -------------------------------------------------------------------------------- -- Author: IP Solutions Division -- -- History: August 31, 2005 - First Release -------------------------------------------------------------------------------- -- -------------------------------------------------------------------------------- -- Library Declarations -------------------------------------------------------------------------------- LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_ARITH.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; LIBRARY UNISIM; USE UNISIM.VCOMPONENTS.ALL; -------------------------------------------------------------------------------- -- Entity Declaration -------------------------------------------------------------------------------- ENTITY delayLineBRAM_exdes IS PORT ( --Inputs - Port A WEA : IN STD_LOGIC_VECTOR(0 DOWNTO 0); ADDRA : IN STD_LOGIC_VECTOR(9 DOWNTO 0); DINA : IN STD_LOGIC_VECTOR(16 DOWNTO 0); DOUTA : OUT STD_LOGIC_VECTOR(16 DOWNTO 0); CLKA : IN STD_LOGIC ); END delayLineBRAM_exdes; ARCHITECTURE xilinx OF delayLineBRAM_exdes IS COMPONENT BUFG IS PORT ( I : IN STD_ULOGIC; O : OUT STD_ULOGIC ); END COMPONENT; COMPONENT delayLineBRAM IS PORT ( --Port A WEA : IN STD_LOGIC_VECTOR(0 DOWNTO 0); ADDRA : IN STD_LOGIC_VECTOR(9 DOWNTO 0); DINA : IN STD_LOGIC_VECTOR(16 DOWNTO 0); DOUTA : OUT STD_LOGIC_VECTOR(16 DOWNTO 0); CLKA : IN STD_LOGIC ); END COMPONENT; SIGNAL CLKA_buf : STD_LOGIC; SIGNAL CLKB_buf : STD_LOGIC; SIGNAL S_ACLK_buf : STD_LOGIC; BEGIN bufg_A : BUFG PORT MAP ( I => CLKA, O => CLKA_buf ); bmg0 : delayLineBRAM PORT MAP ( --Port A WEA => WEA, ADDRA => ADDRA, DINA => DINA, DOUTA => DOUTA, CLKA => CLKA_buf ); END xilinx;
gpl-2.0
xylnao/w11a-extra
rtl/vlib/genlib/genlib.vhd
1
6631
-- $Id: genlib.vhd 422 2011-11-10 18:44:06Z mueller $ -- -- Copyright 2007-2011 by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Package Name: genlib -- Description: some general purpose components -- -- Dependencies: - -- Tool versions: xst 8.1, 8.2, 9.1, 9.2, 11.4; ghdl 0.18-0.26 -- Revision History: -- Date Rev Version Comment -- 2011-11-09 421 1.0.8 add cdc_pulse -- 2010-04-17 277 1.0.7 timer: no default for START,DONE,BUSY; drop STOP -- 2010-04-02 273 1.0.6 add timer -- 2008-01-20 112 1.0.5 rename clkgen->clkdivce -- 2007-12-26 106 1.0.4 added gray_cnt_(4|5|n|gen) and gray2bin_gen -- 2007-12-25 105 1.0.3 RESET:='0' defaults -- 2007-06-17 58 1.0.2 added debounce_gen -- 2007-06-16 57 1.0.1 added cnt_array_dram, cnt_array_regs -- 2007-06-03 45 1.0 Initial version ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use work.slvtypes.all; package genlib is component clkdivce is -- generate usec/msec ce pulses generic ( CDUWIDTH : positive := 6; -- usec clock divider width USECDIV : positive := 50; -- divider ratio for usec pulse MSECDIV : positive := 1000); -- divider ratio for msec pulse port ( CLK : in slbit; -- input clock CE_USEC : out slbit; -- usec pulse CE_MSEC : out slbit -- msec pulse ); end component; component cnt_array_dram is -- counter array, dram based generic ( AWIDTH : positive := 4; -- address width DWIDTH : positive := 16); -- data width port ( CLK : in slbit; -- clock RESET : in slbit := '0'; -- clear counters CE : in slv(2**AWIDTH-1 downto 0); -- count enables ADDR : out slv(AWIDTH-1 downto 0); -- counter address DATA : out slv(DWIDTH-1 downto 0); -- counter data ACT : out slbit -- active (not reseting) ); end component; component cnt_array_regs is -- counter array, register based generic ( AWIDTH : positive := 4; -- address width DWIDTH : positive := 16); -- data width port ( CLK : in slbit; -- clock RESET : in slbit := '0'; -- clear counters CE : in slv(2**AWIDTH-1 downto 0); -- count enables ADDR : in slv(AWIDTH-1 downto 0); -- address DATA : out slv(DWIDTH-1 downto 0) -- counter data ); end component; component debounce_gen is -- debounce, generic vector generic ( CWIDTH : positive := 2; -- clock interval counter width CEDIV : positive := 3; -- clock interval divider DWIDTH : positive := 8); -- data width port ( CLK : in slbit; -- clock RESET : in slbit := '0'; -- reset CE_INT : in slbit; -- clock interval enable (usec or msec) DI : in slv(DWIDTH-1 downto 0); -- data in DO : out slv(DWIDTH-1 downto 0) -- data out ); end component; component gray_cnt_gen is -- gray code counter, generic vector generic ( DWIDTH : positive := 4); -- data width port ( CLK : in slbit; -- clock RESET : in slbit := '0'; -- reset CE : in slbit := '1'; -- count enable DATA : out slv(DWIDTH-1 downto 0) -- data out ); end component; component gray_cnt_4 is -- 4 bit gray code counter (ROM based) port ( CLK : in slbit; -- clock RESET : in slbit := '0'; -- reset CE : in slbit := '1'; -- count enable DATA : out slv4 -- data out ); end component; component gray_cnt_5 is -- 5 bit gray code counter (ROM based) port ( CLK : in slbit; -- clock RESET : in slbit := '0'; -- reset CE : in slbit := '1'; -- count enable DATA : out slv5 -- data out ); end component; component gray_cnt_n is -- n bit gray code counter generic ( DWIDTH : positive := 8); -- data width port ( CLK : in slbit; -- clock RESET : in slbit := '0'; -- reset CE : in slbit := '1'; -- count enable DATA : out slv(DWIDTH-1 downto 0) -- data out ); end component; component gray2bin_gen is -- gray->bin converter, generic vector generic ( DWIDTH : positive := 4); -- data width port ( DI : in slv(DWIDTH-1 downto 0); -- gray code input DO : out slv(DWIDTH-1 downto 0) -- binary code output ); end component; component timer is -- retriggerable timer generic ( TWIDTH : positive := 4; -- timer counter width RETRIG : boolean := true); -- re-triggerable true/false port ( CLK : in slbit; -- clock CE : in slbit := '1'; -- clock enable DELAY : in slv(TWIDTH-1 downto 0) := (others=>'1'); -- timer delay START : in slbit; -- start timer STOP : in slbit := '0'; -- stop timer DONE : out slbit; -- mark last delay cycle BUSY : out slbit -- timer running ); end component; component cdc_pulse is -- clock domain cross for pulse generic ( POUT_SINGLE : boolean := false; -- if true: single cycle pout BUSY_WACK : boolean := false); -- if true: busy waits for ack port ( CLKM : in slbit; -- clock master RESET : in slbit := '0'; -- M|reset CLKS : in slbit; -- clock slave PIN : in slbit; -- M|pulse in BUSY : out slbit; -- M|busy POUT : out slbit -- S|pulse out ); end component; end package genlib;
gpl-2.0
xylnao/w11a-extra
rtl/ibus/ibdr_minisys.vhd
2
7065
-- $Id: ibdr_minisys.vhd 427 2011-11-19 21:04:11Z mueller $ -- -- Copyright 2008-2011 by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Module Name: ibdr_minisys - syn -- Description: ibus(rem) devices for minimal system:SDR+KW+DL+RK -- -- Dependencies: ibdr_sdreg -- ibd_kw11l -- ibdr_dl11 -- ibdr_rk11 -- ib_sres_or_4 -- ib_intmap -- Test bench: - -- Target Devices: generic -- Tool versions: xst 8.2, 9.1, 9.2, 12.1, 13.1; ghdl 0.18-0.29 -- -- Synthesized (xst): -- Date Rev ise Target flop lutl lutm slic t peri -- 2010-10-17 333 12.1 M53d xc3s1000-4 128 469 16 265 s 7.8 -- 2010-10-17 314 12.1 M53d xc3s1000-4 122 472 16 269 s 7.6 -- -- Revision History: -- Date Rev Version Comment -- 2011-11-18 427 1.1.2 now numeric_std clean -- 2010-10-23 335 1.1.1 rename RRI_LAM->RB_LAM; -- 2010-06-11 303 1.1 use IB_MREQ.racc instead of RRI_REQ -- 2009-07-12 233 1.0.7 reorder ports, add CE_USEC; add RESET and CE_USEC -- to _dl11 -- 2009-05-31 221 1.0.6 add RESET to kw11l; -- 2009-05-24 219 1.0.5 _rk11 uses now CE_MSEC -- 2008-08-22 161 1.0.4 use iblib, ibdlib -- 2008-05-09 144 1.0.3 use EI_ACK with _kw11l, _dl11 -- 2008-04-18 136 1.0.2 add RESET port, use for ibdr_sdreg -- 2008-01-20 113 1.0.1 RRI_LAM now vector -- 2008-01-20 112 1.0 Initial version ------------------------------------------------------------------------------ -- -- mini system setup -- -- ibbase vec pri slot attn device name -- -- 177546 100 6 4 - KW11-L -- 177400 220 5 3 4 RK11 -- 177560 060 4 2 1 DL11-RX 1st -- 064 4 1 ^ DL11-TX 1st -- 177570 - - - - sdreg -- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; use work.slvtypes.all; use work.iblib.all; use work.ibdlib.all; -- ---------------------------------------------------------------------------- entity ibdr_minisys is -- ibus(rem) minimal sys:SDR+KW+DL+RK port ( CLK : in slbit; -- clock CE_USEC : in slbit; -- usec pulse CE_MSEC : in slbit; -- msec pulse RESET : in slbit; -- reset BRESET : in slbit; -- ibus reset RB_LAM : out slv16_1; -- remote attention vector IB_MREQ : in ib_mreq_type; -- ibus request IB_SRES : out ib_sres_type; -- ibus response EI_ACKM : in slbit; -- interrupt acknowledge (from master) EI_PRI : out slv3; -- interrupt priority (to cpu) EI_VECT : out slv9_2; -- interrupt vector (to cpu) DISPREG : out slv16 -- display register ); end ibdr_minisys; architecture syn of ibdr_minisys is constant conf_intmap : intmap_array_type := (intmap_init, -- line 15 intmap_init, -- line 14 intmap_init, -- line 13 intmap_init, -- line 12 intmap_init, -- line 11 intmap_init, -- line 10 intmap_init, -- line 9 intmap_init, -- line 8 intmap_init, -- line 7 intmap_init, -- line 6 intmap_init, -- line 5 (8#100#,6), -- line 4 KW11-L (8#220#,5), -- line 3 RK11 (8#060#,4), -- line 2 DL11-RX (8#064#,4), -- line 1 DL11-TX intmap_init -- line 0 ); signal RB_LAM_DL11 : slbit := '0'; signal RB_LAM_RK11 : slbit := '0'; signal IB_SRES_SDREG : ib_sres_type := ib_sres_init; signal IB_SRES_KW11L : ib_sres_type := ib_sres_init; signal IB_SRES_DL11 : ib_sres_type := ib_sres_init; signal IB_SRES_RK11 : ib_sres_type := ib_sres_init; signal EI_REQ : slv16_1 := (others=>'0'); signal EI_ACK : slv16_1 := (others=>'0'); signal EI_REQ_KW11L : slbit := '0'; signal EI_REQ_DL11RX : slbit := '0'; signal EI_REQ_DL11TX : slbit := '0'; signal EI_REQ_RK11 : slbit := '0'; signal EI_ACK_KW11L : slbit := '0'; signal EI_ACK_DL11RX : slbit := '0'; signal EI_ACK_DL11TX : slbit := '0'; signal EI_ACK_RK11 : slbit := '0'; begin SDREG : ibdr_sdreg port map ( CLK => CLK, RESET => RESET, IB_MREQ => IB_MREQ, IB_SRES => IB_SRES_SDREG, DISPREG => DISPREG ); KW11L : ibd_kw11l port map ( CLK => CLK, CE_MSEC => CE_MSEC, RESET => RESET, BRESET => BRESET, IB_MREQ => IB_MREQ, IB_SRES => IB_SRES_KW11L, EI_REQ => EI_REQ_KW11L, EI_ACK => EI_ACK_KW11L ); DL11 : ibdr_dl11 port map ( CLK => CLK, CE_USEC => CE_USEC, RESET => RESET, BRESET => BRESET, RB_LAM => RB_LAM_DL11, IB_MREQ => IB_MREQ, IB_SRES => IB_SRES_DL11, EI_REQ_RX => EI_REQ_DL11RX, EI_REQ_TX => EI_REQ_DL11TX, EI_ACK_RX => EI_ACK_DL11RX, EI_ACK_TX => EI_ACK_DL11TX ); RK11 : ibdr_rk11 port map ( CLK => CLK, CE_MSEC => CE_MSEC, BRESET => BRESET, RB_LAM => RB_LAM_RK11, IB_MREQ => IB_MREQ, IB_SRES => IB_SRES_RK11, EI_REQ => EI_REQ_RK11, EI_ACK => EI_ACK_RK11 ); SRES_OR : ib_sres_or_4 port map ( IB_SRES_1 => IB_SRES_SDREG, IB_SRES_2 => IB_SRES_KW11L, IB_SRES_3 => IB_SRES_DL11, IB_SRES_4 => IB_SRES_RK11, IB_SRES_OR => IB_SRES ); INTMAP : ib_intmap generic map ( INTMAP => conf_intmap) port map ( EI_REQ => EI_REQ, EI_ACKM => EI_ACKM, EI_ACK => EI_ACK, EI_PRI => EI_PRI, EI_VECT => EI_VECT ); EI_REQ(4) <= EI_REQ_KW11L; EI_REQ(3) <= EI_REQ_RK11; EI_REQ(2) <= EI_REQ_DL11RX; EI_REQ(1) <= EI_REQ_DL11TX; EI_ACK_KW11L <= EI_ACK(4); EI_ACK_RK11 <= EI_ACK(3); EI_ACK_DL11RX <= EI_ACK(2); EI_ACK_DL11TX <= EI_ACK(1); RB_LAM(1) <= RB_LAM_DL11; RB_LAM(2) <= '0'; -- for 2nd DL11 RB_LAM(3) <= '0'; -- for DZ11 RB_LAM(4) <= RB_LAM_RK11; RB_LAM(15 downto 5) <= (others=>'0'); end syn;
gpl-2.0
xylnao/w11a-extra
rtl/bplib/nxcramlib/tb/tb_nx_cram_memctl.vhd
1
11877
-- $Id: tb_nx_cram_memctl.vhd 433 2011-11-27 22:04:39Z mueller $ -- -- Copyright 2010-2011 by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Module Name: tb_nx_cram_memctl - sim -- Description: Test bench for nx_cram_memctl -- -- Dependencies: vlib/simlib/simclk -- bplib/micron/mt45w8mw16b -- tbd_nx_cram_memctl [UUT, abstact] -- -- To test: nx_cram_memctl_as (via tbd_nx_cram_memctl_as) -- -- Target Devices: generic -- Tool versions: xst 11.4, 13.1; ghdl 0.26-0.29 -- Revision History: -- Date Rev Version Comment -- 2011-11-26 433 1.3 renamed from tb_n2_cram_memctl -- 2011-11-21 432 1.2 now numeric_std clean; update O_FLA_CE_N usage -- 2010-05-30 297 1.1 use abstact uut tbd_nx_cram_memctl -- 2010-05-23 293 1.0 Initial version (derived from tb_s3_sram_memctl) ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; use ieee.std_logic_textio.all; use std.textio.all; use work.slvtypes.all; use work.simlib.all; entity tb_nx_cram_memctl is end tb_nx_cram_memctl; architecture sim of tb_nx_cram_memctl is component tbd_nx_cram_memctl is -- CRAM driver (abstract) [tb design] port ( CLK : in slbit; -- clock RESET : in slbit; -- reset REQ : in slbit; -- request WE : in slbit; -- write enable BUSY : out slbit; -- controller busy ACK_R : out slbit; -- acknowledge read ACK_W : out slbit; -- acknowledge write ACT_R : out slbit; -- signal active read ACT_W : out slbit; -- signal active write ADDR : in slv22; -- address (32 bit word address) BE : in slv4; -- byte enable DI : in slv32; -- data in (memory view) DO : out slv32; -- data out (memory view) O_MEM_CE_N : out slbit; -- cram: chip enable (act.low) O_MEM_BE_N : out slv2; -- cram: byte enables (act.low) O_MEM_WE_N : out slbit; -- cram: write enable (act.low) O_MEM_OE_N : out slbit; -- cram: output enable (act.low) O_MEM_ADV_N : out slbit; -- cram: address valid (act.low) O_MEM_CLK : out slbit; -- cram: clock O_MEM_CRE : out slbit; -- cram: command register enable I_MEM_WAIT : in slbit; -- cram: mem wait O_MEM_ADDR : out slv23; -- cram: address lines IO_MEM_DATA : inout slv16 -- cram: data lines ); end component; signal CLK : slbit := '0'; signal RESET : slbit := '0'; signal REQ : slbit := '0'; signal WE : slbit := '0'; signal BUSY : slbit := '0'; signal ACK_R : slbit := '0'; signal ACK_W : slbit := '0'; signal ACT_R : slbit := '0'; signal ACT_W : slbit := '0'; signal ADDR : slv22 := (others=>'0'); signal BE : slv4 := (others=>'0'); signal DI : slv32 := (others=>'0'); signal DO : slv32 := (others=>'0'); signal O_MEM_CE_N : slbit := '0'; signal O_MEM_BE_N : slv2 := (others=>'0'); signal O_MEM_WE_N : slbit := '0'; signal O_MEM_OE_N : slbit := '0'; signal O_MEM_ADV_N : slbit := '0'; signal O_MEM_CLK : slbit := '0'; signal O_MEM_CRE : slbit := '0'; signal I_MEM_WAIT : slbit := '0'; signal O_MEM_ADDR : slv23 := (others=>'0'); signal IO_MEM_DATA : slv16 := (others=>'0'); signal R_MEMON : slbit := '0'; signal N_CHK_DATA : slbit := '0'; signal N_REF_DATA : slv32 := (others=>'0'); signal N_REF_ADDR : slv22 := (others=>'0'); signal R_CHK_DATA_AL : slbit := '0'; signal R_REF_DATA_AL : slv32 := (others=>'0'); signal R_REF_ADDR_AL : slv22 := (others=>'0'); signal R_CHK_DATA_DL : slbit := '0'; signal R_REF_DATA_DL : slv32 := (others=>'0'); signal R_REF_ADDR_DL : slv22 := (others=>'0'); signal CLK_STOP : slbit := '0'; signal CLK_CYCLE : slv31 := (others=>'0'); constant clock_period : time := 20 ns; constant clock_offset : time := 200 ns; constant setup_time : time := 7.5 ns; -- compatible ucf for constant c2out_time : time := 12.0 ns; -- tbd_nx_cram_memctl_as begin SYSCLK : simclk generic map ( PERIOD => clock_period, OFFSET => clock_offset) port map ( CLK => CLK, CLK_CYCLE => CLK_CYCLE, CLK_STOP => CLK_STOP ); MEM : entity work.mt45w8mw16b port map ( CLK => O_MEM_CLK, CE_N => O_MEM_CE_N, OE_N => O_MEM_OE_N, WE_N => O_MEM_WE_N, UB_N => O_MEM_BE_N(1), LB_N => O_MEM_BE_N(0), ADV_N => O_MEM_ADV_N, CRE => O_MEM_CRE, MWAIT => I_MEM_WAIT, ADDR => O_MEM_ADDR, DATA => IO_MEM_DATA ); UUT : tbd_nx_cram_memctl port map ( CLK => CLK, RESET => RESET, REQ => REQ, WE => WE, BUSY => BUSY, ACK_R => ACK_R, ACK_W => ACK_W, ACT_R => ACT_R, ACT_W => ACT_W, ADDR => ADDR, BE => BE, DI => DI, DO => DO, O_MEM_CE_N => O_MEM_CE_N, O_MEM_BE_N => O_MEM_BE_N, O_MEM_WE_N => O_MEM_WE_N, O_MEM_OE_N => O_MEM_OE_N, O_MEM_CLK => O_MEM_CLK, O_MEM_ADV_N => O_MEM_ADV_N, O_MEM_CRE => O_MEM_CRE, I_MEM_WAIT => I_MEM_WAIT, O_MEM_ADDR => O_MEM_ADDR, IO_MEM_DATA => IO_MEM_DATA ); proc_stim: process file fstim : text open read_mode is "tb_nx_cram_memctl_stim"; variable iline : line; variable oline : line; variable ok : boolean; variable dname : string(1 to 6) := (others=>' '); variable idelta : integer := 0; variable iaddr : slv22 := (others=>'0'); variable idata : slv32 := (others=>'0'); variable ibe : slv4 := (others=>'0'); variable ival : slbit := '0'; variable nbusy : integer := 0; begin wait for clock_offset - setup_time; file_loop: while not endfile(fstim) loop readline (fstim, iline); readcomment(iline, ok); next file_loop when ok; readword(iline, dname, ok); if ok then case dname is when ".memon" => -- .memon read_ea(iline, ival); R_MEMON <= ival; wait for 2*clock_period; when ".reset" => -- .reset write(oline, string'(".reset")); writeline(output, oline); RESET <= '1'; wait for clock_period; RESET <= '0'; wait for 9*clock_period; when ".wait " => -- .wait read_ea(iline, idelta); wait for idelta*clock_period; when "read " => -- read readgen_ea(iline, iaddr, 16); readgen_ea(iline, idata, 16); ADDR <= iaddr; REQ <= '1'; WE <= '0'; writetimestamp(oline, CLK_CYCLE, ": stim read "); writegen(oline, iaddr, right, 7, 16); write(oline, string'(" ")); writegen(oline, idata, right, 9, 16); nbusy := 0; while BUSY='1' loop nbusy := nbusy + 1; wait for clock_period; end loop; write(oline, string'(" nbusy=")); write(oline, nbusy, right, 2); writeline(output, oline); N_CHK_DATA <= '1', '0' after clock_period; N_REF_DATA <= idata; N_REF_ADDR <= iaddr; wait for clock_period; REQ <= '0'; when "write " => -- write readgen_ea(iline, iaddr, 16); read_ea(iline, ibe); readgen_ea(iline, idata, 16); ADDR <= iaddr; BE <= ibe; DI <= idata; REQ <= '1'; WE <= '1'; writetimestamp(oline, CLK_CYCLE, ": stim write"); writegen(oline, iaddr, right, 7, 16); writegen(oline, ibe , right, 5, 2); writegen(oline, idata, right, 9, 16); nbusy := 0; while BUSY = '1' loop nbusy := nbusy + 1; wait for clock_period; end loop; write(oline, string'(" nbusy=")); write(oline, nbusy, right, 2); writeline(output, oline); wait for clock_period; REQ <= '0'; when others => -- bad directive write(oline, string'("?? unknown directive: ")); write(oline, dname); writeline(output, oline); report "aborting" severity failure; end case; else report "failed to find command" severity failure; end if; testempty_ea(iline); end loop; -- file fstim wait for 10*clock_period; writetimestamp(oline, CLK_CYCLE, ": DONE "); writeline(output, oline); CLK_STOP <= '1'; wait; -- suspend proc_stim forever -- clock is stopped, sim will end end process proc_stim; proc_moni: process variable oline : line; begin loop wait until rising_edge(CLK); if ACK_R = '1' then writetimestamp(oline, CLK_CYCLE, ": moni "); writegen(oline, DO, right, 9, 16); if R_CHK_DATA_DL = '1' then write(oline, string'(" CHECK")); if R_REF_DATA_DL = DO then write(oline, string'(" OK")); else write(oline, string'(" FAIL, exp=")); writegen(oline, R_REF_DATA_DL, right, 9, 16); write(oline, string'(" for a=")); writegen(oline, R_REF_ADDR_DL, right, 5, 16); end if; R_CHK_DATA_DL <= '0'; end if; writeline(output, oline); end if; if R_CHK_DATA_AL = '1' then R_CHK_DATA_DL <= R_CHK_DATA_AL; R_REF_DATA_DL <= R_REF_DATA_AL; R_REF_ADDR_DL <= R_REF_ADDR_AL; R_CHK_DATA_AL <= '0'; end if; if N_CHK_DATA = '1' then R_CHK_DATA_AL <= N_CHK_DATA; R_REF_DATA_AL <= N_REF_DATA; R_REF_ADDR_AL <= N_REF_ADDR; end if; end loop; end process proc_moni; proc_memon: process variable oline : line; begin loop wait until rising_edge(CLK); if R_MEMON = '1' then writetimestamp(oline, CLK_CYCLE, ": mem "); write(oline, string'(" ce=")); write(oline, not O_MEM_CE_N, right, 2); write(oline, string'(" be=")); write(oline, not O_MEM_BE_N, right, 4); write(oline, string'(" we=")); write(oline, not O_MEM_WE_N, right); write(oline, string'(" oe=")); write(oline, not O_MEM_OE_N, right); write(oline, string'(" a=")); writegen(oline, O_MEM_ADDR, right, 6, 16); write(oline, string'(" d=")); writegen(oline, IO_MEM_DATA, right, 4, 16); writeline(output, oline); end if; end loop; end process proc_memon; end sim;
gpl-2.0
xylnao/w11a-extra
rtl/w11a/pdp11_mmu.vhd
2
13698
-- $Id: pdp11_mmu.vhd 427 2011-11-19 21:04:11Z mueller $ -- -- Copyright 2006-2011 by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Module Name: pdp11_mmu - syn -- Description: pdp11: mmu - memory management unit -- -- Dependencies: pdp11_mmu_sadr -- pdp11_mmu_ssr12 -- ibus/ib_sres_or_3 -- ibus/ib_sel -- -- Test bench: tb/tb_pdp11_core (implicit) -- Target Devices: generic -- Tool versions: xst 8.2, 9.1, 9.2, 12.1, 13.1; ghdl 0.18-0.29 -- -- Revision History: -- Date Rev Version Comment -- 2011-11-18 427 1.4.2 now numeric_std clean -- 2010-10-23 335 1.4.1 use ib_sel -- 2010-10-17 333 1.4 use ibus V2 interface -- 2010-06-20 307 1.3.7 rename cpacc to cacc in mmu_cntl_type -- 2009-05-30 220 1.3.6 final removal of snoopers (were already commented) -- 2009-05-09 213 1.3.5 BUGFIX: tie inst_compl permanentely '0' -- BUGFIX: set ssr0 trap_mmu even when traps disabled -- 2008-08-22 161 1.3.4 rename pdp11_ibres_ -> ib_sres_, ubf_ -> ibf_ -- 2008-04-27 139 1.3.3 allow ssr1/2 tracing even with mmu_ena=0 -- 2008-04-25 138 1.3.2 add BRESET port, clear ssr0/3 with BRESET -- 2008-03-02 121 1.3.1 remove snoopers -- 2008-02-24 119 1.3 return always mapped address in PADDRH; remove -- cpacc handling; PADDR generation now on _vmbox -- 2008-01-05 110 1.2.1 rename _mmu_regs -> _mmu_sadr -- rename IB_MREQ(ena->req) SRES(sel->ack, hold->busy) -- 2008-01-01 109 1.2 use pdp11_mmu_regs (rather than _regset) -- 2007-12-31 108 1.1.1 remove SADR memory address mux (-> _mmu_regfile) -- 2007-12-30 107 1.1 use IB_MREQ/IB_SRES interface now -- 2007-06-14 56 1.0.1 Use slvtypes.all -- 2007-05-12 26 1.0 Initial version ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; use work.slvtypes.all; use work.iblib.all; use work.pdp11.all; -- ---------------------------------------------------------------------------- entity pdp11_mmu is -- mmu - memory management unit port ( CLK : in slbit; -- clock CRESET : in slbit; -- console reset BRESET : in slbit; -- ibus reset CNTL : in mmu_cntl_type; -- control port VADDR : in slv16; -- virtual address MONI : in mmu_moni_type; -- monitor port STAT : out mmu_stat_type; -- status port PADDRH : out slv16; -- physical address (upper 16 bit) IB_MREQ: in ib_mreq_type; -- ibus request IB_SRES: out ib_sres_type -- ibus response ); end pdp11_mmu; architecture syn of pdp11_mmu is constant ibaddr_ssr0 : slv16 := slv(to_unsigned(8#177572#,16)); constant ibaddr_ssr3 : slv16 := slv(to_unsigned(8#172516#,16)); constant ssr0_ibf_abo_nonres : integer := 15; constant ssr0_ibf_abo_length : integer := 14; constant ssr0_ibf_abo_rdonly : integer := 13; constant ssr0_ibf_trap_mmu : integer := 12; constant ssr0_ibf_ena_trap : integer := 9; constant ssr0_ibf_inst_compl : integer := 7; subtype ssr0_ibf_seg_mode is integer range 6 downto 5; constant ssr0_ibf_dspace : integer := 4; subtype ssr0_ibf_seg_num is integer range 3 downto 1; constant ssr0_ibf_ena_mmu : integer := 0; constant ssr3_ibf_ena_ubmap : integer := 5; constant ssr3_ibf_ena_22bit : integer := 4; constant ssr3_ibf_dspace_km : integer := 2; constant ssr3_ibf_dspace_sm : integer := 1; constant ssr3_ibf_dspace_um : integer := 0; signal IBSEL_SSR0 : slbit := '0'; -- ibus select SSR0 signal IBSEL_SSR3 : slbit := '0'; -- ibus select SSR3 signal R_SSR0 : mmu_ssr0_type := mmu_ssr0_init; signal N_SSR0 : mmu_ssr0_type := mmu_ssr0_init; signal R_SSR3 : mmu_ssr3_type := mmu_ssr3_init; signal ASN : slv4 := "0000"; -- augmented segment number (1+3 bit) signal AIB_WE : slbit := '0'; -- update AIB signal AIB_SETA : slbit := '0'; -- set A bit in access information bits signal AIB_SETW : slbit := '0'; -- set W bit in access information bits signal TRACE : slbit := '0'; -- enable tracing in ssr1/2 signal DSPACE : slbit := '0'; -- use dspace signal IB_SRES_SADR : ib_sres_type := ib_sres_init; signal IB_SRES_SSR12 : ib_sres_type := ib_sres_init; signal IB_SRES_SSR03 : ib_sres_type := ib_sres_init; signal SARSDR : sarsdr_type := sarsdr_init; begin SADR : pdp11_mmu_sadr port map ( CLK => CLK, MODE => CNTL.mode, ASN => ASN, AIB_WE => AIB_WE, AIB_SETA => AIB_SETA, AIB_SETW => AIB_SETW, SARSDR => SARSDR, IB_MREQ => IB_MREQ, IB_SRES => IB_SRES_SADR); SSR12 : pdp11_mmu_ssr12 port map ( CLK => CLK, CRESET => CRESET, TRACE => TRACE, MONI => MONI, IB_MREQ => IB_MREQ, IB_SRES => IB_SRES_SSR12); SRES_OR : ib_sres_or_3 port map ( IB_SRES_1 => IB_SRES_SADR, IB_SRES_2 => IB_SRES_SSR12, IB_SRES_3 => IB_SRES_SSR03, IB_SRES_OR => IB_SRES); SEL_SSR0 : ib_sel generic map ( IB_ADDR => ibaddr_ssr0) port map ( CLK => CLK, IB_MREQ => IB_MREQ, SEL => IBSEL_SSR0 ); SEL_SSR3 : ib_sel generic map ( IB_ADDR => ibaddr_ssr3) port map ( CLK => CLK, IB_MREQ => IB_MREQ, SEL => IBSEL_SSR3 ); proc_ibres : process (IBSEL_SSR0, IBSEL_SSR3, IB_MREQ, R_SSR0, R_SSR3) variable ssr0out : slv16 := (others=>'0'); variable ssr3out : slv16 := (others=>'0'); begin ssr0out := (others=>'0'); if IBSEL_SSR0 = '1' then ssr0out(ssr0_ibf_abo_nonres) := R_SSR0.abo_nonres; ssr0out(ssr0_ibf_abo_length) := R_SSR0.abo_length; ssr0out(ssr0_ibf_abo_rdonly) := R_SSR0.abo_rdonly; ssr0out(ssr0_ibf_trap_mmu) := R_SSR0.trap_mmu; ssr0out(ssr0_ibf_ena_trap) := R_SSR0.ena_trap; ssr0out(ssr0_ibf_inst_compl) := R_SSR0.inst_compl; ssr0out(ssr0_ibf_seg_mode) := R_SSR0.seg_mode; ssr0out(ssr0_ibf_dspace) := R_SSR0.dspace; ssr0out(ssr0_ibf_seg_num) := R_SSR0.seg_num; ssr0out(ssr0_ibf_ena_mmu) := R_SSR0.ena_mmu; end if; ssr3out := (others=>'0'); if IBSEL_SSR3 = '1' then ssr3out(ssr3_ibf_ena_ubmap) := R_SSR3.ena_ubmap; ssr3out(ssr3_ibf_ena_22bit) := R_SSR3.ena_22bit; ssr3out(ssr3_ibf_dspace_km) := R_SSR3.dspace_km; ssr3out(ssr3_ibf_dspace_sm) := R_SSR3.dspace_sm; ssr3out(ssr3_ibf_dspace_um) := R_SSR3.dspace_um; end if; IB_SRES_SSR03.dout <= ssr0out or ssr3out; IB_SRES_SSR03.ack <= (IBSEL_SSR0 or IBSEL_SSR3) and (IB_MREQ.re or IB_MREQ.we); -- ack all IB_SRES_SSR03.busy <= '0'; end process proc_ibres; proc_ssr0 : process (CLK) begin if rising_edge(CLK) then if BRESET = '1' then R_SSR0 <= mmu_ssr0_init; else R_SSR0 <= N_SSR0; end if; end if; end process proc_ssr0; proc_ssr3 : process (CLK) begin if rising_edge(CLK) then if BRESET = '1' then R_SSR3 <= mmu_ssr3_init; elsif IBSEL_SSR3='1' and IB_MREQ.we='1' then if IB_MREQ.be0 = '1' then R_SSR3.ena_ubmap <= IB_MREQ.din(ssr3_ibf_ena_ubmap); R_SSR3.ena_22bit <= IB_MREQ.din(ssr3_ibf_ena_22bit); R_SSR3.dspace_km <= IB_MREQ.din(ssr3_ibf_dspace_km); R_SSR3.dspace_sm <= IB_MREQ.din(ssr3_ibf_dspace_sm); R_SSR3.dspace_um <= IB_MREQ.din(ssr3_ibf_dspace_um); end if; end if; end if; end process proc_ssr3; proc_paddr : process (R_SSR0, R_SSR3, CNTL, SARSDR, VADDR) variable ipaddrh : slv16 := (others=>'0'); variable dspace_ok : slbit := '0'; variable dspace_en : slbit := '0'; variable asf : slv3 := (others=>'0'); -- va: active segment field variable bn : slv7 := (others=>'0'); -- va: block number variable iasn : slv4 := (others=>'0');-- augmented segment number begin asf := VADDR(15 downto 13); bn := VADDR(12 downto 6); dspace_en := '0'; case CNTL.mode is when "00" => dspace_en := R_SSR3.dspace_km; when "01" => dspace_en := R_SSR3.dspace_sm; when "11" => dspace_en := R_SSR3.dspace_um; when others => null; end case; dspace_ok := CNTL.dspace and dspace_en; iasn(3) := dspace_ok; iasn(2 downto 0) := asf; ipaddrh := slv(unsigned("000000000"&bn) + unsigned(SARSDR.saf)); DSPACE <= dspace_ok; ASN <= iasn; PADDRH <= ipaddrh; end process proc_paddr; proc_nssr0 : process (R_SSR0, R_SSR3, IB_MREQ, IBSEL_SSR0, DSPACE, CNTL, MONI, SARSDR, VADDR) variable nssr0 : mmu_ssr0_type := mmu_ssr0_init; variable asf : slv3 := (others=>'0'); variable bn : slv7 := (others=>'0'); variable abo_nonres : slbit := '0'; variable abo_length : slbit := '0'; variable abo_rdonly : slbit := '0'; variable ssr_freeze : slbit := '0'; variable doabort : slbit := '0'; variable dotrap : slbit := '0'; variable dotrace : slbit := '0'; begin nssr0 := R_SSR0; AIB_WE <= '0'; AIB_SETA <= '0'; AIB_SETW <= '0'; ssr_freeze := R_SSR0.abo_nonres or R_SSR0.abo_length or R_SSR0.abo_rdonly; dotrace := not(CNTL.cacc or ssr_freeze); asf := VADDR(15 downto 13); bn := VADDR(12 downto 6); abo_nonres := '0'; abo_length := '0'; abo_rdonly := '0'; doabort := '0'; dotrap := '0'; if SARSDR.ed = '0' then -- ed=0: upward expansion if unsigned(bn) > unsigned(SARSDR.slf) then abo_length := '1'; end if; else -- ed=0: downward expansion if unsigned(bn) < unsigned(SARSDR.slf) then abo_length := '1'; end if; end if; case SARSDR.acf is -- evaluate accecc control field when "000" => -- segment non-resident abo_nonres := '1'; when "001" => -- read-only; trap on read if CNTL.wacc='1' or CNTL.macc='1' then abo_rdonly := '1'; end if; dotrap := '1'; when "010" => -- read-only if CNTL.wacc='1' or CNTL.macc='1' then abo_rdonly := '1'; end if; when "100" => -- read/write; trap on read&write dotrap := '1'; when "101" => -- read/write; trap on write dotrap := CNTL.wacc or CNTL.macc; when "110" => null; -- read/write; when others => -- unused codes: abort access abo_nonres := '1'; end case; if IBSEL_SSR0='1' and IB_MREQ.we='1' then if IB_MREQ.be1 = '1' then nssr0.abo_nonres := IB_MREQ.din(ssr0_ibf_abo_nonres); nssr0.abo_length := IB_MREQ.din(ssr0_ibf_abo_length); nssr0.abo_rdonly := IB_MREQ.din(ssr0_ibf_abo_rdonly); nssr0.trap_mmu := IB_MREQ.din(ssr0_ibf_trap_mmu); nssr0.ena_trap := IB_MREQ.din(ssr0_ibf_ena_trap); end if; if IB_MREQ.be0 = '1' then nssr0.ena_mmu := IB_MREQ.din(ssr0_ibf_ena_mmu); end if; elsif nssr0.ena_mmu='1' and CNTL.cacc='0' then if dotrace = '1' then if MONI.istart = '1' then nssr0.inst_compl := '0'; elsif MONI.idone = '1' then nssr0.inst_compl := '0'; -- disable instr.compl logic end if; end if; if CNTL.req = '1' then AIB_WE <= '1'; if ssr_freeze = '0' then nssr0.abo_nonres := abo_nonres; nssr0.abo_length := abo_length; nssr0.abo_rdonly := abo_rdonly; end if; doabort := abo_nonres or abo_length or abo_rdonly; if doabort = '0' then AIB_SETA <= '1'; AIB_SETW <= CNTL.wacc or CNTL.macc; end if; if ssr_freeze = '0' then nssr0.dspace := DSPACE; nssr0.seg_num := asf; nssr0.seg_mode := CNTL.mode; end if; end if; end if; if CNTL.req='1' and R_SSR0.ena_mmu='1' and CNTL.cacc='0' and dotrap='1' then nssr0.trap_mmu := '1'; end if; nssr0.trace_prev := dotrace; if MONI.trace_prev = '0' then TRACE <= dotrace; else TRACE <= R_SSR0.trace_prev; end if; N_SSR0 <= nssr0; if R_SSR0.ena_mmu='1' and CNTL.cacc='0' then STAT.vaok <= not doabort; else STAT.vaok <= '1'; end if; if R_SSR0.ena_mmu='1' and CNTL.cacc='0' and doabort='0' and R_SSR0.ena_trap='1' and R_SSR0.trap_mmu='0' and dotrap='1' then STAT.trap <= '1'; else STAT.trap <= '0'; end if; STAT.ena_mmu <= R_SSR0.ena_mmu; STAT.ena_22bit <= R_SSR3.ena_22bit; STAT.ena_ubmap <= R_SSR3.ena_ubmap; end process proc_nssr0; end syn;
gpl-2.0
xylnao/w11a-extra
rtl/w11a/pdp11_sim.vhd
2
1468
-- $Id: pdp11_sim.vhd 314 2010-07-09 17:38:41Z mueller $ -- -- Copyright 2006-2007 by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Package Name: pdp11_sim -- Description: Definitions for simulations -- -- Dependencies: - -- Tool versions: xst 8.1, 8.2, 9.1, 9.2; ghdl 0.18-0.25 -- Revision History: -- Date Rev Version Comment -- 2007-10-12 88 1.0.2 avoid ieee.std_logic_unsigned, use cast to unsigned -- 2007-06-14 56 1.0.1 Use slvtypes.all -- 2007-05-12 26 1.0 Initial version ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_textio.all; use std.textio.all; package pdp11_sim is constant clock_period : time := 20 ns; constant clock_offset : time := 200 ns; constant setup_time : time := 5 ns; constant c2out_time : time := 5 ns; end package pdp11_sim;
gpl-2.0
xylnao/w11a-extra
rtl/vlib/memlib/fifo_1c_dram.vhd
2
3081
-- $Id: fifo_1c_dram.vhd 421 2011-11-07 21:23:50Z mueller $ -- -- Copyright 2007- by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Module Name: fifo_1c_dram - syn -- Description: FIFO, single clock domain, distributed RAM based, with -- enable/busy/valid/hold interface. -- -- Dependencies: fifo_1c_dram_raw -- -- Test bench: tb/tb_fifo_1c_dram -- Target Devices: generic Spartan, Virtex -- Tool versions: xst 8.1, 8.2, 9.1, 9.2; ghdl 0.18-0.25 -- Revision History: -- Date Rev Version Comment -- 2007-06-06 49 1.0 Initial version -- -- Some synthesis results: -- - 2007-12-27 ise 8.2.03 for xc3s1000-ft256-4: -- AWIDTH DWIDTH LUT.l LUT.m Flop clock(xst est.) -- 4 16 31 32 22 153MHz ( 16 words) -- 5 16 49 64 23 120MHz ( 32 words) -- 6 16 70 128 23 120MHz ( 64 words) -- 7 16 111 256 30 120MHz (128 words) ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use work.slvtypes.all; use work.memlib.all; entity fifo_1c_dram is -- fifo, 1 clock, dram based generic ( AWIDTH : positive := 7; -- address width (sets size) DWIDTH : positive := 16); -- data width port ( CLK : in slbit; -- clock RESET : in slbit; -- reset DI : in slv(DWIDTH-1 downto 0); -- input data ENA : in slbit; -- write enable BUSY : out slbit; -- write port hold DO : out slv(DWIDTH-1 downto 0); -- output data VAL : out slbit; -- read valid HOLD : in slbit; -- read hold SIZE : out slv(AWIDTH downto 0) -- number of used slots ); end fifo_1c_dram; architecture syn of fifo_1c_dram is signal WE : slbit := '0'; signal RE : slbit := '0'; signal SIZE_L : slv(AWIDTH-1 downto 0) := (others=>'0'); signal EMPTY : slbit := '0'; signal FULL : slbit := '0'; begin FIFO : fifo_1c_dram_raw generic map ( AWIDTH => AWIDTH, DWIDTH => DWIDTH) port map ( CLK => CLK, RESET => RESET, WE => WE, RE => RE, DI => DI, DO => DO, SIZE => SIZE_L, EMPTY => EMPTY, FULL => FULL ); WE <= ENA and (not FULL); RE <= (not EMPTY) and (not HOLD); BUSY <= FULL; VAL <= not EMPTY; SIZE <= FULL & SIZE_L; end syn;
gpl-2.0
xylnao/w11a-extra
rtl/w11a/pdp11_lunit.vhd
2
6761
-- $Id: pdp11_lunit.vhd 427 2011-11-19 21:04:11Z mueller $ -- -- Copyright 2006-2011 by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Module Name: pdp11_lunit - syn -- Description: pdp11: logic unit for data (lunit) -- -- Dependencies: - -- Test bench: tb/tb_pdp11_core (implicit) -- Target Devices: generic -- Tool versions: xst 8.2, 9.1, 9.2, 12.1, 13.1; ghdl 0.18-0.29 -- Revision History: -- Date Rev Version Comment -- 2011-11-18 427 1.1.1 now numeric_std clean -- 2010-09-18 300 1.1 renamed from lbox -- 2008-03-30 131 1.0.2 BUGFIX: SXT clears V condition code -- 2007-06-14 56 1.0.1 Use slvtypes.all -- 2007-05-12 26 1.0 Initial version ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; use work.slvtypes.all; use work.pdp11.all; -- ---------------------------------------------------------------------------- entity pdp11_lunit is -- logic unit for data (lunit) port ( DSRC : in slv16; -- 'src' data in DDST : in slv16; -- 'dst' data in CCIN : in slv4; -- condition codes in FUNC : in slv4; -- function BYTOP : in slbit; -- byte operation DOUT : out slv16; -- data output CCOUT : out slv4 -- condition codes out ); end pdp11_lunit; architecture syn of pdp11_lunit is -- -------------------------------------- begin process (DSRC, DDST, CCIN, FUNC, BYTOP) variable iout : slv16 := (others=>'0'); variable inzstd : slbit := '0'; variable ino : slbit := '0'; variable izo : slbit := '0'; variable ivo : slbit := '0'; variable ico : slbit := '0'; alias DSRC_L : slv8 is DSRC(7 downto 0); alias DSRC_H : slv8 is DSRC(15 downto 8); alias DDST_L : slv8 is DDST(7 downto 0); alias DDST_H : slv8 is DDST(15 downto 8); alias NI : slbit is CCIN(3); alias ZI : slbit is CCIN(2); alias VI : slbit is CCIN(1); alias CI : slbit is CCIN(0); alias iout_l : slv8 is iout(7 downto 0); alias iout_h : slv8 is iout(15 downto 8); begin iout := (others=>'0'); inzstd := '1'; -- use standard logic by default ino := '0'; izo := '0'; ivo := '0'; ico := '0'; -- -- the decoding of FUNC is done "manually" to get a structure based on -- a 8->1 pattern. This matches the opcode structure and seems most -- efficient. -- if FUNC(3) = '0' then if BYTOP = '0' then case FUNC(2 downto 0) is when "000" => -- ASR iout := DDST(15) & DDST(15 downto 1); ico := DDST(0); ivo := iout(15) xor ico; when "001" => -- ASL iout := DDST(14 downto 0) & '0'; ico := DDST(15); ivo := iout(15) xor ico; when "010" => -- ROR iout := CI & DDST(15 downto 1); ico := DDST(0); ivo := iout(15) xor ico; when "011" => -- ROL iout := DDST(14 downto 0) & CI; ico := DDST(15); ivo := iout(15) xor ico; when "100" => -- BIS iout := DDST or DSRC; ico := CI; when "101" => -- BIC iout := DDST and not DSRC; ico := CI; when "110" => -- BIT iout := DDST and DSRC; ico := CI; when "111" => -- MOV iout := DSRC; ico := CI; when others => null; end case; else case FUNC(2 downto 0) is when "000" => -- ASRB iout_l := DDST_L(7) & DDST_L(7 downto 1); ico := DDST_L(0); ivo := iout_l(7) xor ico; when "001" => -- ASLB iout_l := DDST(6 downto 0) & '0'; ico := DDST(7); ivo := iout_l(7) xor ico; when "010" => -- RORB iout_l := CI & DDST_L(7 downto 1); ico := DDST_L(0); ivo := iout_l(7) xor ico; when "011" => -- ROLB iout_l := DDST_L(6 downto 0) & CI; ico := DDST_L(7); ivo := iout_l(7) xor ico; when "100" => -- BISB iout_l := DDST_L or DSRC_L; ico := CI; when "101" => -- BICB iout_l := DDST_L and not DSRC_L; ico := CI; when "110" => -- BITB iout_l := DDST_L and DSRC_L; ico := CI; when "111" => -- MOVB iout_l := DSRC_L; iout_h := (others=>DSRC_L(7)); ico := CI; when others => null; end case; end if; else case FUNC(2 downto 0) is when "000" => -- SXT iout := (others=>NI); inzstd := '0'; ino := NI; izo := not NI; ivo := '0'; ico := CI; when "001" => -- SWAP iout := DDST_L & DDST_H; inzstd := '0'; ino := iout(7); if unsigned(iout(7 downto 0)) = 0 then izo := '1'; else izo := '0'; end if; when "010" => -- XOR iout := DDST xor DSRC; ico := CI; when others => null; end case; end if; DOUT <= iout; if inzstd = '1' then if BYTOP = '1' then ino := iout(7); if unsigned(iout(7 downto 0)) = 0 then izo := '1'; else izo := '0'; end if; else ino := iout(15); if unsigned(iout) = 0 then izo := '1'; else izo := '0'; end if; end if; end if; CCOUT(3) <= ino; CCOUT(2) <= izo; CCOUT(1) <= ivo; CCOUT(0) <= ico; end process; end syn;
gpl-2.0
xylnao/w11a-extra
rtl/vlib/genlib/clkdivce.vhd
2
3472
-- $Id: clkdivce.vhd 418 2011-10-23 20:11:40Z mueller $ -- -- Copyright 2007-2011 by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Module Name: clkgen - syn -- Description: Generate usec and msec enable signals -- -- Dependencies: - -- Test bench: - -- Target Devices: generic -- Tool versions: xst 8.2, 9.1, 9.2, 12.1, 13.1; ghdl 0.18-0.29 -- Revision History: -- Date Rev Version Comment -- 2011-10-22 418 1.0.3 now numeric_std clean -- 2008-01-20 112 1.0.2 rename clkgen->clkdivce; remove SYS_CLK port -- 2007-10-12 88 1.0.1 avoid ieee.std_logic_unsigned, use cast to unsigned -- 2007-06-30 62 1.0 Initial version ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; use work.slvtypes.all; entity clkdivce is -- generate usec/msec ce pulses generic ( CDUWIDTH : positive := 6; -- usec clock divider width USECDIV : positive := 50; -- divider ratio for usec pulse MSECDIV : positive := 1000); -- divider ratio for msec pulse port ( CLK : in slbit; -- input clock CE_USEC : out slbit; -- usec pulse CE_MSEC : out slbit -- msec pulse ); end clkdivce; architecture syn of clkdivce is type regs_type is record ucnt : slv(CDUWIDTH-1 downto 0); -- usec clock divider counter mcnt : slv10; -- msec clock divider counter usec : slbit; -- usec pulse msec : slbit; -- msec pulse end record regs_type; constant regs_init : regs_type := ( slv(to_unsigned(USECDIV-1,CDUWIDTH)), slv(to_unsigned(MSECDIV-1,10)), '0','0' ); signal R_REGS : regs_type := regs_init; -- state registers signal N_REGS : regs_type := regs_init; -- next value state regs begin assert USECDIV <= 2**CDUWIDTH and MSECDIV <= 1024 report "assert(USECDIV <= 2**CDUWIDTH and MSECDIV <= 1024): " & "USECDIV too large for given CDUWIDTH or MSECDIV>1024" severity FAILURE; proc_regs: process (CLK) begin if rising_edge(CLK) then R_REGS <= N_REGS; end if; end process proc_regs; proc_next: process (R_REGS) variable r : regs_type := regs_init; variable n : regs_type := regs_init; begin r := R_REGS; n := R_REGS; n.usec := '0'; n.msec := '0'; n.ucnt := slv(unsigned(r.ucnt) - 1); if unsigned(r.ucnt) = 0 then n.usec := '1'; n.ucnt := slv(to_unsigned(USECDIV-1,CDUWIDTH)); n.mcnt := slv(unsigned(r.mcnt) - 1); if unsigned(r.mcnt) = 0 then n.msec := '1'; n.mcnt := slv(to_unsigned(MSECDIV-1,10)); end if; end if; N_REGS <= n; CE_USEC <= r.usec; CE_MSEC <= r.msec; end process proc_next; end syn;
gpl-2.0
ykhalyavin/usbprog
xilinxprog/xup-0.0.2/prog.vhd
3
672
-- prog.vhd -- xc2c256 cpld for usb jtag -- -- copyright (c) 2006 inisyn research -- license: LGPL2 -- -- revision history: -- 2006-05-27 initial -- library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; entity prog is port( sys_tck : out std_logic; sys_tms : out std_logic; sys_tdi : out std_logic; sys_tdo : in std_logic; cy_tck : in std_logic; cy_tms : in std_logic; cy_tdi : in std_logic; cy_tdo : out std_logic ); end prog; architecture syn of prog is begin sys_tck <= cy_tck; sys_tms <= cy_tms; sys_tdi <= cy_tdi; cy_tdo <= sys_tdo; end syn;
gpl-2.0
xylnao/w11a-extra
rtl/ibus/ibdr_pc11.vhd
1
12707
-- $Id: ibdr_pc11.vhd 427 2011-11-19 21:04:11Z mueller $ -- -- Copyright 2009-2011 by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Module Name: ibdr_pc11 - syn -- Description: ibus dev(rem): PC11 -- -- Dependencies: - -- Test bench: xxdp: zpcae0 -- Target Devices: generic -- Tool versions: xst 8.2, 9.1, 9.2, 12.1, 13.1; ghdl 0.18-0.29 -- -- Synthesized (xst): -- Date Rev ise Target flop lutl lutm slic t peri -- 2010-10-17 333 12.1 M53d xc3s1000-4 26 97 0 57 s 6.0 -- 2009-06-28 230 10.1.03 K39 xc3s1000-4 25 92 0 54 s 4.9 -- -- Revision History: -- Date Rev Version Comment -- 2011-11-18 427 1.2.2 now numeric_std clean -- 2010-10-23 335 1.2.1 rename RRI_LAM->RB_LAM; -- 2010-10-17 333 1.2 use ibus V2 interface -- 2010-06-11 303 1.1 use IB_MREQ.racc instead of RRI_REQ -- 2009-06-28 230 1.0 prdy now inits to '1'; setting err bit in csr now -- causes interrupt, if enabled; validated with zpcae0 -- 2009-06-01 221 0.9 Initial version (untested) ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; use work.slvtypes.all; use work.iblib.all; -- ---------------------------------------------------------------------------- entity ibdr_pc11 is -- ibus dev(rem): PC11 -- fixed address: 177550 port ( CLK : in slbit; -- clock RESET : in slbit; -- system reset BRESET : in slbit; -- ibus reset RB_LAM : out slbit; -- remote attention IB_MREQ : in ib_mreq_type; -- ibus request IB_SRES : out ib_sres_type; -- ibus response EI_REQ_PTR : out slbit; -- interrupt request, reader EI_REQ_PTP : out slbit; -- interrupt request, punch EI_ACK_PTR : in slbit; -- interrupt acknowledge, reader EI_ACK_PTP : in slbit -- interrupt acknowledge, punch ); end ibdr_pc11; architecture syn of ibdr_pc11 is constant ibaddr_pc11 : slv16 := slv(to_unsigned(8#177550#,16)); constant ibaddr_rcsr : slv2 := "00"; -- rcsr address offset constant ibaddr_rbuf : slv2 := "01"; -- rbuf address offset constant ibaddr_pcsr : slv2 := "10"; -- pcsr address offset constant ibaddr_pbuf : slv2 := "11"; -- pbuf address offset constant rcsr_ibf_rerr : integer := 15; constant rcsr_ibf_rbusy : integer := 11; constant rcsr_ibf_rdone : integer := 7; constant rcsr_ibf_rie : integer := 6; constant rcsr_ibf_renb : integer := 0; constant pcsr_ibf_perr : integer := 15; constant pcsr_ibf_prdy : integer := 7; constant pcsr_ibf_pie : integer := 6; constant pbuf_ibf_pval : integer := 8; constant pbuf_ibf_rbusy : integer := 9; type regs_type is record -- state registers ibsel : slbit; -- ibus select rerr : slbit; -- rcsr: reader error rbusy : slbit; -- rcsr: reader busy rdone : slbit; -- rcsr: reader done rie : slbit; -- rcsr: reader interrupt enable rbuf : slv8; -- rbuf: rintreq : slbit; -- ptr interrupt request perr : slbit; -- pcsr: punch error prdy : slbit; -- pcsr: punch ready pie : slbit; -- pcsr: punch interrupt enable pbuf : slv8; -- pbuf: pintreq : slbit; -- ptp interrupt request end record regs_type; constant regs_init : regs_type := ( '0', -- ibsel '1', -- rerr (init=1!) '0','0','0', -- rbusy,rdone,rie (others=>'0'), -- rbuf '0', -- rintreq '1', -- perr (init=1!) '1', -- prdy (init=1!) '0', -- pie (others=>'0'), -- pbuf '0' -- pintreq ); signal R_REGS : regs_type := regs_init; signal N_REGS : regs_type := regs_init; begin proc_regs: process (CLK) begin if rising_edge(CLK) then if BRESET = '1' then -- BRESET is 1 for system and ibus reset R_REGS <= regs_init; -- if RESET = '0' then -- if RESET=0 we do just an ibus reset R_REGS.rerr <= N_REGS.rerr; -- don't reset RERR flag R_REGS.perr <= N_REGS.perr; -- don't reset PERR flag end if; else R_REGS <= N_REGS; end if; end if; end process proc_regs; proc_next : process (R_REGS, IB_MREQ, EI_ACK_PTR, EI_ACK_PTP) variable r : regs_type := regs_init; variable n : regs_type := regs_init; variable idout : slv16 := (others=>'0'); variable ibreq : slbit := '0'; variable ibrd : slbit := '0'; variable ibw0 : slbit := '0'; variable ibw1 : slbit := '0'; variable ilam : slbit := '0'; begin r := R_REGS; n := R_REGS; idout := (others=>'0'); ibreq := IB_MREQ.re or IB_MREQ.we; ibrd := IB_MREQ.re; ibw0 := IB_MREQ.we and IB_MREQ.be0; ibw1 := IB_MREQ.we and IB_MREQ.be1; ilam := '0'; -- ibus address decoder n.ibsel := '0'; if IB_MREQ.aval='1' and IB_MREQ.addr(12 downto 3)=ibaddr_pc11(12 downto 3) then n.ibsel := '1'; end if; -- ibus transactions if r.ibsel = '1' then case IB_MREQ.addr(2 downto 1) is when ibaddr_rcsr => -- RCSR -- reader control status ----- idout(rcsr_ibf_rerr) := r.rerr; idout(rcsr_ibf_rbusy) := r.rbusy; idout(rcsr_ibf_rdone) := r.rdone; idout(rcsr_ibf_rie) := r.rie; if IB_MREQ.racc = '0' then -- cpu --------------------- if ibw0 = '1' then n.rie := IB_MREQ.din(rcsr_ibf_rie); if IB_MREQ.din(rcsr_ibf_rie) = '1' then-- set IE to 1 if r.rie = '0' and -- IE 0->1 transition IB_MREQ.din(rcsr_ibf_renb)='0' and -- when RENB not set (r.rerr='1' or r.rdone='1') then -- but err or done set n.rintreq := '1'; -- request interrupt end if; else -- set IE to 0 n.rintreq := '0'; -- cancel interrupts end if; if IB_MREQ.din(rcsr_ibf_renb) = '1' then -- set RENB if r.rerr = '0' then -- if not in error state n.rbusy := '1'; -- set busy n.rdone := '0'; -- clear done n.rbuf := (others=>'0'); -- clear buffer n.rintreq := '0'; -- cancel interrupt ilam := '1'; -- rri lam else -- if in error state if r.rie = '1' then -- if interrupts on n.rintreq := '1'; -- request interrupt end if; end if; end if; end if; else -- rri --------------------- if ibw1 = '1' then n.rerr := IB_MREQ.din(rcsr_ibf_rerr); -- set ERR bit if IB_MREQ.din(rcsr_ibf_rerr)='1' -- if 0->1 transition and r.rerr='0' then n.rbusy := '0'; -- clear busy n.rdone := '0'; -- clear done if r.rie = '1' then -- if interrupts on n.rintreq := '1'; -- request interrupt end if; end if; end if; end if; when ibaddr_rbuf => -- RBUF -- reader data buffer -------- idout(r.rbuf'range) := r.rbuf; if IB_MREQ.racc = '0' then -- cpu --------------------- if true then -- !! PC11 is unusual !! n.rdone := '0'; -- any read or write will clear done n.rbuf := (others=>'0'); -- and the reader buffer n.rintreq := '0'; -- also interrupt is canceled end if; else -- rri --------------------- if ibw0 = '1' then n.rbuf := IB_MREQ.din(n.rbuf'range); n.rbusy := '0'; n.rdone := '1'; if r.rie = '1' then n.rintreq := '1'; end if; end if; end if; when ibaddr_pcsr => -- PCSR -- punch control status ------ idout(pcsr_ibf_perr) := r.perr; idout(pcsr_ibf_prdy) := r.prdy; idout(pcsr_ibf_pie) := r.pie; if IB_MREQ.racc = '0' then -- cpu --------------------- if ibw0 = '1' then n.pie := IB_MREQ.din(pcsr_ibf_pie); if IB_MREQ.din(pcsr_ibf_pie) = '1' then-- set IE to 1 if r.pie='0' and -- IE 0->1 transition (r.perr='1' or r.prdy='1') then -- but err or done set n.pintreq := '1'; -- request interrupt end if; else -- set IE to 0 n.pintreq := '0'; -- cancel interrupts end if; end if; else -- rri --------------------- if ibw1 = '1' then n.perr := IB_MREQ.din(pcsr_ibf_perr); -- set ERR bit if IB_MREQ.din(pcsr_ibf_perr)='1' -- if 0->1 transition and r.perr='0' then n.prdy := '1'; -- set ready if r.pie = '1' then -- if interrupts on n.pintreq := '1'; -- request interrupt end if; end if; end if; end if; when ibaddr_pbuf => -- PBUF -- punch data buffer --------- if IB_MREQ.racc = '0' then -- cpu --------------------- if ibw0 = '1' then if r.perr = '0' then -- if not in error state n.pbuf := IB_MREQ.din(n.pbuf'range); n.prdy := '0'; -- clear ready n.pintreq := '0'; -- cancel interrupts ilam := '1'; -- rri lam else -- if in error state if r.pie = '1' then -- if interrupts on n.pintreq := '1'; -- request interrupt end if; end if; end if; else -- rri --------------------- idout(r.pbuf'range) := r.pbuf; idout(pbuf_ibf_pval) := not r.prdy; idout(pbuf_ibf_rbusy) := r.rbusy; if ibrd = '1' then n.prdy := '1'; if r.pie = '1' then n.pintreq := '1'; end if; end if; end if; when others => null; end case; end if; -- other state changes if EI_ACK_PTR = '1' then n.rintreq := '0'; end if; if EI_ACK_PTP = '1' then n.pintreq := '0'; end if; N_REGS <= n; IB_SRES.dout <= idout; IB_SRES.ack <= r.ibsel and ibreq; IB_SRES.busy <= '0'; RB_LAM <= ilam; EI_REQ_PTR <= r.rintreq; EI_REQ_PTP <= r.pintreq; end process proc_next; end syn;
gpl-2.0
xylnao/w11a-extra
rtl/sys_gen/w11a/nexys2/sys_w11a_n2.vhd
1
20479
-- $Id: sys_w11a_n2.vhd 440 2011-12-18 20:08:09Z mueller $ -- -- Copyright 2010-2011 by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Module Name: sys_w11a_n2 - syn -- Description: w11a test design for nexys2 -- -- Dependencies: vlib/xlib/dcm_sfs -- vlib/genlib/clkdivce -- bplib/bpgen/bp_rs232_2l4l_iob -- bplib/bpgen/sn_humanio_rbus -- vlib/rlink/rlink_sp1c -- vlib/rri/rb_sres_or_3 -- w11a/pdp11_core_rbus -- w11a/pdp11_core -- w11a/pdp11_bram -- vlib/nxcramlib/nx_cram_dummy -- w11a/pdp11_cache -- w11a/pdp11_mem70 -- bplib/nxcramlib/nx_cram_memctl_as -- ibus/ib_sres_or_2 -- ibus/ibdr_minisys -- ibus/ibdr_maxisys -- w11a/pdp11_tmu_sb [sim only] -- -- Test bench: tb/tb_sys_w11a_n2 -- -- Target Devices: generic -- Tool versions: xst 8.2, 9.1, 9.2, 10.1, 11.4, 12.1, 13.1; ghdl 0.26-0.29 -- -- Synthesized (xst): -- Date Rev ise Target flop lutl lutm slic t peri -- 2011-12-18 440 13.1 O40d xc3s1200e-4 1450 4439 270 2740 ok: LP+PC+DL+II -- 2011-11-18 427 13.1 O40d xc3s1200e-4 1433 4374 242 2680 ok: LP+PC+DL+II -- 2010-12-30 351 12.1 M53d xc3s1200e-4 1389 4368 242 2674 ok: LP+PC+DL+II -- 2010-11-06 336 12.1 M53d xc3s1200e-4 1357 4304* 242 2618 ok: LP+PC+DL+II -- 2010-10-24 335 12.1 M53d xc3s1200e-4 1357 4546 242 2618 ok: LP+PC+DL+II -- 2010-10-17 333 12.1 M53d xc3s1200e-4 1350 4541 242 2617 ok: LP+PC+DL+II -- 2010-10-16 332 12.1 M53d xc3s1200e-4 1338 4545 242 2629 ok: LP+PC+DL+II -- 2010-06-27 310 12.1 M53d xc3s1200e-4 1337 4307 242 2630 ok: LP+PC+DL+II -- 2010-06-26 309 11.4 L68 xc3s1200e-4 1318 4293 242 2612 ok: LP+PC+DL+II -- 2010-06-18 306 12.1 M53d xc3s1200e-4 1319 4300 242 2624 ok: LP+PC+DL+II -- " 306 11.4 L68 xc3s1200e-4 1319 4286 242 2618 ok: LP+PC+DL+II -- " 306 10.1.02 K39 xc3s1200e-4 1309 4311 242 2665 ok: LP+PC+DL+II -- " 306 9.2.02 J40 xc3s1200e-4 1316 4259 242 2656 ok: LP+PC+DL+II -- " 306 9.1 J30 xc3s1200e-4 1311 4260 242 2643 ok: LP+PC+DL+II -- " 306 8.2.03 I34 xc3s1200e-4 1371 4394 242 2765 ok: LP+PC+DL+II -- 2010-06-13 305 11.4 L68 xc3s1200e-4 1318 4360 242 2629 ok: LP+PC+DL+II -- 2010-06-12 304 11.4 L68 xc3s1200e-4 1323 4201 242 2574 ok: LP+PC+DL+II -- 2010-06-03 300 11.4 L68 xc3s1200e-4 1318 4181 242 2572 ok: LP+PC+DL+II -- 2010-06-03 299 11.4 L68 xc3s1200e-4 1250 4071 224 2489 ok: LP+PC+DL+II -- 2010-05-26 296 11.4 L68 xc3s1200e-4 1284 4079 224 2492 ok: LP+PC+DL+II -- Note: till 2010-10-24 lutm included 'route-thru', after only logic -- -- Revision History: -- Date Rev Version Comment -- 2011-12-18 440 1.2.7 use rlink_sp1c -- 2011-11-26 433 1.2.6 use nx_cram_(dummy|memctl_as) now -- 2011-11-23 432 1.2.5 update O_FLA_CE_N usage -- 2011-11-19 427 1.2.4 now numeric_std clean -- 2011-11-17 426 1.2.3 use dcm_sfs now -- 2011-07-09 391 1.2.2 use now bp_rs232_2l4l_iob -- 2011-07-08 390 1.2.1 use now sn_humanio -- 2010-12-30 351 1.2 ported to rbv3 -- 2010-11-27 341 1.1.8 add DCM; new sys_conf consts for mem and clkdiv -- 2010-11-13 338 1.1.7 add O_CLKSYS (for DCM derived system clock) -- 2010-11-06 336 1.1.6 rename input pin CLK -> I_CLK50 -- 2010-10-23 335 1.1.5 rename RRI_LAM->RB_LAM; -- 2010-06-26 309 1.1.4 use constants for rbus addresses (rbaddr_...) -- BUGFIX: resolve rbus address clash hio<->ibr -- 2010-06-18 306 1.1.3 change proc_led sensitivity list to avoid xst warn; -- rename RB_ADDR->RB_ADDR_CORE, add RB_ADDR_IBUS; -- remove pdp11_ibdr_rri -- 2010-06-13 305 1.1.2 add CP_ADDR, wire up pdp11_core_rri->pdp11_core -- 2010-06-12 304 1.1.1 re-do LED driver logic (show cpu modes or cpurust) -- 2010-06-11 303 1.1 use IB_MREQ.racc instead of RRI_REQ -- 2010-06-03 300 1.0.2 use default FAWIDTH for rri_core_serport -- use s3_humanio_rri -- 2010-05-30 297 1.0.1 put MEM_ACT_(R|W) on LED 6,7 -- 2010-05-28 295 1.0 Initial version (derived from sys_w11a_s3) ------------------------------------------------------------------------------ -- -- w11a test design for nexys2 -- w11a + rlink + serport -- -- Usage of Nexys 2 Switches, Buttons, LEDs: -- -- SWI(7:2): no function (only connected to sn_humanio_rbus) -- SWI(1): 1 enable XON -- SWI(0): 0 -> main board RS232 port -- 1 -> Pmod B/top RS232 port -- -- LED(7) MEM_ACT_W -- (6) MEM_ACT_R -- (5) cmdbusy (all rlink access, mostly rdma) -- (4:0): if cpugo=1 show cpu mode activity -- (4) kernel mode, pri>0 -- (3) kernel mode, pri=0 -- (2) kernel mode, wait -- (1) supervisor mode -- (0) user mode -- if cpugo=0 shows cpurust -- (3:0) cpurust code -- (4) '1' -- -- DP(3): not SER_MONI.txok (shows tx back preasure) -- DP(2): SER_MONI.txact (shows tx activity) -- DP(1): not SER_MONI.rxok (shows rx back preasure) -- DP(0): SER_MONI.rxact (shows rx activity) -- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; use work.slvtypes.all; use work.xlib.all; use work.genlib.all; use work.serport.all; use work.rblib.all; use work.rlinklib.all; use work.bpgenlib.all; use work.nxcramlib.all; use work.iblib.all; use work.ibdlib.all; use work.pdp11.all; use work.sys_conf.all; -- ---------------------------------------------------------------------------- entity sys_w11a_n2 is -- top level -- implements nexys2_fusp_aif port ( I_CLK50 : in slbit; -- 50 MHz clock O_CLKSYS : out slbit; -- DCM derived system clock I_RXD : in slbit; -- receive data (board view) O_TXD : out slbit; -- transmit data (board view) I_SWI : in slv8; -- n2 switches I_BTN : in slv4; -- n2 buttons O_LED : out slv8; -- n2 leds O_ANO_N : out slv4; -- 7 segment disp: anodes (act.low) O_SEG_N : out slv8; -- 7 segment disp: segments (act.low) O_MEM_CE_N : out slbit; -- cram: chip enable (act.low) O_MEM_BE_N : out slv2; -- cram: byte enables (act.low) O_MEM_WE_N : out slbit; -- cram: write enable (act.low) O_MEM_OE_N : out slbit; -- cram: output enable (act.low) O_MEM_ADV_N : out slbit; -- cram: address valid (act.low) O_MEM_CLK : out slbit; -- cram: clock O_MEM_CRE : out slbit; -- cram: command register enable I_MEM_WAIT : in slbit; -- cram: mem wait O_MEM_ADDR : out slv23; -- cram: address lines IO_MEM_DATA : inout slv16; -- cram: data lines O_FLA_CE_N : out slbit; -- flash ce.. (act.low) O_FUSP_RTS_N : out slbit; -- fusp: rs232 rts_n I_FUSP_CTS_N : in slbit; -- fusp: rs232 cts_n I_FUSP_RXD : in slbit; -- fusp: rs232 rx O_FUSP_TXD : out slbit -- fusp: rs232 tx ); end sys_w11a_n2; architecture syn of sys_w11a_n2 is signal CLK : slbit := '0'; signal RXD : slbit := '1'; signal TXD : slbit := '0'; signal RTS_N : slbit := '0'; signal CTS_N : slbit := '0'; signal SWI : slv8 := (others=>'0'); signal BTN : slv4 := (others=>'0'); signal LED : slv8 := (others=>'0'); signal DSP_DAT : slv16 := (others=>'0'); signal DSP_DP : slv4 := (others=>'0'); signal RB_LAM : slv16 := (others=>'0'); signal RB_STAT : slv3 := (others=>'0'); signal SER_MONI : serport_moni_type := serport_moni_init; signal RB_MREQ : rb_mreq_type := rb_mreq_init; signal RB_SRES : rb_sres_type := rb_sres_init; signal RB_SRES_CPU : rb_sres_type := rb_sres_init; signal RB_SRES_IBD : rb_sres_type := rb_sres_init; signal RB_SRES_HIO : rb_sres_type := rb_sres_init; signal RESET : slbit := '0'; signal CE_USEC : slbit := '0'; signal CE_MSEC : slbit := '0'; signal CPU_RESET : slbit := '0'; signal CP_CNTL : cp_cntl_type := cp_cntl_init; signal CP_ADDR : cp_addr_type := cp_addr_init; signal CP_DIN : slv16 := (others=>'0'); signal CP_STAT : cp_stat_type := cp_stat_init; signal CP_DOUT : slv16 := (others=>'0'); signal EI_PRI : slv3 := (others=>'0'); signal EI_VECT : slv9_2 := (others=>'0'); signal EI_ACKM : slbit := '0'; signal EM_MREQ : em_mreq_type := em_mreq_init; signal EM_SRES : em_sres_type := em_sres_init; signal HM_ENA : slbit := '0'; signal MEM70_FMISS : slbit := '0'; signal CACHE_FMISS : slbit := '0'; signal CACHE_CHIT : slbit := '0'; signal MEM_REQ : slbit := '0'; signal MEM_WE : slbit := '0'; signal MEM_BUSY : slbit := '0'; signal MEM_ACK_R : slbit := '0'; signal MEM_ACT_R : slbit := '0'; signal MEM_ACT_W : slbit := '0'; signal MEM_ADDR : slv20 := (others=>'0'); signal MEM_BE : slv4 := (others=>'0'); signal MEM_DI : slv32 := (others=>'0'); signal MEM_DO : slv32 := (others=>'0'); signal MEM_ADDR_EXT : slv22 := (others=>'0'); signal BRESET : slbit := '0'; signal IB_MREQ : ib_mreq_type := ib_mreq_init; signal IB_SRES : ib_sres_type := ib_sres_init; signal IB_SRES_MEM70 : ib_sres_type := ib_sres_init; signal IB_SRES_IBDR : ib_sres_type := ib_sres_init; signal DM_STAT_DP : dm_stat_dp_type := dm_stat_dp_init; signal DM_STAT_VM : dm_stat_vm_type := dm_stat_vm_init; signal DM_STAT_CO : dm_stat_co_type := dm_stat_co_init; signal DM_STAT_SY : dm_stat_sy_type := dm_stat_sy_init; signal DISPREG : slv16 := (others=>'0'); constant rbaddr_core0 : slv8 := "00000000"; constant rbaddr_ibus : slv8 := "10000000"; constant rbaddr_hio : slv8 := "11000000"; begin assert (sys_conf_clksys mod 1000000) = 0 report "assert sys_conf_clksys on MHz grid" severity failure; DCM : dcm_sfs generic map ( CLKFX_DIVIDE => sys_conf_clkfx_divide, CLKFX_MULTIPLY => sys_conf_clkfx_multiply, CLKIN_PERIOD => 20.0) port map ( CLKIN => I_CLK50, CLKFX => CLK, LOCKED => open ); O_CLKSYS <= CLK; CLKDIV : clkdivce generic map ( CDUWIDTH => 6, USECDIV => sys_conf_clksys_mhz, MSECDIV => 1000) port map ( CLK => CLK, CE_USEC => CE_USEC, CE_MSEC => CE_MSEC ); IOB_RS232 : bp_rs232_2l4l_iob port map ( CLK => CLK, RESET => '0', SEL => SWI(0), RXD => RXD, TXD => TXD, CTS_N => CTS_N, RTS_N => RTS_N, I_RXD0 => I_RXD, O_TXD0 => O_TXD, I_RXD1 => I_FUSP_RXD, O_TXD1 => O_FUSP_TXD, I_CTS1_N => I_FUSP_CTS_N, O_RTS1_N => O_FUSP_RTS_N ); HIO : sn_humanio_rbus generic map ( DEBOUNCE => sys_conf_hio_debounce, RB_ADDR => rbaddr_hio) port map ( CLK => CLK, RESET => RESET, CE_MSEC => CE_MSEC, RB_MREQ => RB_MREQ, RB_SRES => RB_SRES_HIO, SWI => SWI, BTN => BTN, LED => LED, DSP_DAT => DSP_DAT, DSP_DP => DSP_DP, I_SWI => I_SWI, I_BTN => I_BTN, O_LED => O_LED, O_ANO_N => O_ANO_N, O_SEG_N => O_SEG_N ); RLINK : rlink_sp1c generic map ( ATOWIDTH => 6, -- 64 cycles access timeout ITOWIDTH => 6, -- 64 periods max idle timeout CPREF => c_rlink_cpref, IFAWIDTH => 5, -- 32 word input fifo OFAWIDTH => 5, -- 32 word output fifo ENAPIN_RLMON => sbcntl_sbf_rlmon, ENAPIN_RBMON => sbcntl_sbf_rbmon, CDWIDTH => 13, CDINIT => sys_conf_ser2rri_cdinit) port map ( CLK => CLK, CE_USEC => CE_USEC, CE_MSEC => CE_MSEC, CE_INT => CE_MSEC, RESET => RESET, ENAXON => SWI(1), ENAESC => SWI(1), RXSD => RXD, TXSD => TXD, CTS_N => CTS_N, RTS_N => RTS_N, RB_MREQ => RB_MREQ, RB_SRES => RB_SRES, RB_LAM => RB_LAM, RB_STAT => RB_STAT, RL_MONI => open, SER_MONI => SER_MONI ); RB_SRES_OR : rb_sres_or_3 port map ( RB_SRES_1 => RB_SRES_CPU, RB_SRES_2 => RB_SRES_IBD, RB_SRES_3 => RB_SRES_HIO, RB_SRES_OR => RB_SRES ); RB2CP : pdp11_core_rbus generic map ( RB_ADDR_CORE => rbaddr_core0, RB_ADDR_IBUS => rbaddr_ibus) port map ( CLK => CLK, RESET => RESET, RB_MREQ => RB_MREQ, RB_SRES => RB_SRES_CPU, RB_STAT => RB_STAT, RB_LAM => RB_LAM(0), CPU_RESET => CPU_RESET, CP_CNTL => CP_CNTL, CP_ADDR => CP_ADDR, CP_DIN => CP_DIN, CP_STAT => CP_STAT, CP_DOUT => CP_DOUT ); CORE : pdp11_core port map ( CLK => CLK, RESET => CPU_RESET, CP_CNTL => CP_CNTL, CP_ADDR => CP_ADDR, CP_DIN => CP_DIN, CP_STAT => CP_STAT, CP_DOUT => CP_DOUT, EI_PRI => EI_PRI, EI_VECT => EI_VECT, EI_ACKM => EI_ACKM, EM_MREQ => EM_MREQ, EM_SRES => EM_SRES, BRESET => BRESET, IB_MREQ_M => IB_MREQ, IB_SRES_M => IB_SRES, DM_STAT_DP => DM_STAT_DP, DM_STAT_VM => DM_STAT_VM, DM_STAT_CO => DM_STAT_CO ); MEM_BRAM: if sys_conf_bram > 0 generate signal HM_VAL_BRAM : slbit := '0'; begin MEM : pdp11_bram generic map ( AWIDTH => sys_conf_bram_awidth) port map ( CLK => CLK, GRESET => CPU_RESET, EM_MREQ => EM_MREQ, EM_SRES => EM_SRES ); HM_VAL_BRAM <= not EM_MREQ.we; -- assume hit if read, miss if write MEM70: pdp11_mem70 port map ( CLK => CLK, CRESET => BRESET, HM_ENA => EM_MREQ.req, HM_VAL => HM_VAL_BRAM, CACHE_FMISS => MEM70_FMISS, IB_MREQ => IB_MREQ, IB_SRES => IB_SRES_MEM70 ); SRAM_PROT : nx_cram_dummy -- connect CRAM to protection dummy port map ( O_MEM_CE_N => O_MEM_CE_N, O_MEM_BE_N => O_MEM_BE_N, O_MEM_WE_N => O_MEM_WE_N, O_MEM_OE_N => O_MEM_OE_N, O_MEM_ADV_N => O_MEM_ADV_N, O_MEM_CLK => O_MEM_CLK, O_MEM_CRE => O_MEM_CRE, I_MEM_WAIT => I_MEM_WAIT, O_MEM_ADDR => O_MEM_ADDR, IO_MEM_DATA => IO_MEM_DATA ); O_FLA_CE_N <= '1'; -- keep Flash memory disabled end generate MEM_BRAM; MEM_SRAM: if sys_conf_bram = 0 generate CACHE: pdp11_cache port map ( CLK => CLK, GRESET => CPU_RESET, EM_MREQ => EM_MREQ, EM_SRES => EM_SRES, FMISS => CACHE_FMISS, CHIT => CACHE_CHIT, MEM_REQ => MEM_REQ, MEM_WE => MEM_WE, MEM_BUSY => MEM_BUSY, MEM_ACK_R => MEM_ACK_R, MEM_ADDR => MEM_ADDR, MEM_BE => MEM_BE, MEM_DI => MEM_DI, MEM_DO => MEM_DO ); MEM70: pdp11_mem70 port map ( CLK => CLK, CRESET => BRESET, HM_ENA => HM_ENA, HM_VAL => CACHE_CHIT, CACHE_FMISS => MEM70_FMISS, IB_MREQ => IB_MREQ, IB_SRES => IB_SRES_MEM70 ); HM_ENA <= EM_SRES.ack_r or EM_SRES.ack_w; CACHE_FMISS <= MEM70_FMISS or sys_conf_cache_fmiss; MEM_ADDR_EXT <= "00" & MEM_ADDR; -- just use lower 4 MB (of 16 MB) SRAM_CTL: nx_cram_memctl_as generic map ( READ0DELAY => sys_conf_memctl_read0delay, READ1DELAY => sys_conf_memctl_read1delay, WRITEDELAY => sys_conf_memctl_writedelay) port map ( CLK => CLK, RESET => CPU_RESET, REQ => MEM_REQ, WE => MEM_WE, BUSY => MEM_BUSY, ACK_R => MEM_ACK_R, ACK_W => open, ACT_R => MEM_ACT_R, ACT_W => MEM_ACT_W, ADDR => MEM_ADDR_EXT, BE => MEM_BE, DI => MEM_DI, DO => MEM_DO, O_MEM_CE_N => O_MEM_CE_N, O_MEM_BE_N => O_MEM_BE_N, O_MEM_WE_N => O_MEM_WE_N, O_MEM_OE_N => O_MEM_OE_N, O_MEM_ADV_N => O_MEM_ADV_N, O_MEM_CLK => O_MEM_CLK, O_MEM_CRE => O_MEM_CRE, I_MEM_WAIT => I_MEM_WAIT, O_MEM_ADDR => O_MEM_ADDR, IO_MEM_DATA => IO_MEM_DATA ); O_FLA_CE_N <= '1'; -- keep Flash memory disabled end generate MEM_SRAM; IB_SRES_OR : ib_sres_or_2 port map ( IB_SRES_1 => IB_SRES_MEM70, IB_SRES_2 => IB_SRES_IBDR, IB_SRES_OR => IB_SRES ); IBD_MINI : if false generate begin IBDR_SYS : ibdr_minisys port map ( CLK => CLK, CE_USEC => CE_USEC, CE_MSEC => CE_MSEC, RESET => CPU_RESET, BRESET => BRESET, RB_LAM => RB_LAM(15 downto 1), IB_MREQ => IB_MREQ, IB_SRES => IB_SRES_IBDR, EI_ACKM => EI_ACKM, EI_PRI => EI_PRI, EI_VECT => EI_VECT, DISPREG => DISPREG ); end generate IBD_MINI; IBD_MAXI : if true generate begin IBDR_SYS : ibdr_maxisys port map ( CLK => CLK, CE_USEC => CE_USEC, CE_MSEC => CE_MSEC, RESET => CPU_RESET, BRESET => BRESET, RB_LAM => RB_LAM(15 downto 1), IB_MREQ => IB_MREQ, IB_SRES => IB_SRES_IBDR, EI_ACKM => EI_ACKM, EI_PRI => EI_PRI, EI_VECT => EI_VECT, DISPREG => DISPREG ); end generate IBD_MAXI; DSP_DAT(15 downto 0) <= DISPREG; DSP_DP(3) <= not SER_MONI.txok; DSP_DP(2) <= SER_MONI.txact; DSP_DP(1) <= not SER_MONI.rxok; DSP_DP(0) <= SER_MONI.rxact; proc_led: process (MEM_ACT_W, MEM_ACT_R, CP_STAT, DM_STAT_DP.psw) variable iled : slv8 := (others=>'0'); begin iled := (others=>'0'); iled(7) := MEM_ACT_W; iled(6) := MEM_ACT_R; iled(5) := CP_STAT.cmdbusy; if CP_STAT.cpugo = '1' then case DM_STAT_DP.psw.cmode is when c_psw_kmode => if CP_STAT.cpuwait = '1' then iled(2) := '1'; elsif unsigned(DM_STAT_DP.psw.pri) = 0 then iled(3) := '1'; else iled(4) := '1'; end if; when c_psw_smode => iled(1) := '1'; when c_psw_umode => iled(0) := '1'; when others => null; end case; else iled(4) := '1'; iled(3 downto 0) := CP_STAT.cpurust; end if; LED <= iled; end process; -- synthesis translate_off DM_STAT_SY.emmreq <= EM_MREQ; DM_STAT_SY.emsres <= EM_SRES; DM_STAT_SY.chit <= CACHE_CHIT; TMU : pdp11_tmu_sb generic map ( ENAPIN => 13) port map ( CLK => CLK, DM_STAT_DP => DM_STAT_DP, DM_STAT_VM => DM_STAT_VM, DM_STAT_CO => DM_STAT_CO, DM_STAT_SY => DM_STAT_SY ); -- synthesis translate_on end syn;
gpl-2.0
xylnao/w11a-extra
rtl/sys_gen/tst_snhumanio/nexys2/sys_conf.vhd
2
1232
-- $Id: sys_conf.vhd 410 2011-09-18 11:23:09Z mueller $ -- -- Copyright 2011- by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Package Name: sys_conf -- Description: Definitions for sys_tst_snhumanio_n2 (for synthesis) -- -- Dependencies: - -- Tool versions: xst 13.1; ghdl 0.29 -- Revision History: -- Date Rev Version Comment -- 2011-09-17 410 1.0 Initial version ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use work.slvtypes.all; package sys_conf is constant sys_conf_hio_debounce : boolean := true; -- instantiate debouncers end package sys_conf;
gpl-2.0
xylnao/w11a-extra
rtl/vlib/serport/serport_uart_tx.vhd
2
3987
-- $Id: serport_uart_tx.vhd 417 2011-10-22 10:30:29Z mueller $ -- -- Copyright 2007-2011 by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Module Name: serport_uart_tx - syn -- Description: serial port UART - transmitter -- -- Dependencies: - -- Test bench: tb/tb_serport_uart_rxtx -- Target Devices: generic -- Tool versions: xst 8.2, 9.1, 9.2, 13.1; ghdl 0.18-0.29 -- Revision History: -- Date Rev Version Comment -- 2011-10-22 417 1.0.4 now numeric_std clean -- 2007-10-21 91 1.0.3 use 1 stop bits (redesigned _rx allows this) -- 2007-10-19 90 1.0.2 use 2 stop bits (allow CLKDIV=0 operation in sim) -- 2007-10-12 88 1.0.1 avoid ieee.std_logic_unsigned, use cast to unsigned -- 2007-06-30 62 1.0 Initial version ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; use work.slvtypes.all; entity serport_uart_tx is -- serial port uart: transmit part generic ( CDWIDTH : positive := 13); -- clk divider width port ( CLK : in slbit; -- clock RESET : in slbit; -- reset CLKDIV : in slv(CDWIDTH-1 downto 0); -- clock divider setting TXSD : out slbit; -- transmit serial data (uart view) TXDATA : in slv8; -- transmit data in TXENA : in slbit; -- transmit data enable TXBUSY : out slbit -- transmit busy ); end serport_uart_tx; architecture syn of serport_uart_tx is type regs_type is record ccnt : slv(CDWIDTH-1 downto 0); -- clock divider counter bcnt : slv4; -- bit counter sreg : slv9; -- output shift register busy : slbit; end record regs_type; constant cntzero : slv(CDWIDTH-1 downto 0) := (others=>'0'); constant regs_init : regs_type := ( cntzero, (others=>'0'), (others=>'1'), -- sreg to all 1 !! '0' ); signal R_REGS : regs_type := regs_init; -- state registers signal N_REGS : regs_type := regs_init; -- next value state regs begin proc_regs: process (CLK) begin if rising_edge(CLK) then R_REGS <= N_REGS; end if; end process proc_regs; proc_next: process (R_REGS, RESET, CLKDIV, TXDATA, TXENA) variable r : regs_type := regs_init; variable n : regs_type := regs_init; variable ld_ccnt : slbit := '0'; begin r := R_REGS; n := R_REGS; ld_ccnt := '0'; if r.busy = '0' then ld_ccnt := '1'; n.bcnt := (others=>'0'); if TXENA = '1' then n.sreg := TXDATA & '0'; -- add start (0) bit n.busy := '1'; end if; else if unsigned(r.ccnt) = 0 then ld_ccnt := '1'; n.sreg := '1' & r.sreg(8 downto 1); n.bcnt := slv(unsigned(r.bcnt) + 1); if unsigned(r.bcnt) = 9 then -- if 10 bits send n.busy := '0'; -- declare all done end if; end if; end if; if RESET = '1' then ld_ccnt := '1'; n.busy := '0'; end if; if ld_ccnt = '1' then n.ccnt := CLKDIV; else n.ccnt := slv(unsigned(r.ccnt) - 1); end if; N_REGS <= n; TXBUSY <= r.busy; TXSD <= r.sreg(0); end process proc_next; end syn;
gpl-2.0
xylnao/w11a-extra
rtl/vlib/simlib/simlib.vhd
1
28203
-- $Id: simlib.vhd 427 2011-11-19 21:04:11Z mueller $ -- -- Copyright 2006-2011 by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Module Name: simlib - sim -- Description: Support routines for test benches -- -- Dependencies: - -- Test bench: - -- Target Devices: generic -- Tool versions: xst 8.2, 9.1, 9.2, 12.1, 13.1; ghdl 0.18-0.29 -- -- Revision History: -- Date Rev Version Comment -- 2011-11-18 427 1.3.8 now numeric_std clean -- 2010-12-22 346 1.3.7 rename readcommand -> readdotcomm -- 2010-11-13 338 1.3.6 add simclkcnt; xx.x ns time in writetimestamp() -- 2008-03-24 129 1.3.5 CLK_CYCLE now 31 bits -- 2008-03-02 121 1.3.4 added readempty (to discard rest of line) -- 2007-12-27 106 1.3.3 added simclk2v -- 2007-12-15 101 1.3.2 add read_ea(time), readtagval[_ea](std_logic) -- 2007-10-12 88 1.3.1 avoid ieee.std_logic_unsigned, use cast to unsigned -- 2007-08-28 76 1.3 added writehex and writegen -- 2007-08-10 72 1.2.2 remove entity simclk, put into separate source -- 2007-08-03 71 1.2.1 readgen, readtagval, readtagval2: add base arg -- 2007-07-29 70 1.2 readtagval2: add tag=- support; add readword_ea, -- readoptchar, writetimestamp -- 2007-07-28 69 1.1.1 rename readrest -> testempty; add readgen -- use readgen in readtagval() and readtagval2() -- 2007-07-22 68 1.1 add readrest, readtagval, readtagval2 -- 2007-06-30 62 1.0.1 remove clock_period ect constant defs -- 2007-06-14 56 1.0 Initial version (renamed from pdp11_sim.vhd) ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; use ieee.std_logic_textio.all; use std.textio.all; use work.slvtypes.all; package simlib is constant null_char : character := character'val(0); -- '\0' constant null_string : string(1 to 1) := (others=>null_char); -- "\0" procedure readwhite( -- read over white space L: inout line); -- line procedure readoct( -- read slv in octal base (arb. length) L: inout line; -- line value: out std_logic_vector; -- value to be read good: out boolean); -- success flag procedure readhex( -- read slv in hex base (arb. length) L: inout line; -- line value: out std_logic_vector; -- value to be read good: out boolean); -- success flag procedure readgen( -- read slv generic base L: inout line; -- line value: out std_logic_vector; -- value to be read good: out boolean; -- success flag base: in integer:= 2); -- default base procedure readcomment( L: inout line; good: out boolean); procedure readdotcomm( L: inout line; name: out string; good: out boolean); procedure readword( L: inout line; name: out string; good: out boolean); procedure readoptchar( L: inout line; char: in character; good: out boolean); procedure readempty( L: inout line); procedure testempty( L: inout line; good: out boolean); procedure testempty_ea( L: inout line); procedure read_ea( L: inout line; value: out integer); procedure read_ea( L: inout line; value: out time); procedure read_ea( L: inout line; value: out std_logic); procedure read_ea( L: inout line; value: out std_logic_vector); procedure readoct_ea( L: inout line; value: out std_logic_vector); procedure readhex_ea( L: inout line; value: out std_logic_vector); procedure readgen_ea( L: inout line; value: out std_logic_vector; base: in integer:= 2); procedure readword_ea( L: inout line; name: out string); procedure readtagval( L: inout line; tag: in string; match: out boolean; val: out std_logic_vector; good: out boolean; base: in integer:= 2); procedure readtagval_ea( L: inout line; tag: in string; match: out boolean; val: out std_logic_vector; base: in integer:= 2); procedure readtagval( L: inout line; tag: in string; match: out boolean; val: out std_logic; good: out boolean); procedure readtagval_ea( L: inout line; tag: in string; match: out boolean; val: out std_logic); procedure readtagval2( L: inout line; tag: in string; match: out boolean; val1: out std_logic_vector; val2: out std_logic_vector; good: out boolean; base: in integer:= 2); procedure readtagval2_ea( L: inout line; tag: in string; match: out boolean; val1: out std_logic_vector; val2: out std_logic_vector; base: in integer:= 2); procedure writeoct( -- write slv in octal base (arb. length) L: inout line; -- line value: in std_logic_vector; -- value to be written justified: in side:=right; -- justification (left/right) field: in width:=0); -- field width procedure writehex( -- write slv in hex base (arb. length) L: inout line; -- line value: in std_logic_vector; -- value to be written justified: in side:=right; -- justification (left/right) field: in width:=0); -- field width procedure writegen( -- write slv in generic base (arb. lth) L: inout line; -- line value: in std_logic_vector; -- value to be written justified: in side:=right; -- justification (left/right) field: in width:=0; -- field width base: in integer:= 2); -- default base procedure writetimestamp( L: inout line; clkcyc: in slv31; str : in string := null_string); -- ---------------------------------------------------------------------------- component simclk is -- test bench clock generator generic ( PERIOD : time := 20 ns; -- clock period OFFSET : time := 200 ns); -- clock offset (first up transition) port ( CLK : out slbit; -- clock CLK_CYCLE : out slv31; -- clock cycle number CLK_STOP : in slbit -- clock stop trigger ); end component; component simclkv is -- test bench clock generator -- with variable periods port ( CLK : out slbit; -- clock CLK_CYCLE : out slv31; -- clock cycle number CLK_PERIOD : in time; -- clock period CLK_HOLD : in slbit; -- if 1, hold clocks in 0 state CLK_STOP : in slbit -- clock stop trigger ); end component; component simclkcnt is -- test bench system clock cycle counter port ( CLK : in slbit; -- clock CLK_CYCLE : out slv31 -- clock cycle number ); end component; end package simlib; -- ---------------------------------------------------------------------------- package body simlib is procedure readwhite( -- read over white space L: inout line) is -- line variable ch : character; begin while L'length>0 loop ch := L(L'left); exit when (ch/=' ' and ch/=HT); read(L,ch); end loop; end procedure readwhite; -- ------------------------------------- procedure readoct( -- read slv in octal base (arb. length) L: inout line; -- line value: out std_logic_vector; -- value to be read good: out boolean) is -- success flag variable nibble : std_logic_vector(2 downto 0); variable sum : std_logic_vector(31 downto 0); variable ndig : integer; -- number of digits variable ok : boolean; variable ichar : character; begin assert not value'ascending(1) report "readoct called with ascending range" severity failure; assert value'length<=32 report "readoct called with value'length > 32" severity failure; readwhite(L); ndig := 0; sum := (others=>'U'); while L'length>0 loop ok := true; case L(L'left) is when '0' => nibble := "000"; when '1' => nibble := "001"; when '2' => nibble := "010"; when '3' => nibble := "011"; when '4' => nibble := "100"; when '5' => nibble := "101"; when '6' => nibble := "110"; when '7' => nibble := "111"; when 'u'|'U' => nibble := "UUU"; when 'x'|'X' => nibble := "XXX"; when 'z'|'Z' => nibble := "ZZZ"; when '-' => nibble := "---"; when others => ok := false; end case; exit when not ok; read(L,ichar); ndig := ndig + 1; sum(sum'left downto 3) := sum(sum'left-3 downto 0); sum(2 downto 0) := nibble; end loop; ok := ndig>0; value := sum(value'range); good := ok; end procedure readoct; -- ------------------------------------- procedure readhex( -- read slv in hex base (arb. length) L: inout line; -- line value: out std_logic_vector; -- value to be read good: out boolean) is -- success flag variable nibble : std_logic_vector(3 downto 0); variable sum : std_logic_vector(31 downto 0); variable ndig : integer; -- number of digits variable ok : boolean; variable ichar : character; begin assert not value'ascending(1) report "readhex called with ascending range" severity failure; assert value'length<=32 report "readhex called with value'length > 32" severity failure; readwhite(L); ndig := 0; sum := (others=>'U'); while L'length>0 loop ok := true; case L(L'left) is when '0' => nibble := "0000"; when '1' => nibble := "0001"; when '2' => nibble := "0010"; when '3' => nibble := "0011"; when '4' => nibble := "0100"; when '5' => nibble := "0101"; when '6' => nibble := "0110"; when '7' => nibble := "0111"; when '8' => nibble := "1000"; when '9' => nibble := "1001"; when 'a'|'A' => nibble := "1010"; when 'b'|'B' => nibble := "1011"; when 'c'|'C' => nibble := "1100"; when 'd'|'D' => nibble := "1101"; when 'e'|'E' => nibble := "1110"; when 'f'|'F' => nibble := "1111"; when 'u'|'U' => nibble := "UUUU"; when 'x'|'X' => nibble := "XXXX"; when 'z'|'Z' => nibble := "ZZZZ"; when '-' => nibble := "----"; when others => ok := false; end case; exit when not ok; read(L,ichar); ndig := ndig + 1; sum(sum'left downto 4) := sum(sum'left-4 downto 0); sum(3 downto 0) := nibble; end loop; ok := ndig>0; value := sum(value'range); good := ok; end procedure readhex; -- ------------------------------------- procedure readgen( -- read slv generic base L: inout line; -- line value: out std_logic_vector; -- value to be read good: out boolean; -- success flag base: in integer := 2) is -- default base variable nibble : std_logic_vector(3 downto 0); variable sum : std_logic_vector(31 downto 0); variable lbase : integer; -- local base variable cbase : integer; -- current base variable ok : boolean; variable ivalue : integer; variable ichar : character; begin assert not value'ascending(1) report "readgen called with ascending range" severity failure; assert value'length<=32 report "readgen called with value'length > 32" severity failure; assert base=2 or base=8 or base=10 or base=16 report "readgen base not 2,8,10, or 16" severity failure; readwhite(L); cbase := base; lbase := 0; ok := true; if L'length >= 2 then if L(L'left+1) = '"' then case L(L'left) is when 'b'|'B' => lbase := 2; when 'o'|'O' => lbase := 8; when 'd'|'D' => lbase := 10; when 'x'|'X' => lbase := 16; when others => ok := false; end case; end if; if lbase /= 0 then read(L, ichar); read(L, ichar); cbase := lbase; end if; end if; if ok then case cbase is when 2 => read(L, value, ok); when 8 => readoct(L, value, ok); when 16 => readhex(L, value, ok); when 10 => read(L, ivalue, ok); -- the following if allows to enter negative integers, e.g. -1 for all-1 if ivalue >= 0 then value := slv(to_unsigned(ivalue, value'length)); else value := slv(to_signed(ivalue, value'length)); end if; when others => null; end case; end if; if ok and lbase/=0 then if L'length>0 and L(L'left)='"' then read(L, ichar); else ok := false; end if; end if; good := ok; end procedure readgen; -- ------------------------------------- procedure readcomment( L: inout line; good: out boolean) is variable ichar : character; begin readwhite(L); good := true; if L'length > 0 then good := false; if L(L'left) = '#' then good := true; elsif L(L'left) = 'C' then good := true; writeline(output, L); end if; end if; end procedure readcomment; -- ------------------------------------- procedure readdotcomm( L: inout line; name: out string; good: out boolean) is begin for i in name'range loop name(i) := ' '; end loop; good := false; if L'length>0 and L(L'left)='.' then readword(L, name, good); end if; end procedure readdotcomm; -- ------------------------------------- procedure readword( L: inout line; name: out string; good: out boolean) is variable ichar : character; variable ind : integer; begin assert name'ascending(1) report "readword called with descending range for name" severity failure; readwhite(L); for i in name'range loop name(i) := ' '; end loop; ind := name'left; while L'length>0 and ind<=name'right loop ichar := L(L'left); exit when ichar=' ' or ichar=',' or ichar='|'; read(L,ichar); name(ind) := ichar; ind := ind + 1; end loop; good := ind /= name'left; -- ok if one non-blank found end procedure readword; -- ------------------------------------- procedure readoptchar( L: inout line; char: in character; good: out boolean) is variable ichar : character; begin good := false; if L'length > 0 then if L(L'left) = char then read(L, ichar); good := true; end if; end if; end procedure readoptchar; -- ------------------------------------- procedure readempty( L: inout line) is variable ch : character; begin while L'length>0 loop -- anything left ? read(L,ch); -- read and discard it end loop; end procedure readempty; -- ------------------------------------- procedure testempty( L: inout line; good: out boolean) is begin readwhite(L); -- discard white space good := true; -- good if now empty if L'length > 0 then -- anything left ? good := false; -- assume bad if L'length >= 2 and -- check for "--" L(L'left)='-' and L(L'left+1)='-' then good := true; -- in that case comment -> good end if; end if; end procedure testempty; -- ------------------------------------- procedure testempty_ea( L: inout line) is variable ok : boolean := false; begin testempty(L, ok); assert ok report "extra chars in """ & L.all & """" severity failure; end procedure testempty_ea; -- ------------------------------------- procedure read_ea( L: inout line; value: out integer) is variable ok : boolean := false; begin read(L, value, ok); assert ok report "read(integer) conversion error in """ & L.all & """" severity failure; end procedure read_ea; -- ------------------------------------- procedure read_ea( L: inout line; value: out time) is variable ok : boolean := false; begin read(L, value, ok); assert ok report "read(time) conversion error in """ & L.all & """" severity failure; end procedure read_ea; -- ------------------------------------- procedure read_ea( L: inout line; value: out std_logic) is variable ok : boolean := false; begin read(L, value, ok); assert ok report "read(std_logic) conversion error in """ & L.all & """" severity failure; end procedure read_ea; -- ------------------------------------- procedure read_ea( L: inout line; value: out std_logic_vector) is variable ok : boolean := false; begin read(L, value, ok); assert ok report "read(std_logic_vector) conversion error in """ & L.all & """" severity failure; end procedure read_ea; -- ------------------------------------- procedure readoct_ea( L: inout line; value: out std_logic_vector) is variable ok : boolean := false; begin readoct(L, value, ok); assert ok report "readoct() conversion error in """ & L.all & """" severity failure; end procedure readoct_ea; -- ------------------------------------- procedure readhex_ea( L: inout line; value: out std_logic_vector) is variable ok : boolean := false; begin readhex(L, value, ok); assert ok report "readhex() conversion error in """ & L.all & """" severity failure; end procedure readhex_ea; -- ------------------------------------- procedure readgen_ea( L: inout line; value: out std_logic_vector; base: in integer := 2) is variable ok : boolean := false; begin readgen(L, value, ok, base); assert ok report "readgen() conversion error in """ & L.all & """" severity failure; end procedure readgen_ea; -- ------------------------------------- procedure readword_ea( L: inout line; name: out string) is variable ok : boolean := false; begin readword(L, name, ok); assert ok report "readword() read error in """ & L.all & """" severity failure; end procedure readword_ea; -- ------------------------------------- procedure readtagval( L: inout line; tag: in string; match: out boolean; val: out std_logic_vector; good: out boolean; base: in integer:= 2) is variable itag : string(tag'range); variable ichar : character; variable imatch : boolean; begin readwhite(L); for i in val'range loop val(i) := '0'; end loop; good := true; imatch := false; if L'length > tag'length then imatch := L(L'left to L'left+tag'length-1) = tag and L(L'left+tag'length) = '='; if imatch then read(L, itag); read(L, ichar); readgen(L, val, good, base); end if; end if; match := imatch; end procedure readtagval; -- ------------------------------------- procedure readtagval_ea( L: inout line; tag: in string; match: out boolean; val: out std_logic_vector; base: in integer:= 2) is variable ok : boolean := false; begin readtagval(L, tag, match, val, ok, base); assert ok report "readtagval(std_logic_vector) conversion error in """ & L.all & """" severity failure; end procedure readtagval_ea; -- ------------------------------------- procedure readtagval( L: inout line; tag: in string; match: out boolean; val: out std_logic; good: out boolean) is variable itag : string(tag'range); variable ichar : character; variable imatch : boolean; begin readwhite(L); val := '0'; good := true; imatch := false; if L'length > tag'length then imatch := L(L'left to L'left+tag'length-1) = tag and L(L'left+tag'length) = '='; if imatch then read(L, itag); read(L, ichar); read(L, val, good); end if; end if; match := imatch; end procedure readtagval; -- ------------------------------------- procedure readtagval_ea( L: inout line; tag: in string; match: out boolean; val: out std_logic) is variable ok : boolean := false; begin readtagval(L, tag, match, val, ok); assert ok report "readtagval(std_logic) conversion error in """ & L.all & """" severity failure; end procedure readtagval_ea; -- ------------------------------------- procedure readtagval2( L: inout line; tag: in string; match: out boolean; val1: out std_logic_vector; val2: out std_logic_vector; good: out boolean; base: in integer:= 2) is variable itag : string(tag'range); variable imatch : boolean; variable igood : boolean; variable ichar : character; variable ok : boolean; begin readwhite(L); for i in val1'range loop -- zero val1 val1(i) := '0'; end loop; for i in val2'range loop -- zero val2 val2(i) := '0'; end loop; igood := true; imatch := false; if L'length > tag'length then -- check for tag imatch := L(L'left to L'left+tag'length-1) = tag and L(L'left+tag'length) = '='; if imatch then -- if found read(L, itag); -- remove tag read(L, ichar); -- remove = igood := false; readoptchar(L, '-', ok); -- check for tag=- if ok then for i in val2'range loop -- set mask to all 1 (ignore) val2(i) := '1'; end loop; igood := true; else -- here if tag=bit[,bit] readgen(L, val1, igood, base); -- read val1 if igood then readoptchar(L, ',', ok); -- check(and remove) , if ok then readgen(L, val2, igood, base); -- and read val2 end if; end if; end if; end if; end if; match := imatch; good := igood; end procedure readtagval2; -- ------------------------------------- procedure readtagval2_ea( L: inout line; tag: in string; match: out boolean; val1: out std_logic_vector; val2: out std_logic_vector; base: in integer:= 2) is variable ok : boolean := false; begin readtagval2(L, tag, match, val1, val2, ok, base); assert ok report "readtagval2() conversion error in """ & L.all & """" severity failure; end procedure readtagval2_ea; -- ------------------------------------- procedure writeoct( -- write slv in octal base (arb. length) L: inout line; -- line value: in std_logic_vector; -- value to be written justified: in side:=right; -- justification (left/right) field: in width:=0) is -- field width variable nbit : integer; -- number of bits variable ndig : integer; -- number of digits variable iwidth : integer; variable ioffset : integer; variable nibble : std_logic_vector(2 downto 0); variable ochar : character; begin assert not value'ascending(1) report "writeoct called with ascending range" severity failure; nbit := value'length(1); ndig := (nbit+2)/3; iwidth := nbit mod 3; if iwidth = 0 then iwidth := 3; end if; ioffset := value'left(1) - iwidth+1; if justified=right and field>ndig then for i in ndig+1 to field loop write(L,' '); end loop; -- i end if; for i in 0 to ndig-1 loop nibble := "000"; nibble(iwidth-1 downto 0) := value(ioffset+iwidth-1 downto ioffset); ochar := ' '; for i in nibble'range loop case nibble(i) is when 'U' => ochar := 'U'; when 'X' => ochar := 'X'; when 'Z' => ochar := 'Z'; when '-' => ochar := '-'; when others => null; end case; end loop; -- i if ochar = ' ' then write(L,to_integer(unsigned(nibble))); else write(L,ochar); end if; iwidth := 3; ioffset := ioffset - 3; end loop; -- i if justified=left and field>ndig then for i in ndig+1 to field loop write(L,' '); end loop; -- i end if; end procedure writeoct; -- ------------------------------------- procedure writehex( -- write slv in hex base (arb. length) L: inout line; -- line value: in std_logic_vector; -- value to be written justified: in side:=right; -- justification (left/right) field: in width:=0) is -- field width variable nbit : integer; -- number of bits variable ndig : integer; -- number of digits variable iwidth : integer; variable ioffset : integer; variable nibble : std_logic_vector(3 downto 0); variable ochar : character; variable hextab : string(1 to 16) := "0123456789abcdef"; begin assert not value'ascending(1) report "writehex called with ascending range" severity failure; nbit := value'length(1); ndig := (nbit+3)/4; iwidth := nbit mod 4; if iwidth = 0 then iwidth := 4; end if; ioffset := value'left(1) - iwidth+1; if justified=right and field>ndig then for i in ndig+1 to field loop write(L,' '); end loop; -- i end if; for i in 0 to ndig-1 loop nibble := "0000"; nibble(iwidth-1 downto 0) := value(ioffset+iwidth-1 downto ioffset); ochar := ' '; for i in nibble'range loop case nibble(i) is when 'U' => ochar := 'U'; when 'X' => ochar := 'X'; when 'Z' => ochar := 'Z'; when '-' => ochar := '-'; when others => null; end case; end loop; -- i if ochar = ' ' then write(L,hextab(to_integer(unsigned(nibble))+1)); else write(L,ochar); end if; iwidth := 4; ioffset := ioffset - 4; end loop; -- i if justified=left and field>ndig then for i in ndig+1 to field loop write(L,' '); end loop; -- i end if; end procedure writehex; -- ------------------------------------- procedure writegen( -- write slv in generic base (arb. lth) L: inout line; -- line value: in std_logic_vector; -- value to be written justified: in side:=right; -- justification (left/right) field: in width:=0; -- field width base: in integer:=2) is -- default base begin case base is when 2 => write(L, value, justified, field); when 8 => writeoct(L, value, justified, field); when 16 => writehex(L, value, justified, field); when others => report "writegen base not 2,8, or 16" severity failure; end case; end procedure writegen; -- ------------------------------------- procedure writetimestamp( L: inout line; clkcyc: in slv31; str: in string := null_string) is variable t_nsec : integer := 0; variable t_psec : integer := 0; variable t_dnsec : integer := 0; begin t_nsec := now / 1 ns; t_psec := (now - t_nsec * 1 ns) / 1 ps; t_dnsec := t_psec/100; -- write(L, now, right, 12); write(L, t_nsec, right, 8); write(L,'.'); write(L, t_dnsec, right, 1); write(L, string'(" ns")); write(L, to_integer(unsigned(clkcyc)), right, 7); if str /= null_string then write(L, str); end if; end procedure writetimestamp; end package body simlib;
gpl-2.0
xylnao/w11a-extra
rtl/ibus/ib_sres_or_3.vhd
2
2609
-- $Id: ib_sres_or_3.vhd 335 2010-10-24 22:24:23Z mueller $ -- -- Copyright 2007-2010 by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Module Name: ib_sres_or_3 - syn -- Description: ibus: result or, 3 input -- -- Dependencies: - -- Test bench: tb/tb_pdp11_core (implicit) -- Target Devices: generic -- Tool versions: xst 8.1, 8.2, 9.1, 9.2, 12.1; ghdl 0.18-0.29 -- -- Revision History: -- Date Rev Version Comment -- 2010-10-23 335 1.1 add ib_sres_or_mon -- 2008-08-22 161 1.0.2 renamed pdp11_ibres_ -> ib_sres_; use iblib -- 2008-01-05 110 1.0.1 rename IB_MREQ(ena->req) SRES(sel->ack, hold->busy) -- 2007-12-29 107 1.0 Initial version ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use work.slvtypes.all; use work.iblib.all; -- ---------------------------------------------------------------------------- entity ib_sres_or_3 is -- ibus result or, 3 input port ( IB_SRES_1 : in ib_sres_type; -- ib_sres input 1 IB_SRES_2 : in ib_sres_type := ib_sres_init; -- ib_sres input 2 IB_SRES_3 : in ib_sres_type := ib_sres_init; -- ib_sres input 3 IB_SRES_OR : out ib_sres_type -- ib_sres or'ed output ); end ib_sres_or_3; architecture syn of ib_sres_or_3 is begin proc_comb : process (IB_SRES_1, IB_SRES_2, IB_SRES_3) begin IB_SRES_OR.ack <= IB_SRES_1.ack or IB_SRES_2.ack or IB_SRES_3.ack; IB_SRES_OR.busy <= IB_SRES_1.busy or IB_SRES_2.busy or IB_SRES_3.busy; IB_SRES_OR.dout <= IB_SRES_1.dout or IB_SRES_2.dout or IB_SRES_3.dout; end process proc_comb; -- synthesis translate_off ORMON : ib_sres_or_mon port map ( IB_SRES_1 => IB_SRES_1, IB_SRES_2 => IB_SRES_2, IB_SRES_3 => IB_SRES_3, IB_SRES_4 => ib_sres_init ); -- synthesis translate_on end syn;
gpl-2.0
vhavlena/appreal
netbench/pattern_match/vhdl/memory.vhd
1
1222
library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned.all; use IEEE.std_logic_arith.all; -- pragma translate_off library unisim; use unisim.vcomponents.all; -- pragma translate_on -- ---------------------------------------------------------------------------- -- Entity declaration -- ---------------------------------------------------------------------------- entity DFSM_MEMORY%$% is generic( MEMORY_TARGET_WIDTH : integer := %$%; MEMORY_SYMBOL_WIDTH : integer := %$%; MEMORY_ADDR_WIDTH : integer := %$% ); port( -- common signals CLK : in std_logic; RESET : in std_logic; -- memory interface MEMORY_ADDR : in std_logic_vector(MEMORY_ADDR_WIDTH - 1 downto 0); MEMORY_RQ : in std_logic; TARGET : out std_logic_vector(MEMORY_TARGET_WIDTH - 1 downto 0); SYMBOL : out std_logic_vector(MEMORY_SYMBOL_WIDTH - 1 downto 0); N : out std_logic; F : out std_logic; V : out std_logic ); end entity DFSM_MEMORY%$%; architecture full of DFSM_MEMORY%$% is %$% begin %$% end architecture full;
gpl-2.0
xylnao/w11a-extra
rtl/sys_gen/tst_serloop/nexys2/sys_conf2.vhd
2
1562
-- $Id: sys_conf2.vhd 441 2011-12-20 17:01:16Z mueller $ -- -- Copyright 2011- by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Package Name: sys_conf -- Description: Definitions for sys_tst_serloop2_n2 (for synthesis) -- -- Dependencies: - -- Tool versions: xst 13.1; ghdl 0.29 -- Revision History: -- Date Rev Version Comment -- 2011-11-13 424 1.0 Initial version -- 2011-10-25 419 0.5 First draft ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use work.slvtypes.all; package sys_conf is constant sys_conf_clkudiv_usecdiv : integer := 100; -- default usec constant sys_conf_clksdiv_usecdiv : integer := 60; -- default usec constant sys_conf_clkdiv_msecdiv : integer := 1000; -- default msec constant sys_conf_hio_debounce : boolean := true; -- instantiate debouncers constant sys_conf_uart_cdinit : integer := 521-1; -- 60000000/115200 end package sys_conf;
gpl-2.0
xylnao/w11a-extra
rtl/vlib/simlib/simclkcnt.vhd
1
1730
-- $Id: simclkcnt.vhd 423 2011-11-12 22:22:25Z mueller $ -- -- Copyright 2011- by Walter F.J. Mueller <[email protected]> -- -- This program is free software; you may redistribute and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation, either version 2, or at your option any later version. -- -- This program is distributed in the hope that it will be useful, but -- WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for complete details. -- ------------------------------------------------------------------------------ -- Module Name: simclkcnt - sim -- Description: test bench system clock cycle counter -- -- Dependencies: - -- Test bench: - -- Target Devices: generic -- Tool versions: xst 12.1, 13.1; ghdl 0.29 -- -- Revision History: -- Date Rev Version Comment -- 2011-11-12 423 1.0.1 now numeric_std clean -- 2010-11-13 72 1.0 Initial version ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; use work.slvtypes.all; entity simclkcnt is -- test bench system clock cycle counter port ( CLK : in slbit; -- clock CLK_CYCLE : out slv31 -- clock cycle number ); end entity simclkcnt; architecture sim of simclkcnt is signal R_CLKCNT : slv31 := (others=>'0'); begin proc_clk: process (CLK) begin if rising_edge(CLK) then R_CLKCNT <= slv(unsigned(R_CLKCNT) + 1); end if; end process proc_clk; CLK_CYCLE <= R_CLKCNT; end sim;
gpl-2.0
a4a881d4/zcpsm
src/example/eth_hub/vhd/config/Eth_TestSig_Cfg.vhd
1
202
library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; package Eth_TestSig_Cfg is signal g_Test_EthRec_CRCFlag : std_logic; -- ethrx_input; DFE_TR end package;
gpl-2.0
guilhermekrz/Pipeline-Processor
HW_Src/sevenSegment4.vhd
1
5370
library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL; use IEEE.STD_LOGIC_UNSIGNED.ALL; entity sevenSegment4 is port ( sevenSegmentVector4 : OUT std_logic_vector(27 downto 0); numberDesired4 : IN std_logic_vector(15 downto 0); clock, reset : IN std_logic ); end sevenSegment4; architecture behavior of sevenSegment4 is begin process (clock,numberDesired4) BEGIN if (clock'event and clock='1') then case numberDesired4 (3 downto 0) is when "0000"=> sevenSegmentVector4 (6 downto 0) <="0000001";--0 when "0001"=> sevenSegmentVector4 (6 downto 0) <="1001111";--1 when "0010"=> sevenSegmentVector4 (6 downto 0) <="0010010";--2 when "0011"=> sevenSegmentVector4 (6 downto 0) <="0000110";--3 when "0100"=> sevenSegmentVector4 (6 downto 0) <="1001100";--4 when "0101"=> sevenSegmentVector4 (6 downto 0) <="0100100";--5 when "0110"=> sevenSegmentVector4 (6 downto 0) <="0100000";--6 when "0111"=> sevenSegmentVector4 (6 downto 0) <="0001111";--7 when "1000"=> sevenSegmentVector4 (6 downto 0) <="0000000";--8 when "1001"=> sevenSegmentVector4 (6 downto 0) <="0000100";--9 when "1010"=> sevenSegmentVector4 (6 downto 0) <="0001000";--A when "1011"=> sevenSegmentVector4 (6 downto 0) <="1100000";--b when "1100"=> sevenSegmentVector4 (6 downto 0) <="0110001";--C when "1101"=> sevenSegmentVector4 (6 downto 0) <="1000010";--d when "1110"=> sevenSegmentVector4 (6 downto 0) <="0110000";--E when "1111"=> sevenSegmentVector4 (6 downto 0) <="0111000";--F when others=> sevenSegmentVector4 (6 downto 0) <="1111111";--' ' end case; case numberDesired4 (7 downto 4) is when "0000"=> sevenSegmentVector4 (13 downto 7) <="0000001";--0 when "0001"=> sevenSegmentVector4 (13 downto 7) <="1001111";--1 when "0010"=> sevenSegmentVector4 (13 downto 7) <="0010010";--2 when "0011"=> sevenSegmentVector4 (13 downto 7) <="0000110";--3 when "0100"=> sevenSegmentVector4 (13 downto 7) <="1001100";--4 when "0101"=> sevenSegmentVector4 (13 downto 7) <="0100100";--5 when "0110"=> sevenSegmentVector4 (13 downto 7) <="0100000";--6 when "0111"=> sevenSegmentVector4 (13 downto 7) <="0001111";--7 when "1000"=> sevenSegmentVector4 (13 downto 7) <="0000000";--8 when "1001"=> sevenSegmentVector4 (13 downto 7) <="0000100";--9 when "1010"=> sevenSegmentVector4 (13 downto 7) <="0001000";--A when "1011"=> sevenSegmentVector4 (13 downto 7) <="1100000";--b when "1100"=> sevenSegmentVector4 (13 downto 7) <="0110001";--C when "1101"=> sevenSegmentVector4 (13 downto 7) <="1000010";--d when "1110"=> sevenSegmentVector4 (13 downto 7) <="0110000";--E when "1111"=> sevenSegmentVector4 (13 downto 7) <="0111000";--F when others=> sevenSegmentVector4 (13 downto 7) <="1111111";--' ' end case; case numberDesired4 (11 downto 8) is when "0000"=> sevenSegmentVector4 (20 downto 14) <="0000001";--0 when "0001"=> sevenSegmentVector4 (20 downto 14) <="1001111";--1 when "0010"=> sevenSegmentVector4 (20 downto 14) <="0010010";--2 when "0011"=> sevenSegmentVector4 (20 downto 14) <="0000110";--3 when "0100"=> sevenSegmentVector4 (20 downto 14) <="1001100";--4 when "0101"=> sevenSegmentVector4 (20 downto 14) <="0100100";--5 when "0110"=> sevenSegmentVector4 (20 downto 14) <="0100000";--6 when "0111"=> sevenSegmentVector4 (20 downto 14) <="0001111";--7 when "1000"=> sevenSegmentVector4 (20 downto 14) <="0000000";--8 when "1001"=> sevenSegmentVector4 (20 downto 14) <="0000100";--9 when "1010"=> sevenSegmentVector4 (20 downto 14) <="0001000";--A when "1011"=> sevenSegmentVector4 (20 downto 14) <="1100000";--b when "1100"=> sevenSegmentVector4 (20 downto 14) <="0110001";--C when "1101"=> sevenSegmentVector4 (20 downto 14) <="1000010";--d when "1110"=> sevenSegmentVector4 (20 downto 14) <="0110000";--E when "1111"=> sevenSegmentVector4 (20 downto 14) <="0111000";--F when others=> sevenSegmentVector4 (20 downto 14) <="1111111";--' ' end case; case numberDesired4 (15 downto 12) is when "0000"=> sevenSegmentVector4 (27 downto 21) <="0000001";--0 when "0001"=> sevenSegmentVector4 (27 downto 21) <="1001111";--1 when "0010"=> sevenSegmentVector4 (27 downto 21) <="0010010";--2 when "0011"=> sevenSegmentVector4 (27 downto 21) <="0000110";--3 when "0100"=> sevenSegmentVector4 (27 downto 21) <="1001100";--4 when "0101"=> sevenSegmentVector4 (27 downto 21) <="0100100";--5 when "0110"=> sevenSegmentVector4 (27 downto 21) <="0100000";--6 when "0111"=> sevenSegmentVector4 (27 downto 21) <="0001111";--7 when "1000"=> sevenSegmentVector4 (27 downto 21) <="0000000";--8 when "1001"=> sevenSegmentVector4 (27 downto 21) <="0000100";--9 when "1010"=> sevenSegmentVector4 (27 downto 21) <="0001000";--A when "1011"=> sevenSegmentVector4 (27 downto 21) <="1100000";--b when "1100"=> sevenSegmentVector4 (27 downto 21) <="0110001";--C when "1101"=> sevenSegmentVector4 (27 downto 21) <="1000010";--d when "1110"=> sevenSegmentVector4 (27 downto 21) <="0110000";--E when "1111"=> sevenSegmentVector4 (27 downto 21) <="0111000";--F when others=> sevenSegmentVector4 (27 downto 21) <="1111111";--' ' end case; end if; end process; end behavior;
gpl-2.0
1995parham/Learning
vhdl/d-latch/d-latch_t.vhd
1
630
-------------------------------------------------------------------------------- -- Author: Parham Alvani ([email protected]) -- -- Create Date: 12-02-2016 -- Module Name: sr-latch_t.vhd -------------------------------------------------------------------------------- library IEEE; use IEEE.std_logic_1164.all; entity d_latch_t is end entity; architecture arch_d_latch_t of d_latch_t is signal d, clk, q, q_not : std_logic := '0'; begin d_latch_1 : entity work.d_latch(beh_arch_d_latch) port map(d, clk, q, q_not); d <= '1', '0' after 5 ns, '0' after 10 ns, '1' after 15 ns; end architecture arch_d_latch_t;
gpl-2.0
1995parham/Learning
vhdl/fulladdr/halfaddr.vhd
1
542
-------------------------------------------------------------------------------- -- Author: Parham Alvani ([email protected]) -- -- Create Date: 08-02-2016 -- Module Name: halfaddr.vhd -------------------------------------------------------------------------------- library IEEE; use IEEE.std_logic_1164.all; entity halfaddr is port(a, b : in std_logic; sum, c_out : out std_logic); end entity halfaddr; architecture arch_halfaddr of halfaddr is begin sum <= a xor b; c_out <= a and b; end architecture arch_halfaddr;
gpl-2.0
a4a881d4/zcpsm
src/example/eth_hub/vhd/macAddress/macAddrConfig.vhd
1
2474
library ieee; use ieee.std_logic_1164.all; use work.eth_config.all; entity macAddrConfig is port ( ethtx_port_id : in std_logic_vector(7 downto 0); ethrx_port_id : in std_logic_vector(7 downto 0); db_port_id : in std_logic_vector(7 downto 0); local_id_MAC0_Req : in std_logic_vector(7 downto 0); local_id_MAC0_A : in std_logic_vector(7 downto 0); local_id_MAC0_B : in std_logic_vector(7 downto 0); local_id : in std_logic_vector(39 downto 0); ethtx_in_port : out std_logic_vector(7 downto 0); ethrx_in_port : out std_logic_vector(7 downto 0); db_in_port : out std_logic_vector(7 downto 0) ); end macAddrConfig; architecture behave of macAddrConfig is begin ethtx_in_port <= local_id_MAC0_Req when ethtx_port_id = PORT_ETH_LOCAL_ID_0_REQ else local_id_MAC0_A when ethtx_port_id = PORT_ETH_LOCAL_ID_0_A else local_id_MAC0_B when ethtx_port_id = PORT_ETH_LOCAL_ID_0_B else local_id( 39 downto 32 ) when ethtx_port_id = PORT_ETH_LOCAL_ID_1 else local_id( 31 downto 24 ) when ethtx_port_id = PORT_ETH_LOCAL_ID_2 else local_id( 23 downto 16 ) when ethtx_port_id = PORT_ETH_LOCAL_ID_3 else local_id( 15 downto 8 ) when ethtx_port_id = PORT_ETH_LOCAL_ID_4 else local_id( 7 downto 0 ) when ethtx_port_id = PORT_ETH_LOCAL_ID_5 else (others => 'Z'); ethrx_in_port <= local_id_MAC0_A when ethrx_port_id = PORT_ETH_LOCAL_ID_0_A else local_id_MAC0_B when ethrx_port_id = PORT_ETH_LOCAL_ID_0_B else local_id( 39 downto 32 ) when ethrx_port_id = PORT_ETH_LOCAL_ID_1 else local_id( 31 downto 24 ) when ethrx_port_id = PORT_ETH_LOCAL_ID_2 else local_id( 23 downto 16 ) when ethrx_port_id = PORT_ETH_LOCAL_ID_3 else local_id( 15 downto 8 ) when ethrx_port_id = PORT_ETH_LOCAL_ID_4 else local_id( 7 downto 0 ) when ethrx_port_id = PORT_ETH_LOCAL_ID_5 else (others => 'Z'); db_in_port <= local_id_MAC0_A when db_port_id = PORT_DB_LOCAL_ID_0_A else local_id_MAC0_B when db_port_id = PORT_DB_LOCAL_ID_0_B else local_id( 39 downto 32 ) when db_port_id = PORT_DB_LOCAL_ID_1 else local_id( 31 downto 24 ) when db_port_id = PORT_DB_LOCAL_ID_2 else local_id( 23 downto 16 ) when db_port_id = PORT_DB_LOCAL_ID_3 else local_id( 15 downto 8 ) when db_port_id = PORT_DB_LOCAL_ID_4 else local_id( 7 downto 0 ) when db_port_id = PORT_DB_LOCAL_ID_5 else (others => 'Z'); end behave;
gpl-2.0
paulprozesky/shiny-octo-wookie
mkat/pfb_bb/pfb_core_snbxfft.vhd
1
569
library IEEE; use IEEE.std_logic_1164.all; entity pfb_core_snbxfft is port ( ce_1: in std_logic; clk_1: in std_logic; en_in: in std_logic; pol0_in: in std_logic_vector(35 downto 0); pol1_in: in std_logic_vector(35 downto 0); sync_in: in std_logic; en_out: out std_logic; pol0_out: out std_logic_vector(35 downto 0); pol1_out: out std_logic_vector(35 downto 0); specsync_out: out std_logic; sync_out: out std_logic ); end pfb_core_snbxfft; architecture structural of pfb_core_snbxfft is begin end structural;
gpl-2.0
paulprozesky/shiny-octo-wookie
mkat/pfb_bb/pfb_core.vhd
1
609
library IEEE; use IEEE.std_logic_1164.all; entity pfb_core is port ( ce_1: in std_logic; clk_1: in std_logic; en_in: in std_logic; pol0_in: in std_logic_vector(79 downto 0); pol1_in: in std_logic_vector(79 downto 0); shift_in: in std_logic_vector(31 downto 0); sync_in: in std_logic; en_out: out std_logic; of_out: out std_logic_vector(1 downto 0); pol0_out: out std_logic_vector(143 downto 0); pol1_out: out std_logic_vector(143 downto 0); sync_out: out std_logic ); end pfb_core; architecture structural of pfb_core is begin end structural;
gpl-2.0
kristapsdreija/IGLOO_NANO_FPGA_VGA_Generator_Libero_SoC
IGLOO_Updated_VGA/hdl/my.vhd
1
3927
-------------------------------------------------------------------------------- -- Company: <Name> -- -- File: my.vhd -- File history: -- <Revision number>: <Date>: <Comments> -- <Revision number>: <Date>: <Comments> -- <Revision number>: <Date>: <Comments> -- -- Description: -- -- Proceduuras dazhaadu figuuru ziimeeshanai uz ekraana. -- -- Targeted device: <Family::IGLOO> <Die::AGLN250V2Z> <Package::100 VQFP> -- Author: <Name> -- -------------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; --h_pulse : INTEGER := 96; --horiztonal sync pulse width in pixels 800 un 525 --h_bp : INTEGER := 48; --horiztonal back porch width in pixels --h_pixels : INTEGER := 640; --horiztonal display width in pixels --h_fp : INTEGER := 16; --horiztonal front porch width in pixels --v_pulse : INTEGER := 2; --vertical sync pulse width in rows --v_bp : INTEGER := 33; --vertical back porch width in rows --v_pixels : INTEGER := 480; --vertical display width in rows --v_fp : INTEGER := 10 --vertical front porch width in rows --h_pulse : INTEGER := 112; --horiztonal sync pulse width in pixels 1688 un 1066 --h_bp : INTEGER := 248; --horiztonal back porch width in pixels --h_pixels : INTEGER := 1280; --horiztonal display width in pixels --h_fp : INTEGER := 48; --horiztonal front porch width in pixels --v_pulse : INTEGER := 3; --vertical sync pulse width in rows --v_bp : INTEGER := 38; --vertical back porch width in rows --v_pixels : INTEGER := 1024; --vertical display width in rows --v_fp : INTEGER := 1 --vertical front porch width in rows --h_pulse : INTEGER := 128; --horiztonal sync pulse width in pixels 1056 un 628 --h_bp : INTEGER := 88; --horiztonal back porch width in pixels --h_pixels : INTEGER := 800; --horiztonal display width in pixels --h_fp : INTEGER := 40; --horiztonal front porch width in pixels --v_pulse : INTEGER := 4; --vertical sync pulse width in rows --v_bp : INTEGER := 23; --vertical back porch width in rows --v_pixels : INTEGER := 600; --vertical display width in rows --v_fp : INTEGER := 1 --vertical front porch width in rows PACKAGE MY IS --------------------------------------------------------- -- Procedura sanjem pashreizejas koordinatas ekrana un -- -- ari koordinatu, no kuras sakt zimet kvadratu. -- -- Procedura atgriez RGB signalu un DRAW indikatoru, -- -- kursh pasaka, vai tiek zimets vai ne. -- --------------------------------------------------------- PROCEDURE SQ( SIGNAL Xcur : IN INTEGER RANGE 0 TO 1688; SIGNAL Ycur : IN INTEGER RANGE 0 TO 1066; SIGNAL Xpos : IN INTEGER RANGE 0 TO 1688; SIGNAL Ypos : IN INTEGER RANGE 0 TO 1688; SIGNAL RGB : OUT STD_LOGIC; SIGNAL DRAW : OUT STD_LOGIC ); END MY; PACKAGE BODY MY IS PROCEDURE SQ( SIGNAL Xcur : IN INTEGER RANGE 0 TO 1688; SIGNAL Ycur : IN INTEGER RANGE 0 TO 1066; SIGNAL Xpos : IN INTEGER RANGE 0 TO 1688; SIGNAL Ypos : IN INTEGER RANGE 0 TO 1688; SIGNAL RGB : OUT STD_LOGIC; SIGNAL DRAW : OUT STD_LOGIC ) IS BEGIN IF(Xcur>Xpos AND Xcur<(Xpos+100) AND Ycur>Ypos AND Ycur<(Ypos+100))THEN -- 100x100 pikselu kvadrats. RGB<='1'; DRAW<='1'; ELSE DRAW<='0'; END IF; END SQ; END MY;
gpl-2.0
vscosta/doxygen-yap
examples/mux.vhdl
37
860
------------------------------------------------------- --! @file --! @brief 2:1 Mux using with-select ------------------------------------------------------- --! Use standard library library ieee; --! Use logic elements use ieee.std_logic_1164.all; --! Mux entity brief description --! Detailed description of this --! mux design element. entity mux_using_with is port ( din_0 : in std_logic; --! Mux first input din_1 : in std_logic; --! Mux Second input sel : in std_logic; --! Select input mux_out : out std_logic --! Mux output ); end entity; --! @brief Architecture definition of the MUX --! @details More details about this mux element. architecture behavior of mux_using_with is begin with (sel) select mux_out <= din_0 when '0', din_1 when others; end architecture;
gpl-2.0
gyurco/ZX_Spectrum-128K_MIST
sp0256.vhd
1
13381
--------------------------------------------------------------------------------- -- sp0256 by Dar ([email protected]) (14/04/2018) -- http://darfpga.blogspot.fr --------------------------------------------------------------------------------- -- Educational use only -- Do not redistribute synthetized file with roms -- Do not redistribute roms whatever the form -- Use at your own risk --------------------------------------------------------------------------------- -- -- SP0256-al2 prom decoding scheme and speech synthesis algorithm are from : -- -- Copyright Joseph Zbiciak, all rights reserved. -- Copyright tim lindner, all rights reserved. -- -- See C source code and license in sp0256.c from MAME source -- -- VHDL code is by Dar. -- --------------------------------------------------------------------------------- -- -- One allophone is made of N parts (called here after lines), each part has a -- 16 bytes descriptor. One descriptor (for one part) contains one repeat value -- one amplitude value, one period value and 2x6 filtering coefficients. -- -- for line_cnt from 0 to nb_line-1 (part) -- for line_rpt from 0 to line_rpt-1 (repeat) -- for per_cnt from 0 to line_per-1 (period) -- produce 1 sample -- -- One sample is the output of the 6 stages filter. Each filter stage is fed by -- the output of the previous stage, the first stage is fed by the source sample -- -- when line_per != 0 source sample is set to amplitude value only once at the -- begin of each repeat (per_cnt==0) then source sample is set to 0 -- -- when line_per == 0 source sample is set to amplitude value only at the begin -- of each repeat (per_cnt==0) then source sample sign is toggled (+/-) when then -- random noise generator lsb equal 1. In that case actual line_per is set to 64 -- -- -- Sound sample frequency is 10kHz. I make a 25 stages linear state machine -- running at 250kHz that produce one sound sample per cycle. -- -- As long as one allophones is available the state machine runs permanently and -- there is zero latency between allophones. -- -- During one (each) cycle the state machine: -- -- - fetch new allophone or go on with current one if not finished -- - get allophone first line descriptor address from rom entry table -- - get allophone nb_line from rom entry table and jump to first line address -- - get allophone line_rpt from rom current line descriptor -- - get allophone amplitude from rom current line descriptor -- manage source amplitude, reset filter if needed -- - get allophone line_per from rom current line descriptor -- - address filter coefficients F/B within rom current line descriptor, -- feed filter input, update filter state with computation output -- - rescale last filter stage output to audio output -- - manage per_cnt, rpt_cnt, line_cnt and random noise generator -- -- Filter computation: -- -- Filter coefficients F or B index is get from rom current line descriptor -- (address managed by state machine), value is converted thru coeff_array -- table. Coefficient index has a sign bit to be managed: -- -- if index sign bit = 0, filter coefficient <= -coeff_array(index) -- if index sign bit = 1, filter coefficient <= coeff_array(-index) -- -- During one state machine cycle each filter is updated once. -- One filter update require two state machine steps: -- -- step 1 -- sum_in1 <= filter input -- sum_in2 <= filter coefficient F * filter state z1 / 256 -- sum_out <= sum_in1 + sum_in2 -- step 2 -- sum_in1 <= sum_out -- sum_in2 <= filter coefficient B * filter state z2 / 512 -- sum_out <= sum_in1 + sum_in2 -- filter state z1 <= sum_in1 + sum_in2 -- filter state z2 <= filter state z1 -- -- (sum_out will be limited to -32768/+32767) -- -- Audio output scaling to 10bits unsigned: -- -- what : -- Last filter output is limited to -8192/+8191 -- Then divided by 16 => -512/+511 -- Then offset by 512 => 0/1023 -- -- how: -- if X > 8191, Y <= 1023 -- elsif X < -8192, Y <= 0 -- else Y <= (X/16)+512 -- --------------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.ALL; use ieee.std_logic_unsigned.all; use ieee.numeric_std.all; entity sp0256 is port ( clock : in std_logic; clock_250k_en : in std_logic; reset : in std_logic; input_rdy : out std_logic; allophone : in std_logic_vector(5 downto 0); trig_allophone : in std_logic; audio_out : out std_logic_vector(9 downto 0) ); end sp0256; architecture syn of sp0256 is signal clock_n : std_logic; signal rom_addr : std_logic_vector(11 downto 0); signal rom_do : std_logic_vector( 7 downto 0); signal stage : integer range 0 to 24; -- stage counter 0-24; signal allophone_latch : std_logic_vector(5 downto 0); signal allo_entry : std_logic_vector(7 downto 0); signal allo_addr_lsb, allo_addr_msb : std_logic_vector(7 downto 0); signal allo_nb_line : std_logic_vector(7 downto 0); signal line_rpt, line_per : std_logic_vector(7 downto 0); signal line_amp_lsb, line_amp_msb : std_logic_vector(7 downto 0); signal amp, filter, coeff : signed(15 downto 0); signal sum_in2 : signed(31 downto 0); signal sum_in1,sum_out_ul : signed(15 downto 0); signal sum_out : signed(15 downto 0); signal divider : std_logic; signal audio : signed(15 downto 0); signal is_noise : std_logic; signal noise_rng : std_logic_vector(15 downto 0) := X"0001"; signal f0_z1,f0_z2 : signed(15 downto 0); signal f1_z1,f1_z2 : signed(15 downto 0); signal f2_z1,f2_z2 : signed(15 downto 0); signal f3_z1,f3_z2 : signed(15 downto 0); signal f4_z1,f4_z2 : signed(15 downto 0); signal f5_z1,f5_z2 : signed(15 downto 0); signal input_rdy_in : std_logic; signal sound_on : std_logic := '0'; signal trig_allophone_r : std_logic; signal line_cnt, rpt_cnt, per_cnt : std_logic_vector(7 downto 0); signal coeff_idx : std_logic_vector(6 downto 0); type coeff_array_t is array(0 to 127) of integer range 0 to 511; signal coeff_array : coeff_array_t := ( 0, 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 105, 113, 121, 129, 137, 145, 153, 161, 169, 177, 185, 193, 201, 209, 217, 225, 233, 241, 249, 257, 265, 273, 281, 289, 297, 301, 305, 309, 313, 317, 321, 325, 329, 333, 337, 341, 345, 349, 353, 357, 361, 365, 369, 373, 377, 381, 385, 389, 393, 397, 401, 405, 409, 413, 417, 421, 425, 427, 429, 431, 433, 435, 437, 439, 441, 443, 445, 447, 449, 451, 453, 455, 457, 459, 461, 463, 465, 467, 469, 471, 473, 475, 477, 479, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511); begin input_rdy <= input_rdy_in; -- stage counter : Fs=250k/25 = 10kHz process (clock, reset) begin if reset='1' then stage <= 0; elsif rising_edge(clock) then if clock_250k_en = '1' then if stage >= 24 then stage <= 0; else stage <= stage + 1; end if; end if; end if; end process; process (clock, reset) begin if reset='1' then input_rdy_in <= '1'; sound_on <= '0'; noise_rng <= X"0001"; elsif rising_edge(clock) then trig_allophone_r <= trig_allophone; if trig_allophone = '1' and trig_allophone_r = '0' then input_rdy_in <= '0'; allophone_latch <= allophone; end if; if clock_250k_en = '1' then if sound_on = '0' then if stage = 0 and input_rdy_in = '0' then allo_entry <= allophone_latch*"11"; rom_addr <= X"0"&(allophone_latch*"11"); line_cnt <= (others => '0'); rpt_cnt <= (others => '0'); per_cnt <= (others => '0'); sound_on <= '1'; input_rdy_in <= '1'; end if; else -- sound is on case stage is when 0 => rom_addr <= X"0"&allo_entry; when 1 => allo_addr_msb <= rom_do; rom_addr <= rom_addr + '1'; when 2 => allo_addr_lsb <= rom_do; rom_addr <= rom_addr + '1'; when 3 => allo_nb_line <= rom_do - '1'; rom_addr <= (allo_addr_lsb +line_cnt) & X"0"; when 4 => line_rpt <= rom_do - '1'; rom_addr <= rom_addr + '1'; when 5 => line_amp_msb <= rom_do; rom_addr <= rom_addr + '1'; when 6 => if per_cnt = X"00" then amp <= signed(line_amp_msb & rom_do); else if is_noise = '1' then if noise_rng(0) = '1' then amp <= -amp; end if; else amp <= (others => '0'); end if; end if; if per_cnt = X"00"then f0_z1 <= (others => '0'); f0_z2 <= (others => '0'); f1_z1 <= (others => '0'); f1_z2 <= (others => '0'); f2_z1 <= (others => '0'); f2_z2 <= (others => '0'); f3_z1 <= (others => '0'); f3_z2 <= (others => '0'); f4_z1 <= (others => '0'); f4_z2 <= (others => '0'); f5_z1 <= (others => '0'); f5_z2 <= (others => '0'); end if; rom_addr <= rom_addr + '1'; when 7 => if rom_do = X"00" then line_per <= X"40"; is_noise <= '1'; else line_per <= rom_do - '1'; is_noise <= '0'; end if; sum_in1 <= amp; filter <= f0_z1; divider <= '0'; rom_addr <= rom_addr + '1'; when 8 => sum_in1 <= sum_out; filter <= f0_z2; divider <= '1'; rom_addr <= rom_addr + '1'; when 9 => f0_z1 <= sum_out; f0_z2 <= f0_z1; sum_in1 <= sum_out; filter <= f1_z1; divider <= '0'; rom_addr <= rom_addr + '1'; when 10 => sum_in1 <= sum_out; filter <= f1_z2; divider <= '1'; rom_addr <= rom_addr + '1'; when 11 => f1_z1 <= sum_out; f1_z2 <= f1_z1; sum_in1 <= sum_out; filter <= f2_z1; divider <= '0'; rom_addr <= rom_addr + '1'; when 12 => sum_in1 <= sum_out; filter <= f2_z2; divider <= '1'; rom_addr <= rom_addr + '1'; when 13 => f2_z1 <= sum_out; f2_z2 <= f2_z1; sum_in1 <= sum_out; filter <= f3_z1; divider <= '0'; rom_addr <= rom_addr + '1'; when 14 => sum_in1 <= sum_out; filter <= f3_z2; divider <= '1'; rom_addr <= rom_addr + '1'; when 15 => f3_z1 <= sum_out; f3_z2 <= f3_z1; sum_in1 <= sum_out; filter <= f4_z1; divider <= '0'; rom_addr <= rom_addr + '1'; when 16 => sum_in1 <= sum_out; filter <= f4_z2; divider <= '1'; rom_addr <= rom_addr + '1'; when 17 => f4_z1 <= sum_out; f4_z2 <= f4_z1; sum_in1 <= sum_out; filter <= f5_z1; divider <= '0'; rom_addr <= rom_addr + '1'; when 18 => sum_in1 <= sum_out; filter <= f5_z2; divider <= '1'; rom_addr <= rom_addr + '1'; when 19 => f5_z1 <= sum_out; f5_z2 <= f5_z1; if sum_out > 510*16 then audio <= to_signed(1023,16); elsif sum_out < -510*16 then audio <= to_signed(0,16); else audio <= (sum_out/16)+X"0200"; end if; when 20 => if per_cnt >= line_per then per_cnt <= (others => '0'); if rpt_cnt >= line_rpt then rpt_cnt <= (others => '0'); if line_cnt >= allo_nb_line then line_cnt <= (others => '0'); sound_on <= '0'; else line_cnt <= line_cnt + '1'; end if; is_noise <= '0'; else rpt_cnt <= rpt_cnt + '1'; end if; else per_cnt <= per_cnt + '1'; end if; if noise_rng(0) = '1' then noise_rng <= ('0' & noise_rng(15 downto 1) ) xor X"4001"; else noise_rng <= '0' & noise_rng(15 downto 1); end if; when others => null; end case; end if; end if; end if; end process; audio_out <= std_logic_vector(unsigned(audio(9 downto 0))); -- filter computation coeff_idx <= rom_do(6 downto 0) when rom_do(7)='0' else not(rom_do(6 downto 0)) + '1'; coeff <= -to_signed(coeff_array(to_integer(unsigned(coeff_idx))),16) when rom_do(7)='0' else to_signed(coeff_array(to_integer(unsigned(coeff_idx))),16); sum_in2 <= (filter * coeff) / 256 when divider = '0' else (filter * coeff) / 512 ; sum_out_ul <= sum_in1 + sum_in2(15 downto 0); sum_out <= to_signed( 32767,16) when sum_out_ul > 32767 else to_signed(-32768,16) when sum_out_ul < -32768 else sum_out_ul; -- sp0256-al2 prom (decoded) sp0256_al2_decoded : entity work.sp0256_al2_decoded port map( clk => clock, addr => rom_addr, data => rom_do ); end syn;
gpl-2.0
vad-rulezz/megabot
fusesoc/orpsoc-cores/trunk/systems/neek/backend/rtl/verilog/ddr_ctrl_ip/ddr_ctrl_ip_phy_alt_mem_phy_seq.vhd
4
648170
-- -- ----------------------------------------------------------------------------- -- Abstract : constants package for the non-levelling AFI PHY sequencer -- The constant package (alt_mem_phy_constants_pkg) contains global -- 'constants' which are fixed thoughout the sequencer and will not -- change (for constants which may change between sequencer -- instances generics are used) -- ----------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; -- package ddr_ctrl_ip_phy_alt_mem_phy_constants_pkg is -- ------------------------------- -- Register number definitions -- ------------------------------- constant c_max_mode_reg_index : natural := 13; -- number of MR bits.. -- Top bit of vector (i.e. width -1) used for address decoding : constant c_debug_reg_addr_top : natural := 3; constant c_mmi_access_codeword : std_logic_vector(31 downto 0) := X"00D0_0DEB"; -- to check for legal Avalon interface accesses -- Register addresses. constant c_regofst_cal_status : natural := 0; constant c_regofst_debug_access : natural := 1; constant c_regofst_hl_css : natural := 2; constant c_regofst_mr_register_a : natural := 5; constant c_regofst_mr_register_b : natural := 6; constant c_regofst_codvw_status : natural := 12; constant c_regofst_if_param : natural := 13; constant c_regofst_if_test : natural := 14; -- pll_phs_shft, ac_1t, extra stuff constant c_regofst_test_status : natural := 15; constant c_hl_css_reg_cal_dis_bit : natural := 0; constant c_hl_css_reg_phy_initialise_dis_bit : natural := 1; constant c_hl_css_reg_init_dram_dis_bit : natural := 2; constant c_hl_css_reg_write_ihi_dis_bit : natural := 3; constant c_hl_css_reg_write_btp_dis_bit : natural := 4; constant c_hl_css_reg_write_mtp_dis_bit : natural := 5; constant c_hl_css_reg_read_mtp_dis_bit : natural := 6; constant c_hl_css_reg_rrp_reset_dis_bit : natural := 7; constant c_hl_css_reg_rrp_sweep_dis_bit : natural := 8; constant c_hl_css_reg_rrp_seek_dis_bit : natural := 9; constant c_hl_css_reg_rdv_dis_bit : natural := 10; constant c_hl_css_reg_poa_dis_bit : natural := 11; constant c_hl_css_reg_was_dis_bit : natural := 12; constant c_hl_css_reg_adv_rd_lat_dis_bit : natural := 13; constant c_hl_css_reg_adv_wr_lat_dis_bit : natural := 14; constant c_hl_css_reg_prep_customer_mr_setup_dis_bit : natural := 15; constant c_hl_css_reg_tracking_dis_bit : natural := 16; constant c_hl_ccs_num_stages : natural := 17; -- ----------------------------------------------------- -- Constants for DRAM addresses used during calibration: -- ----------------------------------------------------- -- the mtp training pattern is x30F5 -- 1. write 0011 0000 and 1100 0000 such that one location will contains 0011 0000 -- 2. write in 1111 0101 -- also require locations containing all ones and all zeros -- default choice of calibration burst length (overriden to 8 for reads for DDR3 devices) constant c_cal_burst_len : natural := 4; constant c_cal_ofs_step_size : natural := 8; constant c_cal_ofs_zeros : natural := 0 * c_cal_ofs_step_size; constant c_cal_ofs_ones : natural := 1 * c_cal_ofs_step_size; constant c_cal_ofs_x30_almt_0 : natural := 2 * c_cal_ofs_step_size; constant c_cal_ofs_x30_almt_1 : natural := 3 * c_cal_ofs_step_size; constant c_cal_ofs_xF5 : natural := 5 * c_cal_ofs_step_size; constant c_cal_ofs_wd_lat : natural := 6 * c_cal_ofs_step_size; constant c_cal_data_len : natural := c_cal_ofs_wd_lat + c_cal_ofs_step_size; constant c_cal_ofs_mtp : natural := 6*c_cal_ofs_step_size; constant c_cal_ofs_mtp_len : natural := 4*4; constant c_cal_ofs_01_pairs : natural := 2 * c_cal_burst_len; constant c_cal_ofs_10_pairs : natural := 3 * c_cal_burst_len; constant c_cal_ofs_1100_step : natural := 4 * c_cal_burst_len; constant c_cal_ofs_0011_step : natural := 5 * c_cal_burst_len; -- ----------------------------------------------------- -- Reset values. - These are chosen as default values for one PHY variation -- with DDR2 memory and CAS latency 6, however in each calibration -- mode these values will be set for a given PHY configuration. -- ----------------------------------------------------- constant c_default_rd_lat : natural := 20; constant c_default_wr_lat : natural := 5; -- ----------------------------------------------------- -- Errorcodes -- ----------------------------------------------------- -- implemented constant C_SUCCESS : natural := 0; constant C_ERR_RESYNC_NO_VALID_PHASES : natural := 5; -- No valid data-valid windows found constant C_ERR_RESYNC_MULTIPLE_EQUAL_WINDOWS : natural := 6; -- Multiple equally-sized data valid windows constant C_ERR_RESYNC_NO_INVALID_PHASES : natural := 7; -- No invalid data-valid windows found. Training patterns are designed so that there should always be at least one invalid phase. constant C_ERR_CRITICAL : natural := 15; -- A condition that can't happen just happened. constant C_ERR_READ_MTP_NO_VALID_ALMT : natural := 23; constant C_ERR_READ_MTP_BOTH_ALMT_PASS : natural := 24; constant C_ERR_WD_LAT_DISAGREEMENT : natural := 22; -- MEM_IF_DWIDTH/MEM_IF_DQ_PER_DQS copies of write-latency are written to memory. If all of these are not the same this error is generated. constant C_ERR_MAX_RD_LAT_EXCEEDED : natural := 25; constant C_ERR_MAX_TRK_SHFT_EXCEEDED : natural := 26; -- not implemented yet constant c_err_ac_lat_some_beats_are_different : natural := 1; -- implies DQ_1T setup failure or earlier. constant c_err_could_not_find_read_lat : natural := 2; -- dodgy RDP setup constant c_err_could_not_find_write_lat : natural := 3; -- dodgy WDP setup constant c_err_clock_cycle_iteration_timeout : natural := 8; -- depends on srate calling error -- GENERIC constant c_err_clock_cycle_it_timeout_rdp : natural := 9; constant c_err_clock_cycle_it_timeout_rdv : natural := 10; constant c_err_clock_cycle_it_timeout_poa : natural := 11; constant c_err_pll_ack_timeout : natural := 13; constant c_err_WindowProc_multiple_rsc_windows : natural := 16; constant c_err_WindowProc_window_det_no_ones : natural := 17; constant c_err_WindowProc_window_det_no_zeros : natural := 18; constant c_err_WindowProc_undefined : natural := 19; -- catch all constant c_err_tracked_mmc_offset_overflow : natural := 20; constant c_err_no_mimic_feedback : natural := 21; constant c_err_ctrl_ack_timeout : natural := 32; constant c_err_ctrl_done_timeout : natural := 33; -- ----------------------------------------------------- -- PLL phase locations per device family -- (unused but a limited set is maintained here for reference) -- ----------------------------------------------------- constant c_pll_resync_phs_select_ciii : natural := 5; constant c_pll_mimic_phs_select_ciii : natural := 4; constant c_pll_resync_phs_select_siii : natural := 5; constant c_pll_mimic_phs_select_siii : natural := 7; -- ----------------------------------------------------- -- Maximum sizing constraints -- ----------------------------------------------------- constant C_MAX_NUM_PLL_RSC_PHASES : natural := 32; -- ----------------------------------------------------- -- IO control Params -- ----------------------------------------------------- constant c_set_oct_to_rs : std_logic := '0'; constant c_set_oct_to_rt : std_logic := '1'; constant c_set_odt_rt : std_logic := '1'; constant c_set_odt_off : std_logic := '0'; -- end ddr_ctrl_ip_phy_alt_mem_phy_constants_pkg; -- -- ----------------------------------------------------------------------------- -- Abstract : record package for the non-levelling AFI sequencer -- The record package (alt_mem_phy_record_pkg) is used to combine -- command and status signals (into records) to be passed between -- sequencer blocks. It also contains type and record definitions -- for the stages of DRAM memory calibration. -- ----------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; -- package ddr_ctrl_ip_phy_alt_mem_phy_record_pkg is -- set some maximum constraints to bound natural numbers below constant c_max_num_dqs_groups : natural := 24; constant c_max_num_pins : natural := 8; constant c_max_ranks : natural := 16; constant c_max_pll_steps : natural := 80; -- a prefix for all report signals to identify phy and sequencer block -- constant record_report_prefix : string := "ddr_ctrl_ip_phy_alt_mem_phy_record_pkg : "; type t_family is ( cyclone3, stratix2, stratix3 ); -- ----------------------------------------------------------------------- -- the following are required for the non-levelling AFI PHY sequencer block interfaces -- ----------------------------------------------------------------------- -- admin mode register settings (from mmi block) type t_admin_ctrl is record mr0 : std_logic_vector(12 downto 0); mr1 : std_logic_vector(12 downto 0); mr2 : std_logic_vector(12 downto 0); mr3 : std_logic_vector(12 downto 0); end record; function defaults return t_admin_ctrl; -- current admin status type t_admin_stat is record mr0 : std_logic_vector(12 downto 0); mr1 : std_logic_vector(12 downto 0); mr2 : std_logic_vector(12 downto 0); mr3 : std_logic_vector(12 downto 0); init_done : std_logic; end record; function defaults return t_admin_stat; -- mmi to iram ctrl signals type t_iram_ctrl is record addr : natural range 0 to 1023; wdata : std_logic_vector(31 downto 0); write : std_logic; read : std_logic; end record; function defaults return t_iram_ctrl; -- broadcast iram status to mmi and dgrb type t_iram_stat is record rdata : std_logic_vector(31 downto 0); done : std_logic; err : std_logic; err_code : std_logic_vector(3 downto 0); init_done : std_logic; out_of_mem : std_logic; contested_access : std_logic; end record; function defaults return t_iram_stat; -- codvw status signals from dgrb to mmi block type t_dgrb_mmi is record cal_codvw_phase : std_logic_vector(7 downto 0); cal_codvw_size : std_logic_vector(7 downto 0); codvw_trk_shift : std_logic_vector(11 downto 0); codvw_grt_one_dvw : std_logic; end record; function defaults return t_dgrb_mmi; -- signal to id which block is active type t_ctrl_active_block is ( idle, admin, dgwb, dgrb, proc, -- unused in non-levelling AFI sequencer setup, -- unused in non-levelling AFI sequencer iram ); function ret_proc return t_ctrl_active_block; function ret_dgrb return t_ctrl_active_block; -- control record for dgwb, dgrb, iram and admin blocks: -- the possible commands type t_ctrl_cmd_id is ( cmd_idle, -- initialisation stages cmd_phy_initialise, cmd_init_dram, cmd_prog_cal_mr, cmd_write_ihi, -- calibration stages cmd_write_btp, cmd_write_mtp, cmd_read_mtp, cmd_rrp_reset, cmd_rrp_sweep, cmd_rrp_seek, cmd_rdv, cmd_poa, cmd_was, -- advertise controller settings and re-configure for customer operation mode. cmd_prep_adv_rd_lat, cmd_prep_adv_wr_lat, cmd_prep_customer_mr_setup, cmd_tr_due ); -- which block should execute each command function curr_active_block ( ctrl_cmd_id : t_ctrl_cmd_id ) return t_ctrl_active_block; -- specify command operands as a record type t_command_op is record current_cs : natural range 0 to c_max_ranks-1; -- which chip select is being calibrated single_bit : std_logic; -- current operation should be single bit mtp_almt : natural range 0 to 1; -- signals mtp alignment to be used for operation end record; function defaults return t_command_op; -- command request record (sent to each block) type t_ctrl_command is record command : t_ctrl_cmd_id; command_op : t_command_op; command_req : std_logic; end record; function defaults return t_ctrl_command; -- a generic status record for each block type t_ctrl_stat is record command_ack : std_logic; command_done : std_logic; command_result : std_logic_vector(7 downto 0 ); command_err : std_logic; end record; function defaults return t_ctrl_stat; -- push interface for dgwb / dgrb blocks (only the dgrb uses this interface at present) type t_iram_push is record iram_done : std_logic; iram_write : std_logic; iram_wordnum : natural range 0 to 511; -- acts as an offset to current location (max = 80 pll steps *2 sweeps and 80 pins) iram_bitnum : natural range 0 to 31; -- for bitwise packing modes iram_pushdata : std_logic_vector(31 downto 0); -- only bit zero used for bitwise packing_mode end record; function defaults return t_iram_push; -- control block "master" state machine type t_master_sm_state is ( s_reset, s_phy_initialise, -- wait for dll lock and init done flag from iram s_init_dram, -- dram initialisation - reset sequence s_prog_cal_mr, -- dram initialisation - programming mode registers (once per chip select) s_write_ihi, -- write header information in iRAM s_cal, -- check if calibration to be executed s_write_btp, -- write burst training pattern s_write_mtp, -- write more training pattern s_read_mtp, -- read training patterns to find correct alignment for 1100 burst -- (this is a special case of s_rrp_seek with no resych phase setting) s_rrp_reset, -- read resync phase setup - reset initial conditions s_rrp_sweep, -- read resync phase setup - sweep phases per chip select s_rrp_seek, -- read resync phase setup - seek correct phase s_rdv, -- read data valid setup s_was, -- write datapath setup (ac to write data timing) s_adv_rd_lat, -- advertise read latency s_adv_wr_lat, -- advertise write latency s_poa, -- calibrate the postamble (dqs based capture only) s_tracking_setup, -- perform tracking (1st pass to setup mimic window) s_prep_customer_mr_setup, -- apply user mode register settings (in admin block) s_tracking, -- perform tracking (subsequent passes in user mode) s_operational, -- calibration successful and in user mode s_non_operational -- calibration unsuccessful and in user mode ); -- record (set in mmi block) to disable calibration states type t_hl_css_reg is record phy_initialise_dis : std_logic; init_dram_dis : std_logic; write_ihi_dis : std_logic; cal_dis : std_logic; write_btp_dis : std_logic; write_mtp_dis : std_logic; read_mtp_dis : std_logic; rrp_reset_dis : std_logic; rrp_sweep_dis : std_logic; rrp_seek_dis : std_logic; rdv_dis : std_logic; poa_dis : std_logic; was_dis : std_logic; adv_rd_lat_dis : std_logic; adv_wr_lat_dis : std_logic; prep_customer_mr_setup_dis : std_logic; tracking_dis : std_logic; end record; function defaults return t_hl_css_reg; -- record (set in ctrl block) to identify when a command has been acknowledged type t_cal_stage_ack_seen is record cal : std_logic; phy_initialise : std_logic; init_dram : std_logic; write_ihi : std_logic; write_btp : std_logic; write_mtp : std_logic; read_mtp : std_logic; rrp_reset : std_logic; rrp_sweep : std_logic; rrp_seek : std_logic; rdv : std_logic; poa : std_logic; was : std_logic; adv_rd_lat : std_logic; adv_wr_lat : std_logic; prep_customer_mr_setup : std_logic; tracking_setup : std_logic; end record; function defaults return t_cal_stage_ack_seen; -- ctrl to mmi block interface (calibration status) type t_ctrl_mmi is record master_state_r : t_master_sm_state; ctrl_calibration_success : std_logic; ctrl_calibration_fail : std_logic; ctrl_current_stage_done : std_logic; ctrl_current_stage : t_ctrl_cmd_id; ctrl_current_active_block : t_ctrl_active_block; ctrl_cal_stage_ack_seen : t_cal_stage_ack_seen; ctrl_err_code : std_logic_vector(7 downto 0); end record; function defaults return t_ctrl_mmi; -- mmi to ctrl block interface (calibration control signals) type t_mmi_ctrl is record hl_css : t_hl_css_reg; calibration_start : std_logic; tracking_period_ms : natural range 0 to 255; tracking_orvd_to_10ms : std_logic; end record; function defaults return t_mmi_ctrl; -- algorithm parameterisation (generated in mmi block) type t_algm_paramaterisation is record num_phases_per_tck_pll : natural range 1 to c_max_pll_steps; nominal_dqs_delay : natural range 0 to 4; pll_360_sweeps : natural range 0 to 15; nominal_poa_phase_lead : natural range 0 to 7; maximum_poa_delay : natural range 0 to 15; odt_enabled : boolean; extend_octrt_by : natural range 0 to 15; delay_octrt_by : natural range 0 to 15; tracking_period_ms : natural range 0 to 255; end record; -- interface between mmi and pll to control phase shifting type t_mmi_pll_reconfig is record pll_phs_shft_phase_sel : natural range 0 to 15; pll_phs_shft_up_wc : std_logic; pll_phs_shft_dn_wc : std_logic; end record; type t_pll_mmi is record pll_busy : std_logic; err : std_logic_vector(1 downto 0); end record; -- specify the iram configuration this is default -- currently always dq_bitwise packing and a write mode of overwrite_ram type t_iram_packing_mode is ( dq_bitwise, dq_wordwise ); type t_iram_write_mode is ( overwrite_ram, or_into_ram, and_into_ram ); type t_ctrl_iram is record packing_mode : t_iram_packing_mode; write_mode : t_iram_write_mode; active_block : t_ctrl_active_block; end record; function defaults return t_ctrl_iram; -- ----------------------------------------------------------------------- -- the following are required for compliance to levelling AFI PHY interface but -- are non-functional for non-levelling AFI PHY sequencer -- ----------------------------------------------------------------------- type t_sc_ctrl_if is record read : std_logic; write : std_logic; dqs_group_sel : std_logic_vector( 4 downto 0); sc_in_group_sel : std_logic_vector( 5 downto 0); wdata : std_logic_vector(45 downto 0); op_type : std_logic_vector( 1 downto 0); end record; function defaults return t_sc_ctrl_if; type t_sc_stat is record rdata : std_logic_vector(45 downto 0); busy : std_logic; error_det : std_logic; err_code : std_logic_vector(1 downto 0); sc_cap : std_logic_vector(7 downto 0); end record; function defaults return t_sc_stat; type t_element_to_reconfigure is ( pp_t9, pp_t10, pp_t1, dqslb_rsc_phs, dqslb_poa_phs_ofst, dqslb_dqs_phs, dqslb_dq_phs_ofst, dqslb_dq_1t, dqslb_dqs_1t, dqslb_rsc_1t, dqslb_div2_phs, dqslb_oct_t9, dqslb_oct_t10, dqslb_poa_t7, dqslb_poa_t11, dqslb_dqs_dly, dqslb_lvlng_byps ); type t_sc_type is ( DQS_LB, DQS_DQ_DM_PINS, DQ_DM_PINS, dqs_dqsn_pins, dq_pin, dqs_pin, dm_pin, dq_pins ); type t_sc_int_ctrl is record group_num : natural range 0 to c_max_num_dqs_groups; group_type : t_sc_type; pin_num : natural range 0 to c_max_num_pins; sc_element : t_element_to_reconfigure; prog_val : std_logic_vector(3 downto 0); ram_set : std_logic; sc_update : std_logic; end record; function defaults return t_sc_int_ctrl; -- ----------------------------------------------------------------------- -- record and functions for instant on mode -- ----------------------------------------------------------------------- -- ranges on the below are not important because this logic is not synthesised type t_preset_cal is record codvw_phase : natural range 0 to 2*c_max_pll_steps;-- rsc phase codvw_size : natural range 0 to c_max_pll_steps; -- rsc size (unused but reported) rlat : natural; -- advertised read latency ctl_rlat (in phy clock cycles) rdv_lat : natural; -- read data valid latency decrements needed (in memory clock cycles) wlat : natural; -- advertised write latency ctl_wlat (in phy clock cycles) ac_1t : std_logic; -- address / command 1t delay setting (HR only) poa_lat : natural; -- poa latency decrements needed (in memory clock cycles) end record; -- the below are hardcoded (do not change) constant c_ddr_default_cl : natural := 3; constant c_ddr2_default_cl : natural := 6; constant c_ddr3_default_cl : natural := 6; constant c_ddr2_default_cwl : natural := 5; constant c_ddr3_default_cwl : natural := 5; constant c_ddr2_default_al : natural := 0; constant c_ddr3_default_al : natural := 0; constant c_ddr_default_rl : integer := c_ddr_default_cl; constant c_ddr2_default_rl : integer := c_ddr2_default_cl + c_ddr2_default_al; constant c_ddr3_default_rl : integer := c_ddr3_default_cl + c_ddr3_default_al; constant c_ddr_default_wl : integer := 1; constant c_ddr2_default_wl : integer := c_ddr2_default_cwl + c_ddr2_default_al; constant c_ddr3_default_wl : integer := c_ddr3_default_cwl + c_ddr3_default_al; function defaults return t_preset_cal; function setup_instant_on (sim_time_red : natural; family_id : natural; memory_type : string; dwidth_ratio : natural; pll_steps : natural; mr0 : std_logic_vector(15 downto 0); mr1 : std_logic_vector(15 downto 0); mr2 : std_logic_vector(15 downto 0)) return t_preset_cal; -- end ddr_ctrl_ip_phy_alt_mem_phy_record_pkg; -- package body ddr_ctrl_ip_phy_alt_mem_phy_record_pkg IS -- ----------------------------------------------------------------------- -- function implementations for the above declarations -- these are mainly default conditions for records -- ----------------------------------------------------------------------- function defaults return t_admin_ctrl is variable output : t_admin_ctrl; begin output.mr0 := (others => '0'); output.mr1 := (others => '0'); output.mr2 := (others => '0'); output.mr3 := (others => '0'); return output; end function; function defaults return t_admin_stat is variable output : t_admin_stat; begin output.mr0 := (others => '0'); output.mr1 := (others => '0'); output.mr2 := (others => '0'); output.mr3 := (others => '0'); return output; end function; function defaults return t_iram_ctrl is variable output : t_iram_ctrl; begin output.addr := 0; output.wdata := (others => '0'); output.write := '0'; output.read := '0'; return output; end function; function defaults return t_iram_stat is variable output : t_iram_stat; begin output.rdata := (others => '0'); output.done := '0'; output.err := '0'; output.err_code := (others => '0'); output.init_done := '0'; output.out_of_mem := '0'; output.contested_access := '0'; return output; end function; function defaults return t_dgrb_mmi is variable output : t_dgrb_mmi; begin output.cal_codvw_phase := (others => '0'); output.cal_codvw_size := (others => '0'); output.codvw_trk_shift := (others => '0'); output.codvw_grt_one_dvw := '0'; return output; end function; function ret_proc return t_ctrl_active_block is variable output : t_ctrl_active_block; begin output := proc; return output; end function; function ret_dgrb return t_ctrl_active_block is variable output : t_ctrl_active_block; begin output := dgrb; return output; end function; function defaults return t_ctrl_iram is variable output : t_ctrl_iram; begin output.packing_mode := dq_bitwise; output.write_mode := overwrite_ram; output.active_block := idle; return output; end function; function defaults return t_command_op is variable output : t_command_op; begin output.current_cs := 0; output.single_bit := '0'; output.mtp_almt := 0; return output; end function; function defaults return t_ctrl_command is variable output : t_ctrl_command; begin output.command := cmd_idle; output.command_req := '0'; output.command_op := defaults; return output; end function; -- decode which block is associated with which command function curr_active_block ( ctrl_cmd_id : t_ctrl_cmd_id ) return t_ctrl_active_block is begin case ctrl_cmd_id is when cmd_idle => return idle; when cmd_phy_initialise => return idle; when cmd_init_dram => return admin; when cmd_prog_cal_mr => return admin; when cmd_write_ihi => return iram; when cmd_write_btp => return dgwb; when cmd_write_mtp => return dgwb; when cmd_read_mtp => return dgrb; when cmd_rrp_reset => return dgrb; when cmd_rrp_sweep => return dgrb; when cmd_rrp_seek => return dgrb; when cmd_rdv => return dgrb; when cmd_poa => return dgrb; when cmd_was => return dgwb; when cmd_prep_adv_rd_lat => return dgrb; when cmd_prep_adv_wr_lat => return dgrb; when cmd_prep_customer_mr_setup => return admin; when cmd_tr_due => return dgrb; when others => return idle; end case; end function; function defaults return t_ctrl_stat is variable output : t_ctrl_stat; begin output.command_ack := '0'; output.command_done := '0'; output.command_err := '0'; output.command_result := (others => '0'); return output; end function; function defaults return t_iram_push is variable output : t_iram_push; begin output.iram_done := '0'; output.iram_write := '0'; output.iram_wordnum := 0; output.iram_bitnum := 0; output.iram_pushdata := (others => '0'); return output; end function; function defaults return t_hl_css_reg is variable output : t_hl_css_reg; begin output.phy_initialise_dis := '0'; output.init_dram_dis := '0'; output.write_ihi_dis := '0'; output.cal_dis := '0'; output.write_btp_dis := '0'; output.write_mtp_dis := '0'; output.read_mtp_dis := '0'; output.rrp_reset_dis := '0'; output.rrp_sweep_dis := '0'; output.rrp_seek_dis := '0'; output.rdv_dis := '0'; output.poa_dis := '0'; output.was_dis := '0'; output.adv_rd_lat_dis := '0'; output.adv_wr_lat_dis := '0'; output.prep_customer_mr_setup_dis := '0'; output.tracking_dis := '0'; return output; end function; function defaults return t_cal_stage_ack_seen is variable output : t_cal_stage_ack_seen; begin output.cal := '0'; output.phy_initialise := '0'; output.init_dram := '0'; output.write_ihi := '0'; output.write_btp := '0'; output.write_mtp := '0'; output.read_mtp := '0'; output.rrp_reset := '0'; output.rrp_sweep := '0'; output.rrp_seek := '0'; output.rdv := '0'; output.poa := '0'; output.was := '0'; output.adv_rd_lat := '0'; output.adv_wr_lat := '0'; output.prep_customer_mr_setup := '0'; output.tracking_setup := '0'; return output; end function; function defaults return t_mmi_ctrl is variable output : t_mmi_ctrl; begin output.hl_css := defaults; output.calibration_start := '0'; output.tracking_period_ms := 0; output.tracking_orvd_to_10ms := '0'; return output; end function; function defaults return t_ctrl_mmi is variable output : t_ctrl_mmi; begin output.master_state_r := s_reset; output.ctrl_calibration_success := '0'; output.ctrl_calibration_fail := '0'; output.ctrl_current_stage_done := '0'; output.ctrl_current_stage := cmd_idle; output.ctrl_current_active_block := idle; output.ctrl_cal_stage_ack_seen := defaults; output.ctrl_err_code := (others => '0'); return output; end function; ------------------------------------------------------------------------- -- the following are required for compliance to levelling AFI PHY interface but -- are non-functional for non-levelling AFi PHY sequencer ------------------------------------------------------------------------- function defaults return t_sc_ctrl_if is variable output : t_sc_ctrl_if; begin output.read := '0'; output.write := '0'; output.dqs_group_sel := (others => '0'); output.sc_in_group_sel := (others => '0'); output.wdata := (others => '0'); output.op_type := (others => '0'); return output; end function; function defaults return t_sc_stat is variable output : t_sc_stat; begin output.rdata := (others => '0'); output.busy := '0'; output.error_det := '0'; output.err_code := (others => '0'); output.sc_cap := (others => '0'); return output; end function; function defaults return t_sc_int_ctrl is variable output : t_sc_int_ctrl; begin output.group_num := 0; output.group_type := DQ_PIN; output.pin_num := 0; output.sc_element := pp_t9; output.prog_val := (others => '0'); output.ram_set := '0'; output.sc_update := '0'; return output; end function; -- ----------------------------------------------------------------------- -- functions for instant on mode -- -- -- Guide on how to use: -- -- The following factors effect the setup of the PHY: -- - AC Phase - phase at which address/command signals launched wrt PHY clock -- - this effects the read/write latency -- - MR settings - CL, CWL, AL -- - Data rate - HR or FR (DDR/DDR2 only) -- - Family - datapaths are subtly different for each -- - Memory type - DDR/DDR2/DDR3 (different latency behaviour - see specs) -- -- Instant on mode is designed to work for the following subset of the -- above factors: -- - AC Phase - out of the box defaults, which is 240 degrees for SIII type -- families (includes SIV, HCIII, HCIV), else 90 degrees -- - MR Settings - DDR - CL 3 only -- - DDR2 - CL 3,4,5,6, AL 0 -- - DDR3 - CL 5,6 CWL 5, AL 0 -- - Data rate - All -- - Families - All -- - Memory type - All -- -- Hints on bespoke setup for parameters outside the above or if the -- datapath is modified (only for VHDL sim mode): -- -- Step 1 - Run simulation with REDUCE_SIM_TIME mode 2 (FAST) -- -- Step 2 - From the output log find the following text: -- # ----------------------------------------------------------------------- -- **** ALTMEMPHY CALIBRATION has completed **** -- Status: -- calibration has : PASSED -- PHY read latency (ctl_rlat) is : 14 -- address/command to PHY write latency (ctl_wlat) is : 2 -- read resynch phase calibration report: -- calibrated centre of data valid window phase : 32 -- calibrated centre of data valid window size : 24 -- chosen address and command 1T delay: no 1T delay -- poa 'dec' adjustments = 27 -- rdv 'dec' adjustments = 25 -- # ----------------------------------------------------------------------- -- -- Step 3 - Convert the text to bespoke instant on settings at the end of the -- setup_instant_on function using the -- override_instant_on function, note type is t_preset_cal -- -- The mapping is as follows: -- -- PHY read latency (ctl_rlat) is : 14 => rlat := 14 -- address/command to PHY write latency (ctl_wlat) is : 2 => wlat := 2 -- read resynch phase calibration report: -- calibrated centre of data valid window phase : 32 => codvw_phase := 32 -- calibrated centre of data valid window size : 24 => codvw_size := 24 -- chosen address and command 1T delay: no 1T delay => ac_1t := '0' -- poa 'dec' adjustments = 27 => poa_lat := 27 -- rdv 'dec' adjustments = 25 => rdv_lat := 25 -- -- Step 4 - Try running in REDUCE_SIM_TIME mode 1 (SUPERFAST mode) -- -- Step 5 - If still fails observe the behaviour of the controller, for the -- following symptoms: -- - If first 2 beats of read data lost (POA enable too late) - inc poa_lat by 1 (poa_lat is number of POA decrements not actual latency) -- - If last 2 beats of read data lost (POA enable too early) - dec poa_lat by 1 -- - If ctl_rdata_valid misaligned to ctl_rdata then alter number of RDV adjustments (rdv_lat) -- - If write data is not 4-beat aligned (when written into memory) toggle ac_1t (HR only) -- - If read data is not 4-beat aligned (but write data is) add 360 degrees to phase (PLL_STEPS_PER_CYCLE) mod 2*PLL_STEPS_PER_CYCLE (HR only) -- -- Step 6 - If the above fails revert to REDUCE_SIM_TIME = 2 (FAST) mode -- -- -------------------------------------------------------------------------- -- defaults function defaults return t_preset_cal is variable output : t_preset_cal; begin output.codvw_phase := 0; output.codvw_size := 0; output.wlat := 0; output.rlat := 0; output.rdv_lat := 0; output.ac_1t := '1'; -- default on for FR output.poa_lat := 0; return output; end function; -- Functions to extract values from MR -- return cl (for DDR memory 2*cl because of 1/2 cycle latencies) procedure mr0_to_cl (memory_type : string; mr0 : std_logic_vector(15 downto 0); cl : out natural; half_cl : out std_logic) is variable v_cl : natural; begin half_cl := '0'; if memory_type = "DDR" then -- DDR memories -- returns cl*2 because of 1/2 latencies v_cl := to_integer(unsigned(mr0(5 downto 4))); -- integer values of cl if mr0(6) = '0' then assert v_cl > 1 report record_report_prefix & "invalid cas latency for DDR memory, should be in range 1.5-3" severity failure; end if; if mr0(6) = '1' then assert (v_cl = 1 or v_cl = 2) report record_report_prefix & "invalid cas latency for DDR memory, should be in range 1.5-3" severity failure; half_cl := '1'; end if; elsif memory_type = "DDR2" then -- DDR2 memories v_cl := to_integer(unsigned(mr0(6 downto 4))); -- sanity checks assert (v_cl > 1 and v_cl < 7) report record_report_prefix & "invalid cas latency for DDR2 memory, should be in range 2-6 but equals " & integer'image(v_cl) severity failure; elsif memory_type = "DDR3" then -- DDR3 memories v_cl := to_integer(unsigned(mr0(6 downto 4)))+4; --sanity checks assert mr0(2) = '0' report record_report_prefix & "invalid cas latency for DDR3 memory, bit a2 in mr0 is set" severity failure; assert v_cl /= 4 report record_report_prefix & "invalid cas latency for DDR3 memory, bits a6:4 set to zero" severity failure; else report record_report_prefix & "Undefined memory type " & memory_type severity failure; end if; cl := v_cl; end procedure; function mr1_to_al (memory_type : string; mr1 : std_logic_vector(15 downto 0); cl : natural) return natural is variable al : natural; begin if memory_type = "DDR" then -- DDR memories -- unsupported so return zero al := 0; elsif memory_type = "DDR2" then -- DDR2 memories al := to_integer(unsigned(mr1(5 downto 3))); assert al < 6 report record_report_prefix & "invalid additive latency for DDR2 memory, should be in range 0-5 but equals " & integer'image(al) severity failure; elsif memory_type = "DDR3" then -- DDR3 memories al := to_integer(unsigned(mr1(4 downto 3))); assert al /= 3 report record_report_prefix & "invalid additive latency for DDR2 memory, should be in range 0-5 but equals " & integer'image(al) severity failure; if al /= 0 then -- CL-1 or CL-2 al := cl - al; end if; else report record_report_prefix & "Undefined memory type " & memory_type severity failure; end if; return al; end function; -- return cwl function mr2_to_cwl (memory_type : string; mr2 : std_logic_vector(15 downto 0); cl : natural) return natural is variable cwl : natural; begin if memory_type = "DDR" then -- DDR memories cwl := 1; elsif memory_type = "DDR2" then -- DDR2 memories cwl := cl - 1; elsif memory_type = "DDR3" then -- DDR3 memories cwl := to_integer(unsigned(mr2(5 downto 3))) + 5; --sanity checks assert cwl < 9 report record_report_prefix & "invalid cas write latency for DDR3 memory, should be in range 5-8 but equals " & integer'image(cwl) severity failure; else report record_report_prefix & "Undefined memory type " & memory_type severity failure; end if; return cwl; end function; -- ----------------------------------- -- Functions to determine which family group -- Include any family alias here -- ----------------------------------- function is_siii(family_id : natural) return boolean is begin if family_id = 3 or family_id = 5 then return true; else return false; end if; end function; function is_ciii(family_id : natural) return boolean is begin if family_id = 2 then return true; else return false; end if; end function; function is_aii(family_id : natural) return boolean is begin if family_id = 4 then return true; else return false; end if; end function; function is_sii(family_id : natural) return boolean is begin if family_id = 1 then return true; else return false; end if; end function; -- ----------------------------------- -- Functions to lookup hardcoded values -- on per family basis -- DDR: CL = 3 -- DDR2: CL = 6, CWL = 5, AL = 0 -- DDR3: CL = 6, CWL = 5, AL = 0 -- ----------------------------------- -- default ac phase = 240 function siii_family_settings (dwidth_ratio : integer; memory_type : string; pll_steps : natural ) return t_preset_cal is variable v_output : t_preset_cal; begin v_output := defaults; if memory_type = "DDR" then -- CAS = 3 if dwidth_ratio = 2 then v_output.codvw_phase := pll_steps/4; v_output.wlat := 1; v_output.rlat := 15; v_output.rdv_lat := 11; v_output.poa_lat := 11; else v_output.codvw_phase := pll_steps/4; v_output.wlat := 1; v_output.rlat := 15; v_output.rdv_lat := 23; v_output.ac_1t := '0'; v_output.poa_lat := 24; end if; elsif memory_type = "DDR2" then -- CAS = 6 if dwidth_ratio = 2 then v_output.codvw_phase := pll_steps/4; v_output.wlat := 5; v_output.rlat := 16; v_output.rdv_lat := 10; v_output.poa_lat := 8; else v_output.codvw_phase := pll_steps/4; v_output.wlat := 3; v_output.rlat := 16; v_output.rdv_lat := 21; v_output.ac_1t := '0'; v_output.poa_lat := 22; end if; elsif memory_type = "DDR3" then -- HR only, CAS = 6 v_output.codvw_phase := pll_steps/4; v_output.wlat := 2; v_output.rlat := 15; v_output.rdv_lat := 23; v_output.ac_1t := '0'; v_output.poa_lat := 24; end if; -- adapt settings for ac_phase (default 240 degrees so leave commented) -- if dwidth_ratio = 2 then -- v_output.wlat := v_output.wlat - 1; -- v_output.rlat := v_output.rlat - 1; -- v_output.rdv_lat := v_output.rdv_lat + 1; -- v_output.poa_lat := v_output.poa_lat + 1; -- else -- v_output.ac_1t := not v_output.ac_1t; -- end if; v_output.codvw_size := pll_steps; return v_output; end function; -- default ac phase = 90 function ciii_family_settings (dwidth_ratio : integer; memory_type : string; pll_steps : natural) return t_preset_cal is variable v_output : t_preset_cal; begin v_output := defaults; if memory_type = "DDR" then -- CAS = 3 if dwidth_ratio = 2 then v_output.codvw_phase := 3*pll_steps/4; v_output.wlat := 1; v_output.rlat := 15; v_output.rdv_lat := 11; v_output.poa_lat := 11; --unused else v_output.codvw_phase := 3*pll_steps/4; v_output.wlat := 1; v_output.rlat := 13; v_output.rdv_lat := 27; v_output.ac_1t := '1'; v_output.poa_lat := 27; --unused end if; elsif memory_type = "DDR2" then -- CAS = 6 if dwidth_ratio = 2 then v_output.codvw_phase := 3*pll_steps/4; v_output.wlat := 5; v_output.rlat := 18; v_output.rdv_lat := 8; v_output.poa_lat := 8; --unused else v_output.codvw_phase := pll_steps + 3*pll_steps/4; v_output.wlat := 3; v_output.rlat := 14; v_output.rdv_lat := 25; v_output.ac_1t := '1'; v_output.poa_lat := 25; --unused end if; end if; -- adapt settings for ac_phase (hardcode for 90 degrees) if dwidth_ratio = 2 then v_output.wlat := v_output.wlat + 1; v_output.rlat := v_output.rlat + 1; v_output.rdv_lat := v_output.rdv_lat - 1; v_output.poa_lat := v_output.poa_lat - 1; else v_output.ac_1t := not v_output.ac_1t; end if; v_output.codvw_size := pll_steps/2; return v_output; end function; -- default ac phase = 90 function sii_family_settings (dwidth_ratio : integer; memory_type : string; pll_steps : natural) return t_preset_cal is variable v_output : t_preset_cal; begin v_output := defaults; if memory_type = "DDR" then -- CAS = 3 if dwidth_ratio = 2 then v_output.codvw_phase := pll_steps/4; v_output.wlat := 1; v_output.rlat := 15; v_output.rdv_lat := 11; v_output.poa_lat := 13; else v_output.codvw_phase := pll_steps/4; v_output.wlat := 1; v_output.rlat := 13; v_output.rdv_lat := 27; v_output.ac_1t := '1'; v_output.poa_lat := 22; end if; elsif memory_type = "DDR2" then if dwidth_ratio = 2 then v_output.codvw_phase := pll_steps/4; v_output.wlat := 5; v_output.rlat := 18; v_output.rdv_lat := 8; v_output.poa_lat := 10; else v_output.codvw_phase := pll_steps + pll_steps/4; v_output.wlat := 3; v_output.rlat := 14; v_output.rdv_lat := 25; v_output.ac_1t := '1'; v_output.poa_lat := 20; end if; end if; -- adapt settings for ac_phase (hardcode for 90 degrees) if dwidth_ratio = 2 then v_output.wlat := v_output.wlat + 1; v_output.rlat := v_output.rlat + 1; v_output.rdv_lat := v_output.rdv_lat - 1; v_output.poa_lat := v_output.poa_lat - 1; else v_output.ac_1t := not v_output.ac_1t; end if; v_output.codvw_size := pll_steps; return v_output; end function; -- default ac phase = 90 function aii_family_settings (dwidth_ratio : integer; memory_type : string; pll_steps : natural) return t_preset_cal is variable v_output : t_preset_cal; begin v_output := defaults; if memory_type = "DDR" then -- CAS = 3 if dwidth_ratio = 2 then v_output.codvw_phase := pll_steps/4; v_output.wlat := 1; v_output.rlat := 16; v_output.rdv_lat := 10; v_output.poa_lat := 15; else v_output.codvw_phase := pll_steps/4; v_output.wlat := 1; v_output.rlat := 13; v_output.rdv_lat := 27; v_output.ac_1t := '1'; v_output.poa_lat := 24; end if; elsif memory_type = "DDR2" then if dwidth_ratio = 2 then v_output.codvw_phase := pll_steps/4; v_output.wlat := 5; v_output.rlat := 19; v_output.rdv_lat := 9; v_output.poa_lat := 12; else v_output.codvw_phase := pll_steps + pll_steps/4; v_output.wlat := 3; v_output.rlat := 14; v_output.rdv_lat := 25; v_output.ac_1t := '1'; v_output.poa_lat := 22; end if; elsif memory_type = "DDR3" then -- HR only, CAS = 6 v_output.codvw_phase := pll_steps + pll_steps/4; v_output.wlat := 3; v_output.rlat := 14; v_output.rdv_lat := 25; v_output.ac_1t := '1'; v_output.poa_lat := 22; end if; -- adapt settings for ac_phase (hardcode for 90 degrees) if dwidth_ratio = 2 then v_output.wlat := v_output.wlat + 1; v_output.rlat := v_output.rlat + 1; v_output.rdv_lat := v_output.rdv_lat - 1; v_output.poa_lat := v_output.poa_lat - 1; else v_output.ac_1t := not v_output.ac_1t; end if; v_output.codvw_size := pll_steps; return v_output; end function; function is_odd(num : integer) return boolean is variable v_num : integer; begin v_num := num; if v_num - (v_num/2)*2 = 0 then return false; else return true; end if; end function; ------------------------------------------------ -- top level function to setup instant on mode ------------------------------------------------ function override_instant_on return t_preset_cal is variable v_output : t_preset_cal; begin v_output := defaults; -- add in overrides here return v_output; end function; function setup_instant_on (sim_time_red : natural; family_id : natural; memory_type : string; dwidth_ratio : natural; pll_steps : natural; mr0 : std_logic_vector(15 downto 0); mr1 : std_logic_vector(15 downto 0); mr2 : std_logic_vector(15 downto 0)) return t_preset_cal is variable v_output : t_preset_cal; variable v_cl : natural; -- cas latency variable v_half_cl : std_logic; -- + 0.5 cycles (DDR only) variable v_al : natural; -- additive latency (ddr2/ddr3 only) variable v_cwl : natural; -- cas write latency (ddr3 only) variable v_rl : integer range 0 to 15; variable v_wl : integer; variable v_delta_rl : integer range -10 to 10; -- from given defaults variable v_delta_wl : integer; -- from given defaults variable v_debug : boolean; begin v_debug := true; v_output := defaults; if sim_time_red = 1 then -- only set if STR equals 1 -- ---------------------------------------- -- extract required parameters from MRs -- ---------------------------------------- mr0_to_cl(memory_type, mr0, v_cl, v_half_cl); v_al := mr1_to_al(memory_type, mr1, v_cl); v_cwl := mr2_to_cwl(memory_type, mr2, v_cl); v_rl := v_cl + v_al; v_wl := v_cwl + v_al; if v_debug then report record_report_prefix & "Extracted MR parameters" & LF & "CAS = " & integer'image(v_cl) & LF & "CWL = " & integer'image(v_cwl) & LF & "AL = " & integer'image(v_al) & LF; end if; -- ---------------------------------------- -- apply per family, memory type and dwidth_ratio static setup -- ---------------------------------------- if is_siii(family_id) then v_output := siii_family_settings(dwidth_ratio, memory_type, pll_steps); elsif is_ciii(family_id) then v_output := ciii_family_settings(dwidth_ratio, memory_type, pll_steps); elsif is_aii(family_id) then v_output := aii_family_settings(dwidth_ratio, memory_type, pll_steps); elsif is_sii(family_id) then v_output := sii_family_settings(dwidth_ratio, memory_type, pll_steps); end if; -- ---------------------------------------- -- correct for different cwl, cl and al settings -- ---------------------------------------- if memory_type = "DDR" then v_delta_rl := v_rl - c_ddr_default_rl; v_delta_wl := v_wl - c_ddr_default_wl; elsif memory_type = "DDR2" then v_delta_rl := v_rl - c_ddr2_default_rl; v_delta_wl := v_wl - c_ddr2_default_wl; else -- DDR3 v_delta_rl := v_rl - c_ddr3_default_rl; v_delta_wl := v_wl - c_ddr3_default_wl; end if; if v_debug then report record_report_prefix & "Extracted memory latency (and delta from default)" & LF & "RL = " & integer'image(v_rl) & LF & "WL = " & integer'image(v_wl) & LF & "delta RL = " & integer'image(v_delta_rl) & LF & "delta WL = " & integer'image(v_delta_wl) & LF; end if; if dwidth_ratio = 2 then -- adjust rdp settings v_output.rlat := v_output.rlat + v_delta_rl; v_output.rdv_lat := v_output.rdv_lat - v_delta_rl; v_output.poa_lat := v_output.poa_lat - v_delta_rl; -- adjust wdp settings v_output.wlat := v_output.wlat + v_delta_wl; elsif dwidth_ratio = 4 then -- adjust wdp settings v_output.wlat := v_output.wlat + v_delta_wl/2; if is_odd(v_delta_wl) then -- add / sub 1t write latency -- toggle ac_1t in all cases v_output.ac_1t := not v_output.ac_1t; if v_delta_wl < 0 then -- sub 1 from latency if v_output.ac_1t = '0' then -- phy_clk cc boundary v_output.wlat := v_output.wlat - 1; end if; else -- add 1 to latency if v_output.ac_1t = '1' then -- phy_clk cc boundary v_output.wlat := v_output.wlat + 1; end if; end if; -- update read latency if v_output.ac_1t = '1' then -- added 1t to address/command so inc read_lat v_delta_rl := v_delta_rl + 1; else -- subtracted 1t from address/command so dec read_lat v_delta_rl := v_delta_rl - 1; end if; end if; -- adjust rdp settings v_output.rlat := v_output.rlat + v_delta_rl/2; v_output.rdv_lat := v_output.rdv_lat - v_delta_rl; v_output.poa_lat := v_output.poa_lat - v_delta_rl; if memory_type = "DDR3" then if is_odd(v_delta_rl) xor is_odd(v_delta_wl) then if is_aii(family_id) then v_output.rdv_lat := v_output.rdv_lat - 1; v_output.poa_lat := v_output.poa_lat - 1; else v_output.rdv_lat := v_output.rdv_lat + 1; v_output.poa_lat := v_output.poa_lat + 1; end if; end if; end if; if is_odd(v_delta_rl) then if v_delta_rl > 0 then -- add 1t if v_output.codvw_phase < pll_steps then v_output.codvw_phase := v_output.codvw_phase + pll_steps; else v_output.codvw_phase := v_output.codvw_phase - pll_steps; v_output.rlat := v_output.rlat + 1; end if; else -- subtract 1t if v_output.codvw_phase < pll_steps then v_output.codvw_phase := v_output.codvw_phase + pll_steps; v_output.rlat := v_output.rlat - 1; else v_output.codvw_phase := v_output.codvw_phase - pll_steps; end if; end if; end if; end if; if v_half_cl = '1' and is_ciii(family_id) then v_output.codvw_phase := v_output.codvw_phase - pll_steps/2; end if; end if; return v_output; end function; -- END ddr_ctrl_ip_phy_alt_mem_phy_record_pkg; --/* Legal Notice: (C)2006 Altera Corporation. All rights reserved. Your -- use of Altera Corporation's design tools, logic functions and other -- software and tools, and its AMPP partner logic functions, and any -- output files any of the foregoing (including device programming or -- simulation files), and any associated documentation or information are -- expressly subject to the terms and conditions of the Altera Program -- License Subscription Agreement or other applicable license agreement, -- including, without limitation, that your use is for the sole purpose -- of programming logic devices manufactured by Altera and sold by Altera -- or its authorized distributors. Please refer to the applicable -- agreement for further details. */ -- -- ----------------------------------------------------------------------------- -- Abstract : address and command package, shared between all variations of -- the AFI sequencer -- The address and command package (alt_mem_phy_addr_cmd_pkg) is -- used to combine DRAM address and command signals in one record -- and unify the functions operating on this record. -- -- -- ----------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; -- package ddr_ctrl_ip_phy_alt_mem_phy_addr_cmd_pkg is -- the following are bounds on the maximum range of address and command signals constant c_max_addr_bits : natural := 15; constant c_max_ba_bits : natural := 3; constant c_max_ranks : natural := 16; constant c_max_mode_reg_bit : natural := 12; constant c_max_cmds_per_clk : natural := 4; -- quarter rate -- a prefix for all report signals to identify phy and sequencer block -- constant ac_report_prefix : string := "ddr_ctrl_ip_phy_alt_mem_phy_seq (addr_cmd_pkg) : "; -- ------------------------------------------------------------- -- this record represents a single mem_clk command cycle -- ------------------------------------------------------------- type t_addr_cmd is record addr : natural range 0 to 2**c_max_addr_bits - 1; ba : natural range 0 to 2**c_max_ba_bits - 1; cas_n : boolean; ras_n : boolean; we_n : boolean; cke : natural range 0 to 2**c_max_ranks - 1; -- bounded max of 8 ranks cs_n : natural range 2**c_max_ranks - 1 downto 0; -- bounded max of 8 ranks odt : natural range 0 to 2**c_max_ranks - 1; -- bounded max of 8 ranks rst_n : boolean; end record t_addr_cmd; -- ------------------------------------------------------------- -- this vector is used to describe the fact that for slower clock domains -- mutiple commands per clock can be issued and encapsulates all these options in a -- type which can scale with rate -- ------------------------------------------------------------- type t_addr_cmd_vector is array (natural range <>) of t_addr_cmd; -- ------------------------------------------------------------- -- this record is used to define the memory interface type and allow packing and checking -- (it should be used as a generic to a entity or from a poject level constant) -- ------------------------------------------------------------- -- enumeration for mem_type type t_mem_type is ( DDR, DDR2, DDR3 ); -- memory interface configuration parameters type t_addr_cmd_config_rec is record num_addr_bits : natural; num_ba_bits : natural; num_cs_bits : natural; num_ranks : natural; cmds_per_clk : natural range 1 to c_max_cmds_per_clk; -- commands per clock cycle (equal to DWIDTH_RATIO/2) mem_type : t_mem_type; end record; -- ----------------------------------- -- the following type is used to switch between signals -- (for example, in the mask function below) -- ----------------------------------- type t_addr_cmd_signals is ( addr, ba, cas_n, ras_n, we_n, cke, cs_n, odt, rst_n ); -- ----------------------------------- -- odt record -- to hold the odt settings -- (an odt_record) per rank (in odt_array) -- ----------------------------------- type t_odt_record is record write : natural; read : natural; end record t_odt_record; type t_odt_array is array (natural range <>) of t_odt_record; -- ------------------------------------------------------------- -- exposed functions and procedures -- -- these functions cover the following memory types: -- DDR3, DDR2, DDR -- -- and the following operations: -- MRS, REF, PRE, PREA, ACT, -- WR, WRS8, WRS4, WRA, WRAS8, WRAS4, -- RD, RDS8, RDS4, RDA, RDAS8, RDAS4, -- -- for DDR3 on the fly burst length setting for reads/writes -- is supported -- ------------------------------------------------------------- function defaults ( config_rec : in t_addr_cmd_config_rec ) return t_addr_cmd_vector; function reset ( config_rec : in t_addr_cmd_config_rec ) return t_addr_cmd_vector; function int_pup_reset ( config_rec : in t_addr_cmd_config_rec ) return t_addr_cmd_vector; function deselect ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector ) return t_addr_cmd_vector; function precharge_all ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector; function precharge_all ( config_rec : in t_addr_cmd_config_rec; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector; function precharge_bank ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1; bank : in natural range 0 to 2**c_max_ba_bits -1 ) return t_addr_cmd_vector; function activate ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; bank : in natural range 0 to 2**c_max_ba_bits -1; row : in natural range 0 to 2**c_max_addr_bits -1; ranks : in natural range 0 to 2**c_max_ranks - 1 ) return t_addr_cmd_vector; function write ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; bank : in natural range 0 to 2**c_max_ba_bits -1; col : in natural range 0 to 2**c_max_addr_bits -1; ranks : in natural range 0 to 2**c_max_ranks - 1; op_length : in natural range 1 to 8; auto_prech : in boolean ) return t_addr_cmd_vector; function read ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; bank : in natural range 0 to 2**c_max_ba_bits -1; col : in natural range 0 to 2**c_max_addr_bits -1; ranks : in natural range 0 to 2**c_max_ranks - 1; op_length : in natural range 1 to 8; auto_prech : in boolean ) return t_addr_cmd_vector; function refresh ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector; function self_refresh_entry ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector; function load_mode ( config_rec : in t_addr_cmd_config_rec; mode_register_num : in natural range 0 to 3; mode_reg_value : in std_logic_vector(c_max_mode_reg_bit downto 0); ranks : in natural range 0 to 2**c_max_ranks -1; remap_addr_and_ba : in boolean ) return t_addr_cmd_vector; function dll_reset ( config_rec : in t_addr_cmd_config_rec; mode_reg_val : in std_logic_vector; rank_num : in natural range 0 to 2**c_max_ranks - 1; reorder_addr_bits : in boolean ) return t_addr_cmd_vector; function enter_sr_pd_mode ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector; function maintain_pd_or_sr ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector; function exit_sr_pd_mode ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector; function ZQCS ( config_rec : in t_addr_cmd_config_rec; rank : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector; function ZQCL ( config_rec : in t_addr_cmd_config_rec; rank : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector; function all_unreversed_ranks ( config_rec : in t_addr_cmd_config_rec; record_to_mask : in t_addr_cmd_vector; mem_ac_swapped_ranks : in std_logic_vector ) return t_addr_cmd_vector; function all_reversed_ranks ( config_rec : in t_addr_cmd_config_rec; record_to_mask : in t_addr_cmd_vector; mem_ac_swapped_ranks : in std_logic_vector ) return t_addr_cmd_vector; function program_rdimm_register ( config_rec : in t_addr_cmd_config_rec; control_word_addr : in std_logic_vector(3 downto 0); control_word_data : in std_logic_vector(3 downto 0) ) return t_addr_cmd_vector; -- ------------------------------------------------------------- -- the following function sets up the odt settings -- NOTES: currently only supports DDR/DDR2 memories -- ------------------------------------------------------------- -- odt setting as implemented in the altera high-performance controller for ddr2 memories function set_odt_values (ranks : natural; ranks_per_slot : natural; mem_type : in string ) return t_odt_array; -- ------------------------------------------------------------- -- the following function enables assignment to the constant config_rec -- ------------------------------------------------------------- function set_config_rec ( num_addr_bits : in natural; num_ba_bits : in natural; num_cs_bits : in natural; num_ranks : in natural; dwidth_ratio : in natural range 1 to c_max_cmds_per_clk; mem_type : in string ) return t_addr_cmd_config_rec; -- The non-levelled sequencer doesn't make a distinction between CS_WIDTH and NUM_RANKS. In this case, -- just set the two to be the same. function set_config_rec ( num_addr_bits : in natural; num_ba_bits : in natural; num_cs_bits : in natural; dwidth_ratio : in natural range 1 to c_max_cmds_per_clk; mem_type : in string ) return t_addr_cmd_config_rec; -- ------------------------------------------------------------- -- the following function and procedure unpack address and -- command signals from the t_addr_cmd_vector format -- ------------------------------------------------------------- procedure unpack_addr_cmd_vector( addr_cmd_vector : in t_addr_cmd_vector; config_rec : in t_addr_cmd_config_rec; addr : out std_logic_vector; ba : out std_logic_vector; cas_n : out std_logic_vector; ras_n : out std_logic_vector; we_n : out std_logic_vector; cke : out std_logic_vector; cs_n : out std_logic_vector; odt : out std_logic_vector; rst_n : out std_logic_vector); procedure unpack_addr_cmd_vector( config_rec : in t_addr_cmd_config_rec; addr_cmd_vector : in t_addr_cmd_vector; signal addr : out std_logic_vector; signal ba : out std_logic_vector; signal cas_n : out std_logic_vector; signal ras_n : out std_logic_vector; signal we_n : out std_logic_vector; signal cke : out std_logic_vector; signal cs_n : out std_logic_vector; signal odt : out std_logic_vector; signal rst_n : out std_logic_vector); -- ------------------------------------------------------------- -- the following functions perform bit masking to 0 or 1 (as -- specified by mask_value) to a chosen address/command signal (signal_name) -- across all signal bits or to a selected bit (mask_bit) -- ------------------------------------------------------------- -- mask all signal bits procedure function mask ( config_rec : in t_addr_cmd_config_rec; addr_cmd_vector : in t_addr_cmd_vector; signal_name : in t_addr_cmd_signals; mask_value : in std_logic) return t_addr_cmd_vector; procedure mask( config_rec : in t_addr_cmd_config_rec; signal addr_cmd_vector : inout t_addr_cmd_vector; signal_name : in t_addr_cmd_signals; mask_value : in std_logic); -- mask signal bit (mask_bit) procedure function mask ( config_rec : in t_addr_cmd_config_rec; addr_cmd_vector : in t_addr_cmd_vector; signal_name : in t_addr_cmd_signals; mask_value : in std_logic; mask_bit : in natural) return t_addr_cmd_vector; -- end ddr_ctrl_ip_phy_alt_mem_phy_addr_cmd_pkg; -- package body ddr_ctrl_ip_phy_alt_mem_phy_addr_cmd_pkg IS -- ------------------------------------------------------------- -- Basic functions for a single command -- ------------------------------------------------------------- -- ------------------------------------------------------------- -- defaults the bus no JEDEC abbreviated name -- ------------------------------------------------------------- function defaults ( config_rec : in t_addr_cmd_config_rec ) return t_addr_cmd is variable v_retval : t_addr_cmd; begin v_retval.addr := 0; v_retval.ba := 0; v_retval.cas_n := false; v_retval.ras_n := false; v_retval.we_n := false; v_retval.cke := (2 ** config_rec.num_ranks) -1; v_retval.cs_n := (2 ** config_rec.num_cs_bits) -1; v_retval.odt := 0; v_retval.rst_n := false; return v_retval; end function; -- ------------------------------------------------------------- -- resets the addr/cmd signal (Same as default with cke and rst_n 0 ) -- ------------------------------------------------------------- function reset ( config_rec : in t_addr_cmd_config_rec ) return t_addr_cmd is variable v_retval : t_addr_cmd; begin v_retval := defaults(config_rec); v_retval.cke := 0; if config_rec.mem_type = DDR3 then v_retval.rst_n := true; end if; return v_retval; end function; -- ------------------------------------------------------------- -- issues deselect (command) JEDEC abbreviated name: DES -- ------------------------------------------------------------- function deselect ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd ) return t_addr_cmd is variable v_retval : t_addr_cmd; begin v_retval := previous; v_retval.cs_n := (2 ** config_rec.num_cs_bits) -1; v_retval.cke := (2 ** config_rec.num_ranks) -1; v_retval.rst_n := false; return v_retval; end function; -- ------------------------------------------------------------- -- issues a precharge all command JEDEC abbreviated name: PREA -- ------------------------------------------------------------- function precharge_all( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd is variable v_retval : t_addr_cmd; variable v_addr : unsigned( c_max_addr_bits -1 downto 0); begin v_retval := previous; v_addr := to_unsigned(previous.addr, c_max_addr_bits); v_addr(10) := '1'; -- set AP bit high v_retval.addr := to_integer(v_addr); v_retval.ras_n := true; v_retval.cas_n := false; v_retval.we_n := true; v_retval.cs_n := (2 ** config_rec.num_cs_bits) - 1 - ranks; v_retval.cke := (2 ** config_rec.num_ranks) -1; v_retval.rst_n := false; return v_retval; end function; -- ------------------------------------------------------------- -- precharge (close) a bank JEDEC abbreviated name: PRE -- ------------------------------------------------------------- function precharge_bank( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd; ranks : in natural range 0 to 2**c_max_ranks -1; bank : in natural range 0 to 2**c_max_ba_bits -1 ) return t_addr_cmd is variable v_retval : t_addr_cmd; variable v_addr : unsigned( c_max_addr_bits -1 downto 0); begin v_retval := previous; v_addr := to_unsigned(previous.addr, c_max_addr_bits); v_addr(10) := '0'; -- set AP bit low v_retval.addr := to_integer(v_addr); v_retval.ba := bank; v_retval.ras_n := true; v_retval.cas_n := false; v_retval.we_n := true; v_retval.cs_n := (2 ** config_rec.num_cs_bits) - ranks; v_retval.cke := (2 ** config_rec.num_ranks) -1; v_retval.rst_n := false; return v_retval; end function; -- ------------------------------------------------------------- -- Issues a activate (open row) JEDEC abbreviated name: ACT -- ------------------------------------------------------------- function activate (config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd; bank : in natural range 0 to 2**c_max_ba_bits - 1; row : in natural range 0 to 2**c_max_addr_bits - 1; ranks : in natural range 0 to 2**c_max_ranks - 1 ) return t_addr_cmd is variable v_retval : t_addr_cmd; begin v_retval.addr := row; v_retval.ba := bank; v_retval.cas_n := false; v_retval.ras_n := true; v_retval.we_n := false; v_retval.cke := (2 ** config_rec.num_ranks) -1; v_retval.cs_n := (2 ** config_rec.num_cs_bits) -1 - ranks; v_retval.odt := previous.odt; v_retval.rst_n := false; return v_retval; end function; -- ------------------------------------------------------------- -- issues a write command JEDEC abbreviated name:WR, WRA -- WRS4, WRAS4 -- WRS8, WRAS8 -- has the ability to support: -- DDR3: -- BL4, BL8, fixed BL -- Auto Precharge (AP) -- DDR2, DDR: -- fixed BL -- Auto Precharge (AP) -- ------------------------------------------------------------- function write (config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd; bank : in natural range 0 to 2**c_max_ba_bits -1; col : in natural range 0 to 2**c_max_addr_bits -1; ranks : in natural range 0 to 2**c_max_ranks -1; op_length : in natural range 1 to 8; auto_prech : in boolean ) return t_addr_cmd is variable v_retval : t_addr_cmd; variable v_addr : unsigned(c_max_addr_bits-1 downto 0); begin -- calculate correct address signal v_addr := to_unsigned(col, c_max_addr_bits); -- note pin A10 is used for AP, therfore shift the value from A10 onto A11. v_retval.addr := to_integer(v_addr(9 downto 0)); if v_addr(10) = '1' then v_retval.addr := v_retval.addr + 2**11; end if; if auto_prech = true then -- set AP bit (A10) v_retval.addr := v_retval.addr + 2**10; end if; if config_rec.mem_type = DDR3 then if op_length = 8 then -- set BL_OTF sel bit (A12) v_retval.addr := v_retval.addr + 2**12; elsif op_length = 4 then null; else report ac_report_prefix & "DDR3 DRAM only supports writes of burst length 4 or 8, the requested length was: " & integer'image(op_length) severity failure; end if; elsif config_rec.mem_type = DDR2 or config_rec.mem_type = DDR then null; else report ac_report_prefix & "only DDR memories are supported for memory writes" severity failure; end if; -- set a/c signal assignments for write v_retval.ba := bank; v_retval.cas_n := true; v_retval.ras_n := false; v_retval.we_n := true; v_retval.cke := (2 ** config_rec.num_ranks) -1; v_retval.cs_n := (2 ** config_rec.num_cs_bits) -1 - ranks; v_retval.odt := ranks; v_retval.rst_n := false; return v_retval; end function; -- ------------------------------------------------------------- -- issues a read command JEDEC abbreviated name: RD, RDA -- RDS4, RDAS4 -- RDS8, RDAS8 -- has the ability to support: -- DDR3: -- BL4, BL8, fixed BL -- Auto Precharge (AP) -- DDR2, DDR: -- fixed BL, Auto Precharge (AP) -- ------------------------------------------------------------- function read (config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd; bank : in natural range 0 to 2**c_max_ba_bits -1; col : in natural range 0 to 2**c_max_addr_bits -1; ranks : in natural range 0 to 2**c_max_ranks -1; op_length : in natural range 1 to 8; auto_prech : in boolean ) return t_addr_cmd is variable v_retval : t_addr_cmd; variable v_addr : unsigned(c_max_addr_bits-1 downto 0); begin -- calculate correct address signal v_addr := to_unsigned(col, c_max_addr_bits); -- note pin A10 is used for AP, therfore shift the value from A10 onto A11. v_retval.addr := to_integer(v_addr(9 downto 0)); if v_addr(10) = '1' then v_retval.addr := v_retval.addr + 2**11; end if; if auto_prech = true then -- set AP bit (A10) v_retval.addr := v_retval.addr + 2**10; end if; if config_rec.mem_type = DDR3 then if op_length = 8 then -- set BL_OTF sel bit (A12) v_retval.addr := v_retval.addr + 2**12; elsif op_length = 4 then null; else report ac_report_prefix & "DDR3 DRAM only supports reads of burst length 4 or 8" severity failure; end if; elsif config_rec.mem_type = DDR2 or config_rec.mem_type = DDR then null; else report ac_report_prefix & "only DDR memories are supported for memory reads" severity failure; end if; -- set a/c signals for read command v_retval.ba := bank; v_retval.cas_n := true; v_retval.ras_n := false; v_retval.we_n := false; v_retval.cke := (2 ** config_rec.num_ranks) -1; v_retval.cs_n := (2 ** config_rec.num_cs_bits) -1 - ranks; v_retval.odt := 0; v_retval.rst_n := false; return v_retval; end function; -- ------------------------------------------------------------- -- issues a refresh command JEDEC abbreviated name: REF -- ------------------------------------------------------------- function refresh (config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd is variable v_retval : t_addr_cmd; begin v_retval := previous; v_retval.cas_n := true; v_retval.ras_n := true; v_retval.we_n := false; v_retval.cke := (2 ** config_rec.num_ranks) -1; v_retval.cs_n := (2 ** config_rec.num_cs_bits) -1 - ranks; v_retval.rst_n := false; -- addr, BA and ODT are don't care therfore leave as previous value return v_retval; end function; -- ------------------------------------------------------------- -- issues a mode register set command JEDEC abbreviated name: MRS -- ------------------------------------------------------------- function load_mode ( config_rec : in t_addr_cmd_config_rec; mode_register_num : in natural range 0 to 3; mode_reg_value : in std_logic_vector(c_max_mode_reg_bit downto 0); ranks : in natural range 0 to 2**c_max_ranks -1; remap_addr_and_ba : in boolean ) return t_addr_cmd is variable v_retval : t_addr_cmd; variable v_addr_remap : unsigned(c_max_mode_reg_bit downto 0); begin v_retval.cas_n := true; v_retval.ras_n := true; v_retval.we_n := true; v_retval.cke := (2 ** config_rec.num_ranks) -1; v_retval.cs_n := (2 ** config_rec.num_cs_bits) -1 - ranks; v_retval.odt := 0; v_retval.rst_n := false; v_retval.ba := mode_register_num; v_retval.addr := to_integer(unsigned(mode_reg_value)); if remap_addr_and_ba = true then v_addr_remap := unsigned(mode_reg_value); v_addr_remap(8 downto 7) := v_addr_remap(7) & v_addr_remap(8); v_addr_remap(6 downto 5) := v_addr_remap(5) & v_addr_remap(6); v_addr_remap(4 downto 3) := v_addr_remap(3) & v_addr_remap(4); v_retval.addr := to_integer(v_addr_remap); v_addr_remap := to_unsigned(mode_register_num, c_max_mode_reg_bit + 1); v_addr_remap(1 downto 0) := v_addr_remap(0) & v_addr_remap(1); v_retval.ba := to_integer(v_addr_remap); end if; return v_retval; end function; -- ------------------------------------------------------------- -- maintains SR or PD mode on slected ranks. -- ------------------------------------------------------------- function maintain_pd_or_sr (config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd is variable v_retval : t_addr_cmd; begin v_retval := previous; v_retval.cke := (2 ** config_rec.num_ranks) - 1 - ranks; return v_retval; end function; -- ------------------------------------------------------------- -- issues a ZQ cal (short) JEDEC abbreviated name: ZQCS -- NOTE - can only be issued to a single RANK at a time. -- ------------------------------------------------------------- function ZQCS (config_rec : in t_addr_cmd_config_rec; rank : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd is variable v_retval : t_addr_cmd; begin v_retval.cas_n := false; v_retval.ras_n := false; v_retval.we_n := true; v_retval.cke := (2 ** config_rec.num_ranks) -1; v_retval.cs_n := (2 ** config_rec.num_cs_bits) -1 - rank; v_retval.rst_n := false; v_retval.addr := 0; -- clear bit 10 v_retval.ba := 0; v_retval.odt := 0; return v_retval; end function; -- ------------------------------------------------------------- -- issues a ZQ cal (long) JEDEC abbreviated name: ZQCL -- NOTE - can only be issued to a single RANK at a time. -- ------------------------------------------------------------- function ZQCL (config_rec : in t_addr_cmd_config_rec; rank : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd is variable v_retval : t_addr_cmd; begin v_retval.cas_n := false; v_retval.ras_n := false; v_retval.we_n := true; v_retval.cke := (2 ** config_rec.num_ranks) -1; v_retval.cs_n := (2 ** config_rec.num_cs_bits) -1 - rank; v_retval.rst_n := false; v_retval.addr := 1024; -- set bit 10 v_retval.ba := 0; v_retval.odt := 0; return v_retval; end function; -- ------------------------------------------------------------- -- functions acting on all clock cycles from whatever rate -- in halfrate clock domain issues 1 command per clock -- in quarter rate issues 1 command per clock -- In the above cases they will be correctly aligned using the -- ALTMEMPHY 2T and 4T SDC -- ------------------------------------------------------------- -- ------------------------------------------------------------- -- defaults the bus no JEDEC abbreviated name -- ------------------------------------------------------------- function defaults (config_rec : in t_addr_cmd_config_rec ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin v_retval := (others => defaults(config_rec)); return v_retval; end function; -- ------------------------------------------------------------- -- resets the addr/cmd signal (same as default with cke 0) -- ------------------------------------------------------------- function reset (config_rec : in t_addr_cmd_config_rec ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin v_retval := (others => reset(config_rec)); return v_retval; end function; function int_pup_reset (config_rec : in t_addr_cmd_config_rec ) return t_addr_cmd_vector is variable v_addr_cmd_config_rst : t_addr_cmd_config_rec; begin v_addr_cmd_config_rst := config_rec; v_addr_cmd_config_rst.num_ranks := c_max_ranks; return reset(v_addr_cmd_config_rst); end function; -- ------------------------------------------------------------- -- issues a deselect command JEDEC abbreviated name: DES -- ------------------------------------------------------------- function deselect ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector ) return t_addr_cmd_vector is alias a_previous : t_addr_cmd_vector(previous'range) is previous; variable v_retval : t_addr_cmd_vector(a_previous'range); begin for rate in a_previous'range loop v_retval(rate) := deselect(config_rec, a_previous(a_previous'high)); end loop; return v_retval; end function; -- ------------------------------------------------------------- -- issues a precharge all command JEDEC abbreviated name: PREA -- ------------------------------------------------------------- function precharge_all ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector is alias a_previous : t_addr_cmd_vector(previous'range) is previous; variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin for rate in a_previous'range loop v_retval(rate) := precharge_all(config_rec, previous(a_previous'high), ranks); -- use dwidth_ratio/2 as in FR = 0 , HR = 1, and in future QR = 2 tCK setup + 1 tCK hold if rate /= config_rec.cmds_per_clk/2 then v_retval(rate).cs_n := (2 ** config_rec.num_cs_bits) -1; end if; end loop; return v_retval; end function; -- ------------------------------------------------------------- -- precharge (close) a bank JEDEC abbreviated name: PRE -- ------------------------------------------------------------- function precharge_bank ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1; bank : in natural range 0 to 2**c_max_ba_bits -1 ) return t_addr_cmd_vector is alias a_previous : t_addr_cmd_vector(previous'range) is previous; variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin for rate in a_previous'range loop v_retval(rate) := precharge_bank(config_rec, previous(a_previous'high), ranks, bank); -- use dwidth_ratio/2 as in FR = 0 , HR = 1, and in future QR = 2 tCK setup + 1 tCK hold if rate /= config_rec.cmds_per_clk/2 then v_retval(rate).cs_n := (2 ** config_rec.num_cs_bits) -1; end if; end loop; return v_retval; end function; -- ------------------------------------------------------------- -- issues a activate (open row) JEDEC abbreviated name: ACT -- ------------------------------------------------------------- function activate ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; bank : in natural range 0 to 2**c_max_ba_bits -1; row : in natural range 0 to 2**c_max_addr_bits -1; ranks : in natural range 0 to 2**c_max_ranks - 1 ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin for rate in previous'range loop v_retval(rate) := activate(config_rec, previous(previous'high), bank, row, ranks); -- use dwidth_ratio/2 as in FR = 0 , HR = 1, and in future QR = 2 tCK setup + 1 tCK hold if rate /= config_rec.cmds_per_clk/2 then v_retval(rate).cs_n := (2 ** config_rec.num_cs_bits) -1; end if; end loop; return v_retval; end function; -- ------------------------------------------------------------- -- issues a write command JEDEC abbreviated name:WR, WRA -- WRS4, WRAS4 -- WRS8, WRAS8 -- -- has the ability to support: -- DDR3: -- BL4, BL8, fixed BL -- Auto Precharge (AP) -- DDR2, DDR: -- fixed BL -- Auto Precharge (AP) -- ------------------------------------------------------------- function write ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; bank : in natural range 0 to 2**c_max_ba_bits -1; col : in natural range 0 to 2**c_max_addr_bits -1; ranks : in natural range 0 to 2**c_max_ranks - 1; op_length : in natural range 1 to 8; auto_prech : in boolean ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin for rate in previous'range loop v_retval(rate) := write(config_rec, previous(previous'high), bank, col, ranks, op_length, auto_prech); -- use dwidth_ratio/2 as in FR = 0 , HR = 1, and in future QR = 2 tCK setup + 1 tCK hold if rate /= config_rec.cmds_per_clk/2 then v_retval(rate).cs_n := (2 ** config_rec.num_cs_bits) -1; end if; end loop; return v_retval; end function; -- ------------------------------------------------------------- -- issues a read command JEDEC abbreviated name: RD, RDA -- RDS4, RDAS4 -- RDS8, RDAS8 -- has the ability to support: -- DDR3: -- BL4, BL8, fixed BL -- Auto Precharge (AP) -- DDR2, DDR: -- fixed BL, Auto Precharge (AP) -- ------------------------------------------------------------- function read ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; bank : in natural range 0 to 2**c_max_ba_bits -1; col : in natural range 0 to 2**c_max_addr_bits -1; ranks : in natural range 0 to 2**c_max_ranks - 1; op_length : in natural range 1 to 8; auto_prech : in boolean ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin for rate in previous'range loop v_retval(rate) := read(config_rec, previous(previous'high), bank, col, ranks, op_length, auto_prech); -- use dwidth_ratio/2 as in FR = 0 , HR = 1, and in future QR = 2 tCK setup + 1 tCK hold if rate /= config_rec.cmds_per_clk/2 then v_retval(rate).cs_n := (2 ** config_rec.num_cs_bits) -1; end if; end loop; return v_retval; end function; -- ------------------------------------------------------------- -- issues a refresh command JEDEC abbreviated name: REF -- ------------------------------------------------------------- function refresh (config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1 )return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin for rate in previous'range loop v_retval(rate) := refresh(config_rec, previous(previous'high), ranks); if rate /= config_rec.cmds_per_clk/2 then v_retval(rate).cs_n := (2 ** config_rec.num_cs_bits) -1; end if; end loop; return v_retval; end function; -- ------------------------------------------------------------- -- issues a self_refresh_entry command JEDEC abbreviated name: SRE -- ------------------------------------------------------------- function self_refresh_entry (config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1 )return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin v_retval := enter_sr_pd_mode(config_rec, refresh(config_rec, previous, ranks), ranks); return v_retval; end function; -- ------------------------------------------------------------- -- issues a self_refresh exit or power_down exit command -- JEDEC abbreviated names: SRX, PDX -- ------------------------------------------------------------- function exit_sr_pd_mode ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); variable v_mask_workings : std_logic_vector(config_rec.num_ranks -1 downto 0); variable v_mask_workings_b : std_logic_vector(config_rec.num_ranks -1 downto 0); begin v_retval := maintain_pd_or_sr(config_rec, previous, ranks); v_mask_workings_b := std_logic_vector(to_unsigned(ranks, config_rec.num_ranks)); for rate in 0 to config_rec.cmds_per_clk - 1 loop v_mask_workings := std_logic_vector(to_unsigned(v_retval(rate).cke, config_rec.num_ranks)); for i in v_mask_workings_b'range loop v_mask_workings(i) := v_mask_workings(i) or v_mask_workings_b(i); end loop; if rate >= config_rec.cmds_per_clk / 2 then -- maintain command but clear CS of subsequenct command slots v_retval(rate).cke := to_integer(unsigned(v_mask_workings)); -- almost irrelevant. but optimises logic slightly for Quater rate end if; end loop; return v_retval; end function; -- ------------------------------------------------------------- -- cause the selected ranks to enter Self-refresh or Powerdown mode -- JEDEC abbreviated names: PDE, -- SRE (if a refresh is concurrently issued to the same ranks) -- ------------------------------------------------------------- function enter_sr_pd_mode ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); variable v_mask_workings : std_logic_vector(config_rec.num_ranks -1 downto 0); variable v_mask_workings_b : std_logic_vector(config_rec.num_ranks -1 downto 0); begin v_retval := previous; v_mask_workings_b := std_logic_vector(to_unsigned(ranks, config_rec.num_ranks)); for rate in 0 to config_rec.cmds_per_clk - 1 loop if rate >= config_rec.cmds_per_clk / 2 then -- maintain command but clear CS of subsequenct command slots v_mask_workings := std_logic_vector(to_unsigned(v_retval(rate).cke, config_rec.num_ranks)); for i in v_mask_workings_b'range loop v_mask_workings(i) := v_mask_workings(i) and not v_mask_workings_b(i); end loop; v_retval(rate).cke := to_integer(unsigned(v_mask_workings)); -- almost irrelevant. but optimises logic slightly for Quater rate end if; end loop; return v_retval; end function; -- ------------------------------------------------------------- -- Issues a mode register set command JEDEC abbreviated name: MRS -- ------------------------------------------------------------- function load_mode ( config_rec : in t_addr_cmd_config_rec; mode_register_num : in natural range 0 to 3; mode_reg_value : in std_logic_vector(c_max_mode_reg_bit downto 0); ranks : in natural range 0 to 2**c_max_ranks -1; remap_addr_and_ba : in boolean ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin v_retval := (others => load_mode(config_rec, mode_register_num, mode_reg_value, ranks, remap_addr_and_ba)); for rate in v_retval'range loop if rate /= config_rec.cmds_per_clk/2 then v_retval(rate).cs_n := (2 ** config_rec.num_cs_bits) -1; end if; end loop; return v_retval; end function; -- ------------------------------------------------------------- -- maintains SR or PD mode on slected ranks. -- NOTE: does not affect previous command -- ------------------------------------------------------------- function maintain_pd_or_sr ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin for command in v_retval'range loop v_retval(command) := maintain_pd_or_sr(config_rec, previous(command), ranks); end loop; return v_retval; end function; -- ------------------------------------------------------------- -- issues a ZQ cal (long) JEDEC abbreviated name: ZQCL -- NOTE - can only be issued to a single RANK ata a time. -- ------------------------------------------------------------- function ZQCL ( config_rec : in t_addr_cmd_config_rec; rank : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1) := defaults(config_rec); begin for command in v_retval'range loop v_retval(command) := ZQCL(config_rec, rank); if command * 2 /= config_rec.cmds_per_clk then v_retval(command).cs_n := (2 ** config_rec.num_cs_bits) -1; end if; end loop; return v_retval; end function; -- ------------------------------------------------------------- -- issues a ZQ cal (short) JEDEC abbreviated name: ZQCS -- NOTE - can only be issued to a single RANK ata a time. -- ------------------------------------------------------------- function ZQCS ( config_rec : in t_addr_cmd_config_rec; rank : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1) := defaults(config_rec); begin for command in v_retval'range loop v_retval(command) := ZQCS(config_rec, rank); if command * 2 /= config_rec.cmds_per_clk then v_retval(command).cs_n := (2 ** config_rec.num_cs_bits) -1; end if; end loop; return v_retval; end function; -- ---------------------- -- Additional Rank manipulation functions (main use DDR3) -- ------------- -- ----------------------------------- -- set the chip select for a group of ranks -- ----------------------------------- function all_reversed_ranks ( config_rec : in t_addr_cmd_config_rec; record_to_mask : in t_addr_cmd; mem_ac_swapped_ranks : in std_logic_vector ) return t_addr_cmd is variable v_retval : t_addr_cmd; variable v_mask_workings : std_logic_vector(config_rec.num_cs_bits-1 downto 0); begin v_retval := record_to_mask; v_mask_workings := std_logic_vector(to_unsigned(record_to_mask.cs_n, config_rec.num_cs_bits)); for i in mem_ac_swapped_ranks'range loop v_mask_workings(i):= v_mask_workings(i) or not mem_ac_swapped_ranks(i); end loop; v_retval.cs_n := to_integer(unsigned(v_mask_workings)); return v_retval; end function; -- ----------------------------------- -- inverse of the above -- ----------------------------------- function all_unreversed_ranks ( config_rec : in t_addr_cmd_config_rec; record_to_mask : in t_addr_cmd; mem_ac_swapped_ranks : in std_logic_vector ) return t_addr_cmd is variable v_retval : t_addr_cmd; variable v_mask_workings : std_logic_vector(config_rec.num_cs_bits-1 downto 0); begin v_retval := record_to_mask; v_mask_workings := std_logic_vector(to_unsigned(record_to_mask.cs_n, config_rec.num_cs_bits)); for i in mem_ac_swapped_ranks'range loop v_mask_workings(i):= v_mask_workings(i) or mem_ac_swapped_ranks(i); end loop; v_retval.cs_n := to_integer(unsigned(v_mask_workings)); return v_retval; end function; -- ----------------------------------- -- set the chip select for a group of ranks in a way which handles diffrent rates -- ----------------------------------- function all_unreversed_ranks ( config_rec : in t_addr_cmd_config_rec; record_to_mask : in t_addr_cmd_vector; mem_ac_swapped_ranks : in std_logic_vector ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1) := defaults(config_rec); begin for command in record_to_mask'range loop v_retval(command) := all_unreversed_ranks(config_rec, record_to_mask(command), mem_ac_swapped_ranks); end loop; return v_retval; end function; -- ----------------------------------- -- inverse of the above handling ranks -- ----------------------------------- function all_reversed_ranks ( config_rec : in t_addr_cmd_config_rec; record_to_mask : in t_addr_cmd_vector; mem_ac_swapped_ranks : in std_logic_vector ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1) := defaults(config_rec); begin for command in record_to_mask'range loop v_retval(command) := all_reversed_ranks(config_rec, record_to_mask(command), mem_ac_swapped_ranks); end loop; return v_retval; end function; -- -------------------------------------------------- -- Program a single control word onto RDIMM. -- This is accomplished rather goofily by asserting all chip selects -- and then writing out both the addr/data of the word onto the addr/ba bus -- -------------------------------------------------- function program_rdimm_register ( config_rec : in t_addr_cmd_config_rec; control_word_addr : in std_logic_vector(3 downto 0); control_word_data : in std_logic_vector(3 downto 0) ) return t_addr_cmd is variable v_retval : t_addr_cmd; variable ba : std_logic_vector(2 downto 0); variable addr : std_logic_vector(4 downto 0); begin v_retval := defaults(config_rec); v_retval.cs_n := 0; ba := control_word_addr(3) & control_word_data(3) & control_word_data(2); v_retval.ba := to_integer(unsigned(ba)); addr := control_word_data(1) & control_word_data(0) & control_word_addr(2) & control_word_addr(1) & control_word_addr(0); v_retval.addr := to_integer(unsigned(addr)); return v_retval; end function; function program_rdimm_register ( config_rec : in t_addr_cmd_config_rec; control_word_addr : in std_logic_vector(3 downto 0); control_word_data : in std_logic_vector(3 downto 0) ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin v_retval := (others => program_rdimm_register(config_rec, control_word_addr, control_word_data)); return v_retval; end function; -- -------------------------------------------------- -- overloaded functions, to simplify use, or provide simplified functionality -- -------------------------------------------------- -- ---------------------------------------------------- -- Precharge all, defaulting all bits. -- ---------------------------------------------------- function precharge_all ( config_rec : in t_addr_cmd_config_rec; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1) := defaults(config_rec); begin v_retval := precharge_all(config_rec, v_retval, ranks); return v_retval; end function; -- ---------------------------------------------------- -- perform DLL reset through mode registers -- ---------------------------------------------------- function dll_reset ( config_rec : in t_addr_cmd_config_rec; mode_reg_val : in std_logic_vector; rank_num : in natural range 0 to 2**c_max_ranks - 1; reorder_addr_bits : in boolean ) return t_addr_cmd_vector is variable int_mode_reg : std_logic_vector(mode_reg_val'range); variable output : t_addr_cmd_vector(0 to config_rec.cmds_per_clk - 1); begin int_mode_reg := mode_reg_val; int_mode_reg(8) := '1'; -- set DLL reset bit. output := load_mode(config_rec, 0, int_mode_reg, rank_num, reorder_addr_bits); return output; end function; -- ------------------------------------------------------------- -- package configuration functions -- ------------------------------------------------------------- -- ------------------------------------------------------------- -- the following function sets up the odt settings -- NOTES: supports DDR/DDR2/DDR3 SDRAM memories -- ------------------------------------------------------------- function set_odt_values (ranks : natural; ranks_per_slot : natural; mem_type : in string ) return t_odt_array is variable v_num_slots : natural; variable v_cs : natural range 0 to ranks-1; variable v_odt_values : t_odt_array(0 to ranks-1); variable v_cs_addr : unsigned(ranks-1 downto 0); begin if mem_type = "DDR" then -- ODT not supported for DDR memory so set default off for v_cs in 0 to ranks-1 loop v_odt_values(v_cs).write := 0; v_odt_values(v_cs).read := 0; end loop; elsif mem_type = "DDR2" then -- odt setting as implemented in the altera high-performance controller for ddr2 memories assert (ranks rem ranks_per_slot = 0) report ac_report_prefix & "number of ranks per slot must be a multiple of number of ranks" severity failure; v_num_slots := ranks/ranks_per_slot; if v_num_slots = 1 then -- special condition for 1 slot (i.e. DIMM) (2^n, n=0,1,2,... ranks only) -- set odt on one chip for writes and no odt for reads for v_cs in 0 to ranks-1 loop v_odt_values(v_cs).write := 2**v_cs; -- on on the rank being written to v_odt_values(v_cs).read := 0; end loop; else -- if > 1 slot, set 1 odt enable on neighbouring slot for read and write -- as an example consider the below for 4 slots with 2 ranks per slot -- access to CS[0] or CS[1], enable ODT[2] or ODT[3] -- access to CS[2] or CS[3], enable ODT[0] or ODT[1] -- access to CS[4] or CS[5], enable ODT[6] or ODT[7] -- access to CS[6] or CS[7], enable ODT[4] or ODT[5] -- the logic below implements the above for varying ranks and ranks_per slot -- under the condition that ranks/ranks_per_slot is integer for v_cs in 0 to ranks-1 loop v_cs_addr := to_unsigned(v_cs, ranks); v_cs_addr(ranks_per_slot-1) := not v_cs_addr(ranks_per_slot-1); v_odt_values(v_cs).write := 2**to_integer(v_cs_addr); v_odt_values(v_cs).read := v_odt_values(v_cs).write; end loop; end if; elsif mem_type = "DDR3" then assert (ranks rem ranks_per_slot = 0) report ac_report_prefix & "number of ranks per slot must be a multiple of number of ranks" severity failure; v_num_slots := ranks/ranks_per_slot; if v_num_slots = 1 then -- special condition for 1 slot (i.e. DIMM) (2^n, n=0,1,2,... ranks only) -- set odt on one chip for writes and no odt for reads for v_cs in 0 to ranks-1 loop v_odt_values(v_cs).write := 2**v_cs; -- on on the rank being written to v_odt_values(v_cs).read := 0; end loop; else -- if > 1 slot, set 1 odt enable on neighbouring slot for read and write -- as an example consider the below for 4 slots with 2 ranks per slot -- access to CS[0] or CS[1], enable ODT[2] or ODT[3] -- access to CS[2] or CS[3], enable ODT[0] or ODT[1] -- access to CS[4] or CS[5], enable ODT[6] or ODT[7] -- access to CS[6] or CS[7], enable ODT[4] or ODT[5] -- the logic below implements the above for varying ranks and ranks_per slot -- under the condition that ranks/ranks_per_slot is integer for v_cs in 0 to ranks-1 loop v_cs_addr := to_unsigned(v_cs, ranks); v_cs_addr(ranks_per_slot-1) := not v_cs_addr(ranks_per_slot-1); v_odt_values(v_cs).write := 2**to_integer(v_cs_addr) + 2**(v_cs); -- turn on a neighbouring slots cs and current rank being written to v_odt_values(v_cs).read := 2**to_integer(v_cs_addr); end loop; end if; else report ac_report_prefix & "unknown mem_type specified in the set_odt_values function in addr_cmd_pkg package" severity failure; end if; return v_odt_values; end function; -- ----------------------------------------------------------- -- set constant values to config_rec -- ---------------------------------------------------------- function set_config_rec ( num_addr_bits : in natural; num_ba_bits : in natural; num_cs_bits : in natural; num_ranks : in natural; dwidth_ratio : in natural range 1 to c_max_cmds_per_clk; mem_type : in string ) return t_addr_cmd_config_rec is variable v_config_rec : t_addr_cmd_config_rec; begin v_config_rec.num_addr_bits := num_addr_bits; v_config_rec.num_ba_bits := num_ba_bits; v_config_rec.num_cs_bits := num_cs_bits; v_config_rec.num_ranks := num_ranks; v_config_rec.cmds_per_clk := dwidth_ratio/2; if mem_type = "DDR" then v_config_rec.mem_type := DDR; elsif mem_type = "DDR2" then v_config_rec.mem_type := DDR2; elsif mem_type = "DDR3" then v_config_rec.mem_type := DDR3; else report ac_report_prefix & "unknown mem_type specified in the set_config_rec function in addr_cmd_pkg package" severity failure; end if; return v_config_rec; end function; -- The non-levelled sequencer doesn't make a distinction between CS_WIDTH and NUM_RANKS. In this case, -- just set the two to be the same. function set_config_rec ( num_addr_bits : in natural; num_ba_bits : in natural; num_cs_bits : in natural; dwidth_ratio : in natural range 1 to c_max_cmds_per_clk; mem_type : in string ) return t_addr_cmd_config_rec is begin return set_config_rec(num_addr_bits, num_ba_bits, num_cs_bits, num_cs_bits, dwidth_ratio, mem_type); end function; -- ----------------------------------------------------------- -- unpack and pack address and command signals from and to t_addr_cmd_vector -- ----------------------------------------------------------- -- ------------------------------------------------------------- -- convert from t_addr_cmd_vector to expanded addr/cmd signals -- ------------------------------------------------------------- procedure unpack_addr_cmd_vector( addr_cmd_vector : in t_addr_cmd_vector; config_rec : in t_addr_cmd_config_rec; addr : out std_logic_vector; ba : out std_logic_vector; cas_n : out std_logic_vector; ras_n : out std_logic_vector; we_n : out std_logic_vector; cke : out std_logic_vector; cs_n : out std_logic_vector; odt : out std_logic_vector; rst_n : out std_logic_vector ) is variable v_mem_if_ranks : natural range 0 to 2**c_max_ranks - 1; variable v_vec_len : natural range 1 to 4; variable v_addr : std_logic_vector(config_rec.cmds_per_clk * config_rec.num_addr_bits - 1 downto 0); variable v_ba : std_logic_vector(config_rec.cmds_per_clk * config_rec.num_ba_bits - 1 downto 0); variable v_odt : std_logic_vector(config_rec.cmds_per_clk * config_rec.num_ranks - 1 downto 0); variable v_cs_n : std_logic_vector(config_rec.cmds_per_clk * config_rec.num_cs_bits - 1 downto 0); variable v_cke : std_logic_vector(config_rec.cmds_per_clk * config_rec.num_ranks - 1 downto 0); variable v_cas_n : std_logic_vector(config_rec.cmds_per_clk - 1 downto 0); variable v_ras_n : std_logic_vector(config_rec.cmds_per_clk - 1 downto 0); variable v_we_n : std_logic_vector(config_rec.cmds_per_clk - 1 downto 0); variable v_rst_n : std_logic_vector(config_rec.cmds_per_clk - 1 downto 0); begin v_vec_len := config_rec.cmds_per_clk; v_mem_if_ranks := config_rec.num_ranks; for v_i in 0 to v_vec_len-1 loop assert addr_cmd_vector(v_i).addr < 2**config_rec.num_addr_bits report ac_report_prefix & "value of addr exceeds range of number of address bits in unpack_addr_cmd_vector procedure" severity failure; assert addr_cmd_vector(v_i).ba < 2**config_rec.num_ba_bits report ac_report_prefix & "value of ba exceeds range of number of bank address bits in unpack_addr_cmd_vector procedure" severity failure; assert addr_cmd_vector(v_i).odt < 2**v_mem_if_ranks report ac_report_prefix & "value of odt exceeds range of number of ranks in unpack_addr_cmd_vector procedure" severity failure; assert addr_cmd_vector(v_i).cs_n < 2**config_rec.num_cs_bits report ac_report_prefix & "value of cs_n exceeds range of number of ranks in unpack_addr_cmd_vector procedure" severity failure; assert addr_cmd_vector(v_i).cke < 2**v_mem_if_ranks report ac_report_prefix & "value of cke exceeds range of number of ranks in unpack_addr_cmd_vector procedure" severity failure; v_addr((v_i+1)*config_rec.num_addr_bits - 1 downto v_i*config_rec.num_addr_bits) := std_logic_vector(to_unsigned(addr_cmd_vector(v_i).addr,config_rec.num_addr_bits)); v_ba((v_i+1)*config_rec.num_ba_bits - 1 downto v_i*config_rec.num_ba_bits) := std_logic_vector(to_unsigned(addr_cmd_vector(v_i).ba,config_rec.num_ba_bits)); v_cke((v_i+1)*v_mem_if_ranks - 1 downto v_i*v_mem_if_ranks) := std_logic_vector(to_unsigned(addr_cmd_vector(v_i).cke,v_mem_if_ranks)); v_cs_n((v_i+1)*config_rec.num_cs_bits - 1 downto v_i*config_rec.num_cs_bits) := std_logic_vector(to_unsigned(addr_cmd_vector(v_i).cs_n,config_rec.num_cs_bits)); v_odt((v_i+1)*v_mem_if_ranks - 1 downto v_i*v_mem_if_ranks) := std_logic_vector(to_unsigned(addr_cmd_vector(v_i).odt,v_mem_if_ranks)); if (addr_cmd_vector(v_i).cas_n) then v_cas_n(v_i) := '0'; else v_cas_n(v_i) := '1'; end if; if (addr_cmd_vector(v_i).ras_n) then v_ras_n(v_i) := '0'; else v_ras_n(v_i) := '1'; end if; if (addr_cmd_vector(v_i).we_n) then v_we_n(v_i) := '0'; else v_we_n(v_i) := '1'; end if; if (addr_cmd_vector(v_i).rst_n) then v_rst_n(v_i) := '0'; else v_rst_n(v_i) := '1'; end if; end loop; addr := v_addr; ba := v_ba; cke := v_cke; cs_n := v_cs_n; odt := v_odt; cas_n := v_cas_n; ras_n := v_ras_n; we_n := v_we_n; rst_n := v_rst_n; end procedure; procedure unpack_addr_cmd_vector( config_rec : in t_addr_cmd_config_rec; addr_cmd_vector : in t_addr_cmd_vector; signal addr : out std_logic_vector; signal ba : out std_logic_vector; signal cas_n : out std_logic_vector; signal ras_n : out std_logic_vector; signal we_n : out std_logic_vector; signal cke : out std_logic_vector; signal cs_n : out std_logic_vector; signal odt : out std_logic_vector; signal rst_n : out std_logic_vector ) is variable v_mem_if_ranks : natural range 0 to 2**c_max_ranks - 1; variable v_vec_len : natural range 1 to 4; variable v_seq_ac_addr : std_logic_vector(config_rec.cmds_per_clk * config_rec.num_addr_bits - 1 downto 0); variable v_seq_ac_ba : std_logic_vector(config_rec.cmds_per_clk * config_rec.num_ba_bits - 1 downto 0); variable v_seq_ac_cas_n : std_logic_vector(config_rec.cmds_per_clk - 1 downto 0); variable v_seq_ac_ras_n : std_logic_vector(config_rec.cmds_per_clk - 1 downto 0); variable v_seq_ac_we_n : std_logic_vector(config_rec.cmds_per_clk - 1 downto 0); variable v_seq_ac_cke : std_logic_vector(config_rec.cmds_per_clk * config_rec.num_ranks - 1 downto 0); variable v_seq_ac_cs_n : std_logic_vector(config_rec.cmds_per_clk * config_rec.num_cs_bits - 1 downto 0); variable v_seq_ac_odt : std_logic_vector(config_rec.cmds_per_clk * config_rec.num_ranks - 1 downto 0); variable v_seq_ac_rst_n : std_logic_vector(config_rec.cmds_per_clk - 1 downto 0); begin unpack_addr_cmd_vector ( addr_cmd_vector, config_rec, v_seq_ac_addr, v_seq_ac_ba, v_seq_ac_cas_n, v_seq_ac_ras_n, v_seq_ac_we_n, v_seq_ac_cke, v_seq_ac_cs_n, v_seq_ac_odt, v_seq_ac_rst_n); addr <= v_seq_ac_addr; ba <= v_seq_ac_ba; cas_n <= v_seq_ac_cas_n; ras_n <= v_seq_ac_ras_n; we_n <= v_seq_ac_we_n; cke <= v_seq_ac_cke; cs_n <= v_seq_ac_cs_n; odt <= v_seq_ac_odt; rst_n <= v_seq_ac_rst_n; end procedure; -- ----------------------------------------------------------- -- function to mask each bit of signal signal_name in addr_cmd_ -- ----------------------------------------------------------- -- ----------------------------------------------------------- -- function to mask each bit of signal signal_name in addr_cmd_vector with mask_value -- ----------------------------------------------------------- function mask ( config_rec : in t_addr_cmd_config_rec; addr_cmd_vector : in t_addr_cmd_vector; signal_name : in t_addr_cmd_signals; mask_value : in std_logic ) return t_addr_cmd_vector is variable v_i : integer; variable v_addr_cmd_vector : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin v_addr_cmd_vector := addr_cmd_vector; for v_i in 0 to (config_rec.cmds_per_clk)-1 loop case signal_name is when addr => if (mask_value = '0') then v_addr_cmd_vector(v_i).addr := 0; else v_addr_cmd_vector(v_i).addr := (2 ** config_rec.num_addr_bits) - 1; end if; when ba => if (mask_value = '0') then v_addr_cmd_vector(v_i).ba := 0; else v_addr_cmd_vector(v_i).ba := (2 ** config_rec.num_ba_bits) - 1; end if; when cas_n => if (mask_value = '0') then v_addr_cmd_vector(v_i).cas_n := true; else v_addr_cmd_vector(v_i).cas_n := false; end if; when ras_n => if (mask_value = '0') then v_addr_cmd_vector(v_i).ras_n := true; else v_addr_cmd_vector(v_i).ras_n := false; end if; when we_n => if (mask_value = '0') then v_addr_cmd_vector(v_i).we_n := true; else v_addr_cmd_vector(v_i).we_n := false; end if; when cke => if (mask_value = '0') then v_addr_cmd_vector(v_i).cke := 0; else v_addr_cmd_vector(v_i).cke := (2**config_rec.num_ranks) -1; end if; when cs_n => if (mask_value = '0') then v_addr_cmd_vector(v_i).cs_n := 0; else v_addr_cmd_vector(v_i).cs_n := (2**config_rec.num_cs_bits) -1; end if; when odt => if (mask_value = '0') then v_addr_cmd_vector(v_i).odt := 0; else v_addr_cmd_vector(v_i).odt := (2**config_rec.num_ranks) -1; end if; when rst_n => if (mask_value = '0') then v_addr_cmd_vector(v_i).rst_n := true; else v_addr_cmd_vector(v_i).rst_n := false; end if; when others => report ac_report_prefix & "bit masking not supported for the given signal name" severity failure; end case; end loop; return v_addr_cmd_vector; end function; -- ----------------------------------------------------------- -- procedure to mask each bit of signal signal_name in addr_cmd_vector with mask_value -- ----------------------------------------------------------- procedure mask( config_rec : in t_addr_cmd_config_rec; signal addr_cmd_vector : inout t_addr_cmd_vector; signal_name : in t_addr_cmd_signals; mask_value : in std_logic ) is variable v_i : integer; begin for v_i in 0 to (config_rec.cmds_per_clk)-1 loop case signal_name is when addr => if (mask_value = '0') then addr_cmd_vector(v_i).addr <= 0; else addr_cmd_vector(v_i).addr <= (2 ** config_rec.num_addr_bits) - 1; end if; when ba => if (mask_value = '0') then addr_cmd_vector(v_i).ba <= 0; else addr_cmd_vector(v_i).ba <= (2 ** config_rec.num_ba_bits) - 1; end if; when cas_n => if (mask_value = '0') then addr_cmd_vector(v_i).cas_n <= true; else addr_cmd_vector(v_i).cas_n <= false; end if; when ras_n => if (mask_value = '0') then addr_cmd_vector(v_i).ras_n <= true; else addr_cmd_vector(v_i).ras_n <= false; end if; when we_n => if (mask_value = '0') then addr_cmd_vector(v_i).we_n <= true; else addr_cmd_vector(v_i).we_n <= false; end if; when cke => if (mask_value = '0') then addr_cmd_vector(v_i).cke <= 0; else addr_cmd_vector(v_i).cke <= (2**config_rec.num_ranks) -1; end if; when cs_n => if (mask_value = '0') then addr_cmd_vector(v_i).cs_n <= 0; else addr_cmd_vector(v_i).cs_n <= (2**config_rec.num_cs_bits) -1; end if; when odt => if (mask_value = '0') then addr_cmd_vector(v_i).odt <= 0; else addr_cmd_vector(v_i).odt <= (2**config_rec.num_ranks) -1; end if; when rst_n => if (mask_value = '0') then addr_cmd_vector(v_i).rst_n <= true; else addr_cmd_vector(v_i).rst_n <= false; end if; when others => report ac_report_prefix & "masking not supported for the given signal name" severity failure; end case; end loop; end procedure; -- ----------------------------------------------------------- -- function to mask a given bit (mask_bit) of signal signal_name in addr_cmd_vector with mask_value -- ----------------------------------------------------------- function mask ( config_rec : in t_addr_cmd_config_rec; addr_cmd_vector : in t_addr_cmd_vector; signal_name : in t_addr_cmd_signals; mask_value : in std_logic; mask_bit : in natural ) return t_addr_cmd_vector is variable v_i : integer; variable v_addr : std_logic_vector(config_rec.num_addr_bits-1 downto 0); -- v_addr is bit vector of address variable v_ba : std_logic_vector(config_rec.num_ba_bits-1 downto 0); -- v_addr is bit vector of bank address variable v_vec_len : natural range 0 to 4; variable v_addr_cmd_vector : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin v_addr_cmd_vector := addr_cmd_vector; v_vec_len := config_rec.cmds_per_clk; for v_i in 0 to v_vec_len-1 loop case signal_name is when addr => v_addr := std_logic_vector(to_unsigned(v_addr_cmd_vector(v_i).addr,v_addr'length)); v_addr(mask_bit) := mask_value; v_addr_cmd_vector(v_i).addr := to_integer(unsigned(v_addr)); when ba => v_ba := std_logic_vector(to_unsigned(v_addr_cmd_vector(v_i).ba,v_ba'length)); v_ba(mask_bit) := mask_value; v_addr_cmd_vector(v_i).ba := to_integer(unsigned(v_ba)); when others => report ac_report_prefix & "bit masking not supported for the given signal name" severity failure; end case; end loop; return v_addr_cmd_vector; end function; -- end ddr_ctrl_ip_phy_alt_mem_phy_addr_cmd_pkg; -- -- ----------------------------------------------------------------------------- -- Abstract : iram addressing package for the non-levelling AFI PHY sequencer -- The iram address package (alt_mem_phy_iram_addr_pkg) is -- used to define the base addresses used for iram writes -- during calibration. -- ----------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; -- package ddr_ctrl_ip_phy_alt_mem_phy_iram_addr_pkg IS constant c_ihi_size : natural := 8; type t_base_hdr_addresses is record base_hdr : natural; rrp : natural; safe_dummy : natural; required_addr_bits : natural; end record; function defaults return t_base_hdr_addresses; function rrp_pll_phase_mult (dwidth_ratio : in natural; dqs_capture : in natural ) return natural; function iram_wd_for_full_rrp ( dwidth_ratio : in natural; pll_phases : in natural; dq_pins : in natural; dqs_capture : in natural ) return natural; function iram_wd_for_one_pin_rrp ( dwidth_ratio : in natural; pll_phases : in natural; dq_pins : in natural; dqs_capture : in natural ) return natural; function calc_iram_addresses ( dwidth_ratio : in natural; pll_phases : in natural; dq_pins : in natural; num_ranks : in natural; dqs_capture : in natural ) return t_base_hdr_addresses; -- end ddr_ctrl_ip_phy_alt_mem_phy_iram_addr_pkg; -- package body ddr_ctrl_ip_phy_alt_mem_phy_iram_addr_pkg IS -- set some safe default values function defaults return t_base_hdr_addresses is variable temp : t_base_hdr_addresses; begin temp.base_hdr := 0; temp.rrp := 0; temp.safe_dummy := 0; temp.required_addr_bits := 1; return temp; end function; -- this function determines now many times the PLL phases are swept through per pin -- i.e. an n * 360 degree phase sweep function rrp_pll_phase_mult (dwidth_ratio : in natural; dqs_capture : in natural ) return natural is variable v_output : natural; begin if dwidth_ratio = 2 and dqs_capture = 1 then v_output := 2; -- if dqs_capture then a 720 degree sweep needed in FR else v_output := (dwidth_ratio/2); end if; return v_output; end function; -- function to calculate how many words are required for a rrp sweep over all pins function iram_wd_for_full_rrp ( dwidth_ratio : in natural; pll_phases : in natural; dq_pins : in natural; dqs_capture : in natural ) return natural is variable v_output : natural; variable v_phase_mul : natural; begin -- determine the n * 360 degrees of sweep required v_phase_mul := rrp_pll_phase_mult(dwidth_ratio, dqs_capture); -- calculate output size v_output := dq_pins * (((v_phase_mul * pll_phases) + 31) / 32); return v_output; end function; -- function to calculate how many words are required for a rrp sweep over all pins function iram_wd_for_one_pin_rrp ( dwidth_ratio : in natural; pll_phases : in natural; dq_pins : in natural; dqs_capture : in natural ) return natural is variable v_output : natural; variable v_phase_mul : natural; begin -- determine the n * 360 degrees of sweep required v_phase_mul := rrp_pll_phase_mult(dwidth_ratio, dqs_capture); -- calculate output size v_output := ((v_phase_mul * pll_phases) + 31) / 32; return v_output; end function; -- return iram addresses function calc_iram_addresses ( dwidth_ratio : in natural; pll_phases : in natural; dq_pins : in natural; num_ranks : in natural; dqs_capture : in natural ) return t_base_hdr_addresses is variable working : t_base_hdr_addresses; variable temp : natural; variable v_required_words : natural; begin working.base_hdr := 0; working.rrp := working.base_hdr + c_ihi_size; -- work out required number of address bits -- + for 1 full rrp calibration v_required_words := iram_wd_for_full_rrp(dwidth_ratio, pll_phases, dq_pins, dqs_capture) + 2; -- +2 for header + footer -- * loop per cs v_required_words := v_required_words * num_ranks; -- + for 1 rrp_seek result v_required_words := v_required_words + 3; -- 1 header, 1 word result, 1 footer -- + 2 mtp_almt passes v_required_words := v_required_words + 2 * (iram_wd_for_one_pin_rrp(dwidth_ratio, pll_phases, dq_pins, dqs_capture) + 2); -- + for 2 read_mtp result calculation v_required_words := v_required_words + 3*2; -- 1 header, 1 word result, 1 footer -- * possible dwidth_ratio/2 iterations for different ac_nt settings v_required_words := v_required_words * (dwidth_ratio / 2); working.safe_dummy := working.rrp + v_required_words; temp := working.safe_dummy; working.required_addr_bits := 0; while (temp >= 1) loop working.required_addr_bits := working.required_addr_bits + 1; temp := temp /2; end loop; return working; end function calc_iram_addresses; -- END ddr_ctrl_ip_phy_alt_mem_phy_iram_addr_pkg; -- -- ----------------------------------------------------------------------------- -- Abstract : register package for the non-levelling AFI PHY sequencer -- The registers package (alt_mem_phy_regs_pkg) is used to -- combine the definition of the registers for the mmi status -- registers and functions/procedures applied to the registers -- ----------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; -- The record package (alt_mem_phy_record_pkg) is used to combine command and status signals -- (into records) to be passed between sequencer blocks. It also contains type and record definitions -- for the stages of DRAM memory calibration. -- use work.ddr_ctrl_ip_phy_alt_mem_phy_record_pkg.all; -- The constant package (alt_mem_phy_constants_pkg) contains global 'constants' which are fixed -- thoughout the sequencer and will not change (for constants which may change between sequencer -- instances generics are used) -- use work.ddr_ctrl_ip_phy_alt_mem_phy_constants_pkg.all; -- package ddr_ctrl_ip_phy_alt_mem_phy_regs_pkg is -- a prefix for all report signals to identify phy and sequencer block -- constant regs_report_prefix : string := "ddr_ctrl_ip_phy_alt_mem_phy_seq (register package) : "; -- --------------------------------------------------------------- -- register declarations with associated functions of: -- default - assign default values -- write - write data into the reg (from avalon i/f) -- read - read data from the reg (sent to the avalon i/f) -- write_clear - clear reg to all zeros -- --------------------------------------------------------------- -- TYPE DECLARATIONS -- >>>>>>>>>>>>>>>>>>>>>>>> -- Read Only Registers -- >>>>>>>>>>>>>>>>>>>>>>>> -- cal_status type t_cal_status is record iram_addr_width : std_logic_vector(3 downto 0); out_of_mem : std_logic; contested_access : std_logic; cal_fail : std_logic; cal_success : std_logic; ctrl_err_code : std_logic_vector(7 downto 0); trefi_failure : std_logic; int_ac_1t : std_logic; dqs_capture : std_logic; iram_present : std_logic; active_block : std_logic_vector(3 downto 0); current_stage : std_logic_vector(7 downto 0); end record; -- codvw status type t_codvw_status is record cal_codvw_phase : std_logic_vector(7 downto 0); cal_codvw_size : std_logic_vector(7 downto 0); codvw_trk_shift : std_logic_vector(11 downto 0); codvw_grt_one_dvw : std_logic; end record t_codvw_status; -- test status report type t_test_status is record ack_seen : std_logic_vector(c_hl_ccs_num_stages-1 downto 0); pll_mmi_err : std_logic_vector(1 downto 0); pll_busy : std_logic; end record; -- define all the read only registers : type t_ro_regs is record cal_status : t_cal_status; codvw_status : t_codvw_status; test_status : t_test_status; end record; -- >>>>>>>>>>>>>>>>>>>>>>>> -- Read / Write Registers -- >>>>>>>>>>>>>>>>>>>>>>>> -- Calibration control register type t_hl_css is record hl_css : std_logic_vector(c_hl_ccs_num_stages-1 downto 0); cal_start : std_logic; end record t_hl_css; -- Mode register A type t_mr_register_a is record mr0 : std_logic_vector(c_max_mode_reg_index -1 downto 0); mr1 : std_logic_vector(c_max_mode_reg_index -1 downto 0); end record t_mr_register_a; -- Mode register B type t_mr_register_b is record mr2 : std_logic_vector(c_max_mode_reg_index -1 downto 0); mr3 : std_logic_vector(c_max_mode_reg_index -1 downto 0); end record t_mr_register_b; -- algorithm parameterisation register type t_parameterisation_reg_a is record nominal_poa_phase_lead : std_logic_vector(3 downto 0); maximum_poa_delay : std_logic_vector(3 downto 0); num_phases_per_tck_pll : std_logic_vector(3 downto 0); pll_360_sweeps : std_logic_vector(3 downto 0); nominal_dqs_delay : std_logic_vector(2 downto 0); extend_octrt_by : std_logic_vector(3 downto 0); delay_octrt_by : std_logic_vector(3 downto 0); end record; -- test signal register type t_if_test_reg is record pll_phs_shft_phase_sel : natural range 0 to 15; pll_phs_shft_up_wc : std_logic; pll_phs_shft_dn_wc : std_logic; ac_1t_toggle : std_logic; -- unused tracking_period_ms : std_logic_vector(7 downto 0); -- 0 = as fast as possible approx in ms tracking_units_are_10us : std_logic; end record; -- define all the read/write registers type t_rw_regs is record mr_reg_a : t_mr_register_a; mr_reg_b : t_mr_register_b; rw_hl_css : t_hl_css; rw_param_reg : t_parameterisation_reg_a; rw_if_test : t_if_test_reg; end record; -- >>>>>>>>>>>>>>>>>>>>>>> -- Group all registers -- >>>>>>>>>>>>>>>>>>>>>>> type t_mmi_regs is record rw_regs : t_rw_regs; ro_regs : t_ro_regs; enable_writes : std_logic; end record; -- FUNCTION DECLARATIONS -- >>>>>>>>>>>>>>>>>>>>>>>> -- Read Only Registers -- >>>>>>>>>>>>>>>>>>>>>>>> -- cal_status function defaults return t_cal_status; function defaults ( ctrl_mmi : in t_ctrl_mmi; USE_IRAM : in std_logic; dqs_capture : in natural; int_ac_1t : in std_logic; trefi_failure : in std_logic; iram_status : in t_iram_stat; IRAM_AWIDTH : in natural ) return t_cal_status; function read (reg : t_cal_status) return std_logic_vector; -- codvw status function defaults return t_codvw_status; function defaults ( dgrb_mmi : t_dgrb_mmi ) return t_codvw_status; function read (reg : in t_codvw_status) return std_logic_vector; -- test status report function defaults return t_test_status; function defaults ( ctrl_mmi : in t_ctrl_mmi; pll_mmi : in t_pll_mmi; rw_if_test : t_if_test_reg ) return t_test_status; function read (reg : t_test_status) return std_logic_vector; -- define all the read only registers function defaults return t_ro_regs; function defaults (dgrb_mmi : t_dgrb_mmi; ctrl_mmi : t_ctrl_mmi; pll_mmi : t_pll_mmi; rw_if_test : t_if_test_reg; USE_IRAM : std_logic; dqs_capture : natural; int_ac_1t : std_logic; trefi_failure : std_logic; iram_status : t_iram_stat; IRAM_AWIDTH : natural ) return t_ro_regs; -- >>>>>>>>>>>>>>>>>>>>>>>> -- Read / Write Registers -- >>>>>>>>>>>>>>>>>>>>>>>> -- Calibration control register -- high level calibration stage set register comprises a bit vector for -- the calibration stage coding and the 1 control bit. function defaults return t_hl_css; function write (wdata_in : std_logic_vector(31 downto 0)) return t_hl_css; function read (reg : in t_hl_css) return std_logic_vector; procedure write_clear (signal reg : inout t_hl_css); -- Mode register A -- mode registers 0 and 1 (mr and emr1) function defaults return t_mr_register_a; function defaults ( mr0 : in std_logic_vector; mr1 : in std_logic_vector ) return t_mr_register_a; function write (wdata_in : std_logic_vector(31 downto 0)) return t_mr_register_a; function read (reg : in t_mr_register_a) return std_logic_vector; -- Mode register B -- mode registers 2 and 3 (emr2 and emr3) - not present in ddr DRAM function defaults return t_mr_register_b; function defaults ( mr2 : in std_logic_vector; mr3 : in std_logic_vector ) return t_mr_register_b; function write (wdata_in : std_logic_vector(31 downto 0)) return t_mr_register_b; function read (reg : in t_mr_register_b) return std_logic_vector; -- algorithm parameterisation register function defaults return t_parameterisation_reg_a; function defaults ( NOM_DQS_PHASE_SETTING : in natural; PLL_STEPS_PER_CYCLE : in natural; pll_360_sweeps : in natural ) return t_parameterisation_reg_a; function read ( reg : in t_parameterisation_reg_a) return std_logic_vector; function write (wdata_in : std_logic_vector(31 downto 0)) return t_parameterisation_reg_a; -- test signal register function defaults return t_if_test_reg; function defaults ( TRACKING_INTERVAL_IN_MS : in natural ) return t_if_test_reg; function read ( reg : in t_if_test_reg) return std_logic_vector; function write (wdata_in : std_logic_vector(31 downto 0)) return t_if_test_reg; procedure write_clear (signal reg : inout t_if_test_reg); -- define all the read/write registers function defaults return t_rw_regs; function defaults( mr0 : in std_logic_vector; mr1 : in std_logic_vector; mr2 : in std_logic_vector; mr3 : in std_logic_vector; NOM_DQS_PHASE_SETTING : in natural; PLL_STEPS_PER_CYCLE : in natural; pll_360_sweeps : in natural; TRACKING_INTERVAL_IN_MS : in natural; C_HL_STAGE_ENABLE : in std_logic_vector(c_hl_ccs_num_stages-1 downto 0) )return t_rw_regs; procedure write_clear (signal regs : inout t_rw_regs); -- >>>>>>>>>>>>>>>>>>>>>>> -- Group all registers -- >>>>>>>>>>>>>>>>>>>>>>> function defaults return t_mmi_regs; function v_read (mmi_regs : in t_mmi_regs; address : in natural ) return std_logic_vector; function read (signal mmi_regs : in t_mmi_regs; address : in natural ) return std_logic_vector; procedure write (mmi_regs : inout t_mmi_regs; address : in natural; wdata : in std_logic_vector(31 downto 0)); -- >>>>>>>>>>>>>>>>>>>>>>> -- functions to communicate register settings to other sequencer blocks -- >>>>>>>>>>>>>>>>>>>>>>> function pack_record (ip_regs : t_rw_regs) return t_mmi_pll_reconfig; function pack_record (ip_regs : t_rw_regs) return t_admin_ctrl; function pack_record (ip_regs : t_rw_regs) return t_mmi_ctrl; function pack_record ( ip_regs : t_rw_regs) return t_algm_paramaterisation; -- >>>>>>>>>>>>>>>>>>>>>>> -- helper functions -- >>>>>>>>>>>>>>>>>>>>>>> function to_t_hl_css_reg (hl_css : t_hl_css ) return t_hl_css_reg; function pack_ack_seen ( cal_stage_ack_seen : in t_cal_stage_ack_seen ) return std_logic_vector; -- encoding of stage and active block for register setting function encode_current_stage (ctrl_cmd_id : t_ctrl_cmd_id) return std_logic_vector; function encode_active_block (active_block : t_ctrl_active_block) return std_logic_vector; -- end ddr_ctrl_ip_phy_alt_mem_phy_regs_pkg; -- package body ddr_ctrl_ip_phy_alt_mem_phy_regs_pkg is -- >>>>>>>>>>>>>>>>>>>> -- Read Only Registers -- >>>>>>>>>>>>>>>>>>> -- --------------------------------------------------------------- -- CODVW status report -- --------------------------------------------------------------- function defaults return t_codvw_status is variable temp: t_codvw_status; begin temp.cal_codvw_phase := (others => '0'); temp.cal_codvw_size := (others => '0'); temp.codvw_trk_shift := (others => '0'); temp.codvw_grt_one_dvw := '0'; return temp; end function; function defaults ( dgrb_mmi : t_dgrb_mmi ) return t_codvw_status is variable temp: t_codvw_status; begin temp := defaults; temp.cal_codvw_phase := dgrb_mmi.cal_codvw_phase; temp.cal_codvw_size := dgrb_mmi.cal_codvw_size; temp.codvw_trk_shift := dgrb_mmi.codvw_trk_shift; temp.codvw_grt_one_dvw := dgrb_mmi.codvw_grt_one_dvw; return temp; end function; function read (reg : in t_codvw_status) return std_logic_vector is variable temp : std_logic_vector(31 downto 0); begin temp := (others => '0'); temp(31 downto 24) := reg.cal_codvw_phase; temp(23 downto 16) := reg.cal_codvw_size; temp(15 downto 4) := reg.codvw_trk_shift; temp(0) := reg.codvw_grt_one_dvw; return temp; end function; -- --------------------------------------------------------------- -- Calibration status report -- --------------------------------------------------------------- function defaults return t_cal_status is variable temp: t_cal_status; begin temp.iram_addr_width := (others => '0'); temp.out_of_mem := '0'; temp.contested_access := '0'; temp.cal_fail := '0'; temp.cal_success := '0'; temp.ctrl_err_code := (others => '0'); temp.trefi_failure := '0'; temp.int_ac_1t := '0'; temp.dqs_capture := '0'; temp.iram_present := '0'; temp.active_block := (others => '0'); temp.current_stage := (others => '0'); return temp; end function; function defaults ( ctrl_mmi : in t_ctrl_mmi; USE_IRAM : in std_logic; dqs_capture : in natural; int_ac_1t : in std_logic; trefi_failure : in std_logic; iram_status : in t_iram_stat; IRAM_AWIDTH : in natural ) return t_cal_status is variable temp : t_cal_status; begin temp := defaults; temp.iram_addr_width := std_logic_vector(to_unsigned(IRAM_AWIDTH, temp.iram_addr_width'length)); temp.out_of_mem := iram_status.out_of_mem; temp.contested_access := iram_status.contested_access; temp.cal_fail := ctrl_mmi.ctrl_calibration_fail; temp.cal_success := ctrl_mmi.ctrl_calibration_success; temp.ctrl_err_code := ctrl_mmi.ctrl_err_code; temp.trefi_failure := trefi_failure; temp.int_ac_1t := int_ac_1t; if dqs_capture = 1 then temp.dqs_capture := '1'; elsif dqs_capture = 0 then temp.dqs_capture := '0'; else report regs_report_prefix & " invalid value for dqs_capture constant of " & integer'image(dqs_capture) severity failure; end if; temp.iram_present := USE_IRAM; temp.active_block := encode_active_block(ctrl_mmi.ctrl_current_active_block); temp.current_stage := encode_current_stage(ctrl_mmi.ctrl_current_stage); return temp; end function; -- read for mmi status register function read ( reg : t_cal_status ) return std_logic_vector is variable output : std_logic_vector(31 downto 0); begin output := (others => '0'); output( 7 downto 0) := reg.current_stage; output(11 downto 8) := reg.active_block; output(12) := reg.iram_present; output(13) := reg.dqs_capture; output(14) := reg.int_ac_1t; output(15) := reg.trefi_failure; output(23 downto 16) := reg.ctrl_err_code; output(24) := reg.cal_success; output(25) := reg.cal_fail; output(26) := reg.contested_access; output(27) := reg.out_of_mem; output(31 downto 28) := reg.iram_addr_width; return output; end function; -- --------------------------------------------------------------- -- Test status report -- --------------------------------------------------------------- function defaults return t_test_status is variable temp: t_test_status; begin temp.ack_seen := (others => '0'); temp.pll_mmi_err := (others => '0'); temp.pll_busy := '0'; return temp; end function; function defaults ( ctrl_mmi : in t_ctrl_mmi; pll_mmi : in t_pll_mmi; rw_if_test : t_if_test_reg ) return t_test_status is variable temp : t_test_status; begin temp := defaults; temp.ack_seen := pack_ack_seen(ctrl_mmi.ctrl_cal_stage_ack_seen); temp.pll_mmi_err := pll_mmi.err; temp.pll_busy := pll_mmi.pll_busy or rw_if_test.pll_phs_shft_up_wc or rw_if_test.pll_phs_shft_dn_wc; return temp; end function; -- read for mmi status register function read ( reg : t_test_status ) return std_logic_vector is variable output : std_logic_vector(31 downto 0); begin output := (others => '0'); output(31 downto 32-c_hl_ccs_num_stages) := reg.ack_seen; output( 5 downto 4) := reg.pll_mmi_err; output(0) := reg.pll_busy; return output; end function; ------------------------------------------------- -- FOR ALL RO REGS: ------------------------------------------------- function defaults return t_ro_regs is variable temp: t_ro_regs; begin temp.cal_status := defaults; temp.codvw_status := defaults; return temp; end function; function defaults (dgrb_mmi : t_dgrb_mmi; ctrl_mmi : t_ctrl_mmi; pll_mmi : t_pll_mmi; rw_if_test : t_if_test_reg; USE_IRAM : std_logic; dqs_capture : natural; int_ac_1t : std_logic; trefi_failure : std_logic; iram_status : t_iram_stat; IRAM_AWIDTH : natural ) return t_ro_regs is variable output : t_ro_regs; begin output := defaults; output.cal_status := defaults(ctrl_mmi, USE_IRAM, dqs_capture, int_ac_1t, trefi_failure, iram_status, IRAM_AWIDTH); output.codvw_status := defaults(dgrb_mmi); output.test_status := defaults(ctrl_mmi, pll_mmi, rw_if_test); return output; end function; -- >>>>>>>>>>>>>>>>>>>>>>>> -- Read / Write registers -- >>>>>>>>>>>>>>>>>>>>>>>> -- --------------------------------------------------------------- -- mode register set A -- --------------------------------------------------------------- function defaults return t_mr_register_a is variable temp :t_mr_register_a; begin temp.mr0 := (others => '0'); temp.mr1 := (others => '0'); return temp; end function; -- apply default mode register settings to register function defaults ( mr0 : in std_logic_vector; mr1 : in std_logic_vector ) return t_mr_register_a is variable temp :t_mr_register_a; begin temp := defaults; temp.mr0 := mr0(temp.mr0'range); temp.mr1 := mr1(temp.mr1'range); return temp; end function; function write (wdata_in : std_logic_vector(31 downto 0)) return t_mr_register_a is variable temp :t_mr_register_a; begin temp.mr0 := wdata_in(c_max_mode_reg_index -1 downto 0); temp.mr1 := wdata_in(c_max_mode_reg_index -1 + 16 downto 16); return temp; end function; function read (reg : in t_mr_register_a) return std_logic_vector is variable temp : std_logic_vector(31 downto 0) := (others => '0'); begin temp(c_max_mode_reg_index -1 downto 0) := reg.mr0; temp(c_max_mode_reg_index -1 + 16 downto 16) := reg.mr1; return temp; end function; -- --------------------------------------------------------------- -- mode register set B -- --------------------------------------------------------------- function defaults return t_mr_register_b is variable temp :t_mr_register_b; begin temp.mr2 := (others => '0'); temp.mr3 := (others => '0'); return temp; end function; -- apply default mode register settings to register function defaults ( mr2 : in std_logic_vector; mr3 : in std_logic_vector ) return t_mr_register_b is variable temp :t_mr_register_b; begin temp := defaults; temp.mr2 := mr2(temp.mr2'range); temp.mr3 := mr3(temp.mr3'range); return temp; end function; function write (wdata_in : std_logic_vector(31 downto 0)) return t_mr_register_b is variable temp :t_mr_register_b; begin temp.mr2 := wdata_in(c_max_mode_reg_index -1 downto 0); temp.mr3 := wdata_in(c_max_mode_reg_index -1 + 16 downto 16); return temp; end function; function read (reg : in t_mr_register_b) return std_logic_vector is variable temp : std_logic_vector(31 downto 0) := (others => '0'); begin temp(c_max_mode_reg_index -1 downto 0) := reg.mr2; temp(c_max_mode_reg_index -1 + 16 downto 16) := reg.mr3; return temp; end function; -- --------------------------------------------------------------- -- HL CSS (high level calibration state status) -- --------------------------------------------------------------- function defaults return t_hl_css is variable temp : t_hl_css; begin temp.hl_css := (others => '0'); temp.cal_start := '0'; return temp; end function; function defaults ( C_HL_STAGE_ENABLE : in std_logic_vector(c_hl_ccs_num_stages-1 downto 0) ) return t_hl_css is variable temp: t_hl_css; begin temp := defaults; temp.hl_css := temp.hl_css OR C_HL_STAGE_ENABLE; return temp; end function; function read ( reg : in t_hl_css) return std_logic_vector is variable temp : std_logic_vector (31 downto 0) := (others => '0'); begin temp(30 downto 30-c_hl_ccs_num_stages+1) := reg.hl_css; temp(0) := reg.cal_start; return temp; end function; function write (wdata_in : std_logic_vector(31 downto 0) )return t_hl_css is variable reg : t_hl_css; begin reg.hl_css := wdata_in(30 downto 30-c_hl_ccs_num_stages+1); reg.cal_start := wdata_in(0); return reg; end function; procedure write_clear (signal reg : inout t_hl_css) is begin reg.cal_start <= '0'; end procedure; -- --------------------------------------------------------------- -- paramaterisation of sequencer through Avalon interface -- --------------------------------------------------------------- function defaults return t_parameterisation_reg_a is variable temp : t_parameterisation_reg_a; begin temp.nominal_poa_phase_lead := (others => '0'); temp.maximum_poa_delay := (others => '0'); temp.pll_360_sweeps := "0000"; temp.num_phases_per_tck_pll := "0011"; temp.nominal_dqs_delay := (others => '0'); temp.extend_octrt_by := "0100"; temp.delay_octrt_by := "0000"; return temp; end function; -- reset the paramterisation reg to given values function defaults ( NOM_DQS_PHASE_SETTING : in natural; PLL_STEPS_PER_CYCLE : in natural; pll_360_sweeps : in natural ) return t_parameterisation_reg_a is variable temp: t_parameterisation_reg_a; begin temp := defaults; temp.num_phases_per_tck_pll := std_logic_vector(to_unsigned(PLL_STEPS_PER_CYCLE /8 , temp.num_phases_per_tck_pll'high + 1 )); temp.pll_360_sweeps := std_logic_vector(to_unsigned(pll_360_sweeps , temp.pll_360_sweeps'high + 1 )); temp.nominal_dqs_delay := std_logic_vector(to_unsigned(NOM_DQS_PHASE_SETTING , temp.nominal_dqs_delay'high + 1 )); temp.extend_octrt_by := std_logic_vector(to_unsigned(5 , temp.extend_octrt_by'high + 1 )); temp.delay_octrt_by := std_logic_vector(to_unsigned(6 , temp.delay_octrt_by'high + 1 )); return temp; end function; function read ( reg : in t_parameterisation_reg_a) return std_logic_vector is variable temp : std_logic_vector (31 downto 0) := (others => '0'); begin temp( 3 downto 0) := reg.pll_360_sweeps; temp( 7 downto 4) := reg.num_phases_per_tck_pll; temp(10 downto 8) := reg.nominal_dqs_delay; temp(19 downto 16) := reg.nominal_poa_phase_lead; temp(23 downto 20) := reg.maximum_poa_delay; temp(27 downto 24) := reg.extend_octrt_by; temp(31 downto 28) := reg.delay_octrt_by; return temp; end function; function write (wdata_in : std_logic_vector(31 downto 0)) return t_parameterisation_reg_a is variable reg : t_parameterisation_reg_a; begin reg.pll_360_sweeps := wdata_in( 3 downto 0); reg.num_phases_per_tck_pll := wdata_in( 7 downto 4); reg.nominal_dqs_delay := wdata_in(10 downto 8); reg.nominal_poa_phase_lead := wdata_in(19 downto 16); reg.maximum_poa_delay := wdata_in(23 downto 20); reg.extend_octrt_by := wdata_in(27 downto 24); reg.delay_octrt_by := wdata_in(31 downto 28); return reg; end function; -- --------------------------------------------------------------- -- t_if_test_reg - additional test support register -- --------------------------------------------------------------- function defaults return t_if_test_reg is variable temp : t_if_test_reg; begin temp.pll_phs_shft_phase_sel := 0; temp.pll_phs_shft_up_wc := '0'; temp.pll_phs_shft_dn_wc := '0'; temp.ac_1t_toggle := '0'; temp.tracking_period_ms := "10000000"; -- 127 ms interval temp.tracking_units_are_10us := '0'; return temp; end function; -- reset the paramterisation reg to given values function defaults ( TRACKING_INTERVAL_IN_MS : in natural ) return t_if_test_reg is variable temp: t_if_test_reg; begin temp := defaults; temp.tracking_period_ms := std_logic_vector(to_unsigned(TRACKING_INTERVAL_IN_MS, temp.tracking_period_ms'length)); return temp; end function; function read ( reg : in t_if_test_reg) return std_logic_vector is variable temp : std_logic_vector (31 downto 0) := (others => '0'); begin temp( 3 downto 0) := std_logic_vector(to_unsigned(reg.pll_phs_shft_phase_sel,4)); temp(4) := reg.pll_phs_shft_up_wc; temp(5) := reg.pll_phs_shft_dn_wc; temp(16) := reg.ac_1t_toggle; temp(15 downto 8) := reg.tracking_period_ms; temp(20) := reg.tracking_units_are_10us; return temp; end function; function write (wdata_in : std_logic_vector(31 downto 0)) return t_if_test_reg is variable reg : t_if_test_reg; begin reg.pll_phs_shft_phase_sel := to_integer(unsigned(wdata_in( 3 downto 0))); reg.pll_phs_shft_up_wc := wdata_in(4); reg.pll_phs_shft_dn_wc := wdata_in(5); reg.ac_1t_toggle := wdata_in(16); reg.tracking_period_ms := wdata_in(15 downto 8); reg.tracking_units_are_10us := wdata_in(20); return reg; end function; procedure write_clear (signal reg : inout t_if_test_reg) is begin reg.ac_1t_toggle <= '0'; reg.pll_phs_shft_up_wc <= '0'; reg.pll_phs_shft_dn_wc <= '0'; end procedure; -- --------------------------------------------------------------- -- RW Regs, record of read/write register records (to simplify handling) -- --------------------------------------------------------------- function defaults return t_rw_regs is variable temp : t_rw_regs; begin temp.mr_reg_a := defaults; temp.mr_reg_b := defaults; temp.rw_hl_css := defaults; temp.rw_param_reg := defaults; temp.rw_if_test := defaults; return temp; end function; function defaults( mr0 : in std_logic_vector; mr1 : in std_logic_vector; mr2 : in std_logic_vector; mr3 : in std_logic_vector; NOM_DQS_PHASE_SETTING : in natural; PLL_STEPS_PER_CYCLE : in natural; pll_360_sweeps : in natural; TRACKING_INTERVAL_IN_MS : in natural; C_HL_STAGE_ENABLE : in std_logic_vector(c_hl_ccs_num_stages-1 downto 0) )return t_rw_regs is variable temp : t_rw_regs; begin temp := defaults; temp.mr_reg_a := defaults(mr0, mr1); temp.mr_reg_b := defaults(mr2, mr3); temp.rw_param_reg := defaults(NOM_DQS_PHASE_SETTING, PLL_STEPS_PER_CYCLE, pll_360_sweeps); temp.rw_if_test := defaults(TRACKING_INTERVAL_IN_MS); temp.rw_hl_css := defaults(C_HL_STAGE_ENABLE); return temp; end function; procedure write_clear (signal regs : inout t_rw_regs) is begin write_clear(regs.rw_if_test); write_clear(regs.rw_hl_css); end procedure; -- >>>>>>>>>>>>>>>>>>>>>>>>>> -- All mmi registers: -- >>>>>>>>>>>>>>>>>>>>>>>>>> function defaults return t_mmi_regs is variable v_mmi_regs : t_mmi_regs; begin v_mmi_regs.rw_regs := defaults; v_mmi_regs.ro_regs := defaults; v_mmi_regs.enable_writes := '0'; return v_mmi_regs; end function; function v_read (mmi_regs : in t_mmi_regs; address : in natural ) return std_logic_vector is variable output : std_logic_vector(31 downto 0); begin output := (others => '0'); case address is -- status register when c_regofst_cal_status => output := read (mmi_regs.ro_regs.cal_status); -- debug access register when c_regofst_debug_access => if (mmi_regs.enable_writes = '1') then output := c_mmi_access_codeword; else output := (others => '0'); end if; -- test i/f to check which stages have acknowledged a command and pll checks when c_regofst_test_status => output := read(mmi_regs.ro_regs.test_status); -- mode registers when c_regofst_mr_register_a => output := read(mmi_regs.rw_regs.mr_reg_a); when c_regofst_mr_register_b => output := read(mmi_regs.rw_regs.mr_reg_b); -- codvw r/o status register when c_regofst_codvw_status => output := read(mmi_regs.ro_regs.codvw_status); -- read/write registers when c_regofst_hl_css => output := read(mmi_regs.rw_regs.rw_hl_css); when c_regofst_if_param => output := read(mmi_regs.rw_regs.rw_param_reg); when c_regofst_if_test => output := read(mmi_regs.rw_regs.rw_if_test); when others => report regs_report_prefix & "MMI registers detected an attempt to read to non-existant register location" severity warning; -- set illegal addr interrupt. end case; return output; end function; function read (signal mmi_regs : in t_mmi_regs; address : in natural ) return std_logic_vector is variable output : std_logic_vector(31 downto 0); variable v_mmi_regs : t_mmi_regs; begin v_mmi_regs := mmi_regs; output := v_read(v_mmi_regs, address); return output; end function; procedure write (mmi_regs : inout t_mmi_regs; address : in natural; wdata : in std_logic_vector(31 downto 0)) is begin -- intercept writes to codeword. This needs to be set for iRAM access : if address = c_regofst_debug_access then if wdata = c_mmi_access_codeword then mmi_regs.enable_writes := '1'; else mmi_regs.enable_writes := '0'; end if; else case address is -- read only registers when c_regofst_cal_status | c_regofst_codvw_status | c_regofst_test_status => report regs_report_prefix & "MMI registers detected an attempt to write to read only register number" & integer'image(address) severity failure; -- read/write registers when c_regofst_mr_register_a => mmi_regs.rw_regs.mr_reg_a := write(wdata); when c_regofst_mr_register_b => mmi_regs.rw_regs.mr_reg_b := write(wdata); when c_regofst_hl_css => mmi_regs.rw_regs.rw_hl_css := write(wdata); when c_regofst_if_param => mmi_regs.rw_regs.rw_param_reg := write(wdata); when c_regofst_if_test => mmi_regs.rw_regs.rw_if_test := write(wdata); when others => -- set illegal addr interrupt. report regs_report_prefix & "MMI registers detected an attempt to write to non existant register, with expected number" & integer'image(address) severity failure; end case; end if; end procedure; -- >>>>>>>>>>>>>>>>>>>>>>>>>> -- the following functions enable register data to be communicated to other sequencer blocks -- >>>>>>>>>>>>>>>>>>>>>>>>>> function pack_record ( ip_regs : t_rw_regs ) return t_algm_paramaterisation is variable output : t_algm_paramaterisation; begin -- default assignments output.num_phases_per_tck_pll := 16; output.pll_360_sweeps := 1; output.nominal_dqs_delay := 2; output.nominal_poa_phase_lead := 1; output.maximum_poa_delay := 5; output.odt_enabled := false; output.num_phases_per_tck_pll := to_integer(unsigned(ip_regs.rw_param_reg.num_phases_per_tck_pll)) * 8; case ip_regs.rw_param_reg.nominal_dqs_delay is when "010" => output.nominal_dqs_delay := 2; when "001" => output.nominal_dqs_delay := 1; when "000" => output.nominal_dqs_delay := 0; when "011" => output.nominal_dqs_delay := 3; when others => report regs_report_prefix & "there is a unsupported number of DQS taps (" & natural'image(to_integer(unsigned(ip_regs.rw_param_reg.nominal_dqs_delay))) & ") being advertised as the standard value" severity error; end case; case ip_regs.rw_param_reg.nominal_poa_phase_lead is when "0001" => output.nominal_poa_phase_lead := 1; when "0010" => output.nominal_poa_phase_lead := 2; when "0011" => output.nominal_poa_phase_lead := 3; when "0000" => output.nominal_poa_phase_lead := 0; when others => report regs_report_prefix & "there is an unsupported nominal postamble phase lead paramater set (" & natural'image(to_integer(unsigned(ip_regs.rw_param_reg.nominal_poa_phase_lead))) & ")" severity error; end case; if ( (ip_regs.mr_reg_a.mr1(2) = '1') or (ip_regs.mr_reg_a.mr1(6) = '1') or (ip_regs.mr_reg_a.mr1(9) = '1') ) then output.odt_enabled := true; end if; output.pll_360_sweeps := to_integer(unsigned(ip_regs.rw_param_reg.pll_360_sweeps)); output.maximum_poa_delay := to_integer(unsigned(ip_regs.rw_param_reg.maximum_poa_delay)); output.extend_octrt_by := to_integer(unsigned(ip_regs.rw_param_reg.extend_octrt_by)); output.delay_octrt_by := to_integer(unsigned(ip_regs.rw_param_reg.delay_octrt_by)); output.tracking_period_ms := to_integer(unsigned(ip_regs.rw_if_test.tracking_period_ms)); return output; end function; function pack_record (ip_regs : t_rw_regs) return t_mmi_pll_reconfig is variable output : t_mmi_pll_reconfig; begin output.pll_phs_shft_phase_sel := ip_regs.rw_if_test.pll_phs_shft_phase_sel; output.pll_phs_shft_up_wc := ip_regs.rw_if_test.pll_phs_shft_up_wc; output.pll_phs_shft_dn_wc := ip_regs.rw_if_test.pll_phs_shft_dn_wc; return output; end function; function pack_record (ip_regs : t_rw_regs) return t_admin_ctrl is variable output : t_admin_ctrl := defaults; begin output.mr0 := ip_regs.mr_reg_a.mr0; output.mr1 := ip_regs.mr_reg_a.mr1; output.mr2 := ip_regs.mr_reg_b.mr2; output.mr3 := ip_regs.mr_reg_b.mr3; return output; end function; function pack_record (ip_regs : t_rw_regs) return t_mmi_ctrl is variable output : t_mmi_ctrl := defaults; begin output.hl_css := to_t_hl_css_reg (ip_regs.rw_hl_css); output.calibration_start := ip_regs.rw_hl_css.cal_start; output.tracking_period_ms := to_integer(unsigned(ip_regs.rw_if_test.tracking_period_ms)); output.tracking_orvd_to_10ms := ip_regs.rw_if_test.tracking_units_are_10us; return output; end function; -- >>>>>>>>>>>>>>>>>>>>>>>>>> -- Helper functions : -- >>>>>>>>>>>>>>>>>>>>>>>>>> function to_t_hl_css_reg (hl_css : t_hl_css ) return t_hl_css_reg is variable output : t_hl_css_reg := defaults; begin output.phy_initialise_dis := hl_css.hl_css(c_hl_css_reg_phy_initialise_dis_bit); output.init_dram_dis := hl_css.hl_css(c_hl_css_reg_init_dram_dis_bit); output.write_ihi_dis := hl_css.hl_css(c_hl_css_reg_write_ihi_dis_bit); output.cal_dis := hl_css.hl_css(c_hl_css_reg_cal_dis_bit); output.write_btp_dis := hl_css.hl_css(c_hl_css_reg_write_btp_dis_bit); output.write_mtp_dis := hl_css.hl_css(c_hl_css_reg_write_mtp_dis_bit); output.read_mtp_dis := hl_css.hl_css(c_hl_css_reg_read_mtp_dis_bit); output.rrp_reset_dis := hl_css.hl_css(c_hl_css_reg_rrp_reset_dis_bit); output.rrp_sweep_dis := hl_css.hl_css(c_hl_css_reg_rrp_sweep_dis_bit); output.rrp_seek_dis := hl_css.hl_css(c_hl_css_reg_rrp_seek_dis_bit); output.rdv_dis := hl_css.hl_css(c_hl_css_reg_rdv_dis_bit); output.poa_dis := hl_css.hl_css(c_hl_css_reg_poa_dis_bit); output.was_dis := hl_css.hl_css(c_hl_css_reg_was_dis_bit); output.adv_rd_lat_dis := hl_css.hl_css(c_hl_css_reg_adv_rd_lat_dis_bit); output.adv_wr_lat_dis := hl_css.hl_css(c_hl_css_reg_adv_wr_lat_dis_bit); output.prep_customer_mr_setup_dis := hl_css.hl_css(c_hl_css_reg_prep_customer_mr_setup_dis_bit); output.tracking_dis := hl_css.hl_css(c_hl_css_reg_tracking_dis_bit); return output; end function; -- pack the ack seen record element into a std_logic_vector function pack_ack_seen ( cal_stage_ack_seen : in t_cal_stage_ack_seen ) return std_logic_vector is variable v_output: std_logic_vector(c_hl_ccs_num_stages-1 downto 0); variable v_start : natural range 0 to c_hl_ccs_num_stages-1; begin v_output := (others => '0'); v_output(c_hl_css_reg_cal_dis_bit ) := cal_stage_ack_seen.cal; v_output(c_hl_css_reg_phy_initialise_dis_bit ) := cal_stage_ack_seen.phy_initialise; v_output(c_hl_css_reg_init_dram_dis_bit ) := cal_stage_ack_seen.init_dram; v_output(c_hl_css_reg_write_ihi_dis_bit ) := cal_stage_ack_seen.write_ihi; v_output(c_hl_css_reg_write_btp_dis_bit ) := cal_stage_ack_seen.write_btp; v_output(c_hl_css_reg_write_mtp_dis_bit ) := cal_stage_ack_seen.write_mtp; v_output(c_hl_css_reg_read_mtp_dis_bit ) := cal_stage_ack_seen.read_mtp; v_output(c_hl_css_reg_rrp_reset_dis_bit ) := cal_stage_ack_seen.rrp_reset; v_output(c_hl_css_reg_rrp_sweep_dis_bit ) := cal_stage_ack_seen.rrp_sweep; v_output(c_hl_css_reg_rrp_seek_dis_bit ) := cal_stage_ack_seen.rrp_seek; v_output(c_hl_css_reg_rdv_dis_bit ) := cal_stage_ack_seen.rdv; v_output(c_hl_css_reg_poa_dis_bit ) := cal_stage_ack_seen.poa; v_output(c_hl_css_reg_was_dis_bit ) := cal_stage_ack_seen.was; v_output(c_hl_css_reg_adv_rd_lat_dis_bit ) := cal_stage_ack_seen.adv_rd_lat; v_output(c_hl_css_reg_adv_wr_lat_dis_bit ) := cal_stage_ack_seen.adv_wr_lat; v_output(c_hl_css_reg_prep_customer_mr_setup_dis_bit) := cal_stage_ack_seen.prep_customer_mr_setup; v_output(c_hl_css_reg_tracking_dis_bit ) := cal_stage_ack_seen.tracking_setup; return v_output; end function; -- reg encoding of current stage function encode_current_stage (ctrl_cmd_id : t_ctrl_cmd_id ) return std_logic_vector is variable output : std_logic_vector(7 downto 0); begin case ctrl_cmd_id is when cmd_idle => output := X"00"; when cmd_phy_initialise => output := X"01"; when cmd_init_dram | cmd_prog_cal_mr => output := X"02"; when cmd_write_ihi => output := X"03"; when cmd_write_btp => output := X"04"; when cmd_write_mtp => output := X"05"; when cmd_read_mtp => output := X"06"; when cmd_rrp_reset => output := X"07"; when cmd_rrp_sweep => output := X"08"; when cmd_rrp_seek => output := X"09"; when cmd_rdv => output := X"0A"; when cmd_poa => output := X"0B"; when cmd_was => output := X"0C"; when cmd_prep_adv_rd_lat => output := X"0D"; when cmd_prep_adv_wr_lat => output := X"0E"; when cmd_prep_customer_mr_setup => output := X"0F"; when cmd_tr_due => output := X"10"; when others => null; report regs_report_prefix & "unknown cal command (" & t_ctrl_cmd_id'image(ctrl_cmd_id) & ") seen in encode_current_stage function" severity failure; end case; return output; end function; -- reg encoding of current active block function encode_active_block (active_block : t_ctrl_active_block ) return std_logic_vector is variable output : std_logic_vector(3 downto 0); begin case active_block is when idle => output := X"0"; when admin => output := X"1"; when dgwb => output := X"2"; when dgrb => output := X"3"; when proc => output := X"4"; when setup => output := X"5"; when iram => output := X"6"; when others => output := X"7"; report regs_report_prefix & "unknown active_block seen in encode_active_block function" severity failure; end case; return output; end function; -- end ddr_ctrl_ip_phy_alt_mem_phy_regs_pkg; -- -- ----------------------------------------------------------------------------- -- Abstract : mmi block for the non-levelling AFI PHY sequencer -- This is an optional block with an Avalon interface and status -- register instantiations to enhance the debug capabilities of -- the sequencer. The format of the block is: -- a) an Avalon interface which supports different avalon and -- sequencer clock sources -- b) mmi status registers (which hold information about the -- successof the calibration) -- c) a read interface to the iram to enable debug through the -- avalon interface. -- ----------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; -- The record package (alt_mem_phy_record_pkg) is used to combine command and status signals -- (into records) to be passed between sequencer blocks. It also contains type and record definitions -- for the stages of DRAM memory calibration. -- use work.ddr_ctrl_ip_phy_alt_mem_phy_record_pkg.all; -- entity ddr_ctrl_ip_phy_alt_mem_phy_mmi is generic ( -- physical interface width definitions MEM_IF_DQS_WIDTH : natural; MEM_IF_DWIDTH : natural; MEM_IF_DM_WIDTH : natural; MEM_IF_DQ_PER_DQS : natural; MEM_IF_DQS_CAPTURE : natural; DWIDTH_RATIO : natural; CLOCK_INDEX_WIDTH : natural; MEM_IF_CLK_PAIR_COUNT : natural; MEM_IF_ADDR_WIDTH : natural; MEM_IF_BANKADDR_WIDTH : natural; MEM_IF_NUM_RANKS : natural; ADV_LAT_WIDTH : natural; RESYNCHRONISE_AVALON_DBG : natural; AV_IF_ADDR_WIDTH : natural; MEM_IF_MEMTYPE : string; -- setup / algorithm information NOM_DQS_PHASE_SETTING : natural; SCAN_CLK_DIVIDE_BY : natural; RDP_ADDR_WIDTH : natural; PLL_STEPS_PER_CYCLE : natural; IOE_PHASES_PER_TCK : natural; IOE_DELAYS_PER_PHS : natural; MEM_IF_CLK_PS : natural; -- initial mode register settings PHY_DEF_MR_1ST : std_logic_vector(15 downto 0); PHY_DEF_MR_2ND : std_logic_vector(15 downto 0); PHY_DEF_MR_3RD : std_logic_vector(15 downto 0); PHY_DEF_MR_4TH : std_logic_vector(15 downto 0); PRESET_RLAT : natural; -- read latency preset value CAPABILITIES : natural; -- sequencer capabilities flags USE_IRAM : std_logic; -- RFU IRAM_AWIDTH : natural; TRACKING_INTERVAL_IN_MS : natural; READ_LAT_WIDTH : natural ); port ( -- clk / reset clk : in std_logic; rst_n : in std_logic; --synchronous Avalon debug interface (internally re-synchronised to input clock) dbg_seq_clk : in std_logic; dbg_seq_rst_n : in std_logic; dbg_seq_addr : in std_logic_vector(AV_IF_ADDR_WIDTH -1 downto 0); dbg_seq_wr : in std_logic; dbg_seq_rd : in std_logic; dbg_seq_cs : in std_logic; dbg_seq_wr_data : in std_logic_vector(31 downto 0); seq_dbg_rd_data : out std_logic_vector(31 downto 0); seq_dbg_waitrequest : out std_logic; -- mmi to admin interface regs_admin_ctrl : out t_admin_ctrl; admin_regs_status : in t_admin_stat; trefi_failure : in std_logic; -- mmi to iram interface mmi_iram : out t_iram_ctrl; mmi_iram_enable_writes : out std_logic; iram_status : in t_iram_stat; -- mmi to control interface mmi_ctrl : out t_mmi_ctrl; ctrl_mmi : in t_ctrl_mmi; int_ac_1t : in std_logic; invert_ac_1t : out std_logic; -- global parameterisation record parameterisation_rec : out t_algm_paramaterisation; -- mmi pll interface pll_mmi : in t_pll_mmi; mmi_pll : out t_mmi_pll_reconfig; -- codvw status signals dgrb_mmi : in t_dgrb_mmi ); end entity; library work; -- The registers package (alt_mem_phy_regs_pkg) is used to combine the definition of the -- registers for the mmi status registers and functions/procedures applied to the registers -- use work.ddr_ctrl_ip_phy_alt_mem_phy_regs_pkg.all; -- The iram address package (alt_mem_phy_iram_addr_pkg) is used to define the base addresses used -- for iram writes during calibration -- use work.ddr_ctrl_ip_phy_alt_mem_phy_iram_addr_pkg.all; -- The constant package (alt_mem_phy_constants_pkg) contains global 'constants' which are fixed -- thoughout the sequencer and will not change (for constants which may change between sequencer -- instances generics are used) -- use work.ddr_ctrl_ip_phy_alt_mem_phy_constants_pkg.all; -- architecture struct of ddr_ctrl_ip_phy_alt_mem_phy_mmi IS -- maximum function function max (a, b : natural) return natural is begin if a > b then return a; else return b; end if; end function; -- ------------------------------------------- -- constant definitions -- ------------------------------------------- constant c_pll_360_sweeps : natural := rrp_pll_phase_mult(DWIDTH_RATIO, MEM_IF_DQS_CAPTURE); constant c_response_lat : natural := 6; constant c_codeword : std_logic_vector(31 downto 0) := c_mmi_access_codeword; constant c_int_iram_start_size : natural := max(IRAM_AWIDTH, 4); -- enable for ctrl state machine states constant c_slv_hl_stage_enable : std_logic_vector(31 downto 0) := std_logic_vector(to_unsigned(CAPABILITIES, 32)); constant c_hl_stage_enable : std_logic_vector(c_hl_ccs_num_stages-1 downto 0) := c_slv_hl_stage_enable(c_hl_ccs_num_stages-1 downto 0); -- a prefix for all report signals to identify phy and sequencer block -- constant mmi_report_prefix : string := "ddr_ctrl_ip_phy_alt_mem_phy_seq (mmi) : "; -- -------------------------------------------- -- internal signals -- -------------------------------------------- -- internal clock domain register interface signals signal int_wdata : std_logic_vector(31 downto 0); signal int_rdata : std_logic_vector(31 downto 0); signal int_address : std_logic_vector(AV_IF_ADDR_WIDTH-1 downto 0); signal int_read : std_logic; signal int_cs : std_logic; signal int_write : std_logic; signal waitreq_int : std_logic; -- register storage -- contains: -- read only (ro_regs) -- read/write (rw_regs) -- enable_writes flag signal mmi_regs : t_mmi_regs := defaults; signal mmi_rw_regs_initialised : std_logic; -- this counter ensures that the mmi waits for c_response_lat clocks before -- responding to a new Avalon request signal waitreq_count : natural range 0 to 15; signal waitreq_count_is_zero : std_logic; -- register error signals signal int_ac_1t_r : std_logic; signal trefi_failure_r : std_logic; -- iram ready - calibration complete and USE_IRAM high signal iram_ready : std_logic; begin -- architecture struct -- the following signals are reserved for future use invert_ac_1t <= '0'; -- -------------------------------------------------------------- -- generate for synchronous avalon interface -- -------------------------------------------------------------- simply_registered_avalon : if RESYNCHRONISE_AVALON_DBG = 0 generate begin process (rst_n, clk) begin if rst_n = '0' then int_wdata <= (others => '0'); int_address <= (others => '0'); int_read <= '0'; int_write <= '0'; int_cs <= '0'; elsif rising_edge(clk) then int_wdata <= dbg_seq_wr_data; int_address <= dbg_seq_addr; int_read <= dbg_seq_rd; int_write <= dbg_seq_wr; int_cs <= dbg_seq_cs; end if; end process; seq_dbg_rd_data <= int_rdata; seq_dbg_waitrequest <= waitreq_int and (dbg_seq_rd or dbg_seq_wr) and dbg_seq_cs; end generate simply_registered_avalon; -- -------------------------------------------------------------- -- clock domain crossing for asynchronous mmi interface -- -------------------------------------------------------------- re_synchronise_avalon : if RESYNCHRONISE_AVALON_DBG = 1 generate --clock domain crossing signals signal ccd_new_cmd : std_logic; signal ccd_new_cmd_ack : std_logic; signal ccd_cmd_done : std_logic; signal ccd_cmd_done_ack : std_logic; signal ccd_rd_data : std_logic_vector(dbg_seq_wr_data'range); signal ccd_cmd_done_ack_t : std_logic; signal ccd_cmd_done_ack_2t : std_logic; signal ccd_cmd_done_ack_3t : std_logic; signal ccd_cmd_done_t : std_logic; signal ccd_cmd_done_2t : std_logic; signal ccd_cmd_done_3t : std_logic; signal ccd_new_cmd_t : std_logic; signal ccd_new_cmd_2t : std_logic; signal ccd_new_cmd_3t : std_logic; signal ccd_new_cmd_ack_t : std_logic; signal ccd_new_cmd_ack_2t : std_logic; signal ccd_new_cmd_ack_3t : std_logic; signal cmd_pending : std_logic; signal seq_clk_waitreq_int : std_logic; begin process (rst_n, clk) begin if rst_n = '0' then int_wdata <= (others => '0'); int_address <= (others => '0'); int_read <= '0'; int_write <= '0'; int_cs <= '0'; ccd_new_cmd_ack <= '0'; ccd_new_cmd_t <= '0'; ccd_new_cmd_2t <= '0'; ccd_new_cmd_3t <= '0'; elsif rising_edge(clk) then ccd_new_cmd_t <= ccd_new_cmd; ccd_new_cmd_2t <= ccd_new_cmd_t; ccd_new_cmd_3t <= ccd_new_cmd_2t; if ccd_new_cmd_3t = '0' and ccd_new_cmd_2t = '1' then int_wdata <= dbg_seq_wr_data; int_address <= dbg_seq_addr; int_read <= dbg_seq_rd; int_write <= dbg_seq_wr; int_cs <= '1'; ccd_new_cmd_ack <= '1'; elsif ccd_new_cmd_3t = '1' and ccd_new_cmd_2t = '0' then ccd_new_cmd_ack <= '0'; end if; if int_cs = '1' and waitreq_int= '0' then int_cs <= '0'; int_read <= '0'; int_write <= '0'; end if; end if; end process; -- process to generate new cmd process (dbg_seq_rst_n, dbg_seq_clk) begin if dbg_seq_rst_n = '0' then ccd_new_cmd <= '0'; ccd_new_cmd_ack_t <= '0'; ccd_new_cmd_ack_2t <= '0'; ccd_new_cmd_ack_3t <= '0'; cmd_pending <= '0'; elsif rising_edge(dbg_seq_clk) then ccd_new_cmd_ack_t <= ccd_new_cmd_ack; ccd_new_cmd_ack_2t <= ccd_new_cmd_ack_t; ccd_new_cmd_ack_3t <= ccd_new_cmd_ack_2t; if ccd_new_cmd = '0' and dbg_seq_cs = '1' and cmd_pending = '0' then ccd_new_cmd <= '1'; cmd_pending <= '1'; elsif ccd_new_cmd_ack_2t = '1' and ccd_new_cmd_ack_3t = '0' then ccd_new_cmd <= '0'; end if; -- use falling edge of cmd_done if cmd_pending = '1' and ccd_cmd_done_2t = '0' and ccd_cmd_done_3t = '1' then cmd_pending <= '0'; end if; end if; end process; -- process to take read data back and transfer it across the clock domains process (rst_n, clk) begin if rst_n = '0' then ccd_cmd_done <= '0'; ccd_rd_data <= (others => '0'); ccd_cmd_done_ack_3t <= '0'; ccd_cmd_done_ack_2t <= '0'; ccd_cmd_done_ack_t <= '0'; elsif rising_edge(clk) then if ccd_cmd_done_ack_2t = '1' and ccd_cmd_done_ack_3t = '0' then ccd_cmd_done <= '0'; elsif waitreq_int = '0' then ccd_cmd_done <= '1'; ccd_rd_data <= int_rdata; end if; ccd_cmd_done_ack_3t <= ccd_cmd_done_ack_2t; ccd_cmd_done_ack_2t <= ccd_cmd_done_ack_t; ccd_cmd_done_ack_t <= ccd_cmd_done_ack; end if; end process; process (dbg_seq_rst_n, dbg_seq_clk) begin if dbg_seq_rst_n = '0' then ccd_cmd_done_ack <= '0'; ccd_cmd_done_3t <= '0'; ccd_cmd_done_2t <= '0'; ccd_cmd_done_t <= '0'; seq_dbg_rd_data <= (others => '0'); seq_clk_waitreq_int <= '1'; elsif rising_edge(dbg_seq_clk) then seq_clk_waitreq_int <= '1'; if ccd_cmd_done_2t = '1' and ccd_cmd_done_3t = '0' then seq_clk_waitreq_int <= '0'; ccd_cmd_done_ack <= '1'; seq_dbg_rd_data <= ccd_rd_data; -- if read elsif ccd_cmd_done_2t = '0' and ccd_cmd_done_3t = '1' then ccd_cmd_done_ack <= '0'; end if; ccd_cmd_done_3t <= ccd_cmd_done_2t; ccd_cmd_done_2t <= ccd_cmd_done_t; ccd_cmd_done_t <= ccd_cmd_done; end if; end process; seq_dbg_waitrequest <= seq_clk_waitreq_int and (dbg_seq_rd or dbg_seq_wr) and dbg_seq_cs; end generate re_synchronise_avalon; -- register some inputs for speed. process (rst_n, clk) begin if rst_n = '0' then int_ac_1t_r <= '0'; trefi_failure_r <= '0'; elsif rising_edge(clk) then int_ac_1t_r <= int_ac_1t; trefi_failure_r <= trefi_failure; end if; end process; -- mmi not able to write to iram in current instance of mmi block mmi_iram_enable_writes <= '0'; -- check if iram ready process (rst_n, clk) begin if rst_n = '0' then iram_ready <= '0'; elsif rising_edge(clk) then if USE_IRAM = '0' then iram_ready <= '0'; else if ctrl_mmi.ctrl_calibration_success = '1' or ctrl_mmi.ctrl_calibration_fail = '1' then iram_ready <= '1'; else iram_ready <= '0'; end if; end if; end if; end process; -- -------------------------------------------------------------- -- single registered process for mmi access. -- -------------------------------------------------------------- process (rst_n, clk) variable v_mmi_regs : t_mmi_regs; begin if rst_n = '0' then mmi_regs <= defaults; mmi_rw_regs_initialised <= '0'; -- this register records whether the c_codeword has been written to address 0x0001 -- once it has, then other writes are accepted. mmi_regs.enable_writes <= '0'; int_rdata <= (others => '0'); waitreq_int <= '1'; -- clear wait request counter waitreq_count <= 0; waitreq_count_is_zero <= '1'; -- iram interface defaults mmi_iram <= defaults; elsif rising_edge(clk) then -- default assignment waitreq_int <= '1'; write_clear(mmi_regs.rw_regs); -- only initialise rw_regs once after hard reset if mmi_rw_regs_initialised = '0' then mmi_rw_regs_initialised <= '1'; --reset all read/write regs and read path ouput registers and apply default MRS Settings. mmi_regs.rw_regs <= defaults(PHY_DEF_MR_1ST, PHY_DEF_MR_2ND, PHY_DEF_MR_3RD, PHY_DEF_MR_4TH, NOM_DQS_PHASE_SETTING, PLL_STEPS_PER_CYCLE, c_pll_360_sweeps, -- number of times 360 degrees is swept TRACKING_INTERVAL_IN_MS, c_hl_stage_enable); end if; -- bit packing input data structures into the ro_regs structure, for reading mmi_regs.ro_regs <= defaults(dgrb_mmi, ctrl_mmi, pll_mmi, mmi_regs.rw_regs.rw_if_test, USE_IRAM, MEM_IF_DQS_CAPTURE, int_ac_1t_r, trefi_failure_r, iram_status, IRAM_AWIDTH); -- write has priority over read if int_write = '1' and int_cs = '1' and waitreq_count_is_zero = '1' and waitreq_int = '1' then -- mmi local register write if to_integer(unsigned(int_address(int_address'high downto 4))) = 0 then v_mmi_regs := mmi_regs; write(v_mmi_regs, to_integer(unsigned(int_address(3 downto 0))), int_wdata); if mmi_regs.enable_writes = '1' then v_mmi_regs.rw_regs.rw_hl_css.hl_css := c_hl_stage_enable or v_mmi_regs.rw_regs.rw_hl_css.hl_css; end if; mmi_regs <= v_mmi_regs; -- handshake for safe transactions waitreq_int <= '0'; waitreq_count <= c_response_lat; -- iram write just handshake back (no write supported) else waitreq_int <= '0'; waitreq_count <= c_response_lat; end if; elsif int_read = '1' and int_cs = '1' and waitreq_count_is_zero = '1' and waitreq_int = '1' then -- mmi local register read if to_integer(unsigned(int_address(int_address'high downto 4))) = 0 then int_rdata <= read(mmi_regs, to_integer(unsigned(int_address(3 downto 0)))); waitreq_count <= c_response_lat; waitreq_int <= '0'; -- acknowledge read command regardless. -- iram being addressed elsif to_integer(unsigned(int_address(int_address'high downto c_int_iram_start_size))) = 1 and iram_ready = '1' then mmi_iram.read <= '1'; mmi_iram.addr <= to_integer(unsigned(int_address(IRAM_AWIDTH -1 downto 0))); if iram_status.done = '1' then waitreq_int <= '0'; mmi_iram.read <= '0'; waitreq_count <= c_response_lat; int_rdata <= iram_status.rdata; end if; else -- respond and keep the interface from hanging int_rdata <= x"DEADBEEF"; waitreq_int <= '0'; waitreq_count <= c_response_lat; end if; elsif waitreq_count /= 0 then waitreq_count <= waitreq_count -1; -- if performing a write, set back to defaults. If not, default anyway mmi_iram <= defaults; end if; if waitreq_count = 1 or waitreq_count = 0 then waitreq_count_is_zero <= '1'; -- as it will be next clock cycle else waitreq_count_is_zero <= '0'; end if; -- supply iram read data when ready if iram_status.done = '1' then int_rdata <= iram_status.rdata; end if; end if; end process; -- pack the registers into the output data structures regs_admin_ctrl <= pack_record(mmi_regs.rw_regs); parameterisation_rec <= pack_record(mmi_regs.rw_regs); mmi_pll <= pack_record(mmi_regs.rw_regs); mmi_ctrl <= pack_record(mmi_regs.rw_regs); end architecture struct; -- -- ----------------------------------------------------------------------------- -- Abstract : admin block for the non-levelling AFI PHY sequencer -- The admin block supports the autonomy of the sequencer from -- the memory interface controller. In this task admin handles -- memory initialisation (incl. the setting of mode registers) -- and memory refresh, bank activation and pre-charge commands -- (during memory interface calibration). Once calibration is -- complete admin is 'idle' and control of the memory device is -- passed to the users chosen memory interface controller. The -- supported memory types are exclusively DDR, DDR2 and DDR3. -- ----------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; -- The record package (alt_mem_phy_record_pkg) is used to combine command and status signals -- (into records) to be passed between sequencer blocks. It also contains type and record definitions -- for the stages of DRAM memory calibration. -- use work.ddr_ctrl_ip_phy_alt_mem_phy_record_pkg.all; -- The address and command package (alt_mem_phy_addr_cmd_pkg) is used to combine DRAM address -- and command signals in one record and unify the functions operating on this record. -- use work.ddr_ctrl_ip_phy_alt_mem_phy_addr_cmd_pkg.all; -- entity ddr_ctrl_ip_phy_alt_mem_phy_admin is generic ( -- physical interface width definitions MEM_IF_DQS_WIDTH : natural; MEM_IF_DWIDTH : natural; MEM_IF_DM_WIDTH : natural; MEM_IF_DQ_PER_DQS : natural; DWIDTH_RATIO : natural; CLOCK_INDEX_WIDTH : natural; MEM_IF_CLK_PAIR_COUNT : natural; MEM_IF_ADDR_WIDTH : natural; MEM_IF_BANKADDR_WIDTH : natural; MEM_IF_NUM_RANKS : natural; ADV_LAT_WIDTH : natural; MEM_IF_DQSN_EN : natural; MEM_IF_MEMTYPE : string; -- calibration address information MEM_IF_CAL_BANK : natural; -- Bank to which calibration data is written MEM_IF_CAL_BASE_ROW : natural; GENERATE_ADDITIONAL_DBG_RTL : natural; NON_OP_EVAL_MD : string; -- non_operational evaluation mode (used when GENERATE_ADDITIONAL_DBG_RTL = 1) -- timing parameters MEM_IF_CLK_PS : natural; TINIT_TCK : natural; -- initial delay TINIT_RST : natural -- used for DDR3 device support ); port ( -- clk / reset clk : in std_logic; rst_n : in std_logic; -- the 2 signals below are unused for non-levelled sequencer (maintained for equivalent interface to levelled sequencer) mem_ac_swapped_ranks : in std_logic_vector(MEM_IF_NUM_RANKS - 1 downto 0); ctl_cal_byte_lanes : in std_logic_vector(MEM_IF_NUM_RANKS * MEM_IF_DQS_WIDTH - 1 downto 0); -- addr/cmd interface seq_ac : out t_addr_cmd_vector(0 to (DWIDTH_RATIO/2)-1); seq_ac_sel : out std_logic; -- determined from MR settings enable_odt : out std_logic; -- interface to the mmi block regs_admin_ctrl_rec : in t_admin_ctrl; admin_regs_status_rec : out t_admin_stat; trefi_failure : out std_logic; -- interface to the ctrl block ctrl_admin : in t_ctrl_command; admin_ctrl : out t_ctrl_stat; -- interface with dgrb/dgwb blocks ac_access_req : in std_logic; ac_access_gnt : out std_logic; -- calibration status signals (from ctrl block) cal_fail : in std_logic; cal_success : in std_logic; -- recalibrate request issued ctl_recalibrate_req : in std_logic ); end entity; library work; -- The constant package (alt_mem_phy_constants_pkg) contains global 'constants' which are fixed -- thoughout the sequencer and will not change (for constants which may change between sequencer -- instances generics are used) -- use work.ddr_ctrl_ip_phy_alt_mem_phy_constants_pkg.all; -- architecture struct of ddr_ctrl_ip_phy_alt_mem_phy_admin is constant c_max_mode_reg_index : natural := 12; -- timing below is safe for range 80-400MHz operation - taken from worst case DDR2 (JEDEC JESD79-2E) / DDR3 (JESD79-3B) -- Note: timings account for worst case use for both full rate and half rate ALTMEMPHY interfaces constant c_init_prech_delay : natural := 162; -- precharge delay (360ns = tRFC+10ns) (TXPR for DDR3) constant c_trp_in_clks : natural := 8; -- set equal to trp / tck (trp = 15ns) constant c_tmrd_in_clks : natural := 4; -- maximum 4 clock cycles (DDR3) constant c_tmod_in_clks : natural := 8; -- ODT update from MRS command (tmod = 12ns (DDR2)) constant c_trrd_min_in_clks : natural := 4; -- minimum clk cycles between bank activate cmds (10ns) constant c_trcd_min_in_clks : natural := 8; -- minimum bank activate to read/write cmd (15ns) -- the 2 constants below are parameterised to MEM_IF_CLK_PS due to the large range of possible clock frequency constant c_trfc_min_in_clks : natural := (350000/MEM_IF_CLK_PS)/(DWIDTH_RATIO/2) + 2; -- refresh-refresh timing (worst case trfc = 350 ns (DDR3)) constant c_trefi_min_in_clks : natural := (3900000/MEM_IF_CLK_PS)/(DWIDTH_RATIO/2) - 2; -- average refresh interval worst case trefi = 3.9 us (industrial grade devices) constant c_max_num_stacked_refreshes : natural := 8; -- max no. of stacked refreshes allowed constant c_max_wait_value : natural := 4; -- delay before moving from s_idle to s_refresh_state -- DDR3 specific: constant c_zq_init_duration_clks : natural := 514; -- full rate (worst case) cycle count for tZQCL init constant c_tzqcs : natural := 66; -- number of full rate clock cycles -- below is a record which is used to parameterise the address and command signals (addr_cmd) used in this block constant c_seq_addr_cmd_config : t_addr_cmd_config_rec := set_config_rec(MEM_IF_ADDR_WIDTH, MEM_IF_BANKADDR_WIDTH, MEM_IF_NUM_RANKS, DWIDTH_RATIO, MEM_IF_MEMTYPE); -- a prefix for all report signals to identify phy and sequencer block -- constant admin_report_prefix : string := "ddr_ctrl_ip_phy_alt_mem_phy_seq (admin) : "; -- state type for admin_state (main state machine of admin block) type t_admin_state is ( s_reset, -- reset state s_run_init_seq, -- run the initialisation sequence (up to but not including MR setting) s_program_cal_mrs, -- program the mode registers ready for calibration (this is the user settings -- with some overloads and extra init functionality) s_idle, -- idle (i.e. maintaining refresh to max) s_topup_refresh, -- make sure refreshes are maxed out before going on. s_topup_refresh_done, -- wait for tRFC after refresh command s_zq_cal_short, -- ZQCAL short command (issued prior to activate) - DDR3 only s_access_act, -- activate s_access, -- dgrb, dgwb accesses, s_access_precharge, -- precharge all memory banks s_prog_user_mrs, -- program user mode register settings s_dummy_wait, -- wait before going to s_refresh state s_refresh, -- issue a memory refresh command s_refresh_done, -- wait for trfc after refresh command s_non_operational -- special debug state to toggle interface if calibration fails ); signal state : t_admin_state; -- admin block state machine -- state type for ac_state type t_ac_state is ( s_0 , s_1 , s_2 , s_3 , s_4 , s_5 , s_6 , s_7 , s_8 , s_9 , s_10, s_11, s_12, s_13, s_14); -- enforce one-hot fsm encoding attribute syn_encoding : string; attribute syn_encoding of t_ac_state : TYPE is "one-hot"; signal ac_state : t_ac_state; -- state machine for sub-states of t_admin_state states signal stage_counter : natural range 0 to 2**18 - 1; -- counter to support memory timing delays signal stage_counter_zero : std_logic; signal addr_cmd : t_addr_cmd_vector(0 to (DWIDTH_RATIO/2)-1); -- internal copy of output DRAM addr/cmd signals signal mem_init_complete : std_logic; -- signifies memory initialisation is complete signal cal_complete : std_logic; -- calibration complete (equals: cal_success OR cal_fail) signal int_mr0 : std_logic_vector(regs_admin_ctrl_rec.mr0'range); -- an internal copy of mode register settings signal int_mr1 : std_logic_vector(regs_admin_ctrl_rec.mr0'range); signal int_mr2 : std_logic_vector(regs_admin_ctrl_rec.mr0'range); signal int_mr3 : std_logic_vector(regs_admin_ctrl_rec.mr0'range); signal refresh_count : natural range c_trefi_min_in_clks downto 0; -- determine when refresh is due signal refresh_due : std_logic; -- need to do a refresh now signal refresh_done : std_logic; -- pulse when refresh complete signal num_stacked_refreshes : natural range 0 to c_max_num_stacked_refreshes - 1; -- can stack upto 8 refreshes (for DDR2) signal refreshes_maxed : std_logic; -- signal refreshes are maxed out signal initial_refresh_issued : std_logic; -- to start the refresh counter off signal ctrl_rec : t_ctrl_command; -- last state logic signal command_started : std_logic; -- provides a pulse when admin starts processing a command signal command_done : std_logic; -- provides a pulse when admin completes processing a command is completed signal finished_state : std_logic; -- finished current t_admin_state state signal admin_req_extended : std_logic; -- keep requests for this block asserted until it is an ack is asserted signal current_cs : natural range 0 to MEM_IF_NUM_RANKS - 1; -- which chip select being programmed at this instance signal per_cs_init_seen : std_logic_vector(MEM_IF_NUM_RANKS - 1 downto 0); -- some signals to enable non_operational debug (optimised away if GENERATE_ADDITIONAL_DBG_RTL = 0) signal nop_toggle_signal : t_addr_cmd_signals; signal nop_toggle_pin : natural range 0 to MEM_IF_ADDR_WIDTH - 1; -- track which pin in a signal to toggle signal nop_toggle_value : std_logic; begin -- architecture struct -- concurrent assignment of internal addr_cmd to output port seq_ac process (addr_cmd) begin seq_ac <= addr_cmd; end process; -- generate calibration complete signal process (cal_success, cal_fail) begin cal_complete <= cal_success or cal_fail; end process; -- register the control command record process (clk, rst_n) begin if rst_n = '0' then ctrl_rec <= defaults; elsif rising_edge(clk) then ctrl_rec <= ctrl_admin; end if; end process; -- extend the admin block request until ack is asserted process (clk, rst_n) begin if rst_n = '0' then admin_req_extended <= '0'; elsif rising_edge(clk) then if ( (ctrl_rec.command_req = '1') and ( curr_active_block(ctrl_rec.command) = admin) ) then admin_req_extended <= '1'; elsif command_started = '1' then -- this is effectively a copy of command_ack generation admin_req_extended <= '0'; end if; end if; end process; -- generate the current_cs signal to track which cs accessed by PHY at any instance process (clk, rst_n) begin if rst_n = '0' then current_cs <= 0; elsif rising_edge(clk) then if ctrl_rec.command_req = '1' then current_cs <= ctrl_rec.command_op.current_cs; end if; end if; end process; -- ----------------------------------------------------------------------------- -- refresh logic: DDR/DDR2/DDR3 allows upto 8 refreshes to be "stacked" or queued up. -- In the idle state, will ensure refreshes are issued when necessary. Then, -- when an access_request is received, 7 topup refreshes will be done to max out -- the number of queued refreshes. That way, we know we have the maximum time -- available before another refresh is due. -- ----------------------------------------------------------------------------- -- initial_refresh_issued flag: used to sync refresh_count process (clk, rst_n) begin if rst_n = '0' then initial_refresh_issued <= '0'; elsif rising_edge(clk) then if cal_complete = '1' then initial_refresh_issued <= '0'; else if state = s_refresh_done or state = s_topup_refresh_done then initial_refresh_issued <= '1'; end if; end if; end if; end process; -- refresh timer: used to work out when a refresh is due process (clk, rst_n) begin if rst_n = '0' then refresh_count <= c_trefi_min_in_clks; elsif rising_edge(clk) then if cal_complete = '1' then refresh_count <= c_trefi_min_in_clks; else if refresh_count = 0 or initial_refresh_issued = '0' or (refreshes_maxed = '1' and refresh_done = '1') then -- if refresh issued when already maxed refresh_count <= c_trefi_min_in_clks; else refresh_count <= refresh_count - 1; end if; end if; end if; end process; -- refresh_due generation: 1 cycle pulse to indicate that c_trefi_min_in_clks has elapsed, and -- therefore a refresh is due process (clk, rst_n) begin if rst_n = '0' then refresh_due <= '0'; elsif rising_edge(clk) then if refresh_count = 0 and cal_complete = '0' then refresh_due <= '1'; else refresh_due <= '0'; end if; end if; end process; -- counter to keep track of number of refreshes "stacked". NB: Up to 8 -- refreshes can be stacked. process (clk, rst_n) begin if rst_n = '0' then num_stacked_refreshes <= 0; trefi_failure <= '0'; -- default no trefi failure elsif rising_edge (clk) then if state = s_reset then trefi_failure <= '0'; -- default no trefi failure (in restart) end if; if cal_complete = '1' then num_stacked_refreshes <= 0; else if refresh_due = '1' and num_stacked_refreshes /= 0 then num_stacked_refreshes <= num_stacked_refreshes - 1; elsif refresh_done = '1' and num_stacked_refreshes /= c_max_num_stacked_refreshes - 1 then num_stacked_refreshes <= num_stacked_refreshes + 1; end if; -- debug message if stacked refreshes are depleted and refresh is due if refresh_due = '1' and num_stacked_refreshes = 0 and initial_refresh_issued = '1' then report admin_report_prefix & "error refresh is due and num_stacked_refreshes is zero" severity error; trefi_failure <= '1'; -- persist end if; end if; end if; end process; -- generate signal to state if refreshes are maxed out process (clk, rst_n) begin if rst_n = '0' then refreshes_maxed <= '0'; elsif rising_edge (clk) then if num_stacked_refreshes < c_max_num_stacked_refreshes - 1 then refreshes_maxed <= '0'; else refreshes_maxed <= '1'; end if; end if; end process; -- ---------------------------------------------------- -- Mode register selection -- ----------------------------------------------------- int_mr0(regs_admin_ctrl_rec.mr0'range) <= regs_admin_ctrl_rec.mr0; int_mr1(regs_admin_ctrl_rec.mr1'range) <= regs_admin_ctrl_rec.mr1; int_mr2(regs_admin_ctrl_rec.mr2'range) <= regs_admin_ctrl_rec.mr2; int_mr3(regs_admin_ctrl_rec.mr3'range) <= regs_admin_ctrl_rec.mr3; -- ------------------------------------------------------- -- State machine -- ------------------------------------------------------- process(rst_n, clk) begin if rst_n = '0' then state <= s_reset; command_done <= '0'; command_started <= '0'; elsif rising_edge(clk) then -- Last state logic command_done <= '0'; command_started <= '0'; case state is when s_reset | s_non_operational => if ctrl_rec.command = cmd_init_dram and admin_req_extended = '1' then state <= s_run_init_seq; command_started <= '1'; end if; when s_run_init_seq => if finished_state = '1' then state <= s_idle; command_done <= '1'; end if; when s_program_cal_mrs => if finished_state = '1' then if refreshes_maxed = '0' and mem_init_complete = '1' then -- only refresh if all ranks initialised state <= s_topup_refresh; else state <= s_idle; end if; command_done <= '1'; end if; when s_idle => if ac_access_req = '1' then state <= s_topup_refresh; elsif ctrl_rec.command = cmd_init_dram and admin_req_extended = '1' then -- start initialisation sequence state <= s_run_init_seq; command_started <= '1'; elsif ctrl_rec.command = cmd_prog_cal_mr and admin_req_extended = '1' then -- program mode registers (used for >1 chip select) state <= s_program_cal_mrs; command_started <= '1'; -- always enter s_prog_user_mrs via topup refresh elsif ctrl_rec.command = cmd_prep_customer_mr_setup and admin_req_extended = '1' then state <= s_topup_refresh; elsif refreshes_maxed = '0' and mem_init_complete = '1' then -- only refresh once all ranks initialised state <= s_dummy_wait; end if; when s_dummy_wait => if finished_state = '1' then state <= s_refresh; end if; when s_topup_refresh => if finished_state = '1' then state <= s_topup_refresh_done; end if; when s_topup_refresh_done => if finished_state = '1' then -- to ensure trfc is not violated if refreshes_maxed = '0' then state <= s_topup_refresh; elsif ctrl_rec.command = cmd_prep_customer_mr_setup and admin_req_extended = '1' then state <= s_prog_user_mrs; command_started <= '1'; elsif ac_access_req = '1' then if MEM_IF_MEMTYPE = "DDR3" then state <= s_zq_cal_short; else state <= s_access_act; end if; else state <= s_idle; end if; end if; when s_zq_cal_short => -- DDR3 only if finished_state = '1' then state <= s_access_act; end if; when s_access_act => if finished_state = '1' then state <= s_access; end if; when s_access => if ac_access_req = '0' then state <= s_access_precharge; end if; when s_access_precharge => -- ensure precharge all timer has elapsed. if finished_state = '1' then state <= s_idle; end if; when s_prog_user_mrs => if finished_state = '1' then state <= s_idle; command_done <= '1'; end if; when s_refresh => if finished_state = '1' then state <= s_refresh_done; end if; when s_refresh_done => if finished_state = '1' then -- to ensure trfc is not violated if refreshes_maxed = '0' then state <= s_refresh; else state <= s_idle; end if; end if; when others => state <= s_reset; end case; if cal_complete = '1' then state <= s_idle; if GENERATE_ADDITIONAL_DBG_RTL = 1 and cal_success = '0' then state <= s_non_operational; -- if calibration failed and debug enabled then toggle pins in pre-defined pattern end if; end if; -- if recalibrating then put admin in reset state to -- avoid issuing refresh commands when not needed if ctl_recalibrate_req = '1' then state <= s_reset; end if; end if; end process; -- -------------------------------------------------- -- process to generate initialisation complete -- -------------------------------------------------- process (rst_n, clk) begin if rst_n = '0' then mem_init_complete <= '0'; elsif rising_edge(clk) then if to_integer(unsigned(per_cs_init_seen)) = 2**MEM_IF_NUM_RANKS - 1 then mem_init_complete <= '1'; else mem_init_complete <= '0'; end if; end if; end process; -- -------------------------------------------------- -- process to generate addr/cmd. -- -------------------------------------------------- process(rst_n, clk) variable v_mr_overload : std_logic_vector(regs_admin_ctrl_rec.mr0'range); -- required for non_operational state only variable v_nop_ac_0 : t_addr_cmd_vector(0 to (DWIDTH_RATIO/2)-1); variable v_nop_ac_1 : t_addr_cmd_vector(0 to (DWIDTH_RATIO/2)-1); begin if rst_n = '0' then ac_state <= s_0; stage_counter <= 0; stage_counter_zero <= '1'; finished_state <= '0'; seq_ac_sel <= '1'; refresh_done <= '0'; per_cs_init_seen <= (others => '0'); addr_cmd <= int_pup_reset(c_seq_addr_cmd_config); if GENERATE_ADDITIONAL_DBG_RTL = 1 then nop_toggle_signal <= addr; nop_toggle_pin <= 0; nop_toggle_value <= '0'; end if; elsif rising_edge(clk) then finished_state <= '0'; refresh_done <= '0'; -- address / command path control -- if seq_ac_sel = 1 then sequencer has control of a/c -- if seq_ac_sel = 0 then memory controller has control of a/c seq_ac_sel <= '1'; if cal_complete = '1' then if cal_success = '1' or GENERATE_ADDITIONAL_DBG_RTL = 0 then -- hand over interface if cal successful or no debug enabled seq_ac_sel <= '0'; end if; end if; -- if recalibration request then take control of a/c path if ctl_recalibrate_req = '1' then seq_ac_sel <= '1'; end if; if state = s_reset then addr_cmd <= reset(c_seq_addr_cmd_config); stage_counter <= 0; elsif state /= s_run_init_seq and state /= s_non_operational then addr_cmd <= deselect(c_seq_addr_cmd_config, -- configuration addr_cmd); -- previous value end if; if (stage_counter = 1 or stage_counter = 0) then stage_counter_zero <= '1'; else stage_counter_zero <= '0'; end if; if stage_counter_zero /= '1' and state /= s_reset then stage_counter <= stage_counter -1; else stage_counter_zero <= '0'; case state is when s_run_init_seq => per_cs_init_seen <= (others => '0'); -- per cs test if MEM_IF_MEMTYPE = "DDR" or MEM_IF_MEMTYPE = "DDR2" then case ac_state is -- JEDEC (JESD79-2E) stage c when s_0 to s_9 => ac_state <= t_ac_state'succ(ac_state); stage_counter <= (TINIT_TCK/10)+1; addr_cmd <= maintain_pd_or_sr(c_seq_addr_cmd_config, deselect(c_seq_addr_cmd_config, addr_cmd), 2**MEM_IF_NUM_RANKS -1); -- JEDEC (JESD79-2E) stage d when s_10 => ac_state <= s_11; stage_counter <= c_init_prech_delay; addr_cmd <= deselect(c_seq_addr_cmd_config, -- configuration addr_cmd); -- previous value when s_11 => ac_state <= s_0; stage_counter <= 1; finished_state <= '1'; -- finish sequence by going into s_program_cal_mrs state when others => ac_state <= s_0; end case; elsif MEM_IF_MEMTYPE = "DDR3" then -- DDR3 specific initialisation sequence case ac_state is when s_0 => ac_state <= s_1; stage_counter <= TINIT_RST + 1; addr_cmd <= reset(c_seq_addr_cmd_config); when s_1 to s_10 => ac_state <= t_ac_state'succ(ac_state); stage_counter <= (TINIT_TCK/10) + 1; addr_cmd <= maintain_pd_or_sr(c_seq_addr_cmd_config, deselect(c_seq_addr_cmd_config, addr_cmd), 2**MEM_IF_NUM_RANKS -1); when s_11 => ac_state <= s_12; stage_counter <= c_init_prech_delay; addr_cmd <= deselect(c_seq_addr_cmd_config, addr_cmd); when s_12 => ac_state <= s_0; stage_counter <= 1; finished_state <= '1'; -- finish sequence by going into s_program_cal_mrs state when others => ac_state <= s_0; end case; else report admin_report_prefix & "unsupported memory type specified" severity error; end if; -- end of initialisation sequence when s_program_cal_mrs => if MEM_IF_MEMTYPE = "DDR2" then -- DDR2 style mode register settings case ac_state is when s_0 => ac_state <= s_1; stage_counter <= 1; addr_cmd <= deselect(c_seq_addr_cmd_config, -- configuration addr_cmd); -- previous value -- JEDEC (JESD79-2E) stage d when s_1 => ac_state <= s_2; stage_counter <= c_trp_in_clks; addr_cmd <= precharge_all(c_seq_addr_cmd_config, -- configuration 2**current_cs); -- rank -- JEDEC (JESD79-2E) stage e when s_2 => ac_state <= s_3; stage_counter <= c_tmrd_in_clks; addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 2, -- mode register number int_mr2(c_max_mode_reg_index downto 0), -- mode register value 2**current_cs, -- rank false); -- remap address and bank address -- JEDEC (JESD79-2E) stage f when s_3 => ac_state <= s_4; stage_counter <= c_tmrd_in_clks; addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 3, -- mode register number int_mr3(c_max_mode_reg_index downto 0), -- mode register value 2**current_cs, -- rank false); -- remap address and bank address -- JEDEC (JESD79-2E) stage g when s_4 => ac_state <= s_5; stage_counter <= c_tmrd_in_clks; v_mr_overload := int_mr1(c_max_mode_reg_index downto 0); v_mr_overload(0) := '0'; -- override DLL enable v_mr_overload(9 downto 7) := "000"; -- required in JESD79-2E (but not in JESD79-2B) addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 1, -- mode register number v_mr_overload , -- mode register value 2**current_cs, -- rank false); -- remap address and bank address -- JEDEC (JESD79-2E) stage h when s_5 => ac_state <= s_6; stage_counter <= c_tmod_in_clks; addr_cmd <= dll_reset(c_seq_addr_cmd_config, -- configuration int_mr0(c_max_mode_reg_index downto 0), -- mode register value 2**current_cs, -- rank false); -- remap address and bank address -- JEDEC (JESD79-2E) stage i when s_6 => ac_state <= s_7; stage_counter <= c_trp_in_clks; addr_cmd <= precharge_all(c_seq_addr_cmd_config, -- configuration 2**MEM_IF_NUM_RANKS - 1); -- rank(s) -- JEDEC (JESD79-2E) stage j when s_7 => ac_state <= s_8; stage_counter <= c_trfc_min_in_clks; addr_cmd <= refresh(c_seq_addr_cmd_config, -- configuration addr_cmd, -- previous value 2**current_cs); -- rank -- JEDEC (JESD79-2E) stage j - second refresh when s_8 => ac_state <= s_9; stage_counter <= c_trfc_min_in_clks; addr_cmd <= refresh(c_seq_addr_cmd_config, -- configuration addr_cmd, -- previous value 2**current_cs); -- rank -- JEDEC (JESD79-2E) stage k when s_9 => ac_state <= s_10; stage_counter <= c_tmrd_in_clks; v_mr_overload := int_mr0(c_max_mode_reg_index downto 3) & "010"; -- override to burst length 4 v_mr_overload(8) := '0'; -- required in JESD79-2E addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 0, -- mode register number v_mr_overload, -- mode register value 2**current_cs, -- rank false); -- remap address and bank address -- JEDEC (JESD79-2E) stage l - wait 200 cycles when s_10 => ac_state <= s_11; stage_counter <= 200; addr_cmd <= deselect(c_seq_addr_cmd_config, -- configuration addr_cmd); -- previous value -- JEDEC (JESD79-2E) stage l - OCD default when s_11 => ac_state <= s_12; stage_counter <= c_tmrd_in_clks; v_mr_overload := int_mr1(c_max_mode_reg_index downto 0); v_mr_overload(9 downto 7) := "111"; -- OCD calibration default (i.e. OCD unused) v_mr_overload(0) := '0'; -- override for DLL enable addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 1, -- mode register number v_mr_overload , -- mode register value 2**current_cs, -- rank false); -- remap address and bank address -- JEDEC (JESD79-2E) stage l - OCD cal exit when s_12 => ac_state <= s_13; stage_counter <= c_tmod_in_clks; v_mr_overload := int_mr1(c_max_mode_reg_index downto 0); v_mr_overload(9 downto 7) := "000"; -- OCD calibration exit v_mr_overload(0) := '0'; -- override for DLL enable addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 1, -- mode register number v_mr_overload , -- mode register value 2**current_cs, -- rank false); -- remap address and bank address per_cs_init_seen(current_cs) <= '1'; -- JEDEC (JESD79-2E) stage m - cal finished when s_13 => ac_state <= s_0; stage_counter <= 1; finished_state <= '1'; when others => null; end case; elsif MEM_IF_MEMTYPE = "DDR" then -- DDR style mode register setting following JEDEC (JESD79E) case ac_state is when s_0 => ac_state <= s_1; stage_counter <= 1; addr_cmd <= deselect(c_seq_addr_cmd_config, -- configuration addr_cmd); -- previous value when s_1 => ac_state <= s_2; stage_counter <= c_trp_in_clks; addr_cmd <= precharge_all(c_seq_addr_cmd_config, -- configuration 2**current_cs); -- rank(s) when s_2 => ac_state <= s_3; stage_counter <= c_tmrd_in_clks; v_mr_overload := int_mr1(c_max_mode_reg_index downto 0); v_mr_overload(0) := '0'; -- override DLL enable addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 1, -- mode register number v_mr_overload , -- mode register value 2**current_cs, -- rank false); -- remap address and bank address when s_3 => ac_state <= s_4; stage_counter <= c_tmod_in_clks; addr_cmd <= dll_reset(c_seq_addr_cmd_config, -- configuration int_mr0(c_max_mode_reg_index downto 0), -- mode register value 2**current_cs, -- rank false); -- remap address and bank address when s_4 => ac_state <= s_5; stage_counter <= c_trp_in_clks; addr_cmd <= precharge_all(c_seq_addr_cmd_config, -- configuration 2**MEM_IF_NUM_RANKS - 1); -- rank(s) when s_5 => ac_state <= s_6; stage_counter <= c_trfc_min_in_clks; addr_cmd <= refresh(c_seq_addr_cmd_config, -- configuration addr_cmd, -- previous value 2**current_cs); -- rank when s_6 => ac_state <= s_7; stage_counter <= c_trfc_min_in_clks; addr_cmd <= refresh(c_seq_addr_cmd_config, -- configuration addr_cmd, -- previous value 2**current_cs); -- rank when s_7 => ac_state <= s_8; stage_counter <= c_tmrd_in_clks; v_mr_overload := int_mr0(c_max_mode_reg_index downto 3) & "010"; -- override to burst length 4 addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 0, -- mode register number v_mr_overload, -- mode register value 2**current_cs, -- rank false); -- remap address and bank address when s_8 => ac_state <= s_9; stage_counter <= 200; addr_cmd <= deselect(c_seq_addr_cmd_config, -- configuration addr_cmd); -- previous value per_cs_init_seen(current_cs) <= '1'; when s_9 => ac_state <= s_0; stage_counter <= 1; finished_state <= '1'; when others => null; end case; elsif MEM_IF_MEMTYPE = "DDR3" then case ac_state is when s_0 => ac_state <= s_1; stage_counter <= c_trp_in_clks; addr_cmd <= deselect(c_seq_addr_cmd_config, -- configuration addr_cmd); -- previous value when s_1 => ac_state <= s_2; stage_counter <= c_tmrd_in_clks; addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 2, -- mode register number int_mr2(c_max_mode_reg_index downto 0), -- mode register value 2**current_cs, -- rank false); -- remap address and bank address when s_2 => ac_state <= s_3; stage_counter <= c_tmrd_in_clks; addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 3, -- mode register number int_mr3(c_max_mode_reg_index downto 0), -- mode register value 2**current_cs, -- rank false); -- remap address and bank address when s_3 => ac_state <= s_4; stage_counter <= c_tmrd_in_clks; v_mr_overload := int_mr1(c_max_mode_reg_index downto 0); v_mr_overload(0) := '0'; -- Override for DLL enable v_mr_overload(12) := '0'; -- output buffer enable. v_mr_overload(7) := '0'; -- Disable Write levelling addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 1, -- mode register number v_mr_overload, -- mode register value 2**current_cs, -- rank false); -- remap address and bank address when s_4 => ac_state <= s_5; stage_counter <= c_tmod_in_clks; v_mr_overload := int_mr0(c_max_mode_reg_index downto 0); v_mr_overload(1 downto 0) := "01"; -- override to on the fly burst length choice v_mr_overload(7) := '0'; -- test mode not enabled v_mr_overload(8) := '1'; -- DLL reset addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 0, -- mode register number v_mr_overload, -- mode register value 2**current_cs, -- rank false); -- remap address and bank address when s_5 => ac_state <= s_6; stage_counter <= c_zq_init_duration_clks; addr_cmd <= ZQCL(c_seq_addr_cmd_config, -- configuration 2**current_cs); -- rank per_cs_init_seen(current_cs) <= '1'; when s_6 => ac_state <= s_0; stage_counter <= 1; finished_state <= '1'; when others => ac_state <= s_0; end case; else report admin_report_prefix & "unsupported memory type specified" severity error; end if; -- end of s_program_cal_mrs case when s_prog_user_mrs => case ac_state is when s_0 => ac_state <= s_1; stage_counter <= 1; addr_cmd <= deselect(c_seq_addr_cmd_config, -- configuration addr_cmd); -- previous value when s_1 => if MEM_IF_MEMTYPE = "DDR" then -- for DDR memory skip MR2/3 because not present ac_state <= s_4; else -- for DDR2/DDR3 all MRs programmed ac_state <= s_2; end if; stage_counter <= c_trp_in_clks; addr_cmd <= precharge_all(c_seq_addr_cmd_config, -- configuration 2**MEM_IF_NUM_RANKS - 1); -- rank(s) when s_2 => ac_state <= s_3; stage_counter <= c_tmrd_in_clks; addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 2, -- mode register number int_mr2(c_max_mode_reg_index downto 0), -- mode register value 2**current_cs, -- rank false); -- remap address and bank address when s_3 => ac_state <= s_4; stage_counter <= c_tmrd_in_clks; addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 3, -- mode register number int_mr3(c_max_mode_reg_index downto 0), -- mode register value 2**current_cs, -- rank false); -- remap address and bank address if to_integer(unsigned(int_mr3)) /= 0 then report admin_report_prefix & " mode register 3 is expected to have a value of 0 but has a value of : " & integer'image(to_integer(unsigned(int_mr3))) severity warning; end if; when s_4 => ac_state <= s_5; stage_counter <= c_tmrd_in_clks; addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 1, -- mode register number int_mr1(c_max_mode_reg_index downto 0), -- mode register value 2**current_cs, -- rank false); -- remap address and bank address if (MEM_IF_DQSN_EN = 0) and (int_mr1(10) = '0') and (MEM_IF_MEMTYPE = "DDR2") then report admin_report_prefix & "mode register and generic conflict:" & LF & "* generic MEM_IF_DQSN_EN is set to 'disable' DQSN" & LF & "* user mode register MEM_IF_MR1 bit 10 is set to 'enable' DQSN" severity warning; end if; when s_5 => ac_state <= s_6; stage_counter <= c_tmod_in_clks; addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 0, -- mode register number int_mr0(c_max_mode_reg_index downto 0), -- mode register value 2**current_cs, -- rank false); -- remap address and bank address when s_6 => ac_state <= s_7; stage_counter <= 1; when s_7 => ac_state <= s_0; stage_counter <= 1; finished_state <= '1'; when others => ac_state <= s_0; end case; -- end of s_prog_user_mr case when s_access_precharge => case ac_state is when s_0 => ac_state <= s_1; stage_counter <= 10; addr_cmd <= deselect(c_seq_addr_cmd_config, -- configuration addr_cmd); -- previous value when s_1 => ac_state <= s_2; stage_counter <= c_trp_in_clks; addr_cmd <= precharge_all(c_seq_addr_cmd_config, -- configuration 2**MEM_IF_NUM_RANKS - 1); -- rank(s) when s_2 => ac_state <= s_0; stage_counter <= 1; finished_state <= '1'; when others => ac_state <= s_0; end case; when s_topup_refresh | s_refresh => case ac_state is when s_0 => ac_state <= s_1; stage_counter <= 1; when s_1 => ac_state <= s_2; stage_counter <= 1; addr_cmd <= refresh(c_seq_addr_cmd_config, -- configuration addr_cmd, -- previous value 2**MEM_IF_NUM_RANKS - 1); -- rank when s_2 => ac_state <= s_0; stage_counter <= 1; finished_state <= '1'; when others => ac_state <= s_0; end case; when s_topup_refresh_done | s_refresh_done => case ac_state is when s_0 => ac_state <= s_1; stage_counter <= c_trfc_min_in_clks; refresh_done <= '1'; -- ensure trfc not violated when s_1 => ac_state <= s_0; stage_counter <= 1; finished_state <= '1'; when others => ac_state <= s_0; end case; when s_zq_cal_short => case ac_state is when s_0 => ac_state <= s_1; stage_counter <= 1; when s_1 => ac_state <= s_2; stage_counter <= c_tzqcs; addr_cmd <= ZQCS(c_seq_addr_cmd_config, -- configuration 2**current_cs); -- all ranks when s_2 => ac_state <= s_0; stage_counter <= 1; finished_state <= '1'; when others => ac_state <= s_0; end case; when s_access_act => case ac_state is when s_0 => ac_state <= s_1; stage_counter <= c_trrd_min_in_clks; when s_1 => ac_state <= s_2; stage_counter <= c_trcd_min_in_clks; addr_cmd <= activate(c_seq_addr_cmd_config, -- configuration addr_cmd, -- previous value MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_ROW, -- row address 2**current_cs); -- rank when s_2 => ac_state <= s_0; stage_counter <= 1; finished_state <= '1'; when others => ac_state <= s_0; end case; -- counter to delay transition from s_idle to s_refresh - this is to ensure a refresh command is not sent -- just as we enter operational state (could cause a trfc violation) when s_dummy_wait => case ac_state is when s_0 => ac_state <= s_1; stage_counter <= c_max_wait_value; when s_1 => ac_state <= s_0; stage_counter <= 1; finished_state <= '1'; when others => ac_state <= s_0; end case; when s_reset => stage_counter <= 1; -- default some s_non_operational signals if GENERATE_ADDITIONAL_DBG_RTL = 1 then nop_toggle_signal <= addr; nop_toggle_pin <= 0; nop_toggle_value <= '0'; end if; when s_non_operational => -- if failed then output a recognised pattern to the memory (Only executes if GENERATE_ADDITIONAL_DBG_RTL set) addr_cmd <= deselect(c_seq_addr_cmd_config, -- configuration addr_cmd); -- previous value if NON_OP_EVAL_MD = "PIN_FINDER" then -- toggle pins in turn for 200 memory clk cycles stage_counter <= 200/(DWIDTH_RATIO/2); -- 200 mem_clk cycles case nop_toggle_signal is when addr => addr_cmd <= mask (c_seq_addr_cmd_config, addr_cmd, addr, '0'); addr_cmd <= mask (c_seq_addr_cmd_config, addr_cmd, addr, nop_toggle_value, nop_toggle_pin); nop_toggle_value <= not nop_toggle_value; if nop_toggle_value = '1' then if nop_toggle_pin = MEM_IF_ADDR_WIDTH-1 then nop_toggle_signal <= ba; nop_toggle_pin <= 0; else nop_toggle_pin <= nop_toggle_pin + 1; end if; end if; when ba => addr_cmd <= mask (c_seq_addr_cmd_config, addr_cmd, ba, '0'); addr_cmd <= mask (c_seq_addr_cmd_config, addr_cmd, ba, nop_toggle_value, nop_toggle_pin); nop_toggle_value <= not nop_toggle_value; if nop_toggle_value = '1' then if nop_toggle_pin = MEM_IF_BANKADDR_WIDTH-1 then nop_toggle_signal <= cas_n; nop_toggle_pin <= 0; else nop_toggle_pin <= nop_toggle_pin + 1; end if; end if; when cas_n => addr_cmd <= mask (c_seq_addr_cmd_config, addr_cmd, cas_n, nop_toggle_value); nop_toggle_value <= not nop_toggle_value; if nop_toggle_value = '1' then nop_toggle_signal <= ras_n; end if; when ras_n => addr_cmd <= mask (c_seq_addr_cmd_config, addr_cmd, ras_n, nop_toggle_value); nop_toggle_value <= not nop_toggle_value; if nop_toggle_value = '1' then nop_toggle_signal <= we_n; end if; when we_n => addr_cmd <= mask (c_seq_addr_cmd_config, addr_cmd, we_n, nop_toggle_value); nop_toggle_value <= not nop_toggle_value; if nop_toggle_value = '1' then nop_toggle_signal <= addr; end if; when others => report admin_report_prefix & " an attempt to toggle a non addr/cmd pin detected" severity failure; end case; elsif NON_OP_EVAL_MD = "SI_EVALUATOR" then -- toggle all addr/cmd pins at fmax stage_counter <= 0; -- every mem_clk cycle stage_counter_zero <= '1'; v_nop_ac_0 := mask (c_seq_addr_cmd_config, addr_cmd, addr, nop_toggle_value); v_nop_ac_0 := mask (c_seq_addr_cmd_config, v_nop_ac_0, ba, nop_toggle_value); v_nop_ac_0 := mask (c_seq_addr_cmd_config, v_nop_ac_0, we_n, nop_toggle_value); v_nop_ac_0 := mask (c_seq_addr_cmd_config, v_nop_ac_0, ras_n, nop_toggle_value); v_nop_ac_0 := mask (c_seq_addr_cmd_config, v_nop_ac_0, cas_n, nop_toggle_value); v_nop_ac_1 := mask (c_seq_addr_cmd_config, addr_cmd, addr, not nop_toggle_value); v_nop_ac_1 := mask (c_seq_addr_cmd_config, v_nop_ac_1, ba, not nop_toggle_value); v_nop_ac_1 := mask (c_seq_addr_cmd_config, v_nop_ac_1, we_n, not nop_toggle_value); v_nop_ac_1 := mask (c_seq_addr_cmd_config, v_nop_ac_1, ras_n, not nop_toggle_value); v_nop_ac_1 := mask (c_seq_addr_cmd_config, v_nop_ac_1, cas_n, not nop_toggle_value); for i in 0 to DWIDTH_RATIO/2 - 1 loop if i mod 2 = 0 then addr_cmd(i) <= v_nop_ac_0(i); else addr_cmd(i) <= v_nop_ac_1(i); end if; end loop; if DWIDTH_RATIO = 2 then nop_toggle_value <= not nop_toggle_value; end if; else report admin_report_prefix & "unknown non-operational evaluation mode " & NON_OP_EVAL_MD severity failure; end if; when others => addr_cmd <= deselect(c_seq_addr_cmd_config, -- configuration addr_cmd); -- previous value stage_counter <= 1; ac_state <= s_0; end case; end if; end if; end process; -- ------------------------------------------------------------------- -- output packing of mode register settings and enabling of ODT -- ------------------------------------------------------------------- process (int_mr0, int_mr1, int_mr2, int_mr3, mem_init_complete) begin admin_regs_status_rec.mr0 <= int_mr0; admin_regs_status_rec.mr1 <= int_mr1; admin_regs_status_rec.mr2 <= int_mr2; admin_regs_status_rec.mr3 <= int_mr3; admin_regs_status_rec.init_done <= mem_init_complete; enable_odt <= int_mr1(2) or int_mr1(6); -- if ODT enabled in MR settings (i.e. MR1 bits 2 or 6 /= 0) end process; -- -------------------------------------------------------------------------------- -- generation of handshake signals with ctrl, dgrb and dgwb blocks (this includes -- command ack, command done for ctrl and access grant for dgrb/dgwb) -- -------------------------------------------------------------------------------- process (rst_n, clk) begin if rst_n = '0' then admin_ctrl <= defaults; ac_access_gnt <= '0'; elsif rising_edge(clk) then admin_ctrl <= defaults; ac_access_gnt <= '0'; admin_ctrl.command_ack <= command_started; admin_ctrl.command_done <= command_done; if state = s_access then ac_access_gnt <= '1'; end if; end if; end process; end architecture struct; -- -- ----------------------------------------------------------------------------- -- Abstract : inferred ram for the non-levelling AFI PHY sequencer -- The inferred ram is used in the iram block to store -- debug information about the sequencer. It is variable in -- size based on the IRAM_AWIDTH generic and is of size -- 32 * (2 ** IRAM_ADDR_WIDTH) bits -- ----------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; -- The record package (alt_mem_phy_record_pkg) is used to combine command and status signals -- (into records) to be passed between sequencer blocks. It also contains type and record definitions -- for the stages of DRAM memory calibration. -- use work.ddr_ctrl_ip_phy_alt_mem_phy_record_pkg.all; -- entity ddr_ctrl_ip_phy_alt_mem_phy_iram_ram IS generic ( IRAM_AWIDTH : natural ); port ( clk : in std_logic; rst_n : in std_logic; -- ram ports addr : in unsigned(IRAM_AWIDTH-1 downto 0); wdata : in std_logic_vector(31 downto 0); write : in std_logic; rdata : out std_logic_vector(31 downto 0) ); end entity; -- architecture struct of ddr_ctrl_ip_phy_alt_mem_phy_iram_ram is -- infer ram constant c_max_ram_address : natural := 2**IRAM_AWIDTH -1; -- registered ram signals signal addr_r : unsigned(IRAM_AWIDTH-1 downto 0); signal wdata_r : std_logic_vector(31 downto 0); signal write_r : std_logic; signal rdata_r : std_logic_vector(31 downto 0); -- ram storage array type t_iram is array (0 to c_max_ram_address) of std_logic_vector(31 downto 0); signal iram_ram : t_iram; attribute altera_attribute : string; attribute altera_attribute of iram_ram : signal is "-name ADD_PASS_THROUGH_LOGIC_TO_INFERRED_RAMS ""OFF"""; begin -- architecture struct -- inferred ram instance - standard ram logic process (clk, rst_n) begin if rst_n = '0' then rdata_r <= (others => '0'); elsif rising_edge(clk) then if write_r = '1' then iram_ram(to_integer(addr_r)) <= wdata_r; end if; rdata_r <= iram_ram(to_integer(addr_r)); end if; end process; -- register i/o for speed process (clk, rst_n) begin if rst_n = '0' then rdata <= (others => '0'); write_r <= '0'; addr_r <= (others => '0'); wdata_r <= (others => '0'); elsif rising_edge(clk) then rdata <= rdata_r; write_r <= write; addr_r <= addr; wdata_r <= wdata; end if; end process; end architecture struct; -- -- ----------------------------------------------------------------------------- -- Abstract : iram block for the non-levelling AFI PHY sequencer -- This block is an optional storage of debug information for -- the sequencer. In the current form the iram stores header -- information about the arrangement of the sequencer and pass/ -- fail information for per-delay/phase/pin sweeps for the -- read resynch phase calibration stage. Support for debug of -- additional commands can be added at a later date -- ----------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; -- The record package (alt_mem_phy_record_pkg) is used to combine command and status signals -- (into records) to be passed between sequencer blocks. It also contains type and record definitions -- for the stages of DRAM memory calibration. -- use work.ddr_ctrl_ip_phy_alt_mem_phy_record_pkg.all; -- The altmemphy iram ram (alt_mem_phy_iram_ram) is an inferred ram memory to implement the debug -- iram ram block -- use work.ddr_ctrl_ip_phy_alt_mem_phy_iram_ram; -- entity ddr_ctrl_ip_phy_alt_mem_phy_iram is generic ( -- physical interface width definitions MEM_IF_MEMTYPE : string; FAMILYGROUP_ID : natural; MEM_IF_DQS_WIDTH : natural; MEM_IF_DQ_PER_DQS : natural; MEM_IF_DWIDTH : natural; MEM_IF_DM_WIDTH : natural; MEM_IF_NUM_RANKS : natural; IRAM_AWIDTH : natural; REFRESH_COUNT_INIT : natural; PRESET_RLAT : natural; PLL_STEPS_PER_CYCLE : natural; CAPABILITIES : natural; IP_BUILDNUM : natural ); port ( -- clk / reset clk : in std_logic; rst_n : in std_logic; -- read interface from mmi block: mmi_iram : in t_iram_ctrl; mmi_iram_enable_writes : in std_logic; --iram status signal (includes read data from iram) iram_status : out t_iram_stat; iram_push_done : out std_logic; -- from ctrl block ctrl_iram : in t_ctrl_command; -- from dgrb block dgrb_iram : in t_iram_push; -- from admin block admin_regs_status_rec : in t_admin_stat; -- current write position in the iram ctrl_idib_top : in natural range 0 to 2 ** IRAM_AWIDTH - 1; ctrl_iram_push : in t_ctrl_iram; -- the following signals are unused and reserved for future use dgwb_iram : in t_iram_push ); end entity; library work; -- The registers package (alt_mem_phy_regs_pkg) is used to combine the definition of the -- registers for the mmi status registers and functions/procedures applied to the registers -- use work.ddr_ctrl_ip_phy_alt_mem_phy_regs_pkg.all; -- architecture struct of ddr_ctrl_ip_phy_alt_mem_phy_iram is -- ------------------------------------------- -- IHI fields -- ------------------------------------------- -- memory type , Quartus Build No., Quartus release, sequencer architecture version : signal memtype : std_logic_vector(7 downto 0); signal ihi_self_description : std_logic_vector(31 downto 0); signal ihi_self_description_extra : std_logic_vector(31 downto 0); -- for iram address generation: signal curr_iram_offset : natural range 0 to 2 ** IRAM_AWIDTH - 1; -- set read latency for iram_rdata_valid signal control: constant c_iram_rlat : natural := 3; -- iram read latency (increment if read pipelining added -- for rdata valid generation: signal read_valid_ctr : natural range 0 to c_iram_rlat; signal iram_addr_r : unsigned(IRAM_AWIDTH downto 0); constant c_ihi_phys_if_desc : std_logic_vector(31 downto 0) := std_logic_vector (to_unsigned(MEM_IF_NUM_RANKS,8) & to_unsigned(MEM_IF_DM_WIDTH,8) & to_unsigned(MEM_IF_DQS_WIDTH,8) & to_unsigned(MEM_IF_DWIDTH,8)); constant c_ihi_timing_info : std_logic_vector(31 downto 0) := X"DEADDEAD"; constant c_ihi_ctrl_ss_word2 : std_logic_vector(31 downto 0) := std_logic_vector (to_unsigned(PRESET_RLAT,16) & X"0000"); -- IDIB header codes constant c_idib_header_code0 : std_logic_vector(7 downto 0) := X"4A"; constant c_idib_footer_code : std_logic_vector(7 downto 0) := X"5A"; -- encoded Quartus version -- constant c_quartus_version : natural := 0; -- Quartus 7.2 -- constant c_quartus_version : natural := 1; -- Quartus 8.0 --constant c_quartus_version : natural := 2; -- Quartus 8.1 --constant c_quartus_version : natural := 3; -- Quartus 9.0 --constant c_quartus_version : natural := 4; -- Quartus 9.0sp2 --constant c_quartus_version : natural := 5; -- Quartus 9.1 --constant c_quartus_version : natural := 6; -- Quartus 9.1sp1? --constant c_quartus_version : natural := 7; -- Quartus 9.1sp2? constant c_quartus_version : natural := 8; -- Quartus 10.0 -- constant c_quartus_version : natural := 114; -- reserved -- allow for different variants for debug i/f constant c_dbg_if_version : natural := 2; -- sequencer type 1 for levelling, 2 for non-levelling constant c_sequencer_type : natural := 2; -- a prefix for all report signals to identify phy and sequencer block -- constant iram_report_prefix : string := "ddr_ctrl_ip_phy_alt_mem_phy_seq (iram) : "; -- ------------------------------------------- -- signal and type declarations -- ------------------------------------------- type t_iram_state is ( s_reset, -- system reset s_pre_init_ram, -- identify pre-initialisation s_init_ram, -- zero all locations s_idle, -- default state s_word_access_ram, -- mmi access to the iram (post-calibration) s_word_fetch_ram_rdata, -- sample read data from RAM s_word_fetch_ram_rdata_r,-- register the sampling of data from RAM (to improve timing) s_word_complete, -- finalise iram ram write s_idib_header_write, -- when starting a command s_idib_header_inc_addr, -- address increment s_idib_footer_write, -- unique footer to indicate end of data s_cal_data_read, -- read RAM location (read occurs continuously from idle state) s_cal_data_read_r, s_cal_data_modify, -- modify RAM location (read occurs continuously) s_cal_data_write, -- write modified value back to RAM s_ihi_header_word0_wr, -- from 0 to 6 writing iram header info s_ihi_header_word1_wr, s_ihi_header_word2_wr, s_ihi_header_word3_wr, s_ihi_header_word4_wr, s_ihi_header_word5_wr, s_ihi_header_word6_wr, s_ihi_header_word7_wr-- end writing iram header info ); signal state : t_iram_state; signal contested_access : std_logic; signal idib_header_count : std_logic_vector(7 downto 0); -- register a new cmd request signal new_cmd : std_logic; signal cmd_processed : std_logic; -- signals to control dgrb writes signal iram_modified_data : std_logic_vector(31 downto 0); -- scratchpad memory for read-modify-write -- ------------------------------------------- -- physical ram connections -- ------------------------------------------- -- Note that the iram_addr here is created IRAM_AWIDTH downto 0, and not -- IRAM_AWIDTH-1 downto 0. This means that the MSB is outside the addressable -- area of the RAM. The purpose of this is that this shall be our memory -- overflow bit. It shall be directly connected to the iram_out_of_memory flag -- 32-bit interface port (read and write) signal iram_addr : unsigned(IRAM_AWIDTH downto 0); signal iram_wdata : std_logic_vector(31 downto 0); signal iram_rdata : std_logic_vector(31 downto 0); signal iram_write : std_logic; -- signal generated external to the iram to say when read data is valid signal iram_rdata_valid : std_logic; -- The FSM owns local storage that is loaded with the wdata/addr from the -- requesting sub-block, which is then fed to the iram's wdata/addr in turn -- until all data has gone across signal fsm_read : std_logic; -- ------------------------------------------- -- multiplexed push data -- ------------------------------------------- signal iram_done : std_logic; -- unused signal iram_pushdata : std_logic_vector(31 downto 0); signal pending_push : std_logic; -- push data to RAM signal iram_wordnum : natural range 0 to 511; signal iram_bitnum : natural range 0 to 31; begin -- architecture struct -- ------------------------------------------- -- iram ram instantiation -- ------------------------------------------- -- Note that the IRAM_AWIDTH is the physical number of address bits that the RAM has. -- However, for out of range access detection purposes, an additional bit is added to -- the various address signals. The iRAM does not register any of its inputs as the addr, -- wdata etc are registered directly before being driven to it. -- The dgrb accesses are of format read-modify-write to a single bit of a 32-bit word, the -- mmi reads and header writes are in 32-bit words -- ram : entity ddr_ctrl_ip_phy_alt_mem_phy_iram_ram generic map ( IRAM_AWIDTH => IRAM_AWIDTH ) port map ( clk => clk, rst_n => rst_n, addr => iram_addr(IRAM_AWIDTH-1 downto 0), wdata => iram_wdata, write => iram_write, rdata => iram_rdata ); -- ------------------------------------------- -- IHI fields -- asynchronously -- ------------------------------------------- -- this field identifies the type of memory memtype <= X"03" when (MEM_IF_MEMTYPE = "DDR3") else X"02" when (MEM_IF_MEMTYPE = "DDR2") else X"01" when (MEM_IF_MEMTYPE = "DDR") else X"10" when (MEM_IF_MEMTYPE = "QDRII") else X"00" ; -- this field indentifies the gross level description of the sequencer ihi_self_description <= memtype & std_logic_vector(to_unsigned(IP_BUILDNUM,8)) & std_logic_vector(to_unsigned(c_quartus_version,8)) & std_logic_vector(to_unsigned(c_dbg_if_version,8)); -- some extra information for the debug gui - sequencer type and familygroup ihi_self_description_extra <= std_logic_vector(to_unsigned(FAMILYGROUP_ID,4)) & std_logic_vector(to_unsigned(c_sequencer_type,4)) & x"000000"; -- ------------------------------------------- -- check for contested memory accesses -- ------------------------------------------- process(clk,rst_n) begin if rst_n = '0' then contested_access <= '0'; elsif rising_edge(clk) then contested_access <= '0'; if mmi_iram.read = '1' and pending_push = '1' then report iram_report_prefix & "contested memory accesses to the iram" severity failure; contested_access <= '1'; end if; -- sanity checks if mmi_iram.write = '1' then report iram_report_prefix & "mmi writes to the iram unsupported for non-levelling AFI PHY sequencer" severity failure; end if; if dgwb_iram.iram_write = '1' then report iram_report_prefix & "dgwb writes to the iram unsupported for non-levelling AFI PHY sequencer" severity failure; end if; end if; end process; -- ------------------------------------------- -- mux push data and associated signals -- note: single bit taken for iram_pushdata because 1-bit read-modify-write to -- a 32-bit word in the ram. This interface style is maintained for future -- scalability / wider application of the iram block. -- ------------------------------------------- process(clk,rst_n) begin if rst_n = '0' then iram_done <= '0'; iram_pushdata <= (others => '0'); pending_push <= '0'; iram_wordnum <= 0; iram_bitnum <= 0; elsif rising_edge(clk) then case curr_active_block(ctrl_iram.command) is when dgrb => iram_done <= dgrb_iram.iram_done; iram_pushdata <= dgrb_iram.iram_pushdata; pending_push <= dgrb_iram.iram_write; iram_wordnum <= dgrb_iram.iram_wordnum; iram_bitnum <= dgrb_iram.iram_bitnum; when others => -- default dgrb iram_done <= dgrb_iram.iram_done; iram_pushdata <= dgrb_iram.iram_pushdata; pending_push <= dgrb_iram.iram_write; iram_wordnum <= dgrb_iram.iram_wordnum; iram_bitnum <= dgrb_iram.iram_bitnum; end case; end if; end process; -- ------------------------------------------- -- generate write signal for the ram -- ------------------------------------------- process(clk, rst_n) begin if rst_n = '0' then iram_write <= '0'; elsif rising_edge(clk) then case state is when s_idle => iram_write <= '0'; when s_pre_init_ram | s_init_ram => iram_write <= '1'; when s_ihi_header_word0_wr | s_ihi_header_word1_wr | s_ihi_header_word2_wr | s_ihi_header_word3_wr | s_ihi_header_word4_wr | s_ihi_header_word5_wr | s_ihi_header_word6_wr | s_ihi_header_word7_wr => iram_write <= '1'; when s_idib_header_write => iram_write <= '1'; when s_idib_footer_write => iram_write <= '1'; when s_cal_data_write => iram_write <= '1'; when others => iram_write <= '0'; -- default end case; end if; end process; -- ------------------------------------------- -- generate wdata for the ram -- ------------------------------------------- process(clk, rst_n) variable v_current_cs : std_logic_vector(3 downto 0); variable v_mtp_alignment : std_logic_vector(0 downto 0); variable v_single_bit : std_logic; begin if rst_n = '0' then iram_wdata <= (others => '0'); elsif rising_edge(clk) then case state is when s_pre_init_ram | s_init_ram => iram_wdata <= (others => '0'); when s_ihi_header_word0_wr => iram_wdata <= ihi_self_description; when s_ihi_header_word1_wr => iram_wdata <= c_ihi_phys_if_desc; when s_ihi_header_word2_wr => iram_wdata <= c_ihi_timing_info; when s_ihi_header_word3_wr => iram_wdata <= ( others => '0'); iram_wdata(admin_regs_status_rec.mr0'range) <= admin_regs_status_rec.mr0; iram_wdata(admin_regs_status_rec.mr1'high + 16 downto 16) <= admin_regs_status_rec.mr1; when s_ihi_header_word4_wr => iram_wdata <= ( others => '0'); iram_wdata(admin_regs_status_rec.mr2'range) <= admin_regs_status_rec.mr2; iram_wdata(admin_regs_status_rec.mr3'high + 16 downto 16) <= admin_regs_status_rec.mr3; when s_ihi_header_word5_wr => iram_wdata <= c_ihi_ctrl_ss_word2; when s_ihi_header_word6_wr => iram_wdata <= std_logic_vector(to_unsigned(IRAM_AWIDTH,32)); -- tbd write the occupancy at end of cal when s_ihi_header_word7_wr => iram_wdata <= ihi_self_description_extra; when s_idib_header_write => -- encode command_op for current operation v_current_cs := std_logic_vector(to_unsigned(ctrl_iram.command_op.current_cs, 4)); v_mtp_alignment := std_logic_vector(to_unsigned(ctrl_iram.command_op.mtp_almt, 1)); v_single_bit := ctrl_iram.command_op.single_bit; iram_wdata <= encode_current_stage(ctrl_iram.command) & -- which command being executed (currently this should only be cmd_rrp_sweep (8 bits) v_current_cs & -- which chip select being processed (4 bits) v_mtp_alignment & -- currently used MTP alignment (1 bit) v_single_bit & -- is single bit calibration selected (1 bit) - used during MTP alignment "00" & -- RFU idib_header_count & -- unique ID to how many headers have been written (8 bits) c_idib_header_code0; -- unique ID for headers (8 bits) when s_idib_footer_write => iram_wdata <= c_idib_footer_code & c_idib_footer_code & c_idib_footer_code & c_idib_footer_code; when s_cal_data_modify => -- default don't overwrite iram_modified_data <= iram_rdata; -- update iram data based on packing and write modes if ctrl_iram_push.packing_mode = dq_bitwise then case ctrl_iram_push.write_mode is when overwrite_ram => iram_modified_data(iram_bitnum) <= iram_pushdata(0); when or_into_ram => iram_modified_data(iram_bitnum) <= iram_pushdata(0) or iram_rdata(0); when and_into_ram => iram_modified_data(iram_bitnum) <= iram_pushdata(0) and iram_rdata(0); when others => report iram_report_prefix & "unidentified write mode of " & t_iram_write_mode'image(ctrl_iram_push.write_mode) & " specified when generating iram write data" severity failure; end case; elsif ctrl_iram_push.packing_mode = dq_wordwise then case ctrl_iram_push.write_mode is when overwrite_ram => iram_modified_data <= iram_pushdata; when or_into_ram => iram_modified_data <= iram_pushdata or iram_rdata; when and_into_ram => iram_modified_data <= iram_pushdata and iram_rdata; when others => report iram_report_prefix & "unidentified write mode of " & t_iram_write_mode'image(ctrl_iram_push.write_mode) & " specified when generating iram write data" severity failure; end case; else report iram_report_prefix & "unidentified packing mode of " & t_iram_packing_mode'image(ctrl_iram_push.packing_mode) & " specified when generating iram write data" severity failure; end if; when s_cal_data_write => iram_wdata <= iram_modified_data; when others => iram_wdata <= (others => '0'); end case; end if; end process; -- ------------------------------------------- -- generate addr for the ram -- ------------------------------------------- process(clk, rst_n) begin if rst_n = '0' then iram_addr <= (others => '0'); curr_iram_offset <= 0; elsif rising_edge(clk) then case (state) is when s_idle => if mmi_iram.read = '1' then -- pre-set mmi read location address iram_addr <= ('0' & to_unsigned(mmi_iram.addr,IRAM_AWIDTH)); -- Pad MSB else -- default get next push data location from iram iram_addr <= to_unsigned(curr_iram_offset + iram_wordnum, IRAM_AWIDTH+1); end if; when s_word_access_ram => -- calculate the address if mmi_iram.read = '1' then -- mmi access iram_addr <= ('0' & to_unsigned(mmi_iram.addr,IRAM_AWIDTH)); -- Pad MSB end if; when s_ihi_header_word0_wr => iram_addr <= (others => '0'); -- increment address for IHI word writes : when s_ihi_header_word1_wr | s_ihi_header_word2_wr | s_ihi_header_word3_wr | s_ihi_header_word4_wr | s_ihi_header_word5_wr | s_ihi_header_word6_wr | s_ihi_header_word7_wr => iram_addr <= iram_addr + 1; when s_idib_header_write => iram_addr <= '0' & to_unsigned(ctrl_idib_top, IRAM_AWIDTH); -- Always write header at idib_top location when s_idib_footer_write => iram_addr <= to_unsigned(curr_iram_offset + iram_wordnum, IRAM_AWIDTH+1); -- active block communicates where to put the footer with done signal when s_idib_header_inc_addr => iram_addr <= iram_addr + 1; curr_iram_offset <= to_integer('0' & iram_addr) + 1; when s_init_ram => if iram_addr(IRAM_AWIDTH) = '1' then iram_addr <= (others => '0'); -- this prevents erroneous out-of-mem flag after initialisation else iram_addr <= iram_addr + 1; end if; when others => iram_addr <= iram_addr; end case; end if; end process; -- ------------------------------------------- -- generate new cmd signal to register the command_req signal -- ------------------------------------------- process(clk, rst_n) begin if rst_n = '0' then new_cmd <= '0'; elsif rising_edge(clk) then if ctrl_iram.command_req = '1' then case ctrl_iram.command is when cmd_rrp_sweep | -- only prompt new_cmd for commands we wish to write headers for cmd_rrp_seek | cmd_read_mtp | cmd_write_ihi => new_cmd <= '1'; when others => new_cmd <= '0'; end case; end if; if cmd_processed = '1' then new_cmd <= '0'; end if; end if; end process; -- ------------------------------------------- -- generate read valid signal which takes account of pipelining of reads -- ------------------------------------------- process(clk, rst_n) begin if rst_n = '0' then iram_rdata_valid <= '0'; read_valid_ctr <= 0; iram_addr_r <= (others => '0'); elsif rising_edge(clk) then if read_valid_ctr < c_iram_rlat then iram_rdata_valid <= '0'; read_valid_ctr <= read_valid_ctr + 1; else iram_rdata_valid <= '1'; end if; if to_integer(iram_addr) /= to_integer(iram_addr_r) or iram_write = '1' then read_valid_ctr <= 0; iram_rdata_valid <= '0'; end if; -- register iram address iram_addr_r <= iram_addr; end if; end process; -- ------------------------------------------- -- state machine -- ------------------------------------------- process(clk, rst_n) begin if rst_n = '0' then state <= s_reset; cmd_processed <= '0'; elsif rising_edge(clk) then cmd_processed <= '0'; case state is when s_reset => state <= s_pre_init_ram; when s_pre_init_ram => state <= s_init_ram; -- remain in the init_ram state until all the ram locations have been zero'ed when s_init_ram => if iram_addr(IRAM_AWIDTH) = '1' then state <= s_idle; end if; -- default state after reset when s_idle => if pending_push = '1' then state <= s_cal_data_read; elsif iram_done = '1' then state <= s_idib_footer_write; elsif new_cmd = '1' then case ctrl_iram.command is when cmd_rrp_sweep | cmd_rrp_seek | cmd_read_mtp => state <= s_idib_header_write; when cmd_write_ihi => state <= s_ihi_header_word0_wr; when others => state <= state; end case; cmd_processed <= '1'; elsif mmi_iram.read = '1' then state <= s_word_access_ram; end if; -- mmi read accesses when s_word_access_ram => state <= s_word_fetch_ram_rdata; when s_word_fetch_ram_rdata => state <= s_word_fetch_ram_rdata_r; when s_word_fetch_ram_rdata_r => if iram_rdata_valid = '1' then state <= s_word_complete; end if; when s_word_complete => if iram_rdata_valid = '1' then -- return to idle when iram_rdata stable state <= s_idle; end if; -- header write (currently only for cmp_rrp stage) when s_idib_header_write => state <= s_idib_header_inc_addr; when s_idib_header_inc_addr => state <= s_idle; -- return to idle to wait for push when s_idib_footer_write => state <= s_word_complete; -- push data accesses (only used by the dgrb block at present) when s_cal_data_read => state <= s_cal_data_read_r; when s_cal_data_read_r => if iram_rdata_valid = '1' then state <= s_cal_data_modify; end if; when s_cal_data_modify => state <= s_cal_data_write; when s_cal_data_write => state <= s_word_complete; -- IHI Header write accesses when s_ihi_header_word0_wr => state <= s_ihi_header_word1_wr; when s_ihi_header_word1_wr => state <= s_ihi_header_word2_wr; when s_ihi_header_word2_wr => state <= s_ihi_header_word3_wr; when s_ihi_header_word3_wr => state <= s_ihi_header_word4_wr; when s_ihi_header_word4_wr => state <= s_ihi_header_word5_wr; when s_ihi_header_word5_wr => state <= s_ihi_header_word6_wr; when s_ihi_header_word6_wr => state <= s_ihi_header_word7_wr; when s_ihi_header_word7_wr => state <= s_idle; when others => state <= state; end case; end if; end process; -- ------------------------------------------- -- drive read data and responses back. -- ------------------------------------------- process(clk, rst_n) begin if rst_n = '0' then iram_status <= defaults; iram_push_done <= '0'; idib_header_count <= (others => '0'); fsm_read <= '0'; elsif rising_edge(clk) then -- defaults iram_status <= defaults; iram_status.done <= '0'; iram_status.rdata <= (others => '0'); iram_push_done <= '0'; if state = s_init_ram then iram_status.out_of_mem <= '0'; else iram_status.out_of_mem <= iram_addr(IRAM_AWIDTH); end if; -- register read flag for 32 bit accesses if state = s_idle then fsm_read <= mmi_iram.read; end if; if state = s_word_complete then iram_status.done <= '1'; if fsm_read = '1' then iram_status.rdata <= iram_rdata; else iram_status.rdata <= (others => '0'); end if; end if; -- if another access is ever presented while the FSM is busy, set the contested flag if contested_access = '1' then iram_status.contested_access <= '1'; end if; -- set (and keep set) the iram_init_done output once initialisation of the RAM is complete if (state /= s_init_ram) and (state /= s_pre_init_ram) and (state /= s_reset) then iram_status.init_done <= '1'; end if; if state = s_ihi_header_word7_wr then iram_push_done <= '1'; end if; -- if completing push or footer write then acknowledge if state = s_cal_data_modify or state = s_idib_footer_write then iram_push_done <= '1'; end if; -- increment IDIB header count each time a header is written if state = s_idib_header_write then idib_header_count <= std_logic_vector(unsigned(idib_header_count) + to_unsigned(1,idib_header_count'high +1)); end if; end if; end process; end architecture struct; -- -- ----------------------------------------------------------------------------- -- Abstract : data gatherer (read bias) [dgrb] block for the non-levelling -- AFI PHY sequencer -- This block handles all calibration commands which require -- memory read operations. -- -- These include: -- Resync phase calibration - sweep of phases, calculation of -- result and optional storage to iram -- Postamble calibration - clock cycle calibration of the postamble -- enable signal -- Read data valid signal alignment -- Calculation of advertised read and write latencies -- ----------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; -- The record package (alt_mem_phy_record_pkg) is used to combine command and status signals -- (into records) to be passed between sequencer blocks. It also contains type and record definitions -- for the stages of DRAM memory calibration. -- use work.ddr_ctrl_ip_phy_alt_mem_phy_record_pkg.all; -- The address and command package (alt_mem_phy_addr_cmd_pkg) is used to combine DRAM address -- and command signals in one record and unify the functions operating on this record. -- use work.ddr_ctrl_ip_phy_alt_mem_phy_addr_cmd_pkg.all; -- The iram address package (alt_mem_phy_iram_addr_pkg) is used to define the base addresses used -- for iram writes during calibration -- use work.ddr_ctrl_ip_phy_alt_mem_phy_iram_addr_pkg.all; -- The constant package (alt_mem_phy_constants_pkg) contains global 'constants' which are fixed -- thoughout the sequencer and will not change (for constants which may change between sequencer -- instances generics are used) -- use work.ddr_ctrl_ip_phy_alt_mem_phy_constants_pkg.all; -- entity ddr_ctrl_ip_phy_alt_mem_phy_dgrb is generic ( MEM_IF_DQS_WIDTH : natural; MEM_IF_DQ_PER_DQS : natural; MEM_IF_DWIDTH : natural; MEM_IF_DM_WIDTH : natural; MEM_IF_DQS_CAPTURE : natural; MEM_IF_ADDR_WIDTH : natural; MEM_IF_BANKADDR_WIDTH : natural; MEM_IF_NUM_RANKS : natural; MEM_IF_MEMTYPE : string; ADV_LAT_WIDTH : natural; CLOCK_INDEX_WIDTH : natural; DWIDTH_RATIO : natural; PRESET_RLAT : natural; PLL_STEPS_PER_CYCLE : natural; -- number of PLL phase steps per PHY clock cycle SIM_TIME_REDUCTIONS : natural; GENERATE_ADDITIONAL_DBG_RTL : natural; PRESET_CODVW_PHASE : natural; PRESET_CODVW_SIZE : natural; -- base column address to which calibration data is written -- memory at MEM_IF_CAL_BASE_COL - MEM_IF_CAL_BASE_COL + C_CAL_DATA_LEN - 1 -- is assumed to contain the proper data MEM_IF_CAL_BANK : natural; -- bank to which calibration data is written MEM_IF_CAL_BASE_COL : natural; EN_OCT : natural ); port ( -- clk / reset clk : in std_logic; rst_n : in std_logic; -- control interface dgrb_ctrl : out t_ctrl_stat; ctrl_dgrb : in t_ctrl_command; parameterisation_rec : in t_algm_paramaterisation; -- PLL reconfig interface phs_shft_busy : in std_logic; seq_pll_inc_dec_n : out std_logic; seq_pll_select : out std_logic_vector(CLOCK_INDEX_WIDTH - 1 DOWNTO 0); seq_pll_start_reconfig : out std_logic; pll_resync_clk_index : in std_logic_vector(CLOCK_INDEX_WIDTH - 1 downto 0); -- PLL phase used to select resync clock pll_measure_clk_index : in std_logic_vector(CLOCK_INDEX_WIDTH - 1 downto 0); -- PLL phase used to select mimic / aka measure clock -- iram 'push' interface dgrb_iram : out t_iram_push; iram_push_done : in std_logic; -- addr/cmd output for write commands dgrb_ac : out t_addr_cmd_vector(0 to (DWIDTH_RATIO/2)-1); -- admin block req/gnt interface dgrb_ac_access_req : out std_logic; dgrb_ac_access_gnt : in std_logic; -- RDV latency controls seq_rdata_valid_lat_inc : out std_logic; seq_rdata_valid_lat_dec : out std_logic; -- POA latency controls seq_poa_lat_dec_1x : out std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); seq_poa_lat_inc_1x : out std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); -- read datapath interface rdata_valid : in std_logic_vector(DWIDTH_RATIO/2 - 1 downto 0); rdata : in std_logic_vector(DWIDTH_RATIO * MEM_IF_DWIDTH - 1 downto 0); doing_rd : out std_logic_vector(MEM_IF_DQS_WIDTH * DWIDTH_RATIO/2 - 1 downto 0); rd_lat : out std_logic_vector(ADV_LAT_WIDTH - 1 downto 0); -- advertised write latency wd_lat : out std_logic_vector(ADV_LAT_WIDTH - 1 downto 0); -- OCT control seq_oct_value : out std_logic; dgrb_wdp_ovride : out std_logic; -- mimic path interface seq_mmc_start : out std_logic; mmc_seq_done : in std_logic; mmc_seq_value : in std_logic; -- calibration byte lane select (reserved for future use - RFU) ctl_cal_byte_lanes : in std_logic_vector(MEM_IF_NUM_RANKS * MEM_IF_DQS_WIDTH - 1 downto 0); -- odt settings per chip select odt_settings : in t_odt_array(0 to MEM_IF_NUM_RANKS-1); -- signal to identify if a/c nt setting is correct (set after wr_lat calculation) -- NOTE: labelled nt for future scalability to quarter rate interfaces dgrb_ctrl_ac_nt_good : out std_logic; -- status signals on calibrated cdvw dgrb_mmi : out t_dgrb_mmi ); end entity; -- architecture struct of ddr_ctrl_ip_phy_alt_mem_phy_dgrb is -- ------------------------------------------------------------------ -- constant declarations -- ------------------------------------------------------------------ constant c_seq_addr_cmd_config : t_addr_cmd_config_rec := set_config_rec(MEM_IF_ADDR_WIDTH, MEM_IF_BANKADDR_WIDTH, MEM_IF_NUM_RANKS, DWIDTH_RATIO, MEM_IF_MEMTYPE); -- command/result length constant c_command_result_len : natural := 8; -- burst characteristics and latency characteristics constant c_max_read_lat : natural := 2**rd_lat'length - 1; -- maximum read latency in phy clock-cycles -- training pattern characteristics constant c_cal_mtp_len : natural := 16; constant c_cal_mtp : std_logic_vector(c_cal_mtp_len - 1 downto 0) := x"30F5"; constant c_cal_mtp_t : natural := c_cal_mtp_len / DWIDTH_RATIO; -- number of phy-clk cycles required to read BTP -- read/write latency defaults constant c_default_rd_lat_slv : std_logic_vector(ADV_LAT_WIDTH - 1 downto 0) := std_logic_vector(to_unsigned(c_default_rd_lat, ADV_LAT_WIDTH)); constant c_default_wd_lat_slv : std_logic_vector(ADV_LAT_WIDTH - 1 downto 0) := std_logic_vector(to_unsigned(c_default_wr_lat, ADV_LAT_WIDTH)); -- tracking reporting parameters constant c_max_rsc_drift_in_phases : natural := 127; -- this must be a value of < 2^10 - 1 because of the range of signal codvw_trk_shift -- Returns '1' when boolean b is True; '0' otherwise. function active_high(b : in boolean) return std_logic is variable r : std_logic; begin if b then r := '1'; else r := '0'; end if; return r; end function; -- a prefix for all report signals to identify phy and sequencer block -- constant dgrb_report_prefix : string := "ddr_ctrl_ip_phy_alt_mem_phy_seq (dgrb) : "; -- Return the number of clock periods the resync clock should sweep. -- -- On half-rate systems and in DQS-capture based systems a 720 -- to guarantee the resync window can be properly observed. function rsc_sweep_clk_periods return natural is variable v_num_periods : natural; begin if DWIDTH_RATIO = 2 then if MEM_IF_DQS_CAPTURE = 1 then -- families which use DQS capture require a 720 degree sweep for FR to show a window v_num_periods := 2; else v_num_periods := 1; end if; elsif DWIDTH_RATIO = 4 then v_num_periods := 2; else report dgrb_report_prefix & "unsupported DWIDTH_RATIO." severity failure; end if; return v_num_periods; end function; -- window for PLL sweep constant c_max_phase_shifts : natural := rsc_sweep_clk_periods*PLL_STEPS_PER_CYCLE; constant c_pll_phs_inc : std_logic := '1'; constant c_pll_phs_dec : std_logic := not c_pll_phs_inc; -- ------------------------------------------------------------------ -- type declarations -- ------------------------------------------------------------------ -- dgrb main state machine type t_dgrb_state is ( -- idle state s_idle, -- request access to memory address/command bus from the admin block s_wait_admin, -- relinquish address/command bus access s_release_admin, -- wind back resync phase to a 'zero' point s_reset_cdvw, -- perform resync phase sweep (used for MTP alignment checking and actual RRP sweep) s_test_phases, -- processing to when checking MTP alignment s_read_mtp, -- processing for RRP (read resync phase) sweep s_seek_cdvw, -- clock cycle alignment of read data valid signal s_rdata_valid_align, -- calculate advertised read latency s_adv_rd_lat_setup, s_adv_rd_lat, -- calculate advertised write latency s_adv_wd_lat, -- postamble clock cycle calibration s_poa_cal, -- tracking - setup and periodic update s_track ); -- dgrb slave state machine for addr/cmd signals type t_ac_state is ( -- idle state s_ac_idle, -- wait X cycles (issuing NOP command) to flush address/command and DQ buses s_ac_relax, -- read MTP pattern s_ac_read_mtp, -- read pattern for read data valid alignment s_ac_read_rdv, -- read pattern for POA calibration s_ac_read_poa_mtp, -- read pattern to calculate advertised write latency s_ac_read_wd_lat ); -- dgrb slave state machine for read resync phase calibration type t_resync_state is ( -- idle state s_rsc_idle, -- shift resync phase by one s_rsc_next_phase, -- start test sequence for current pin and current phase s_rsc_test_phase, -- flush the read datapath s_rsc_wait_for_idle_dimm, -- wait until no longer driving s_rsc_flush_datapath, -- flush a/c path -- sample DQ data to test phase s_rsc_test_dq, -- reset rsc phase to a zero position s_rsc_reset_cdvw, s_rsc_rewind_phase, -- calculate the centre of resync window s_rsc_cdvw_calc, s_rsc_cdvw_wait, -- wait for calc result -- set rsc clock phase to centre of data valid window s_rsc_seek_cdvw, -- wait until all results written to iram s_rsc_wait_iram -- only entered if GENERATE_ADDITIONAL_DBG_RTL = 1 ); -- record definitions for window processing type t_win_processing_status is ( calculating, valid_result, no_invalid_phases, multiple_equal_windows, no_valid_phases ); type t_window_processing is record working_window : std_logic_vector( c_max_phase_shifts - 1 downto 0); first_good_edge : natural range 0 to c_max_phase_shifts - 1; -- pointer to first detected good edge current_window_start : natural range 0 to c_max_phase_shifts - 1; current_window_size : natural range 0 to c_max_phase_shifts - 1; current_window_centre : natural range 0 to c_max_phase_shifts - 1; largest_window_start : natural range 0 to c_max_phase_shifts - 1; largest_window_size : natural range 0 to c_max_phase_shifts - 1; largest_window_centre : natural range 0 to c_max_phase_shifts - 1; current_bit : natural range 0 to c_max_phase_shifts - 1; window_centre_update : std_logic; last_bit_value : std_logic; valid_phase_seen : boolean; invalid_phase_seen : boolean; first_cycle : boolean; multiple_eq_windows : boolean; found_a_good_edge : boolean; status : t_win_processing_status; windows_seen : natural range 0 to c_max_phase_shifts/2 - 1; end record; -- ------------------------------------------------------------------ -- function and procedure definitions -- ------------------------------------------------------------------ -- Returns a string representation of a std_logic_vector. -- Not synthesizable. function str(v: std_logic_vector) return string is variable str_value : string (1 to v'length); variable str_len : integer; variable c : character; begin str_len := 1; for i in v'range loop case v(i) is when '0' => c := '0'; when '1' => c := '1'; when others => c := '?'; end case; str_value(str_len) := c; str_len := str_len + 1; end loop; return str_value; end str; -- functions and procedures for window processing function defaults return t_window_processing is variable output : t_window_processing; begin output.working_window := (others => '1'); output.last_bit_value := '1'; output.first_good_edge := 0; output.current_window_start := 0; output.current_window_size := 0; output.current_window_centre := 0; output.largest_window_start := 0; output.largest_window_size := 0; output.largest_window_centre := 0; output.window_centre_update := '1'; output.current_bit := 0; output.multiple_eq_windows := false; output.valid_phase_seen := false; output.invalid_phase_seen := false; output.found_a_good_edge := false; output.status := no_valid_phases; output.first_cycle := false; output.windows_seen := 0; return output; end function defaults; procedure initialise_window_for_proc ( working : inout t_window_processing ) is variable v_working_window : std_logic_vector( c_max_phase_shifts - 1 downto 0); begin v_working_window := working.working_window; working := defaults; working.working_window := v_working_window; working.status := calculating; working.first_cycle := true; working.window_centre_update := '1'; working.windows_seen := 0; end procedure initialise_window_for_proc; procedure shift_window (working : inout t_window_processing; num_phases : in natural range 1 to c_max_phase_shifts ) is begin if working.working_window(0) = '0' then working.invalid_phase_seen := true; else working.valid_phase_seen := true; end if; -- general bit serial shifting of window and incrementing of current bit counter. if working.current_bit < num_phases - 1 then working.current_bit := working.current_bit + 1; else working.current_bit := 0; end if; working.last_bit_value := working.working_window(0); working.working_window := working.working_window(0) & working.working_window(working.working_window'high downto 1); --synopsis translate_off -- for simulation to make it simpler to see IF we are not using all the bits in the window working.working_window(working.working_window'high) := 'H'; -- for visual debug --synopsis translate_on working.working_window(num_phases -1) := working.last_bit_value; working.first_cycle := false; end procedure shift_window; procedure find_centre_of_largest_data_valid_window ( working : inout t_window_processing; num_phases : in natural range 1 to c_max_phase_shifts ) is begin if working.first_cycle = false then -- not first call to procedure, then handle end conditions if working.current_bit = 0 and working.found_a_good_edge = false then -- have been all way arround window (circular) if working.valid_phase_seen = false then working.status := no_valid_phases; elsif working.invalid_phase_seen = false then working.status := no_invalid_phases; end if; elsif working.current_bit = working.first_good_edge then -- if have found a good edge then complete a circular sweep to that edge if working.multiple_eq_windows = true then working.status := multiple_equal_windows; else working.status := valid_result; end if; end if; end if; -- start of a window condition if working.last_bit_value = '0' and working.working_window(0) = '1' then working.current_window_start := working.current_bit; working.current_window_size := working.current_window_size + 1; -- equivalent to assigning to one because if not in a window then it is set to 0 working.window_centre_update := not working.window_centre_update; working.current_window_centre := working.current_bit; if working.found_a_good_edge /= true then -- if have not yet found a good edge then store this value working.first_good_edge := working.current_bit; working.found_a_good_edge := true; end if; -- end of window conditions elsif working.last_bit_value = '1' and working.working_window(0) = '0' then if working.current_window_size > working.largest_window_size then working.largest_window_size := working.current_window_size; working.largest_window_start := working.current_window_start; working.largest_window_centre := working.current_window_centre; working.multiple_eq_windows := false; elsif working.current_window_size = working.largest_window_size then working.multiple_eq_windows := true; end if; -- put counter in here because start of window 1 is observed twice if working.found_a_good_edge = true then working.windows_seen := working.windows_seen + 1; end if; working.current_window_size := 0; elsif working.last_bit_value = '1' and working.working_window(0) = '1' and (working.found_a_good_edge = true) then --note operand in brackets is excessive but for may provide power savings and makes visual inspection of simulatuion easier if working.window_centre_update = '1' then if working.current_window_centre < num_phases -1 then working.current_window_centre := working.current_window_centre + 1; else working.current_window_centre := 0; end if; end if; working.window_centre_update := not working.window_centre_update; working.current_window_size := working.current_window_size + 1; end if; shift_window(working,num_phases); end procedure find_centre_of_largest_data_valid_window; procedure find_last_failing_phase ( working : inout t_window_processing; num_phases : in natural range 1 to c_max_phase_shifts + 1 ) is begin if working.first_cycle = false then -- not first call to procedure if working.current_bit = 0 then -- and working.found_a_good_edge = false then if working.valid_phase_seen = false then working.status := no_valid_phases; elsif working.invalid_phase_seen = false then working.status := no_invalid_phases; else working.status := valid_result; end if; end if; end if; if working.working_window(1) = '1' and working.working_window(0) = '0' and working.status = calculating then working.current_window_start := working.current_bit; end if; shift_window(working, num_phases); -- shifts window and sets first_cycle = false end procedure find_last_failing_phase; procedure find_first_passing_phase ( working : inout t_window_processing; num_phases : in natural range 1 to c_max_phase_shifts ) is begin if working.first_cycle = false then -- not first call to procedure if working.current_bit = 0 then -- and working.found_a_good_edge = false then if working.valid_phase_seen = false then working.status := no_valid_phases; elsif working.invalid_phase_seen = false then working.status := no_invalid_phases; else working.status := valid_result; end if; end if; end if; if working.working_window(0) = '1' and working.last_bit_value = '0' and working.status = calculating then working.current_window_start := working.current_bit; end if; shift_window(working, num_phases); -- shifts window and sets first_cycle = false end procedure find_first_passing_phase; -- shift in current pass/fail result to the working window procedure shift_in( working : inout t_window_processing; status : in std_logic; num_phases : in natural range 1 to c_max_phase_shifts ) is begin working.last_bit_value := working.working_window(0); working.working_window(num_phases-1 downto 0) := (working.working_window(0) and status) & working.working_window(num_phases-1 downto 1); end procedure; -- The following function sets the width over which -- write latency should be repeated on the dq bus -- the default value is MEM_IF_DQ_PER_DQS function set_wlat_dq_rep_width return natural is begin for i in 1 to MEM_IF_DWIDTH/MEM_IF_DQ_PER_DQS loop if (i*MEM_IF_DQ_PER_DQS) >= ADV_LAT_WIDTH then return i*MEM_IF_DQ_PER_DQS; end if; end loop; report dgrb_report_prefix & "the specified maximum write latency cannot be fully represented in the given number of DQ pins" & LF & "** NOTE: This may cause overflow when setting ctl_wlat signal" severity warning; return MEM_IF_DQ_PER_DQS; end function; -- extract PHY 'addr/cmd' to 'wdata_valid' write latency from current read data function wd_lat_from_rdata(signal rdata : in std_logic_vector(DWIDTH_RATIO * MEM_IF_DWIDTH - 1 downto 0)) return std_logic_vector is variable v_wd_lat : std_logic_vector(ADV_LAT_WIDTH - 1 downto 0); begin v_wd_lat := (others => '0'); if set_wlat_dq_rep_width >= ADV_LAT_WIDTH then v_wd_lat := rdata(v_wd_lat'high downto 0); else v_wd_lat := (others => '0'); v_wd_lat(set_wlat_dq_rep_width - 1 downto 0) := rdata(set_wlat_dq_rep_width - 1 downto 0); end if; return v_wd_lat; end function; -- check if rdata_valid is correctly aligned function rdata_valid_aligned( signal rdata : in std_logic_vector(DWIDTH_RATIO * MEM_IF_DWIDTH - 1 downto 0); signal rdata_valid : in std_logic_vector(DWIDTH_RATIO/2 - 1 downto 0) ) return std_logic is variable v_dq_rdata : std_logic_vector(DWIDTH_RATIO - 1 downto 0); variable v_aligned : std_logic; begin -- Look at data from a single DQ pin 0 (DWIDTH_RATIO data bits) for i in 0 to DWIDTH_RATIO - 1 loop v_dq_rdata(i) := rdata(i*MEM_IF_DWIDTH); end loop; -- Check each alignment (necessary because in the HR case rdata can be in any alignment) v_aligned := '0'; for i in 0 to DWIDTH_RATIO/2 - 1 loop if rdata_valid(i) = '1' then if v_dq_rdata(2*i + 1 downto 2*i) = "00" then v_aligned := '1'; end if; end if; end loop; return v_aligned; end function; -- set severity level for calibration failures function set_cal_fail_sev_level ( generate_additional_debug_rtl : natural ) return severity_level is begin if generate_additional_debug_rtl = 1 then return warning; else return failure; end if; end function; constant cal_fail_sev_level : severity_level := set_cal_fail_sev_level(GENERATE_ADDITIONAL_DBG_RTL); -- ------------------------------------------------------------------ -- signal declarations -- rsc = resync - the mechanism of capturing DQ pin data onto a local clock domain -- trk = tracking - a mechanism to track rsc clock phase with PVT variations -- poa = postamble - protection circuitry from postamble glitched on DQS -- ac = memory address / command signals -- ------------------------------------------------------------------ -- main state machine signal sig_dgrb_state : t_dgrb_state; signal sig_dgrb_last_state : t_dgrb_state; signal sig_rsc_req : t_resync_state; -- tells resync block which state to transition to. -- centre of data-valid window process signal sig_cdvw_state : t_window_processing; -- control signals for the address/command process signal sig_addr_cmd : t_addr_cmd_vector(0 to (DWIDTH_RATIO/2)-1); signal sig_ac_req : t_ac_state; signal sig_dimm_driving_dq : std_logic; signal sig_doing_rd : std_logic_vector(MEM_IF_DQS_WIDTH * DWIDTH_RATIO/2 - 1 downto 0); signal sig_ac_even : std_logic; -- odd/even count of PHY clock cycles. -- -- sig_ac_even behaviour -- -- sig_ac_even is always '1' on the cycle a command is issued. It will -- be '1' on even clock cycles thereafter and '0' otherwise. -- -- ; ; ; ; ; ; -- ; _______ ; ; ; ; ; -- XXXXX / \ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX -- addr/cmd XXXXXX CMD XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX -- XXXXX \_______/ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- _________ _________ _________ -- sig_ac_even ____| |_________| |_________| |__________ -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- phy clk -- count (0) (1) (2) (3) (4) -- -- -- resync related signals signal sig_rsc_ack : std_logic; signal sig_rsc_err : std_logic; signal sig_rsc_result : std_logic_vector(c_command_result_len - 1 downto 0 ); signal sig_rsc_cdvw_phase : std_logic; signal sig_rsc_cdvw_shift_in : std_logic; signal sig_rsc_cdvw_calc : std_logic; signal sig_rsc_pll_start_reconfig : std_logic; signal sig_rsc_pll_inc_dec_n : std_logic; signal sig_rsc_ac_access_req : std_logic; -- High when the resync block requires a training pattern to be read. -- tracking related signals signal sig_trk_ack : std_logic; signal sig_trk_err : std_logic; signal sig_trk_result : std_logic_vector(c_command_result_len - 1 downto 0 ); signal sig_trk_cdvw_phase : std_logic; signal sig_trk_cdvw_shift_in : std_logic; signal sig_trk_cdvw_calc : std_logic; signal sig_trk_pll_start_reconfig : std_logic; signal sig_trk_pll_select : std_logic_vector(CLOCK_INDEX_WIDTH - 1 DOWNTO 0); signal sig_trk_pll_inc_dec_n : std_logic; signal sig_trk_rsc_drift : integer range -c_max_rsc_drift_in_phases to c_max_rsc_drift_in_phases; -- stores total change in rsc phase from first calibration -- phs_shft_busy could (potentially) be asynchronous -- triple register it for metastability hardening -- these signals are the taps on the shift register signal sig_phs_shft_busy : std_logic; signal sig_phs_shft_busy_1t : std_logic; signal sig_phs_shft_start : std_logic; signal sig_phs_shft_end : std_logic; -- locally register crl_dgrb to minimise fan out signal ctrl_dgrb_r : t_ctrl_command; -- command_op signals signal current_cs : natural range 0 to MEM_IF_NUM_RANKS - 1; signal current_mtp_almt : natural range 0 to 1; signal single_bit_cal : std_logic; -- codvw status signals (packed into record and sent to mmi block) signal cal_codvw_phase : std_logic_vector(7 downto 0); signal codvw_trk_shift : std_logic_vector(11 downto 0); signal cal_codvw_size : std_logic_vector(7 downto 0); -- error signal and result from main state machine (operations other than rsc or tracking) signal sig_cmd_err : std_logic; signal sig_cmd_result : std_logic_vector(c_command_result_len - 1 downto 0 ); -- signals that the training pattern matched correctly on the last clock -- cycle. signal sig_dq_pin_ctr : natural range 0 to MEM_IF_DWIDTH - 1; signal sig_mtp_match : std_logic; -- controls postamble match and timing. signal sig_poa_match_en : std_logic; signal sig_poa_match : std_logic; -- postamble signals signal sig_poa_ack : std_logic; -- '1' for postamble block to acknowledge. -- calibration byte lane select signal cal_byte_lanes : std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); signal codvw_grt_one_dvw : std_logic; begin doing_rd <= sig_doing_rd; -- pack record of codvw status signals dgrb_mmi.cal_codvw_phase <= cal_codvw_phase; dgrb_mmi.codvw_trk_shift <= codvw_trk_shift; dgrb_mmi.cal_codvw_size <= cal_codvw_size; dgrb_mmi.codvw_grt_one_dvw <= codvw_grt_one_dvw; -- map some internal signals to outputs dgrb_ac <= sig_addr_cmd; -- locally register crl_dgrb to minimise fan out process (clk, rst_n) begin if rst_n = '0' then ctrl_dgrb_r <= defaults; elsif rising_edge(clk) then ctrl_dgrb_r <= ctrl_dgrb; end if; end process; -- generate the current_cs signal to track which cs accessed by PHY at any instance current_cs_proc : process (clk, rst_n) begin if rst_n = '0' then current_cs <= 0; current_mtp_almt <= 0; single_bit_cal <= '0'; cal_byte_lanes <= (others => '0'); elsif rising_edge(clk) then if ctrl_dgrb_r.command_req = '1' then current_cs <= ctrl_dgrb_r.command_op.current_cs; current_mtp_almt <= ctrl_dgrb_r.command_op.mtp_almt; single_bit_cal <= ctrl_dgrb_r.command_op.single_bit; end if; -- mux byte lane select for given chip select for i in 0 to MEM_IF_DQS_WIDTH - 1 loop cal_byte_lanes(i) <= ctl_cal_byte_lanes((current_cs * MEM_IF_DQS_WIDTH) + i); end loop; assert ctl_cal_byte_lanes(0) = '1' report dgrb_report_prefix & " Byte lane 0 (chip select 0) disable is not supported - ending simulation" severity failure; end if; end process; -- ------------------------------------------------------------------ -- main state machine for dgrb architecture -- -- process of commands from control (ctrl) block and overall control of -- the subsequent calibration processing functions -- also communicates completion and any errors back to the ctrl block -- read data valid alignment and advertised latency calculations are -- included in this block -- ------------------------------------------------------------------ dgrb_main_block : block signal sig_count : natural range 0 to 2**8 - 1; signal sig_wd_lat : std_logic_vector(ADV_LAT_WIDTH - 1 downto 0); begin dgrb_state_proc : process(rst_n, clk) begin if rst_n = '0' then -- initialise state sig_dgrb_state <= s_idle; sig_dgrb_last_state <= s_idle; sig_ac_req <= s_ac_idle; sig_rsc_req <= s_rsc_idle; -- set up rd_lat defaults rd_lat <= c_default_rd_lat_slv; wd_lat <= c_default_wd_lat_slv; -- set up rdata_valid latency control defaults seq_rdata_valid_lat_inc <= '0'; seq_rdata_valid_lat_dec <= '0'; -- reset counter sig_count <= 0; -- error signals sig_cmd_err <= '0'; sig_cmd_result <= (others => '0'); -- sig_wd_lat sig_wd_lat <= (others => '0'); -- status of the ac_nt alignment dgrb_ctrl_ac_nt_good <= '1'; elsif rising_edge(clk) then sig_dgrb_last_state <= sig_dgrb_state; sig_rsc_req <= s_rsc_idle; -- set up rdata_valid latency control defaults seq_rdata_valid_lat_inc <= '0'; seq_rdata_valid_lat_dec <= '0'; -- error signals sig_cmd_err <= '0'; sig_cmd_result <= (others => '0'); -- register wd_lat output. wd_lat <= sig_wd_lat; case sig_dgrb_state is when s_idle => sig_count <= 0; if ctrl_dgrb_r.command_req = '1' then if curr_active_block(ctrl_dgrb_r.command) = dgrb then sig_dgrb_state <= s_wait_admin; end if; end if; sig_ac_req <= s_ac_idle; when s_wait_admin => sig_dgrb_state <= s_wait_admin; case ctrl_dgrb_r.command is when cmd_read_mtp => sig_dgrb_state <= s_read_mtp; when cmd_rrp_reset => sig_dgrb_state <= s_reset_cdvw; when cmd_rrp_sweep => sig_dgrb_state <= s_test_phases; when cmd_rrp_seek => sig_dgrb_state <= s_seek_cdvw; when cmd_rdv => sig_dgrb_state <= s_rdata_valid_align; when cmd_prep_adv_rd_lat => sig_dgrb_state <= s_adv_rd_lat_setup; when cmd_prep_adv_wr_lat => sig_dgrb_state <= s_adv_wd_lat; when cmd_tr_due => sig_dgrb_state <= s_track; when cmd_poa => sig_dgrb_state <= s_poa_cal; when others => report dgrb_report_prefix & "unknown command" severity failure; sig_dgrb_state <= s_idle; end case; when s_reset_cdvw => -- the cdvw proc watches for this state and resets the cdvw -- state block. if sig_rsc_ack = '1' then sig_dgrb_state <= s_release_admin; else sig_rsc_req <= s_rsc_reset_cdvw; end if; when s_test_phases => if sig_rsc_ack = '1' then sig_dgrb_state <= s_release_admin; else sig_rsc_req <= s_rsc_test_phase; if sig_rsc_ac_access_req = '1' then sig_ac_req <= s_ac_read_mtp; else sig_ac_req <= s_ac_idle; end if; end if; when s_seek_cdvw | s_read_mtp => if sig_rsc_ack = '1' then sig_dgrb_state <= s_release_admin; else sig_rsc_req <= s_rsc_cdvw_calc; end if; when s_release_admin => sig_ac_req <= s_ac_idle; if dgrb_ac_access_gnt = '0' and sig_dimm_driving_dq = '0' then sig_dgrb_state <= s_idle; end if; when s_rdata_valid_align => sig_ac_req <= s_ac_read_rdv; seq_rdata_valid_lat_dec <= '0'; seq_rdata_valid_lat_inc <= '0'; if sig_dimm_driving_dq = '1' then -- only do comparison if rdata_valid is all 'ones' if rdata_valid /= std_logic_vector(to_unsigned(0, DWIDTH_RATIO/2)) then -- rdata_valid is all ones if rdata_valid_aligned(rdata, rdata_valid) = '1' then -- success: rdata_valid and rdata are properly aligned sig_dgrb_state <= s_release_admin; else -- misaligned: bring in rdata_valid by a clock cycle seq_rdata_valid_lat_dec <= '1'; end if; end if; end if; when s_adv_rd_lat_setup => -- wait for sig_doing_rd to go high sig_ac_req <= s_ac_read_rdv; if sig_dgrb_state /= sig_dgrb_last_state then rd_lat <= (others => '0'); sig_count <= 0; elsif sig_dimm_driving_dq = '1' and sig_doing_rd(MEM_IF_DQS_WIDTH*(DWIDTH_RATIO/2-1)) = '1' then -- a read has started: start counter sig_dgrb_state <= s_adv_rd_lat; end if; when s_adv_rd_lat => sig_ac_req <= s_ac_read_rdv; if sig_dimm_driving_dq = '1' then if sig_count >= 2**rd_lat'length then report dgrb_report_prefix & "maximum read latency exceeded while waiting for rdata_valid" severity cal_fail_sev_level; sig_cmd_err <= '1'; sig_cmd_result <= std_logic_vector(to_unsigned(C_ERR_MAX_RD_LAT_EXCEEDED,sig_cmd_result'length)); end if; if rdata_valid /= std_logic_vector(to_unsigned(0, rdata_valid'length)) then -- have found the read latency sig_dgrb_state <= s_release_admin; else sig_count <= sig_count + 1; end if; rd_lat <= std_logic_vector(to_unsigned(sig_count, rd_lat'length)); end if; when s_adv_wd_lat => sig_ac_req <= s_ac_read_wd_lat; if sig_dgrb_state /= sig_dgrb_last_state then sig_wd_lat <= (others => '0'); else if sig_dimm_driving_dq = '1' and rdata_valid /= std_logic_vector(to_unsigned(0, rdata_valid'length)) then -- construct wd_lat using data from the lowest addresses -- wd_lat <= rdata(MEM_IF_DQ_PER_DQS - 1 downto 0); sig_wd_lat <= wd_lat_from_rdata(rdata); sig_dgrb_state <= s_release_admin; -- check data integrity for i in 1 to MEM_IF_DWIDTH/set_wlat_dq_rep_width - 1 loop -- wd_lat is copied across MEM_IF_DWIDTH bits in fields of width MEM_IF_DQ_PER_DQS. -- All of these fields must have the same value or it is an error. -- only check if byte lane not disabled if cal_byte_lanes((i*set_wlat_dq_rep_width)/MEM_IF_DQ_PER_DQS) = '1' then if rdata(set_wlat_dq_rep_width - 1 downto 0) /= rdata((i+1)*set_wlat_dq_rep_width - 1 downto i*set_wlat_dq_rep_width) then -- signal write latency different between DQS groups report dgrb_report_prefix & "the write latency read from memory is different accross dqs groups" severity cal_fail_sev_level; sig_cmd_err <= '1'; sig_cmd_result <= std_logic_vector(to_unsigned(C_ERR_WD_LAT_DISAGREEMENT, sig_cmd_result'length)); end if; end if; end loop; -- check if ac_nt alignment is ok -- in this condition all DWIDTH_RATIO copies of rdata should be identical dgrb_ctrl_ac_nt_good <= '1'; if DWIDTH_RATIO /= 2 then for j in 0 to DWIDTH_RATIO/2 - 1 loop if rdata(j*MEM_IF_DWIDTH + MEM_IF_DQ_PER_DQS - 1 downto j*MEM_IF_DWIDTH) /= rdata((j+2)*MEM_IF_DWIDTH + MEM_IF_DQ_PER_DQS - 1 downto (j+2)*MEM_IF_DWIDTH) then dgrb_ctrl_ac_nt_good <= '0'; end if; end loop; end if; end if; end if; when s_poa_cal => -- Request the address/command block begins reading the "M" -- training pattern here. There is no provision for doing -- refreshes so this limits the time spent in this state -- to 9 x tREFI (by the DDR2 JEDEC spec). Instead of the -- maximum value, a maximum "safe" time in this postamble -- state is chosen to be tpoamax = 5 x tREFI = 5 x 3.9us. -- When entering this s_poa_cal state it must be guaranteed -- that the number of stacked refreshes is at maximum. -- -- Minimum clock freq supported by DRAM is fck,min=125MHz. -- Each adjustment to postamble latency requires 16*clock -- cycles (time to read "M" training pattern twice) so -- maximum number of adjustments to POA latency (n) is: -- -- n = (5 x trefi x fck,min) / 16 -- = (5 x 3.9us x 125MHz) / 16 -- ~ 152 -- -- Postamble latency must be adjusted less than 152 cycles -- to meet this requirement. -- sig_ac_req <= s_ac_read_poa_mtp; if sig_poa_ack = '1' then sig_dgrb_state <= s_release_admin; end if; when s_track => if sig_trk_ack = '1' then sig_dgrb_state <= s_release_admin; end if; when others => null; report dgrb_report_prefix & "undefined state" severity failure; sig_dgrb_state <= s_idle; end case; -- default if not calibrating go to idle state via s_release_admin if ctrl_dgrb_r.command = cmd_idle and sig_dgrb_state /= s_idle and sig_dgrb_state /= s_release_admin then sig_dgrb_state <= s_release_admin; end if; end if; end process; end block; -- ------------------------------------------------------------------ -- metastability hardening of potentially async phs_shift_busy signal -- -- Triple register it for metastability hardening. This process -- creates the shift register. Also add a sig_phs_shft_busy and -- an sig_phs_shft_busy_1t echo because various other processes find -- this useful. -- ------------------------------------------------------------------ phs_shft_busy_reg: block signal phs_shft_busy_1r : std_logic; signal phs_shft_busy_2r : std_logic; signal phs_shft_busy_3r : std_logic; begin phs_shift_busy_sync : process (clk, rst_n) begin if rst_n = '0' then sig_phs_shft_busy <= '0'; sig_phs_shft_busy_1t <= '0'; phs_shft_busy_1r <= '0'; phs_shft_busy_2r <= '0'; phs_shft_busy_3r <= '0'; sig_phs_shft_start <= '0'; sig_phs_shft_end <= '0'; elsif rising_edge(clk) then sig_phs_shft_busy_1t <= phs_shft_busy_3r; sig_phs_shft_busy <= phs_shft_busy_2r; -- register the below to reduce fan out on sig_phs_shft_busy and sig_phs_shft_busy_1t sig_phs_shft_start <= phs_shft_busy_3r or phs_shft_busy_2r; sig_phs_shft_end <= phs_shft_busy_3r and not(phs_shft_busy_2r); phs_shft_busy_3r <= phs_shft_busy_2r; phs_shft_busy_2r <= phs_shft_busy_1r; phs_shft_busy_1r <= phs_shft_busy; end if; end process; end block; -- ------------------------------------------------------------------ -- PLL reconfig MUX -- -- switches PLL Reconfig input between tracking and resync blocks -- ------------------------------------------------------------------ pll_reconf_mux : process (clk, rst_n) begin if rst_n = '0' then seq_pll_inc_dec_n <= '0'; seq_pll_select <= (others => '0'); seq_pll_start_reconfig <= '0'; elsif rising_edge(clk) then if sig_dgrb_state = s_seek_cdvw or sig_dgrb_state = s_test_phases or sig_dgrb_state = s_reset_cdvw then seq_pll_select <= pll_resync_clk_index; seq_pll_inc_dec_n <= sig_rsc_pll_inc_dec_n; seq_pll_start_reconfig <= sig_rsc_pll_start_reconfig; elsif sig_dgrb_state = s_track then seq_pll_select <= sig_trk_pll_select; seq_pll_inc_dec_n <= sig_trk_pll_inc_dec_n; seq_pll_start_reconfig <= sig_trk_pll_start_reconfig; else seq_pll_select <= pll_measure_clk_index; seq_pll_inc_dec_n <= '0'; seq_pll_start_reconfig <= '0'; end if; end if; end process; -- ------------------------------------------------------------------ -- Centre of data valid window calculation block -- -- This block handles the sharing of the centre of window calculation -- logic between the rsc and trk operations. Functions defined in the -- header of this entity are called to do this. -- ------------------------------------------------------------------ cdvw_block : block signal sig_cdvw_calc_1t : std_logic; begin -- purpose: manages centre of data valid window calculations -- type : sequential -- inputs : clk, rst_n -- outputs: sig_cdvw_state cdvw_proc: process (clk, rst_n) variable v_cdvw_state : t_window_processing; variable v_start_calc : std_logic; variable v_shift_in : std_logic; variable v_phase : std_logic; begin -- process cdvw_proc if rst_n = '0' then -- asynchronous reset (active low) sig_cdvw_state <= defaults; sig_cdvw_calc_1t <= '0'; elsif rising_edge(clk) then -- rising clock edge v_cdvw_state := sig_cdvw_state; case sig_dgrb_state is when s_track => v_start_calc := sig_trk_cdvw_calc; v_phase := sig_trk_cdvw_phase; v_shift_in := sig_trk_cdvw_shift_in; when s_read_mtp | s_seek_cdvw | s_test_phases => v_start_calc := sig_rsc_cdvw_calc; v_phase := sig_rsc_cdvw_phase; v_shift_in := sig_rsc_cdvw_shift_in; when others => v_start_calc := '0'; v_phase := '0'; v_shift_in := '0'; end case; if sig_dgrb_state = s_reset_cdvw or (sig_dgrb_state = s_track and sig_dgrb_last_state /= s_track) then -- reset *C*entre of *D*ata *V*alid *W*indow v_cdvw_state := defaults; elsif sig_cdvw_calc_1t /= '1' and v_start_calc = '1' then initialise_window_for_proc(v_cdvw_state); elsif v_cdvw_state.status = calculating then if sig_dgrb_state = s_track then -- ensure 360 degrees sweep find_centre_of_largest_data_valid_window(v_cdvw_state, PLL_STEPS_PER_CYCLE); else -- can be a 720 degrees sweep find_centre_of_largest_data_valid_window(v_cdvw_state, c_max_phase_shifts); end if; elsif v_shift_in = '1' then if sig_dgrb_state = s_track then -- ensure 360 degrees sweep shift_in(v_cdvw_state, v_phase, PLL_STEPS_PER_CYCLE); else shift_in(v_cdvw_state, v_phase, c_max_phase_shifts); end if; end if; sig_cdvw_calc_1t <= v_start_calc; sig_cdvw_state <= v_cdvw_state; end if; end process cdvw_proc; end block; -- ------------------------------------------------------------------ -- block for resync calculation. -- -- This block implements the following: -- 1) Control logic for the rsc slave state machine -- 2) Processing of resync operations - through reports form cdvw block and -- test pattern match blocks -- 3) Shifting of the resync phase for rsc sweeps -- 4) Writing of results to iram (optional) -- ------------------------------------------------------------------ rsc_block : block signal sig_rsc_state : t_resync_state; signal sig_rsc_last_state : t_resync_state; signal sig_num_phase_shifts : natural range c_max_phase_shifts - 1 downto 0; signal sig_rewind_direction : std_logic; signal sig_count : natural range 0 to 2**8 - 1; signal sig_test_dq_expired : std_logic; signal sig_chkd_all_dq_pins : std_logic; -- prompts to write data to iram signal sig_dgrb_iram : t_iram_push; -- internal copy of dgrb to iram control signals signal sig_rsc_push_rrp_sweep : std_logic; -- push result of a rrp sweep pass (for cmd_rrp_sweep) signal sig_rsc_push_rrp_pass : std_logic; -- result of a rrp sweep result (for cmd_rrp_sweep) signal sig_rsc_push_rrp_seek : std_logic; -- write seek results (for cmd_rrp_seek / cmd_read_mtp states) signal sig_rsc_push_footer : std_logic; -- write a footer signal sig_dq_pin_ctr_r : natural range 0 to MEM_IF_DWIDTH - 1; -- registered version of dq_pin_ctr signal sig_rsc_curr_phase : natural range 0 to c_max_phase_shifts - 1; -- which phase is being processed signal sig_iram_idle : std_logic; -- track if iram currently writing data signal sig_mtp_match_en : std_logic; -- current byte lane disabled? signal sig_curr_byte_ln_dis : std_logic; signal sig_iram_wds_req : integer; -- words required for a given iram dump (used to locate where to write footer) begin -- When using DQS capture or not at full-rate only match on "even" clock cycles. sig_mtp_match_en <= active_high(sig_ac_even = '1' or MEM_IF_DQS_CAPTURE = 0 or DWIDTH_RATIO /= 2); -- register current byte lane disable mux for speed byte_lane_dis: process (clk, rst_n) begin if rst_n = '0' then sig_curr_byte_ln_dis <= '0'; elsif rising_edge(clk) then sig_curr_byte_ln_dis <= cal_byte_lanes(sig_dq_pin_ctr/MEM_IF_DQ_PER_DQS); end if; end process; -- check if all dq pins checked in rsc sweep chkd_dq : process (clk, rst_n) begin if rst_n = '0' then sig_chkd_all_dq_pins <= '0'; elsif rising_edge(clk) then if sig_dq_pin_ctr = 0 then sig_chkd_all_dq_pins <= '1'; else sig_chkd_all_dq_pins <= '0'; end if; end if; end process; -- main rsc process rsc_proc : process (clk, rst_n) -- these are temporary variables which should not infer FFs and -- are not guaranteed to be initialized by s_rsc_idle. variable v_rdata_correct : std_logic; variable v_phase_works : std_logic; begin if rst_n = '0' then -- initialise signals sig_rsc_state <= s_rsc_idle; sig_rsc_last_state <= s_rsc_idle; sig_dq_pin_ctr <= 0; sig_num_phase_shifts <= c_max_phase_shifts - 1; -- want c_max_phase_shifts-1 inc / decs of phase sig_count <= 0; sig_test_dq_expired <= '0'; v_phase_works := '0'; -- interface to other processes to tell them when we are done. sig_rsc_ack <= '0'; sig_rsc_err <= '0'; sig_rsc_result <= std_logic_vector(to_unsigned(C_SUCCESS, c_command_result_len)); -- centre of data valid window functions sig_rsc_cdvw_phase <= '0'; sig_rsc_cdvw_shift_in <= '0'; sig_rsc_cdvw_calc <= '0'; -- set up PLL reconfig interface controls sig_rsc_pll_start_reconfig <= '0'; sig_rsc_pll_inc_dec_n <= c_pll_phs_inc; sig_rewind_direction <= c_pll_phs_dec; -- True when access to the ac_block is required. sig_rsc_ac_access_req <= '0'; -- default values on centre and size of data valid window if SIM_TIME_REDUCTIONS = 1 then cal_codvw_phase <= std_logic_vector(to_unsigned(PRESET_CODVW_PHASE, 8)); cal_codvw_size <= std_logic_vector(to_unsigned(PRESET_CODVW_SIZE, 8)); else cal_codvw_phase <= (others => '0'); cal_codvw_size <= (others => '0'); end if; sig_rsc_push_rrp_sweep <= '0'; sig_rsc_push_rrp_seek <= '0'; sig_rsc_push_rrp_pass <= '0'; sig_rsc_push_footer <= '0'; codvw_grt_one_dvw <= '0'; elsif rising_edge(clk) then -- default values assigned to some signals sig_rsc_ack <= '0'; sig_rsc_cdvw_phase <= '0'; sig_rsc_cdvw_shift_in <= '0'; sig_rsc_cdvw_calc <= '0'; sig_rsc_pll_start_reconfig <= '0'; sig_rsc_pll_inc_dec_n <= c_pll_phs_inc; sig_rewind_direction <= c_pll_phs_dec; -- by default don't ask the resync block to read anything sig_rsc_ac_access_req <= '0'; sig_rsc_push_rrp_sweep <= '0'; sig_rsc_push_rrp_seek <= '0'; sig_rsc_push_rrp_pass <= '0'; sig_rsc_push_footer <= '0'; sig_test_dq_expired <= '0'; -- resync state machine case sig_rsc_state is when s_rsc_idle => -- initialize those signals we are ready to use. sig_dq_pin_ctr <= 0; sig_count <= 0; if sig_rsc_state = sig_rsc_last_state then -- avoid transition when acknowledging a command has finished if sig_rsc_req = s_rsc_test_phase then sig_rsc_state <= s_rsc_test_phase; elsif sig_rsc_req = s_rsc_cdvw_calc then sig_rsc_state <= s_rsc_cdvw_calc; elsif sig_rsc_req = s_rsc_seek_cdvw then sig_rsc_state <= s_rsc_seek_cdvw; elsif sig_rsc_req = s_rsc_reset_cdvw then sig_rsc_state <= s_rsc_reset_cdvw; else sig_rsc_state <= s_rsc_idle; end if; end if; when s_rsc_next_phase => sig_rsc_pll_inc_dec_n <= c_pll_phs_inc; sig_rsc_pll_start_reconfig <= '1'; if sig_phs_shft_start = '1' then -- PLL phase shift started - so stop requesting a shift sig_rsc_pll_start_reconfig <= '0'; end if; if sig_phs_shft_end = '1' then -- PLL phase shift finished - so proceed to flush the datapath sig_num_phase_shifts <= sig_num_phase_shifts - 1; sig_rsc_state <= s_rsc_test_phase; end if; when s_rsc_test_phase => v_phase_works := '1'; -- Note: For single pin single CS calibration set sig_dq_pin_ctr to 0 to -- ensure that only 1 pin calibrated sig_rsc_state <= s_rsc_wait_for_idle_dimm; if single_bit_cal = '1' then sig_dq_pin_ctr <= 0; else sig_dq_pin_ctr <= MEM_IF_DWIDTH-1; end if; when s_rsc_wait_for_idle_dimm => if sig_dimm_driving_dq = '0' then sig_rsc_state <= s_rsc_flush_datapath; end if; when s_rsc_flush_datapath => sig_rsc_ac_access_req <= '1'; if sig_rsc_state /= sig_rsc_last_state then -- reset variables we are interested in when we first arrive in this state. sig_count <= c_max_read_lat - 1; else if sig_dimm_driving_dq = '1' then if sig_count = 0 then sig_rsc_state <= s_rsc_test_dq; else sig_count <= sig_count - 1; end if; end if; end if; when s_rsc_test_dq => sig_rsc_ac_access_req <= '1'; if sig_rsc_state /= sig_rsc_last_state then -- reset variables we are interested in when we first arrive in this state. sig_count <= 2*c_cal_mtp_t; else if sig_dimm_driving_dq = '1' then if ( (sig_mtp_match = '1' and sig_mtp_match_en = '1') or -- have a pattern match (sig_test_dq_expired = '1') or -- time in this phase has expired. sig_curr_byte_ln_dis = '0' -- byte lane disabled ) then v_phase_works := v_phase_works and ((sig_mtp_match and sig_mtp_match_en) or (not sig_curr_byte_ln_dis)); sig_rsc_push_rrp_sweep <= '1'; sig_rsc_push_rrp_pass <= (sig_mtp_match and sig_mtp_match_en) or (not sig_curr_byte_ln_dis); if sig_chkd_all_dq_pins = '1' then -- finished checking all dq pins. -- done checking this phase. -- shift phase status into sig_rsc_cdvw_phase <= v_phase_works; sig_rsc_cdvw_shift_in <= '1'; if sig_num_phase_shifts /= 0 then -- there are more phases to test so shift to next phase sig_rsc_state <= s_rsc_next_phase; else -- no more phases to check. -- clean up after ourselves by -- going into s_rsc_rewind_phase sig_rsc_state <= s_rsc_rewind_phase; sig_rewind_direction <= c_pll_phs_dec; sig_num_phase_shifts <= c_max_phase_shifts - 1; end if; else -- shift to next dq pin if MEM_IF_DWIDTH > 71 and -- if >= 72 pins then: (sig_dq_pin_ctr mod 64) = 0 then -- ensure refreshes at least once every 64 pins sig_rsc_state <= s_rsc_wait_for_idle_dimm; else -- otherwise continue sweep sig_rsc_state <= s_rsc_flush_datapath; end if; sig_dq_pin_ctr <= sig_dq_pin_ctr - 1; end if; else sig_count <= sig_count - 1; if sig_count = 1 then sig_test_dq_expired <= '1'; end if; end if; end if; end if; when s_rsc_reset_cdvw => sig_rsc_state <= s_rsc_rewind_phase; -- determine the amount to rewind by (may be wind forward depending on tracking behaviour) if to_integer(unsigned(cal_codvw_phase)) + sig_trk_rsc_drift < 0 then sig_num_phase_shifts <= - (to_integer(unsigned(cal_codvw_phase)) + sig_trk_rsc_drift); sig_rewind_direction <= c_pll_phs_inc; else sig_num_phase_shifts <= (to_integer(unsigned(cal_codvw_phase)) + sig_trk_rsc_drift); sig_rewind_direction <= c_pll_phs_dec; end if; -- reset the calibrated phase and size to zero (because un-doing prior calibration here) cal_codvw_phase <= (others => '0'); cal_codvw_size <= (others => '0'); when s_rsc_rewind_phase => -- rewinds the resync PLL by sig_num_phase_shifts steps and returns to idle state if sig_num_phase_shifts = 0 then -- no more steps to take off, go to next state sig_num_phase_shifts <= c_max_phase_shifts - 1; if GENERATE_ADDITIONAL_DBG_RTL = 1 then -- if iram present hold off until access finished sig_rsc_state <= s_rsc_wait_iram; else sig_rsc_ack <= '1'; sig_rsc_state <= s_rsc_idle; end if; else sig_rsc_pll_inc_dec_n <= sig_rewind_direction; -- request a phase shift sig_rsc_pll_start_reconfig <= '1'; if sig_phs_shft_busy = '1' then -- inhibit a phase shift if phase shift is busy. sig_rsc_pll_start_reconfig <= '0'; end if; if sig_phs_shft_busy_1t = '1' and sig_phs_shft_busy /= '1' then -- we've just successfully removed a phase step -- decrement counter sig_num_phase_shifts <= sig_num_phase_shifts - 1; sig_rsc_pll_start_reconfig <= '0'; end if; end if; when s_rsc_cdvw_calc => if sig_rsc_state /= sig_rsc_last_state then if sig_dgrb_state = s_read_mtp then report dgrb_report_prefix & "gathered resync phase samples (for mtp alignment " & natural'image(current_mtp_almt) & ") is DGRB_PHASE_SAMPLES: " & str(sig_cdvw_state.working_window) severity note; else report dgrb_report_prefix & "gathered resync phase samples DGRB_PHASE_SAMPLES: " & str(sig_cdvw_state.working_window) severity note; end if; sig_rsc_cdvw_calc <= '1'; -- begin calculating result else sig_rsc_state <= s_rsc_cdvw_wait; end if; when s_rsc_cdvw_wait => if sig_cdvw_state.status /= calculating then -- a result has been reached. if sig_dgrb_state = s_read_mtp then -- if doing mtp alignment then skip setting phase if GENERATE_ADDITIONAL_DBG_RTL = 1 then -- if iram present hold off until access finished sig_rsc_state <= s_rsc_wait_iram; else sig_rsc_ack <= '1'; sig_rsc_state <= s_rsc_idle; end if; else if sig_cdvw_state.status = valid_result then -- calculation successfully found a -- data-valid window to seek to. sig_rsc_state <= s_rsc_seek_cdvw; sig_rsc_result <= std_logic_vector(to_unsigned(C_SUCCESS, sig_rsc_result'length)); -- If more than one data valid window was seen, then set the result code : if (sig_cdvw_state.windows_seen > 1) then report dgrb_report_prefix & "Warning : multiple data-valid windows found, largest chosen." severity note; codvw_grt_one_dvw <= '1'; else report dgrb_report_prefix & "data-valid window found successfully." severity note; end if; else -- calculation failed to find a data-valid window. report dgrb_report_prefix & "couldn't find a data-valid window in resync." severity warning; sig_rsc_ack <= '1'; sig_rsc_err <= '1'; sig_rsc_state <= s_rsc_idle; -- set resync result code case sig_cdvw_state.status is when no_invalid_phases => sig_rsc_result <= std_logic_vector(to_unsigned(C_ERR_RESYNC_NO_VALID_PHASES, sig_rsc_result'length)); when multiple_equal_windows => sig_rsc_result <= std_logic_vector(to_unsigned(C_ERR_RESYNC_MULTIPLE_EQUAL_WINDOWS, sig_rsc_result'length)); when no_valid_phases => sig_rsc_result <= std_logic_vector(to_unsigned(C_ERR_RESYNC_NO_VALID_PHASES, sig_rsc_result'length)); when others => sig_rsc_result <= std_logic_vector(to_unsigned(C_ERR_CRITICAL, sig_rsc_result'length)); end case; end if; end if; -- signal to write a rrp_sweep result to iram if GENERATE_ADDITIONAL_DBG_RTL = 1 then sig_rsc_push_rrp_seek <= '1'; end if; end if; when s_rsc_seek_cdvw => if sig_rsc_state /= sig_rsc_last_state then -- reset variables we are interested in when we first arrive in this state sig_count <= sig_cdvw_state.largest_window_centre; else if sig_count = 0 or ((MEM_IF_DQS_CAPTURE = 1 and DWIDTH_RATIO = 2) and sig_count = PLL_STEPS_PER_CYCLE) -- if FR and DQS capture ensure within 0-360 degrees phase then -- ready to transition to next state if GENERATE_ADDITIONAL_DBG_RTL = 1 then -- if iram present hold off until access finished sig_rsc_state <= s_rsc_wait_iram; else sig_rsc_ack <= '1'; sig_rsc_state <= s_rsc_idle; end if; -- return largest window centre and size in the result -- perform cal_codvw phase / size update only if a valid result is found if sig_cdvw_state.status = valid_result then cal_codvw_phase <= std_logic_vector(to_unsigned(sig_cdvw_state.largest_window_centre, 8)); cal_codvw_size <= std_logic_vector(to_unsigned(sig_cdvw_state.largest_window_size, 8)); end if; -- leaving sig_rsc_err or sig_rsc_result at -- their default values (of success) else sig_rsc_pll_inc_dec_n <= c_pll_phs_inc; -- request a phase shift sig_rsc_pll_start_reconfig <= '1'; if sig_phs_shft_start = '1' then -- inhibit a phase shift if phase shift is busy sig_rsc_pll_start_reconfig <= '0'; end if; if sig_phs_shft_end = '1' then -- we've just successfully removed a phase step -- decrement counter sig_count <= sig_count - 1; end if; end if; end if; when s_rsc_wait_iram => -- hold off check 1 clock cycle to enable last rsc push operations to start if sig_rsc_state = sig_rsc_last_state then if sig_iram_idle = '1' then sig_rsc_ack <= '1'; sig_rsc_state <= s_rsc_idle; if sig_dgrb_state = s_test_phases or sig_dgrb_state = s_seek_cdvw or sig_dgrb_state = s_read_mtp then sig_rsc_push_footer <= '1'; end if; end if; end if; when others => null; end case; sig_rsc_last_state <= sig_rsc_state; end if; end process; -- write results to the iram iram_push: process (clk, rst_n) begin if rst_n = '0' then sig_dgrb_iram <= defaults; sig_iram_idle <= '0'; sig_dq_pin_ctr_r <= 0; sig_rsc_curr_phase <= 0; sig_iram_wds_req <= 0; elsif rising_edge(clk) then if GENERATE_ADDITIONAL_DBG_RTL = 1 then if sig_dgrb_iram.iram_write = '1' and sig_dgrb_iram.iram_done = '1' then report dgrb_report_prefix & "iram_done and iram_write signals concurrently set - iram contents may be corrupted" severity failure; end if; if sig_dgrb_iram.iram_write = '0' and sig_dgrb_iram.iram_done = '0' then sig_iram_idle <= '1'; else sig_iram_idle <= '0'; end if; -- registered sig_dq_pin_ctr to align with rrp_sweep result sig_dq_pin_ctr_r <= sig_dq_pin_ctr; -- calculate current phase (registered to align with rrp_sweep result) sig_rsc_curr_phase <= (c_max_phase_shifts - 1) - sig_num_phase_shifts; -- serial push of rrp_sweep results into memory if sig_rsc_push_rrp_sweep = '1' then -- signal an iram write and track a write pending sig_dgrb_iram.iram_write <= '1'; sig_iram_idle <= '0'; -- if not single_bit_cal then pack pin phase results in MEM_IF_DWIDTH word blocks if single_bit_cal = '1' then sig_dgrb_iram.iram_wordnum <= sig_dq_pin_ctr_r + (sig_rsc_curr_phase/32); sig_iram_wds_req <= iram_wd_for_one_pin_rrp( DWIDTH_RATIO, PLL_STEPS_PER_CYCLE, MEM_IF_DWIDTH, MEM_IF_DQS_CAPTURE); -- note total word requirement else sig_dgrb_iram.iram_wordnum <= sig_dq_pin_ctr_r + (sig_rsc_curr_phase/32) * MEM_IF_DWIDTH; sig_iram_wds_req <= iram_wd_for_full_rrp( DWIDTH_RATIO, PLL_STEPS_PER_CYCLE, MEM_IF_DWIDTH, MEM_IF_DQS_CAPTURE); -- note total word requirement end if; -- check if current pin and phase passed: sig_dgrb_iram.iram_pushdata(0) <= sig_rsc_push_rrp_pass; -- bit offset is modulo phase sig_dgrb_iram.iram_bitnum <= sig_rsc_curr_phase mod 32; end if; -- write result of rrp_calc to iram when completed if sig_rsc_push_rrp_seek = '1' then -- a result found sig_dgrb_iram.iram_write <= '1'; sig_iram_idle <= '0'; sig_dgrb_iram.iram_wordnum <= 0; sig_iram_wds_req <= 1; -- note total word requirement if sig_cdvw_state.status = valid_result then -- result is valid sig_dgrb_iram.iram_pushdata <= x"0000" & std_logic_vector(to_unsigned(sig_cdvw_state.largest_window_centre, 8)) & std_logic_vector(to_unsigned(sig_cdvw_state.largest_window_size, 8)); else -- invalid result (error code communicated elsewhere) sig_dgrb_iram.iram_pushdata <= x"FFFF" & -- signals an error condition x"0000"; end if; end if; -- when stage finished write footer if sig_rsc_push_footer = '1' then sig_dgrb_iram.iram_done <= '1'; sig_iram_idle <= '0'; -- set address location of footer sig_dgrb_iram.iram_wordnum <= sig_iram_wds_req; end if; -- if write completed deassert iram_write and done signals if iram_push_done = '1' then sig_dgrb_iram.iram_write <= '0'; sig_dgrb_iram.iram_done <= '0'; end if; else sig_iram_idle <= '0'; sig_dq_pin_ctr_r <= 0; sig_rsc_curr_phase <= 0; sig_dgrb_iram <= defaults; end if; end if; end process; -- concurrently assign sig_dgrb_iram to dgrb_iram dgrb_iram <= sig_dgrb_iram; end block; -- resync calculation -- ------------------------------------------------------------------ -- test pattern match block -- -- This block handles the sharing of logic for test pattern matching -- which is used in resync and postamble calibration / code blocks -- ------------------------------------------------------------------ tp_match_block : block -- -- Ascii Waveforms: -- -- ; ; ; ; ; ; -- ____ ____ ____ ____ ____ ____ -- delayed_dqs |____| |____| |____| |____| |____| |____| |____| -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- ; _______ ; _______ ; _______ ; _______ ; _______ _______ -- XXXXX / \ / \ / \ / \ / \ / \ -- c0,c1 XXXXXX A B X C D X E F X G H X I J X L M X captured data -- XXXXX \_______/ \_______/ \_______/ \_______/ \_______/ \_______/ -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- ____; ____; ____ ____ ____ ____ ____ -- 180-resync_clk |____| |____| |____| |____| |____| |____| | 180deg shift from delayed dqs -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- ; _______ _______ _______ _______ _______ ____ -- XXXXXXXXXX / \ / \ / \ / \ / \ / -- 180-r0,r1 XXXXXXXXXXX A B X C D X E F X G H X I J X L resync data -- XXXXXXXXXX \_______/ \_______/ \_______/ \_______/ \_______/ \____ -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- ____ ____ ____ ____ ____ ____ -- 360-resync_clk ____| |____| |____| |____| |____| |____| |____| -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- ; ; _______ ; _______ ; _______ ; _______ ; _______ -- XXXXXXXXXXXXXXX / \ / \ / \ / \ / \ -- 360-r0,r1 XXXXXXXXXXXXXXXX A B X C D X E F X G H X I J X resync data -- XXXXXXXXXXXXXXX \_______/ \_______/ \_______/ \_______/ \_______/ -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- ____ ____ ____ ____ ____ ____ ____ -- 540-resync_clk |____| |____| |____| |____| |____| |____| | -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- ; ; _______ _______ _______ _______ ____ -- XXXXXXXXXXXXXXXXXXX / \ / \ / \ / \ / -- 540-r0,r1 XXXXXXXXXXXXXXXXXXXX A B X C D X E F X G H X I resync data -- XXXXXXXXXXXXXXXXXXX \_______/ \_______/ \_______/ \_______/ \____ -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- ;____ ____ ____ ____ ____ ____ -- phy_clk |____| |____| |____| |____| |____| |____| |____| -- -- 0 1 2 3 4 5 6 -- -- -- |<- Aligned Data ->| -- phy_clk 180-r0,r1 540-r0,r1 sig_mtp_match_en (generated from sig_ac_even) -- 0 XXXXXXXX XXXXXXXX '1' -- 1 XXXXXXAB XXXXXXXX '0' -- 2 XXXXABCD XXXXXXAB '1' -- 3 XXABCDEF XXXXABCD '0' -- 4 ABCDEFGH XXABCDEF '1' -- 5 CDEFGHAB ABCDEFGH '0' -- -- In DQS-based capture, sweeping resync_clk from 180 degrees to 360 -- does not necessarily result in a failure because the setup/hold -- requirements are so small. The data comparison needs to fail when -- the resync_clk is shifted more than 360 degrees. The -- sig_mtp_match_en signal allows the sequencer to blind itself -- training pattern matches that occur above 360 degrees. -- -- -- -- -- -- Asserts sig_mtp_match. -- -- Data comes in from rdata and is pushed into a two-bit wide shift register. -- It is a critical assumption that the rdata comes back byte aligned. -- -- --sig_mtp_match_valid -- rdata_valid (shift-enable) -- | -- | -- +-----------------------+-----------+------------------+ -- ___ | | | -- dq(0) >---| \ | Shift Register | -- dq(1) >---| \ +------+ +------+ +------------------+ -- dq(2) >---| )--->| D(0) |-+->| D(1) |-+->...-+->| D(c_cal_mtp_len - 1) | -- ... | / +------+ | +------+ | | +------------------+ -- dq(n-1) >---|___/ +-----------++-...-+ -- | || +---+ -- | (==)--------> sig_mtp_match_0t ---->| |-->sig_mtp_match_1t-->sig_mtp_match -- | || +---+ -- | +-----------++...-+ -- sig_dq_pin_ctr >-+ +------+ | +------+ | | +------------------+ -- | P(0) |-+ | P(1) |-+ ...-+->| P(c_cal_mtp_len - 1) | -- +------+ +------+ +------------------+ -- -- -- -- signal sig_rdata_current_pin : std_logic_vector(c_cal_mtp_len - 1 downto 0); -- A fundamental assumption here is that rdata_valid is all -- ones or all zeros - not both. signal sig_rdata_valid_1t : std_logic; -- rdata_valid delayed by 1 clock period. signal sig_rdata_valid_2t : std_logic; -- rdata_valid delayed by 2 clock periods. begin rdata_valid_1t_proc : process (clk, rst_n) begin if rst_n = '0' then sig_rdata_valid_1t <= '0'; sig_rdata_valid_2t <= '0'; elsif rising_edge(clk) then sig_rdata_valid_2t <= sig_rdata_valid_1t; sig_rdata_valid_1t <= rdata_valid(0); end if; end process; -- MUX data into sig_rdata_current_pin shift register. rdata_current_pin_proc: process (clk, rst_n) begin if rst_n = '0' then sig_rdata_current_pin <= (others => '0'); elsif rising_edge(clk) then -- shift old data down the shift register sig_rdata_current_pin(sig_rdata_current_pin'high - DWIDTH_RATIO downto 0) <= sig_rdata_current_pin(sig_rdata_current_pin'high downto DWIDTH_RATIO); -- shift new data into the bottom of the shift register. for i in 0 to DWIDTH_RATIO - 1 loop sig_rdata_current_pin(sig_rdata_current_pin'high - DWIDTH_RATIO + 1 + i) <= rdata(i*MEM_IF_DWIDTH + sig_dq_pin_ctr); end loop; end if; end process; mtp_match_proc : process (clk, rst_n) begin if rst_n = '0' then -- * when at least c_max_read_lat clock cycles have passed sig_mtp_match <= '0'; elsif rising_edge(clk) then sig_mtp_match <= '0'; if sig_rdata_current_pin = c_cal_mtp then sig_mtp_match <= '1'; end if; end if; end process; poa_match_proc : process (clk, rst_n) -- poa_match_Calibration Strategy -- -- Ascii Waveforms: -- -- __ __ __ __ __ __ __ __ __ -- clk __| |__| |__| |__| |__| |__| |__| |__| |__| | -- -- ; ; ; ; -- _________________ -- rdata_valid ________| |___________________________ -- -- ; ; ; ; -- _____ -- poa_match_en ______________________________________| |_______________ -- -- ; ; ; ; -- _____ -- poa_match XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX -- -- -- Notes: -- -poa_match is only valid while poa_match_en is asserted. -- -- -- -- -- -- begin if rst_n = '0' then sig_poa_match_en <= '0'; sig_poa_match <= '0'; elsif rising_edge(clk) then sig_poa_match <= '0'; sig_poa_match_en <= '0'; if sig_rdata_valid_2t = '1' and sig_rdata_valid_1t = '0' then sig_poa_match_en <= '1'; end if; if DWIDTH_RATIO = 2 then if sig_rdata_current_pin(sig_rdata_current_pin'high downto sig_rdata_current_pin'length - 6) = "111100" then sig_poa_match <= '1'; end if; elsif DWIDTH_RATIO = 4 then if sig_rdata_current_pin(sig_rdata_current_pin'high downto sig_rdata_current_pin'length - 8) = "11111100" then sig_poa_match <= '1'; end if; else report dgrb_report_prefix & "unsupported DWIDTH_RATIO" severity failure; end if; end if; end process; end block; -- ------------------------------------------------------------------ -- Postamble calibration -- -- Implements the postamble slave state machine and collates the -- processing data from the test pattern match block. -- ------------------------------------------------------------------ poa_block : block -- Postamble Calibration Strategy -- -- Ascii Waveforms: -- -- c_read_burst_t c_read_burst_t -- ;<------->; ;<------->; -- ; ; ; ; -- __ / / __ -- mem_dq[0] ___________| |_____\ \________| |___ -- -- ; ; ; ; -- ; ; ; ; -- _________ / / _________ -- poa_enable ______| |___\ \_| |___ -- ; ; ; ; -- ; ; ; ; -- __ / / ______ -- rdata[0] ___________| |______\ \_______| -- ; ; ; ; -- ; ; ; ; -- ; ; ; ; -- _ / / _ -- poa_match_en _____________| |___\ \___________| |_ -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- / / _ -- poa_match ___________________\ \___________| |_ -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- _ / / -- seq_poa_lat_dec _______________| |_\ \_______________ -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- / / -- seq_poa_lat_inc ___________________\ \_______________ -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- -- (1) (2) -- -- -- (1) poa_enable signal is late, and the zeros on mem_dq after (1) -- are captured. -- (2) poa_enable signal is aligned. Zeros following (2) are not -- captured rdata remains at '1'. -- -- The DQS capture circuit wth the dqs enable asynchronous set. -- -- -- -- dqs_en_async_preset ----------+ -- | -- v -- +---------+ -- +--|Q SET D|----------- gnd -- | | <O---+ -- | +---------+ | -- | | -- | | -- +--+---. | -- |AND )--------+------- dqs_bus -- delayed_dqs -----+---^ -- -- -- -- _____ _____ _____ _____ -- dqs ____| |_____| |_____| |_____| |_____XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX -- ; ; ; ; ; -- ; ; ; ; -- _____ _____ _____ _____ -- delayed_dqs _______| |_____| |_____| |_____| |_____XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX -- -- ; ; ; ; ; -- ; ______________________________________________________________ -- dqs_en_async_ _____________________________| |_____ -- preset -- ; ; ; ; ; -- ; ; ; ; ; -- _____ _____ _____ -- dqs_bus _______| |_________________| |_____| |_____XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX -- -- ; ; -- (1) (2) -- -- -- Notes: -- (1) The dqs_bus pulse here comes because the last value of Q -- is '1' until the first DQS pulse clocks gnd into the FF, -- brings low the AND gate, and disables dqs_bus. A training -- pattern could potentially match at this point even though -- between (1) and (2) there are no dqs_bus triggers. Data -- is frozen on rdata while awaiting the dqs_bus pulses at -- (2). For this reason, wait until the first match of the -- training pattern, and continue reducing latency until it -- TP no longer matches, then increase latency by one. In -- this case, dqs_en_async_preset will have its latency -- reduced by three until the training pattern is not matched, -- then latency is increased by one. -- -- -- -- -- Postamble calibration state type t_poa_state is ( -- decrease poa enable latency by 1 cycle iteratively until 'correct' position found s_poa_rewind_to_pass, -- poa cal complete s_poa_done ); constant c_poa_lat_cmd_wait : natural := 10; -- Number of clock cycles to wait for lat_inc/lat_dec signal to take effect. constant c_poa_max_lat : natural := 100; -- Maximum number of allowable latency changes. signal sig_poa_adjust_count : integer range 0 to 2**8 - 1; signal sig_poa_state : t_poa_state; begin poa_proc : process (clk, rst_n) begin if rst_n = '0' then sig_poa_ack <= '0'; seq_poa_lat_dec_1x <= (others => '0'); seq_poa_lat_inc_1x <= (others => '0'); sig_poa_adjust_count <= 0; sig_poa_state <= s_poa_rewind_to_pass; elsif rising_edge(clk) then sig_poa_ack <= '0'; seq_poa_lat_inc_1x <= (others => '0'); seq_poa_lat_dec_1x <= (others => '0'); if sig_dgrb_state = s_poa_cal then case sig_poa_state is when s_poa_rewind_to_pass => -- In postamble calibration -- -- Normally, must wait for sig_dimm_driving_dq to be '1' -- before reading, but by this point in calibration -- rdata_valid is assumed to be set up properly. The -- sig_poa_match_en (derived from rdata_valid) is used -- here rather than sig_dimm_driving_dq. if sig_poa_match_en = '1' then if sig_poa_match = '1' then sig_poa_state <= s_poa_done; else seq_poa_lat_dec_1x <= (others => '1'); end if; sig_poa_adjust_count <= sig_poa_adjust_count + 1; end if; when s_poa_done => sig_poa_ack <= '1'; end case; else sig_poa_state <= s_poa_rewind_to_pass; sig_poa_adjust_count <= 0; end if; assert sig_poa_adjust_count <= c_poa_max_lat report dgrb_report_prefix & "Maximum number of postamble latency adjustments exceeded." severity failure; end if; end process; end block; -- ------------------------------------------------------------------ -- code block for tracking signal generation -- -- this is used for initial tracking setup (finding a reference window) -- and periodic tracking operations (PVT compensation on rsc phase) -- -- A slave trk state machine is described and implemented within the block -- The mimic path is controlled within this block -- ------------------------------------------------------------------ trk_block : block type t_tracking_state is ( -- initialise variables out of reset s_trk_init, -- idle state s_trk_idle, -- sample data from the mimic path (build window) s_trk_mimic_sample, -- 'shift' mimic path phase s_trk_next_phase, -- calculate mimic window s_trk_cdvw_calc, s_trk_cdvw_wait, -- for results -- calculate how much mimic window has moved (only entered in periodic tracking) s_trk_cdvw_drift, -- track rsc phase (only entered in periodic tracking) s_trk_adjust_resync, -- communicate command complete to the master state machine s_trk_complete ); signal sig_mmc_seq_done : std_logic; signal sig_mmc_seq_done_1t : std_logic; signal mmc_seq_value_r : std_logic; signal sig_mmc_start : std_logic; signal sig_trk_state : t_tracking_state; signal sig_trk_last_state : t_tracking_state; signal sig_rsc_drift : integer range -c_max_rsc_drift_in_phases to c_max_rsc_drift_in_phases; -- stores total change in rsc phase from first calibration signal sig_req_rsc_shift : integer range -c_max_rsc_drift_in_phases to c_max_rsc_drift_in_phases; -- stores required shift in rsc phase instantaneously signal sig_mimic_cdv_found : std_logic; signal sig_mimic_cdv : integer range 0 to PLL_STEPS_PER_CYCLE; -- centre of data valid window calculated from first mimic-cycle signal sig_mimic_delta : integer range -PLL_STEPS_PER_CYCLE to PLL_STEPS_PER_CYCLE; signal sig_large_drift_seen : std_logic; signal sig_remaining_samples : natural range 0 to 2**8 - 1; begin -- advertise the codvw phase shift process (clk, rst_n) variable v_length : integer; begin if rst_n = '0' then codvw_trk_shift <= (others => '0'); elsif rising_edge(clk) then if sig_mimic_cdv_found = '1' then -- check range v_length := codvw_trk_shift'length; codvw_trk_shift <= std_logic_vector(to_signed(sig_rsc_drift, v_length)); else codvw_trk_shift <= (others => '0'); end if; end if; end process; -- request a mimic sample mimic_sample_req : process (clk, rst_n) variable seq_mmc_start_r : std_logic_vector(3 downto 0); begin if rst_n = '0' then seq_mmc_start <= '0'; seq_mmc_start_r := "0000"; elsif rising_edge(clk) then seq_mmc_start_r(3) := seq_mmc_start_r(2); seq_mmc_start_r(2) := seq_mmc_start_r(1); seq_mmc_start_r(1) := seq_mmc_start_r(0); -- extend sig_mmc_start by one clock cycle if sig_mmc_start = '1' then seq_mmc_start <= '1'; seq_mmc_start_r(0) := '1'; elsif ( (seq_mmc_start_r(3) = '1') or (seq_mmc_start_r(2) = '1') or (seq_mmc_start_r(1) = '1') or (seq_mmc_start_r(0) = '1') ) then seq_mmc_start <= '1'; seq_mmc_start_r(0) := '0'; else seq_mmc_start <= '0'; end if; end if; end process; -- metastability hardening of async mmc_seq_done signal mmc_seq_req_sync : process (clk, rst_n) variable v_mmc_seq_done_1r : std_logic; variable v_mmc_seq_done_2r : std_logic; variable v_mmc_seq_done_3r : std_logic; begin if rst_n = '0' then sig_mmc_seq_done <= '0'; sig_mmc_seq_done_1t <= '0'; v_mmc_seq_done_1r := '0'; v_mmc_seq_done_2r := '0'; v_mmc_seq_done_3r := '0'; elsif rising_edge(clk) then sig_mmc_seq_done_1t <= v_mmc_seq_done_3r; sig_mmc_seq_done <= v_mmc_seq_done_2r; mmc_seq_value_r <= mmc_seq_value; v_mmc_seq_done_3r := v_mmc_seq_done_2r; v_mmc_seq_done_2r := v_mmc_seq_done_1r; v_mmc_seq_done_1r := mmc_seq_done; end if; end process; -- collect mimic samples as they arrive shift_in_mmc_seq_value : process (clk, rst_n) begin if rst_n = '0' then sig_trk_cdvw_shift_in <= '0'; sig_trk_cdvw_phase <= '0'; elsif rising_edge(clk) then sig_trk_cdvw_shift_in <= '0'; sig_trk_cdvw_phase <= '0'; if sig_mmc_seq_done_1t = '1' and sig_mmc_seq_done = '0' then sig_trk_cdvw_shift_in <= '1'; sig_trk_cdvw_phase <= mmc_seq_value_r; end if; end if; end process; -- main tracking state machine trk_proc : process (clk, rst_n) begin if rst_n = '0' then sig_trk_state <= s_trk_init; sig_trk_last_state <= s_trk_init; sig_trk_result <= (others => '0'); sig_trk_err <= '0'; sig_mmc_start <= '0'; sig_trk_pll_select <= (others => '0'); sig_req_rsc_shift <= -c_max_rsc_drift_in_phases; sig_rsc_drift <= -c_max_rsc_drift_in_phases; sig_mimic_delta <= -PLL_STEPS_PER_CYCLE; sig_mimic_cdv_found <= '0'; sig_mimic_cdv <= 0; sig_large_drift_seen <= '0'; sig_trk_cdvw_calc <= '0'; sig_remaining_samples <= 0; sig_trk_pll_start_reconfig <= '0'; sig_trk_pll_inc_dec_n <= c_pll_phs_inc; sig_trk_ack <= '0'; elsif rising_edge(clk) then sig_trk_pll_select <= pll_measure_clk_index; sig_trk_pll_start_reconfig <= '0'; sig_trk_pll_inc_dec_n <= c_pll_phs_inc; sig_large_drift_seen <= '0'; sig_trk_cdvw_calc <= '0'; sig_trk_ack <= '0'; sig_trk_err <= '0'; sig_trk_result <= (others => '0'); sig_mmc_start <= '0'; -- if no cdv found then reset tracking results if sig_mimic_cdv_found = '0' then sig_rsc_drift <= 0; sig_req_rsc_shift <= 0; sig_mimic_delta <= 0; end if; if sig_dgrb_state = s_track then -- resync state machine case sig_trk_state is when s_trk_init => sig_trk_state <= s_trk_idle; sig_mimic_cdv_found <= '0'; sig_rsc_drift <= 0; sig_req_rsc_shift <= 0; sig_mimic_delta <= 0; when s_trk_idle => sig_remaining_samples <= PLL_STEPS_PER_CYCLE; -- ensure a 360 degrees sweep sig_trk_state <= s_trk_mimic_sample; when s_trk_mimic_sample => if sig_remaining_samples = 0 then sig_trk_state <= s_trk_cdvw_calc; else if sig_trk_state /= sig_trk_last_state then -- request a sample as soon as we arrive in this state. -- the default value of sig_mmc_start is zero! sig_mmc_start <= '1'; end if; if sig_mmc_seq_done_1t = '1' and sig_mmc_seq_done = '0' then -- a sample has been collected, go to next PLL phase sig_remaining_samples <= sig_remaining_samples - 1; sig_trk_state <= s_trk_next_phase; end if; end if; when s_trk_next_phase => sig_trk_pll_start_reconfig <= '1'; sig_trk_pll_inc_dec_n <= c_pll_phs_inc; if sig_phs_shft_start = '1' then sig_trk_pll_start_reconfig <= '0'; end if; if sig_phs_shft_end = '1' then sig_trk_state <= s_trk_mimic_sample; end if; when s_trk_cdvw_calc => if sig_trk_state /= sig_trk_last_state then -- reset variables we are interested in when we first arrive in this state sig_trk_cdvw_calc <= '1'; report dgrb_report_prefix & "gathered mimic phase samples DGRB_MIMIC_SAMPLES: " & str(sig_cdvw_state.working_window(sig_cdvw_state.working_window'high downto sig_cdvw_state.working_window'length - PLL_STEPS_PER_CYCLE)) severity note; else sig_trk_state <= s_trk_cdvw_wait; end if; when s_trk_cdvw_wait => if sig_cdvw_state.status /= calculating then if sig_cdvw_state.status = valid_result then report dgrb_report_prefix & "mimic window successfully found." severity note; if sig_mimic_cdv_found = '0' then -- first run of tracking operation sig_mimic_cdv_found <= '1'; sig_mimic_cdv <= sig_cdvw_state.largest_window_centre; sig_trk_state <= s_trk_complete; else -- subsequent tracking operation runs sig_mimic_delta <= sig_mimic_cdv - sig_cdvw_state.largest_window_centre; sig_mimic_cdv <= sig_cdvw_state.largest_window_centre; sig_trk_state <= s_trk_cdvw_drift; end if; else report dgrb_report_prefix & "couldn't find a data-valid window for tracking." severity cal_fail_sev_level; sig_trk_ack <= '1'; sig_trk_err <= '1'; sig_trk_state <= s_trk_idle; -- set resync result code case sig_cdvw_state.status is when no_invalid_phases => sig_trk_result <= std_logic_vector(to_unsigned(C_ERR_RESYNC_NO_INVALID_PHASES, sig_trk_result'length)); when multiple_equal_windows => sig_trk_result <= std_logic_vector(to_unsigned(C_ERR_RESYNC_MULTIPLE_EQUAL_WINDOWS, sig_trk_result'length)); when no_valid_phases => sig_trk_result <= std_logic_vector(to_unsigned(C_ERR_RESYNC_NO_VALID_PHASES, sig_trk_result'length)); when others => sig_trk_result <= std_logic_vector(to_unsigned(C_ERR_CRITICAL, sig_trk_result'length)); end case; end if; end if; when s_trk_cdvw_drift => -- calculate the drift in rsc phase -- pipeline stage 1 if abs(sig_mimic_delta) > PLL_STEPS_PER_CYCLE/2 then sig_large_drift_seen <= '1'; else sig_large_drift_seen <= '0'; end if; --pipeline stage 2 if sig_trk_state = sig_trk_last_state then if sig_large_drift_seen = '1' then if sig_mimic_delta < 0 then -- anti-clockwise movement sig_req_rsc_shift <= sig_req_rsc_shift + sig_mimic_delta + PLL_STEPS_PER_CYCLE; else -- clockwise movement sig_req_rsc_shift <= sig_req_rsc_shift + sig_mimic_delta - PLL_STEPS_PER_CYCLE; end if; else sig_req_rsc_shift <= sig_req_rsc_shift + sig_mimic_delta; end if; sig_trk_state <= s_trk_adjust_resync; end if; when s_trk_adjust_resync => sig_trk_pll_select <= pll_resync_clk_index; sig_trk_pll_start_reconfig <= '1'; if sig_trk_state /= sig_trk_last_state then if sig_req_rsc_shift < 0 then sig_trk_pll_inc_dec_n <= c_pll_phs_inc; sig_req_rsc_shift <= sig_req_rsc_shift + 1; sig_rsc_drift <= sig_rsc_drift + 1; elsif sig_req_rsc_shift > 0 then sig_trk_pll_inc_dec_n <= c_pll_phs_dec; sig_req_rsc_shift <= sig_req_rsc_shift - 1; sig_rsc_drift <= sig_rsc_drift - 1; else sig_trk_state <= s_trk_complete; sig_trk_pll_start_reconfig <= '0'; end if; else sig_trk_pll_inc_dec_n <= sig_trk_pll_inc_dec_n; -- maintain current value end if; if abs(sig_rsc_drift) = c_max_rsc_drift_in_phases then report dgrb_report_prefix & " a maximum absolute change in resync_clk of " & integer'image(sig_rsc_drift) & " phases has " & LF & " occurred (since read resynch phase calibration) during tracking" severity cal_fail_sev_level; sig_trk_err <= '1'; sig_trk_result <= std_logic_vector(to_unsigned(C_ERR_MAX_TRK_SHFT_EXCEEDED, sig_trk_result'length)); end if; if sig_phs_shft_start = '1' then sig_trk_pll_start_reconfig <= '0'; end if; if sig_phs_shft_end = '1' then sig_trk_state <= s_trk_complete; end if; when s_trk_complete => sig_trk_ack <= '1'; end case; sig_trk_last_state <= sig_trk_state; else sig_trk_state <= s_trk_idle; sig_trk_last_state <= s_trk_idle; end if; end if; end process; rsc_drift: process (sig_rsc_drift) begin sig_trk_rsc_drift <= sig_rsc_drift; -- communicate tracking shift to rsc process end process; end block; -- tracking signals -- ------------------------------------------------------------------ -- write-datapath (WDP) ` and on-chip-termination (OCT) signal -- ------------------------------------------------------------------ wdp_oct : process(clk,rst_n) begin if rst_n = '0' then seq_oct_value <= c_set_oct_to_rs; dgrb_wdp_ovride <= '0'; elsif rising_edge(clk) then if ((sig_dgrb_state = s_idle) or (EN_OCT = 0)) then seq_oct_value <= c_set_oct_to_rs; dgrb_wdp_ovride <= '0'; else seq_oct_value <= c_set_oct_to_rt; dgrb_wdp_ovride <= '1'; end if; end if; end process; -- ------------------------------------------------------------------ -- handles muxing of error codes to the control block -- ------------------------------------------------------------------ ac_handshake_proc : process(rst_n, clk) begin if rst_n = '0' then dgrb_ctrl <= defaults; elsif rising_edge(clk) then dgrb_ctrl <= defaults; if sig_dgrb_state = s_wait_admin and sig_dgrb_last_state = s_idle then dgrb_ctrl.command_ack <= '1'; end if; case sig_dgrb_state is when s_seek_cdvw => dgrb_ctrl.command_err <= sig_rsc_err; dgrb_ctrl.command_result <= sig_rsc_result; when s_track => dgrb_ctrl.command_err <= sig_trk_err; dgrb_ctrl.command_result <= sig_trk_result; when others => -- from main state machine dgrb_ctrl.command_err <= sig_cmd_err; dgrb_ctrl.command_result <= sig_cmd_result; end case; if ctrl_dgrb_r.command = cmd_read_mtp then -- check against command because aligned with command done not command_err dgrb_ctrl.command_err <= '0'; dgrb_ctrl.command_result <= std_logic_vector(to_unsigned(sig_cdvw_state.largest_window_size,dgrb_ctrl.command_result'length)); end if; if sig_dgrb_state = s_idle and sig_dgrb_last_state = s_release_admin then dgrb_ctrl.command_done <= '1'; end if; end if; end process; -- ------------------------------------------------------------------ -- address/command state machine -- process is commanded to begin reading training patterns. -- -- implements the address/command slave state machine -- issues read commands to the memory relative to given calibration -- stage being implemented -- burst length is dependent on memory type -- ------------------------------------------------------------------ ac_block : block -- override the calibration burst length for DDR3 device support -- (requires BL8 / on the fly setting in MR in admin block) function set_read_bl ( memtype: in string ) return natural is begin if memtype = "DDR3" then return 8; elsif memtype = "DDR" or memtype = "DDR2" then return c_cal_burst_len; else report dgrb_report_prefix & " a calibration burst length choice has not been set for memory type " & memtype severity failure; end if; return 0; end function; -- parameterisation of the read algorithm by burst length constant c_poa_addr_width : natural := 6; constant c_cal_read_burst_len : natural := set_read_bl(MEM_IF_MEMTYPE); constant c_bursts_per_btp : natural := c_cal_mtp_len / c_cal_read_burst_len; constant c_read_burst_t : natural := c_cal_read_burst_len / DWIDTH_RATIO; constant c_max_rdata_valid_lat : natural := 50*(c_cal_read_burst_len / DWIDTH_RATIO); -- maximum latency that rdata_valid can ever have with respect to doing_rd constant c_rdv_ones_rd_clks : natural := (c_max_rdata_valid_lat + c_read_burst_t) / c_read_burst_t; -- number of cycles to read ones for before a pulse of zeros -- array of burst training pattern addresses -- here the MTP is used in this addressing subtype t_btp_addr is natural range 0 to 2 ** MEM_IF_ADDR_WIDTH - 1; type t_btp_addr_array is array (0 to c_bursts_per_btp - 1) of t_btp_addr; -- default values function defaults return t_btp_addr_array is variable v_btp_array : t_btp_addr_array; begin for i in 0 to c_bursts_per_btp - 1 loop v_btp_array(i) := 0; end loop; return v_btp_array; end function; -- load btp array addresses -- Note: this scales to burst lengths of 2, 4 and 8 -- the settings here are specific to the choice of training pattern and need updating if the pattern changes function set_btp_addr (mtp_almt : natural ) return t_btp_addr_array is variable v_addr_array : t_btp_addr_array; begin for i in 0 to 8/c_cal_read_burst_len - 1 loop -- set addresses for xF5 data v_addr_array((c_bursts_per_btp - 1) - i) := MEM_IF_CAL_BASE_COL + c_cal_ofs_xF5 + i*c_cal_read_burst_len; -- set addresses for x30 data (based on mtp alignment) if mtp_almt = 0 then v_addr_array((c_bursts_per_btp - 1) - (8/c_cal_read_burst_len + i)) := MEM_IF_CAL_BASE_COL + c_cal_ofs_x30_almt_0 + i*c_cal_read_burst_len; else v_addr_array((c_bursts_per_btp - 1) - (8/c_cal_read_burst_len + i)) := MEM_IF_CAL_BASE_COL + c_cal_ofs_x30_almt_1 + i*c_cal_read_burst_len; end if; end loop; return v_addr_array; end function; function find_poa_cycle_period return natural is -- Returns the period over which the postamble reads -- repeat in c_read_burst_t units. variable v_num_bursts : natural; begin v_num_bursts := 2 ** c_poa_addr_width / c_read_burst_t; if v_num_bursts * c_read_burst_t < 2**c_poa_addr_width then v_num_bursts := v_num_bursts + 1; end if; v_num_bursts := v_num_bursts + c_bursts_per_btp + 1; return v_num_bursts; end function; function get_poa_burst_addr(burst_count : in natural; mtp_almt : in natural) return t_btp_addr is variable v_addr : t_btp_addr; begin if burst_count = 0 then if mtp_almt = 0 then v_addr := c_cal_ofs_x30_almt_1; elsif mtp_almt = 1 then v_addr := c_cal_ofs_x30_almt_0; else report "Unsupported mtp_almt " & natural'image(mtp_almt) severity failure; end if; -- address gets incremented by four if in burst-length four. v_addr := v_addr + (8 - c_cal_read_burst_len); else v_addr := c_cal_ofs_zeros; end if; return v_addr; end function; signal btp_addr_array : t_btp_addr_array; -- burst training pattern addresses signal sig_addr_cmd_state : t_ac_state; signal sig_addr_cmd_last_state : t_ac_state; signal sig_doing_rd_count : integer range 0 to c_read_burst_t - 1; signal sig_count : integer range 0 to 2**8 - 1; signal sig_setup : integer range c_max_read_lat downto 0; signal sig_burst_count : integer range 0 to c_read_burst_t; begin -- handles counts for when to begin burst-reads (sig_burst_count) -- sets sig_dimm_driving_dq -- sets dgrb_ac_access_req dimm_driving_dq_proc : process(rst_n, clk) begin if rst_n = '0' then sig_dimm_driving_dq <= '1'; sig_setup <= c_max_read_lat; sig_burst_count <= 0; dgrb_ac_access_req <= '0'; sig_ac_even <= '0'; elsif rising_edge(clk) then sig_dimm_driving_dq <= '0'; if sig_addr_cmd_state /= s_ac_idle and sig_addr_cmd_state /= s_ac_relax then dgrb_ac_access_req <= '1'; else dgrb_ac_access_req <= '0'; end if; case sig_addr_cmd_state is when s_ac_read_mtp | s_ac_read_rdv | s_ac_read_wd_lat | s_ac_read_poa_mtp => sig_ac_even <= not sig_ac_even; -- a counter that keeps track of when we are ready -- to issue a burst read. Issue burst read eigvery -- time we are at zero. if sig_burst_count = 0 then sig_burst_count <= c_read_burst_t - 1; else sig_burst_count <= sig_burst_count - 1; end if; if dgrb_ac_access_gnt /= '1' then sig_setup <= c_max_read_lat; else -- primes reads -- signal that dimms are driving dq pins after -- at least c_max_read_lat clock cycles have passed. -- if sig_setup = 0 then sig_dimm_driving_dq <= '1'; elsif dgrb_ac_access_gnt = '1' then sig_setup <= sig_setup - 1; end if; end if; when s_ac_relax => sig_dimm_driving_dq <= '1'; sig_burst_count <= 0; sig_ac_even <= '0'; when others => sig_burst_count <= 0; sig_ac_even <= '0'; end case; end if; end process; ac_proc : process(rst_n, clk) begin if rst_n = '0' then sig_count <= 0; sig_addr_cmd_state <= s_ac_idle; sig_addr_cmd_last_state <= s_ac_idle; sig_doing_rd_count <= 0; sig_addr_cmd <= reset(c_seq_addr_cmd_config); btp_addr_array <= defaults; sig_doing_rd <= (others => '0'); elsif rising_edge(clk) then assert c_cal_mtp_len mod c_cal_read_burst_len = 0 report dgrb_report_prefix & "burst-training pattern length must be a multiple of burst-length." severity failure; assert MEM_IF_CAL_BANK < 2**MEM_IF_BANKADDR_WIDTH report dgrb_report_prefix & "MEM_IF_CAL_BANK out of range." severity failure; assert MEM_IF_CAL_BASE_COL < 2**MEM_IF_ADDR_WIDTH - 1 - C_CAL_DATA_LEN report dgrb_report_prefix & "MEM_IF_CAL_BASE_COL out of range." severity failure; sig_addr_cmd <= deselect(c_seq_addr_cmd_config, sig_addr_cmd); if sig_ac_req /= sig_addr_cmd_state and sig_addr_cmd_state /= s_ac_idle then -- and dgrb_ac_access_gnt = '1' sig_addr_cmd_state <= s_ac_relax; else sig_addr_cmd_state <= sig_ac_req; end if; if sig_doing_rd_count /= 0 then sig_doing_rd <= (others => '1'); sig_doing_rd_count <= sig_doing_rd_count - 1; else sig_doing_rd <= (others => '0'); end if; case sig_addr_cmd_state is when s_ac_idle => sig_addr_cmd <= defaults(c_seq_addr_cmd_config); when s_ac_relax => -- waits at least c_max_read_lat before returning to s_ac_idle state if sig_addr_cmd_state /= sig_addr_cmd_last_state then sig_count <= c_max_read_lat; else if sig_count = 0 then sig_addr_cmd_state <= s_ac_idle; else sig_count <= sig_count - 1; end if; end if; when s_ac_read_mtp => -- reads 'more'-training pattern -- issue read commands for proper addresses -- set burst training pattern (mtp in this case) addresses btp_addr_array <= set_btp_addr(current_mtp_almt); if sig_addr_cmd_state /= sig_addr_cmd_last_state then sig_count <= c_bursts_per_btp - 1; -- counts number of bursts in a training pattern else sig_doing_rd <= (others => '1'); -- issue a read command every c_read_burst_t clock cycles if sig_burst_count = 0 then -- decide which read command to issue for i in 0 to c_bursts_per_btp - 1 loop if sig_count = i then sig_addr_cmd <= read(c_seq_addr_cmd_config, -- configuration sig_addr_cmd, -- previous value MEM_IF_CAL_BANK, -- bank btp_addr_array(i), -- column address 2**current_cs, -- rank c_cal_read_burst_len, -- burst length false); end if; end loop; -- Set next value of count if sig_count = 0 then sig_count <= c_bursts_per_btp - 1; else sig_count <= sig_count - 1; end if; end if; end if; when s_ac_read_poa_mtp => -- Postamble rdata/rdata_valid Activity: -- -- -- (0) (1) (2) -- ; ; ; ; -- _________ __ ____________ _____________ _______ _________ -- \ / \ / \ \ \ / \ / -- (a) rdata[0] 00000000 X 11 X 0000000000 / / 0000000000 X MTP X 00000000 -- _________/ \__/ \____________\ \____________/ \_______/ \_________ -- ; ; ; ; -- ; ; ; ; -- _________ / / _________ -- rdata_valid ____| |_____________\ \_____________| |__________ -- -- ;<- (b) ->;<------------(c)------------>; ; -- ; ; ; ; -- -- -- This block must issue reads and drive doing_rd to place the above pattern on -- the rdata and rdata_valid ports. MTP will most likely come back corrupted but -- the postamble block (poa_block) will make the necessary adjustments to improve -- matters. -- -- (a) Read zeros followed by two ones. The two will be at the end of a burst. -- Assert rdata_valid only during the burst containing the ones. -- (b) c_read_burst_t clock cycles. -- (c) Must be greater than but NOT equal to maximum postamble latency clock -- cycles. Another way: c_min = (max_poa_lat + 1) phy clock cycles. This -- must also be long enough to allow the postamble block to respond to a -- the seq_poa_lat_dec_1x signal, but this requirement is less stringent -- than the first so that we can ignore it. -- -- The find_poa_cycle_period function should return (b+c)/c_read_burst_t -- rounded up to the next largest integer. -- -- -- set burst training pattern (mtp in this case) addresses btp_addr_array <= set_btp_addr(current_mtp_almt); -- issue read commands for proper addresses if sig_addr_cmd_state /= sig_addr_cmd_last_state then sig_count <= find_poa_cycle_period - 1; -- length of read patter in bursts. elsif dgrb_ac_access_gnt = '1' then -- only begin operation once dgrb_ac_access_gnt has been issued -- otherwise rdata_valid may be asserted when rdasta is not -- valid. -- -- *** WARNING: BE SAFE. DON'T LET THIS HAPPEN TO YOU: *** -- -- ; ; ; ; ; ; -- ; _______ ; ; _______ ; ; _______ -- XXXXX / \ XXXXXXXXX / \ XXXXXXXXX / \ XXXXXXXXX -- addr/cmd XXXXXX READ XXXXXXXXXXX READ XXXXXXXXXXX READ XXXXXXXXXXX -- XXXXX \_______/ XXXXXXXXX \_______/ XXXXXXXXX \_______/ XXXXXXXXX -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- ; ; ; ; ; ; _______ -- XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX / \ -- rdata XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX MTP X -- XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX \_______/ -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- _________ _________ _________ -- doing_rd ____| |_________| |_________| |__________ -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- __________________________________________________ -- ac_accesss_gnt ______________| -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- _________ _________ -- rdata_valid __________________________________| |_________| | -- ; ; ; ; ; ; -- -- (0) (1) (2) -- -- -- Cmmand and doing_rd issued at (0). The doing_rd signal enters the -- rdata_valid pipe here so that it will return on rdata_valid with the -- expected latency (at this point in calibration, rdata_valid and adv_rd_lat -- should be properly calibrated). Unlike doing_rd, since ac_access_gnt is not -- asserted the READ command at (0) is never actually issued. This results -- in the situation at (2) where rdata is undefined yet rdata_valid indicates -- valid data. The moral of this story is to wait for ac_access_gnt = '1' -- before issuing commands when it is important that rdata_valid be accurate. -- -- -- -- if sig_burst_count = 0 then sig_addr_cmd <= read(c_seq_addr_cmd_config, -- configuration sig_addr_cmd, -- previous value MEM_IF_CAL_BANK, -- bank get_poa_burst_addr(sig_count, current_mtp_almt),-- column address 2**current_cs, -- rank c_cal_read_burst_len, -- burst length false); -- Set doing_rd if sig_count = 0 then sig_doing_rd <= (others => '1'); sig_doing_rd_count <= c_read_burst_t - 1; -- Extend doing_rd pulse by this many phy_clk cycles. end if; -- Set next value of count if sig_count = 0 then sig_count <= find_poa_cycle_period - 1; -- read for one period then relax (no read) for same time period else sig_count <= sig_count - 1; end if; end if; end if; when s_ac_read_rdv => assert c_max_rdata_valid_lat mod c_read_burst_t = 0 report dgrb_report_prefix & "c_max_rdata_valid_lat must be a multiple of c_read_burst_t." severity failure; if sig_addr_cmd_state /= sig_addr_cmd_last_state then sig_count <= c_rdv_ones_rd_clks - 1; else if sig_burst_count = 0 then if sig_count = 0 then -- expecting to read ZEROS sig_addr_cmd <= read(c_seq_addr_cmd_config, -- configuration sig_addr_cmd, -- previous valid MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + C_CAL_OFS_ZEROS, -- column 2**current_cs, -- rank c_cal_read_burst_len, -- burst length false); else -- expecting to read ONES sig_addr_cmd <= read(c_seq_addr_cmd_config, -- configuration sig_addr_cmd, -- previous value MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + C_CAL_OFS_ONES, -- column address 2**current_cs, -- rank c_cal_read_burst_len, -- op length false); end if; if sig_count = 0 then sig_count <= c_rdv_ones_rd_clks - 1; else sig_count <= sig_count - 1; end if; end if; if (sig_count = c_rdv_ones_rd_clks - 1 and sig_burst_count = 1) or (sig_count = 0 and c_read_burst_t = 1) then -- the last burst read- that was issued was supposed to read only zeros -- a burst read command will be issued on the next clock cycle -- -- A long (>= maximim rdata_valid latency) series of burst reads are -- issued for ONES. -- Into this stream a single burst read for ZEROs is issued. After -- the ZERO read command is issued, rdata_valid needs to come back -- high one clock cycle before the next read command (reading ONES -- again) is issued. Since the rdata_valid is just a delayed -- version of doing_rd, doing_rd needs to exhibit the same behaviour. -- -- for FR (burst length 4): require that doing_rd high 1 clock cycle after cs_n is low -- ____ ____ ____ ____ ____ ____ ____ ____ ____ -- clk ____| |____| |____| |____| |____| |____| |____| |____| |____| -- -- ___ _______ _______ _______ _______ -- \ XXXXXXXXX / \ XXXXXXXXX / \ XXXXXXXXX / \ XXXXXXXXX / \ XXXX -- addr XXXXXXXXXXX ONES XXXXXXXXXXX ONES XXXXXXXXXXX ZEROS XXXXXXXXXXX ONES XXXXX--> Repeat -- ___/ XXXXXXXXX \_______/ XXXXXXXXX \_______/ XXXXXXXXX \_______/ XXXXXXXXX \_______/ XXXX -- -- _________ _________ _________ _________ ____ -- cs_n ____| |_________| |_________| |_________| |_________| -- -- _________ -- doing_rd ________________________________________________________________| |______________ -- -- -- for HR: require that doing_rd high in the same clock cycle as cs_n is low -- sig_doing_rd(MEM_IF_DQS_WIDTH*(DWIDTH_RATIO/2-1)) <= '1'; end if; end if; when s_ac_read_wd_lat => -- continuously issues reads on the memory locations -- containing write latency addr=[2*c_cal_burst_len - (3*c_cal_burst_len - 1)] if sig_addr_cmd_state /= sig_addr_cmd_last_state then -- no initialization required here. Must still wait -- a clock cycle before beginning operations so that -- we are properly synchronized with -- dimm_driving_dq_proc. else if sig_burst_count = 0 then if sig_dimm_driving_dq = '1' then sig_doing_rd <= (others => '1'); end if; sig_addr_cmd <= read(c_seq_addr_cmd_config, -- configuration sig_addr_cmd, -- previous value MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + c_cal_ofs_wd_lat, -- column 2**current_cs, -- rank c_cal_read_burst_len, false); end if; end if; when others => report dgrb_report_prefix & "undefined state in addr_cmd_proc" severity error; sig_addr_cmd_state <= s_ac_idle; end case; -- mask odt signal for i in 0 to (DWIDTH_RATIO/2)-1 loop sig_addr_cmd(i).odt <= odt_settings(current_cs).read; end loop; sig_addr_cmd_last_state <= sig_addr_cmd_state; end if; end process; end block ac_block; end architecture struct; -- -- ----------------------------------------------------------------------------- -- Abstract : data gatherer (write bias) [dgwb] block for the non-levelling -- AFI PHY sequencer -- ----------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; -- The record package (alt_mem_phy_record_pkg) is used to combine command and status signals -- (into records) to be passed between sequencer blocks. It also contains type and record definitions -- for the stages of DRAM memory calibration. -- use work.ddr_ctrl_ip_phy_alt_mem_phy_record_pkg.all; -- The address and command package (alt_mem_phy_addr_cmd_pkg) is used to combine DRAM address -- and command signals in one record and unify the functions operating on this record. -- use work.ddr_ctrl_ip_phy_alt_mem_phy_addr_cmd_pkg.all; -- entity ddr_ctrl_ip_phy_alt_mem_phy_dgwb is generic ( -- Physical IF width definitions MEM_IF_DQS_WIDTH : natural; MEM_IF_DQ_PER_DQS : natural; MEM_IF_DWIDTH : natural; MEM_IF_DM_WIDTH : natural; DWIDTH_RATIO : natural; MEM_IF_ADDR_WIDTH : natural; MEM_IF_BANKADDR_WIDTH : natural; MEM_IF_NUM_RANKS : natural; -- The sequencer outputs memory control signals of width num_ranks MEM_IF_MEMTYPE : string; ADV_LAT_WIDTH : natural; MEM_IF_CAL_BANK : natural; -- Bank to which calibration data is written -- Base column address to which calibration data is written. -- Memory at MEM_IF_CAL_BASE_COL - MEM_IF_CAL_BASE_COL + C_CAL_DATA_LEN - 1 -- is assumed to contain the proper data. MEM_IF_CAL_BASE_COL : natural ); port ( -- CLK Reset clk : in std_logic; rst_n : in std_logic; parameterisation_rec : in t_algm_paramaterisation; -- Control interface : dgwb_ctrl : out t_ctrl_stat; ctrl_dgwb : in t_ctrl_command; -- iRAM 'push' interface : dgwb_iram : out t_iram_push; iram_push_done : in std_logic; -- Admin block req/gnt interface. dgwb_ac_access_req : out std_logic; dgwb_ac_access_gnt : in std_logic; -- WDP interface dgwb_dqs_burst : out std_logic_vector((DWIDTH_RATIO/2) * MEM_IF_DQS_WIDTH - 1 downto 0); dgwb_wdata_valid : out std_logic_vector((DWIDTH_RATIO/2) * MEM_IF_DQS_WIDTH - 1 downto 0); dgwb_wdata : out std_logic_vector( DWIDTH_RATIO * MEM_IF_DWIDTH - 1 downto 0); dgwb_dm : out std_logic_vector( DWIDTH_RATIO * MEM_IF_DM_WIDTH - 1 downto 0); dgwb_dqs : out std_logic_vector( DWIDTH_RATIO - 1 downto 0); dgwb_wdp_ovride : out std_logic; -- addr/cmd output for write commands. dgwb_ac : out t_addr_cmd_vector(0 to (DWIDTH_RATIO/2)-1); bypassed_rdata : in std_logic_vector(MEM_IF_DWIDTH-1 downto 0); -- odt settings per chip select odt_settings : in t_odt_array(0 to MEM_IF_NUM_RANKS-1) ); end entity; library work; -- The constant package (alt_mem_phy_constants_pkg) contains global 'constants' which are fixed -- thoughout the sequencer and will not change (for constants which may change between sequencer -- instances generics are used) -- use work.ddr_ctrl_ip_phy_alt_mem_phy_constants_pkg.all; -- architecture rtl of ddr_ctrl_ip_phy_alt_mem_phy_dgwb is type t_dgwb_state is ( s_idle, s_wait_admin, s_write_btp, -- Writes bit-training pattern s_write_ones, -- Writes ones s_write_zeros, -- Writes zeros s_write_mtp, -- Write more training patterns (requires read to check allignment) s_write_01_pairs, -- Writes 01 pairs s_write_1100_step,-- Write step function (half zeros, half ones) s_write_0011_step,-- Write reversed step function (half ones, half zeros) s_write_wlat, -- Writes the write latency into a memory address. s_release_admin ); constant c_seq_addr_cmd_config : t_addr_cmd_config_rec := set_config_rec(MEM_IF_ADDR_WIDTH, MEM_IF_BANKADDR_WIDTH, MEM_IF_NUM_RANKS, DWIDTH_RATIO, MEM_IF_MEMTYPE); -- a prefix for all report signals to identify phy and sequencer block -- constant dgwb_report_prefix : string := "ddr_ctrl_ip_phy_alt_mem_phy_seq (dgwb) : "; function dqs_pattern return std_logic_vector is variable dqs : std_logic_vector( DWIDTH_RATIO - 1 downto 0); begin if DWIDTH_RATIO = 2 then dqs := "10"; elsif DWIDTH_RATIO = 4 then dqs := "1100"; else report dgwb_report_prefix & "unsupported DWIDTH_RATIO in function dqs_pattern." severity failure; end if; return dqs; end; signal sig_addr_cmd : t_addr_cmd_vector(0 to (DWIDTH_RATIO/2)-1); signal sig_dgwb_state : t_dgwb_state; signal sig_dgwb_last_state : t_dgwb_state; signal access_complete : std_logic; signal generate_wdata : std_logic; -- for s_write_wlat only -- current chip select being processed signal current_cs : natural range 0 to MEM_IF_NUM_RANKS-1; begin dgwb_ac <= sig_addr_cmd; -- Set IRAM interface to defaults dgwb_iram <= defaults; -- Master state machine. Generates state transitions. master_dgwb_state_block : if True generate signal sig_ctrl_dgwb : t_ctrl_command; -- registers ctrl_dgwb input. begin -- generate the current_cs signal to track which cs accessed by PHY at any instance current_cs_proc : process (clk, rst_n) begin if rst_n = '0' then current_cs <= 0; elsif rising_edge(clk) then if sig_ctrl_dgwb.command_req = '1' then current_cs <= sig_ctrl_dgwb.command_op.current_cs; end if; end if; end process; master_dgwb_state_proc : process(rst_n, clk) begin if rst_n = '0' then sig_dgwb_state <= s_idle; sig_dgwb_last_state <= s_idle; sig_ctrl_dgwb <= defaults; elsif rising_edge(clk) then case sig_dgwb_state is when s_idle => if sig_ctrl_dgwb.command_req = '1' then if (curr_active_block(sig_ctrl_dgwb.command) = dgwb) then sig_dgwb_state <= s_wait_admin; end if; end if; when s_wait_admin => case sig_ctrl_dgwb.command is when cmd_write_btp => sig_dgwb_state <= s_write_btp; when cmd_write_mtp => sig_dgwb_state <= s_write_mtp; when cmd_was => sig_dgwb_state <= s_write_wlat; when others => report dgwb_report_prefix & "unknown command" severity error; end case; if dgwb_ac_access_gnt /= '1' then sig_dgwb_state <= s_wait_admin; end if; when s_write_btp => sig_dgwb_state <= s_write_zeros; when s_write_zeros => if sig_dgwb_state = sig_dgwb_last_state and access_complete = '1' then sig_dgwb_state <= s_write_ones; end if; when s_write_ones => if sig_dgwb_state = sig_dgwb_last_state and access_complete = '1' then sig_dgwb_state <= s_release_admin; end if; when s_write_mtp => sig_dgwb_state <= s_write_01_pairs; when s_write_01_pairs => if sig_dgwb_state = sig_dgwb_last_state and access_complete = '1' then sig_dgwb_state <= s_write_1100_step; end if; when s_write_1100_step => if sig_dgwb_state = sig_dgwb_last_state and access_complete = '1' then sig_dgwb_state <= s_write_0011_step; end if; when s_write_0011_step => if sig_dgwb_state = sig_dgwb_last_state and access_complete = '1' then sig_dgwb_state <= s_release_admin; end if; when s_write_wlat => if sig_dgwb_state = sig_dgwb_last_state and access_complete = '1' then sig_dgwb_state <= s_release_admin; end if; when s_release_admin => if dgwb_ac_access_gnt = '0' then sig_dgwb_state <= s_idle; end if; when others => report dgwb_report_prefix & "undefined state in addr_cmd_proc" severity error; sig_dgwb_state <= s_idle; end case; sig_dgwb_last_state <= sig_dgwb_state; sig_ctrl_dgwb <= ctrl_dgwb; end if; end process; end generate; -- Generates writes ac_write_block : if True generate constant C_BURST_T : natural := C_CAL_BURST_LEN / DWIDTH_RATIO; -- Number of phy-clock cycles per burst constant C_MAX_WLAT : natural := 2**ADV_LAT_WIDTH-1; -- Maximum latency in clock cycles constant C_MAX_COUNT : natural := C_MAX_WLAT + C_BURST_T + 4*12 - 1; -- up to 12 consecutive writes at 4 cycle intervals -- The following function sets the width over which -- write latency should be repeated on the dq bus -- the default value is MEM_IF_DQ_PER_DQS function set_wlat_dq_rep_width return natural is begin for i in 1 to MEM_IF_DWIDTH/MEM_IF_DQ_PER_DQS loop if (i*MEM_IF_DQ_PER_DQS) >= ADV_LAT_WIDTH then return i*MEM_IF_DQ_PER_DQS; end if; end loop; report dgwb_report_prefix & "the specified maximum write latency cannot be fully represented in the given number of DQ pins" & LF & "** NOTE: This may cause overflow when setting ctl_wlat signal" severity warning; return MEM_IF_DQ_PER_DQS; end function; constant C_WLAT_DQ_REP_WIDTH : natural := set_wlat_dq_rep_width; signal sig_count : natural range 0 to 2**8 - 1; begin ac_write_proc : process(rst_n, clk) begin if rst_n = '0' then dgwb_wdp_ovride <= '0'; dgwb_dqs <= (others => '0'); dgwb_dm <= (others => '1'); dgwb_wdata <= (others => '0'); dgwb_dqs_burst <= (others => '0'); dgwb_wdata_valid <= (others => '0'); generate_wdata <= '0'; -- for s_write_wlat only sig_count <= 0; sig_addr_cmd <= int_pup_reset(c_seq_addr_cmd_config); access_complete <= '0'; elsif rising_edge(clk) then dgwb_wdp_ovride <= '0'; dgwb_dqs <= (others => '0'); dgwb_dm <= (others => '1'); dgwb_wdata <= (others => '0'); dgwb_dqs_burst <= (others => '0'); dgwb_wdata_valid <= (others => '0'); sig_addr_cmd <= deselect(c_seq_addr_cmd_config, sig_addr_cmd); access_complete <= '0'; generate_wdata <= '0'; -- for s_write_wlat only case sig_dgwb_state is when s_idle => sig_addr_cmd <= defaults(c_seq_addr_cmd_config); -- require ones in locations: -- 1. c_cal_ofs_ones (8 locations) -- 2. 2nd half of location c_cal_ofs_xF5 (4 locations) when s_write_ones => dgwb_wdp_ovride <= '1'; dgwb_dqs <= dqs_pattern; dgwb_dm <= (others => '0'); dgwb_dqs_burst <= (others => '1'); -- Write ONES to DQ pins dgwb_wdata <= (others => '1'); dgwb_wdata_valid <= (others => '1'); -- Issue write command if sig_dgwb_state /= sig_dgwb_last_state then sig_count <= 0; else -- ensure safe intervals for DDRx memory writes (min 4 mem clk cycles between writes for BC4 DDR3) if sig_count = 0 then sig_addr_cmd <= write(c_seq_addr_cmd_config, sig_addr_cmd, MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + c_cal_ofs_ones, -- address 2**current_cs, -- rank 4, -- burst length (fixed at BC4) false); -- auto-precharge elsif sig_count = 4 then sig_addr_cmd <= write(c_seq_addr_cmd_config, sig_addr_cmd, MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + c_cal_ofs_ones + 4, -- address 2**current_cs, -- rank 4, -- burst length (fixed at BC4) false); -- auto-precharge elsif sig_count = 8 then sig_addr_cmd <= write(c_seq_addr_cmd_config, sig_addr_cmd, MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + c_cal_ofs_xF5 + 4, -- address 2**current_cs, -- rank 4, -- burst length (fixed at BC4) false); -- auto-precharge end if; sig_count <= sig_count + 1; end if; if sig_count = C_MAX_COUNT - 1 then access_complete <= '1'; end if; -- require zeros in locations: -- 1. c_cal_ofs_zeros (8 locations) -- 2. 1st half of c_cal_ofs_x30_almt_0 (4 locations) -- 3. 1st half of c_cal_ofs_x30_almt_1 (4 locations) when s_write_zeros => dgwb_wdp_ovride <= '1'; dgwb_dqs <= dqs_pattern; dgwb_dm <= (others => '0'); dgwb_dqs_burst <= (others => '1'); -- Write ZEROS to DQ pins dgwb_wdata <= (others => '0'); dgwb_wdata_valid <= (others => '1'); -- Issue write command if sig_dgwb_state /= sig_dgwb_last_state then sig_count <= 0; else if sig_count = 0 then sig_addr_cmd <= write(c_seq_addr_cmd_config, sig_addr_cmd, MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + c_cal_ofs_zeros, -- address 2**current_cs, -- rank 4, -- burst length (fixed at BC4) false); -- auto-precharge elsif sig_count = 4 then sig_addr_cmd <= write(c_seq_addr_cmd_config, sig_addr_cmd, MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + c_cal_ofs_zeros + 4, -- address 2**current_cs, -- rank 4, -- burst length (fixed at BC4) false); -- auto-precharge elsif sig_count = 8 then sig_addr_cmd <= write(c_seq_addr_cmd_config, sig_addr_cmd, MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + c_cal_ofs_x30_almt_0, -- address 2**current_cs, -- rank 4, -- burst length (fixed at BC4) false); -- auto-precharge elsif sig_count = 12 then sig_addr_cmd <= write(c_seq_addr_cmd_config, sig_addr_cmd, MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + c_cal_ofs_x30_almt_1, -- address 2**current_cs, -- rank 4, -- burst length (fixed at BC4) false); -- auto-precharge end if; sig_count <= sig_count + 1; end if; if sig_count = C_MAX_COUNT - 1 then access_complete <= '1'; end if; -- require 0101 pattern in locations: -- 1. 1st half of location c_cal_ofs_xF5 (4 locations) when s_write_01_pairs => dgwb_wdp_ovride <= '1'; dgwb_dqs <= dqs_pattern; dgwb_dm <= (others => '0'); dgwb_dqs_burst <= (others => '1'); dgwb_wdata_valid <= (others => '1'); -- Issue write command if sig_dgwb_state /= sig_dgwb_last_state then sig_count <= 0; else if sig_count = 0 then sig_addr_cmd <= write(c_seq_addr_cmd_config, sig_addr_cmd, MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + c_cal_ofs_xF5, -- address 2**current_cs, -- rank 4, -- burst length false); -- auto-precharge end if; sig_count <= sig_count + 1; end if; if sig_count = C_MAX_COUNT - 1 then access_complete <= '1'; end if; -- Write 01 to pairs of memory addresses for i in 0 to dgwb_wdata'length / MEM_IF_DWIDTH - 1 loop if i mod 2 = 0 then dgwb_wdata((i+1)*MEM_IF_DWIDTH - 1 downto i*MEM_IF_DWIDTH) <= (others => '1'); else dgwb_wdata((i+1)*MEM_IF_DWIDTH - 1 downto i*MEM_IF_DWIDTH) <= (others => '0'); end if; end loop; -- require pattern "0011" (or "1100") in locations: -- 1. 2nd half of c_cal_ofs_x30_almt_0 (4 locations) when s_write_0011_step => dgwb_wdp_ovride <= '1'; dgwb_dqs <= dqs_pattern; dgwb_dm <= (others => '0'); dgwb_dqs_burst <= (others => '1'); dgwb_wdata_valid <= (others => '1'); -- Issue write command if sig_dgwb_state /= sig_dgwb_last_state then sig_addr_cmd <= write(c_seq_addr_cmd_config, sig_addr_cmd, MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + c_cal_ofs_x30_almt_0 + 4, -- address 2**current_cs, -- rank 4, -- burst length false); -- auto-precharge sig_count <= 0; else sig_count <= sig_count + 1; end if; if sig_count = C_MAX_COUNT - 1 then access_complete <= '1'; end if; -- Write 0011 step to column addresses. Note that -- it cannot be determined which at this point. The -- strategy is to write both alignments and see which -- one is correct later on. -- this calculation has 2 parts: -- a) sig_count mod C_BURST_T is a timewise iterator of repetition of the pattern -- b) i represents the temporal iterator of the pattern -- it is required to sum a and b and switch the pattern between 0 and 1 every 2 locations in each dimension -- Note: the same formulae is used below for the 1100 pattern for i in 0 to dgwb_wdata'length / MEM_IF_DWIDTH - 1 loop if ((sig_count mod C_BURST_T) + (i/2)) mod 2 = 0 then dgwb_wdata((i+1)*MEM_IF_DWIDTH - 1 downto i*MEM_IF_DWIDTH) <= (others => '0'); else dgwb_wdata((i+1)*MEM_IF_DWIDTH - 1 downto i*MEM_IF_DWIDTH) <= (others => '1'); end if; end loop; -- require pattern "1100" (or "0011") in locations: -- 1. 2nd half of c_cal_ofs_x30_almt_1 (4 locations) when s_write_1100_step => dgwb_wdp_ovride <= '1'; dgwb_dqs <= dqs_pattern; dgwb_dm <= (others => '0'); dgwb_dqs_burst <= (others => '1'); dgwb_wdata_valid <= (others => '1'); -- Issue write command if sig_dgwb_state /= sig_dgwb_last_state then sig_addr_cmd <= write(c_seq_addr_cmd_config, sig_addr_cmd, MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + c_cal_ofs_x30_almt_1 + 4, -- address 2**current_cs, -- rank 4, -- burst length false); -- auto-precharge sig_count <= 0; else sig_count <= sig_count + 1; end if; if sig_count = C_MAX_COUNT - 1 then access_complete <= '1'; end if; -- Write 1100 step to column addresses. Note that -- it cannot be determined which at this point. The -- strategy is to write both alignments and see which -- one is correct later on. for i in 0 to dgwb_wdata'length / MEM_IF_DWIDTH - 1 loop if ((sig_count mod C_BURST_T) + (i/2)) mod 2 = 0 then dgwb_wdata((i+1)*MEM_IF_DWIDTH - 1 downto i*MEM_IF_DWIDTH) <= (others => '1'); else dgwb_wdata((i+1)*MEM_IF_DWIDTH - 1 downto i*MEM_IF_DWIDTH) <= (others => '0'); end if; end loop; when s_write_wlat => -- Effect: -- *Writes the memory latency to an array formed -- from memory addr=[2*C_CAL_BURST_LEN-(3*C_CAL_BURST_LEN-1)]. -- The write latency is written to pairs of addresses -- across the given range. -- -- Example -- C_CAL_BURST_LEN = 4 -- addr 8 - 9 [WLAT] size = 2*MEM_IF_DWIDTH bits -- addr 10 - 11 [WLAT] size = 2*MEM_IF_DWIDTH bits -- dgwb_wdp_ovride <= '1'; dgwb_dqs <= dqs_pattern; dgwb_dm <= (others => '0'); dgwb_wdata <= (others => '0'); dgwb_dqs_burst <= (others => '1'); dgwb_wdata_valid <= (others => '1'); if sig_dgwb_state /= sig_dgwb_last_state then sig_addr_cmd <= write(c_seq_addr_cmd_config, -- A/C configuration sig_addr_cmd, MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + c_cal_ofs_wd_lat, -- address 2**current_cs, -- rank 8, -- burst length (8 for DDR3 and 4 for DDR/DDR2) false); -- auto-precharge sig_count <= 0; else -- hold wdata_valid and wdata 2 clock cycles -- 1 - because ac signal registered at top level of sequencer -- 2 - because want time to dqs_burst edge which occurs 1 cycle earlier -- than wdata_valid in an AFI compliant controller generate_wdata <= '1'; end if; if generate_wdata = '1' then for i in 0 to dgwb_wdata'length/C_WLAT_DQ_REP_WIDTH - 1 loop dgwb_wdata((i+1)*C_WLAT_DQ_REP_WIDTH - 1 downto i*C_WLAT_DQ_REP_WIDTH) <= std_logic_vector(to_unsigned(sig_count, C_WLAT_DQ_REP_WIDTH)); end loop; -- delay by 1 clock cycle to account for 1 cycle discrepancy -- between dqs_burst and wdata_valid if sig_count = C_MAX_COUNT then access_complete <= '1'; end if; sig_count <= sig_count + 1; end if; when others => null; end case; -- mask odt signal for i in 0 to (DWIDTH_RATIO/2)-1 loop sig_addr_cmd(i).odt <= odt_settings(current_cs).write; end loop; end if; end process; end generate; -- Handles handshaking for access to address/command ac_handshake_proc : process(rst_n, clk) begin if rst_n = '0' then dgwb_ctrl <= defaults; dgwb_ac_access_req <= '0'; elsif rising_edge(clk) then dgwb_ctrl <= defaults; dgwb_ac_access_req <= '0'; if sig_dgwb_state /= s_idle and sig_dgwb_state /= s_release_admin then dgwb_ac_access_req <= '1'; elsif sig_dgwb_state = s_idle or sig_dgwb_state = s_release_admin then dgwb_ac_access_req <= '0'; else report dgwb_report_prefix & "unexpected state in ac_handshake_proc so haven't requested access to address/command." severity warning; end if; if sig_dgwb_state = s_wait_admin and sig_dgwb_last_state = s_idle then dgwb_ctrl.command_ack <= '1'; end if; if sig_dgwb_state = s_idle and sig_dgwb_last_state = s_release_admin then dgwb_ctrl.command_done <= '1'; end if; end if; end process; end architecture rtl; -- -- ----------------------------------------------------------------------------- -- Abstract : ctrl block for the non-levelling AFI PHY sequencer -- This block is the central control unit for the sequencer. The method -- of control is to issue commands (prefixed cmd_) to each of the other -- sequencer blocks to execute. Each command corresponds to a stage of -- the AFI PHY calibaration stage, and in turn each state represents a -- command or a supplimentary flow control operation. In addition to -- controlling the sequencer this block also checks for time out -- conditions which occur when a different system block is faulty. -- ----------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; -- The record package (alt_mem_phy_record_pkg) is used to combine command and status signals -- (into records) to be passed between sequencer blocks. It also contains type and record definitions -- for the stages of DRAM memory calibration. -- use work.ddr_ctrl_ip_phy_alt_mem_phy_record_pkg.all; -- The iram address package (alt_mem_phy_iram_addr_pkg) is used to define the base addresses used -- for iram writes during calibration -- use work.ddr_ctrl_ip_phy_alt_mem_phy_iram_addr_pkg.all; -- entity ddr_ctrl_ip_phy_alt_mem_phy_ctrl is generic ( FAMILYGROUP_ID : natural; MEM_IF_DLL_LOCK_COUNT : natural; MEM_IF_MEMTYPE : string; DWIDTH_RATIO : natural; IRAM_ADDRESSING : t_base_hdr_addresses; MEM_IF_CLK_PS : natural; TRACKING_INTERVAL_IN_MS : natural; MEM_IF_NUM_RANKS : natural; MEM_IF_DQS_WIDTH : natural; GENERATE_ADDITIONAL_DBG_RTL : natural; SIM_TIME_REDUCTIONS : natural; -- if 0 null, if 1 skip rrp, if 2 rrp for 1 dqs group and 1 cs ACK_SEVERITY : severity_level ); port ( -- clk / reset clk : in std_logic; rst_n : in std_logic; -- calibration status and redo request ctl_init_success : out std_logic; ctl_init_fail : out std_logic; ctl_recalibrate_req : in std_logic; -- acts as a synchronous reset -- status signals from iram iram_status : in t_iram_stat; iram_push_done : in std_logic; -- standard control signal to all blocks ctrl_op_rec : out t_ctrl_command; -- standardised response from all system blocks admin_ctrl : in t_ctrl_stat; dgrb_ctrl : in t_ctrl_stat; dgwb_ctrl : in t_ctrl_stat; -- mmi to ctrl interface mmi_ctrl : in t_mmi_ctrl; ctrl_mmi : out t_ctrl_mmi; -- byte lane select ctl_cal_byte_lanes : in std_logic_vector(MEM_IF_NUM_RANKS * MEM_IF_DQS_WIDTH - 1 downto 0); -- signals to control the ac_nt setting dgrb_ctrl_ac_nt_good : in std_logic; int_ac_nt : out std_logic_vector(((DWIDTH_RATIO+2)/4) - 1 downto 0); -- width of 1 for DWIDTH_RATIO =2,4 and 2 for DWIDTH_RATIO = 8 -- the following signals are reserved for future use ctrl_iram_push : out t_ctrl_iram ); end entity; library work; -- The constant package (alt_mem_phy_constants_pkg) contains global 'constants' which are fixed -- thoughout the sequencer and will not change (for constants which may change between sequencer -- instances generics are used) -- use work.ddr_ctrl_ip_phy_alt_mem_phy_constants_pkg.all; -- architecture struct of ddr_ctrl_ip_phy_alt_mem_phy_ctrl is -- a prefix for all report signals to identify phy and sequencer block -- constant ctrl_report_prefix : string := "ddr_ctrl_ip_phy_alt_mem_phy_seq (ctrl) : "; -- decoder to find the relevant disable bit (from mmi registers) for a given state function find_dis_bit ( state : t_master_sm_state; mmi_ctrl : t_mmi_ctrl ) return std_logic is variable v_dis : std_logic; begin case state is when s_phy_initialise => v_dis := mmi_ctrl.hl_css.phy_initialise_dis; when s_init_dram | s_prog_cal_mr => v_dis := mmi_ctrl.hl_css.init_dram_dis; when s_write_ihi => v_dis := mmi_ctrl.hl_css.write_ihi_dis; when s_cal => v_dis := mmi_ctrl.hl_css.cal_dis; when s_write_btp => v_dis := mmi_ctrl.hl_css.write_btp_dis; when s_write_mtp => v_dis := mmi_ctrl.hl_css.write_mtp_dis; when s_read_mtp => v_dis := mmi_ctrl.hl_css.read_mtp_dis; when s_rrp_reset => v_dis := mmi_ctrl.hl_css.rrp_reset_dis; when s_rrp_sweep => v_dis := mmi_ctrl.hl_css.rrp_sweep_dis; when s_rrp_seek => v_dis := mmi_ctrl.hl_css.rrp_seek_dis; when s_rdv => v_dis := mmi_ctrl.hl_css.rdv_dis; when s_poa => v_dis := mmi_ctrl.hl_css.poa_dis; when s_was => v_dis := mmi_ctrl.hl_css.was_dis; when s_adv_rd_lat => v_dis := mmi_ctrl.hl_css.adv_rd_lat_dis; when s_adv_wr_lat => v_dis := mmi_ctrl.hl_css.adv_wr_lat_dis; when s_prep_customer_mr_setup => v_dis := mmi_ctrl.hl_css.prep_customer_mr_setup_dis; when s_tracking_setup | s_tracking => v_dis := mmi_ctrl.hl_css.tracking_dis; when others => v_dis := '1'; -- default change stage end case; return v_dis; end function; -- decoder to find the relevant command for a given state function find_cmd ( state : t_master_sm_state ) return t_ctrl_cmd_id is begin case state is when s_phy_initialise => return cmd_phy_initialise; when s_init_dram => return cmd_init_dram; when s_prog_cal_mr => return cmd_prog_cal_mr; when s_write_ihi => return cmd_write_ihi; when s_cal => return cmd_idle; when s_write_btp => return cmd_write_btp; when s_write_mtp => return cmd_write_mtp; when s_read_mtp => return cmd_read_mtp; when s_rrp_reset => return cmd_rrp_reset; when s_rrp_sweep => return cmd_rrp_sweep; when s_rrp_seek => return cmd_rrp_seek; when s_rdv => return cmd_rdv; when s_poa => return cmd_poa; when s_was => return cmd_was; when s_adv_rd_lat => return cmd_prep_adv_rd_lat; when s_adv_wr_lat => return cmd_prep_adv_wr_lat; when s_prep_customer_mr_setup => return cmd_prep_customer_mr_setup; when s_tracking_setup | s_tracking => return cmd_tr_due; when others => return cmd_idle; end case; end function; function mcs_rw_state -- returns true for multiple cs read/write states ( state : t_master_sm_state ) return boolean is begin case state is when s_write_btp | s_write_mtp | s_rrp_sweep => return true; when s_reset | s_phy_initialise | s_init_dram | s_prog_cal_mr | s_write_ihi | s_cal | s_read_mtp | s_rrp_reset | s_rrp_seek | s_rdv | s_poa | s_was | s_adv_rd_lat | s_adv_wr_lat | s_prep_customer_mr_setup | s_tracking_setup | s_tracking | s_operational | s_non_operational => return false; when others => -- return false; end case; end function; -- timing parameters constant c_done_timeout_count : natural := 32768; constant c_ack_timeout_count : natural := 1000; constant c_ticks_per_ms : natural := 1000000000/(MEM_IF_CLK_PS*(DWIDTH_RATIO/2)); constant c_ticks_per_10us : natural := 10000000 /(MEM_IF_CLK_PS*(DWIDTH_RATIO/2)); -- local copy of calibration fail/success signals signal int_ctl_init_fail : std_logic; signal int_ctl_init_success : std_logic; -- state machine (master for sequencer) signal state : t_master_sm_state; signal last_state : t_master_sm_state; -- flow control signals for state machine signal dis_state : std_logic; -- disable state signal hold_state : std_logic; -- hold in state for 1 clock cycle signal master_ctrl_op_rec : t_ctrl_command; -- master command record to all sequencer blocks signal master_ctrl_iram_push : t_ctrl_iram; -- record indicating control details for pushes signal dll_lock_counter : natural range MEM_IF_DLL_LOCK_COUNT - 1 downto 0; -- to wait for dll to lock signal iram_init_complete : std_logic; -- timeout signals to check if a block has 'hung' signal timeout_counter : natural range c_done_timeout_count - 1 downto 0; signal timeout_counter_stop : std_logic; signal timeout_counter_enable : std_logic; signal timeout_counter_clear : std_logic; signal cmd_req_asserted : std_logic; -- a command has been issued signal flag_ack_timeout : std_logic; -- req -> ack timed out signal flag_done_timeout : std_logic; -- reg -> done timed out signal waiting_for_ack : std_logic; -- command issued signal cmd_ack_seen : std_logic; -- command completed signal curr_ctrl : t_ctrl_stat; -- response for current active block signal curr_cmd : t_ctrl_cmd_id; -- store state information based on issued command signal int_ctrl_prev_stage : t_ctrl_cmd_id; signal int_ctrl_current_stage : t_ctrl_cmd_id; -- multiple chip select counter signal cs_counter : natural range 0 to MEM_IF_NUM_RANKS - 1; signal reissue_cmd_req : std_logic; -- reissue command request for multiple cs signal cal_cs_enabled : std_logic_vector(MEM_IF_NUM_RANKS - 1 downto 0); -- signals to check the ac_nt setting signal ac_nt_almts_checked : natural range 0 to DWIDTH_RATIO/2-1; signal ac_nt : std_logic_vector(((DWIDTH_RATIO+2)/4) - 1 downto 0); -- track the mtp alignment setting signal mtp_almts_checked : natural range 0 to 2; signal mtp_correct_almt : natural range 0 to 1; signal mtp_no_valid_almt : std_logic; signal mtp_both_valid_almt : std_logic; signal mtp_err : std_logic; -- tracking timing signal milisecond_tick_gen_count : natural range 0 to c_ticks_per_ms -1 := c_ticks_per_ms -1; signal tracking_ms_counter : natural range 0 to 255; signal tracking_update_due : std_logic; begin -- architecture struct ------------------------------------------------------------------------------- -- check if chip selects are enabled -- this only effects reactive stages (i,e, those requiring memory reads) ------------------------------------------------------------------------------- process(ctl_cal_byte_lanes) variable v_cs_enabled : std_logic; begin for i in 0 to MEM_IF_NUM_RANKS - 1 loop -- check if any bytes enabled v_cs_enabled := '0'; for j in 0 to MEM_IF_DQS_WIDTH - 1 loop v_cs_enabled := v_cs_enabled or ctl_cal_byte_lanes(i*MEM_IF_DQS_WIDTH + j); end loop; -- if any byte enabled set cs as enabled else not cal_cs_enabled(i) <= v_cs_enabled; -- sanity checking: if i = 0 and v_cs_enabled = '0' then report ctrl_report_prefix & " disabling of chip select 0 is unsupported by the sequencer," & LF & "-> if this is your intention then please remap CS pins such that CS 0 is not disabled" severity failure; end if; end loop; end process; -- ----------------------------------------------------------------------------- -- dll lock counter -- ----------------------------------------------------------------------------- process(clk, rst_n) begin if rst_n = '0' then dll_lock_counter <= MEM_IF_DLL_LOCK_COUNT -1; elsif rising_edge(clk) then if ctl_recalibrate_req = '1' then dll_lock_counter <= MEM_IF_DLL_LOCK_COUNT -1; elsif dll_lock_counter /= 0 then dll_lock_counter <= dll_lock_counter - 1; end if; end if; end process; -- ----------------------------------------------------------------------------- -- timeout counter : this counter is used to determine if an ack, or done has -- not been received within the expected number of clock cycles of a req being -- asserted. -- ----------------------------------------------------------------------------- process(clk, rst_n) begin if rst_n = '0' then timeout_counter <= c_done_timeout_count - 1; elsif rising_edge(clk) then if timeout_counter_clear = '1' then timeout_counter <= c_done_timeout_count - 1; elsif timeout_counter_enable = '1' and state /= s_init_dram then if timeout_counter /= 0 then timeout_counter <= timeout_counter - 1; end if; end if; end if; end process; -- ----------------------------------------------------------------------------- -- register current ctrl signal based on current command -- ----------------------------------------------------------------------------- process(clk, rst_n) begin if rst_n = '0' then curr_ctrl <= defaults; curr_cmd <= cmd_idle; elsif rising_edge(clk) then case curr_active_block(curr_cmd) is when admin => curr_ctrl <= admin_ctrl; when dgrb => curr_ctrl <= dgrb_ctrl; when dgwb => curr_ctrl <= dgwb_ctrl; when others => curr_ctrl <= defaults; end case; curr_cmd <= master_ctrl_op_rec.command; end if; end process; -- ----------------------------------------------------------------------------- -- generation of cmd_ack_seen -- ----------------------------------------------------------------------------- process (curr_ctrl) begin cmd_ack_seen <= curr_ctrl.command_ack; end process; ------------------------------------------------------------------------------- -- generation of waiting_for_ack flag (to determine whether ack has timed out) ------------------------------------------------------------------------------- process(clk, rst_n) begin if rst_n = '0' then waiting_for_ack <= '0'; elsif rising_edge(clk) then if cmd_req_asserted = '1' then waiting_for_ack <= '1'; elsif cmd_ack_seen = '1' then waiting_for_ack <= '0'; end if; end if; end process; -- ----------------------------------------------------------------------------- -- generation of timeout flags -- ----------------------------------------------------------------------------- process(clk, rst_n) begin if rst_n = '0' then flag_ack_timeout <= '0'; flag_done_timeout <= '0'; elsif rising_edge(clk) then if mmi_ctrl.calibration_start = '1' or ctl_recalibrate_req = '1' then flag_ack_timeout <= '0'; elsif timeout_counter = 0 and waiting_for_ack = '1' then flag_ack_timeout <= '1'; end if; if mmi_ctrl.calibration_start = '1' or ctl_recalibrate_req = '1' then flag_done_timeout <= '0'; elsif timeout_counter = 0 and state /= s_rrp_sweep and -- rrp can take enough cycles to overflow counter so don't timeout state /= s_init_dram and -- init_dram takes about 200 us, so don't timeout timeout_counter_clear /= '1' then -- check if currently clearing the timeout (i.e. command_done asserted for s_init_dram or s_rrp_sweep) flag_done_timeout <= '1'; end if; end if; end process; -- generation of timeout_counter_stop timeout_counter_stop <= curr_ctrl.command_done; -- ----------------------------------------------------------------------------- -- generation of timeout_counter_enable and timeout_counter_clear -- ----------------------------------------------------------------------------- process(clk, rst_n) begin if rst_n = '0' then timeout_counter_enable <= '0'; timeout_counter_clear <= '0'; elsif rising_edge(clk) then if cmd_req_asserted = '1' then timeout_counter_enable <= '1'; timeout_counter_clear <= '0'; elsif timeout_counter_stop = '1' or state = s_operational or state = s_non_operational or state = s_reset then timeout_counter_enable <= '0'; timeout_counter_clear <= '1'; end if; end if; end process; ------------------------------------------------------------------------------- -- assignment to ctrl_mmi record ------------------------------------------------------------------------------- process (clk, rst_n) variable v_ctrl_mmi : t_ctrl_mmi; begin if rst_n = '0' then v_ctrl_mmi := defaults; ctrl_mmi <= defaults; int_ctrl_prev_stage <= cmd_idle; int_ctrl_current_stage <= cmd_idle; elsif rising_edge(clk) then ctrl_mmi <= v_ctrl_mmi; v_ctrl_mmi.ctrl_calibration_success := '0'; v_ctrl_mmi.ctrl_calibration_fail := '0'; if (curr_ctrl.command_ack = '1') then case state is when s_init_dram => v_ctrl_mmi.ctrl_cal_stage_ack_seen.init_dram := '1'; when s_write_btp => v_ctrl_mmi.ctrl_cal_stage_ack_seen.write_btp := '1'; when s_write_mtp => v_ctrl_mmi.ctrl_cal_stage_ack_seen.write_mtp := '1'; when s_read_mtp => v_ctrl_mmi.ctrl_cal_stage_ack_seen.read_mtp := '1'; when s_rrp_reset => v_ctrl_mmi.ctrl_cal_stage_ack_seen.rrp_reset := '1'; when s_rrp_sweep => v_ctrl_mmi.ctrl_cal_stage_ack_seen.rrp_sweep := '1'; when s_rrp_seek => v_ctrl_mmi.ctrl_cal_stage_ack_seen.rrp_seek := '1'; when s_rdv => v_ctrl_mmi.ctrl_cal_stage_ack_seen.rdv := '1'; when s_poa => v_ctrl_mmi.ctrl_cal_stage_ack_seen.poa := '1'; when s_was => v_ctrl_mmi.ctrl_cal_stage_ack_seen.was := '1'; when s_adv_rd_lat => v_ctrl_mmi.ctrl_cal_stage_ack_seen.adv_rd_lat := '1'; when s_adv_wr_lat => v_ctrl_mmi.ctrl_cal_stage_ack_seen.adv_wr_lat := '1'; when s_prep_customer_mr_setup => v_ctrl_mmi.ctrl_cal_stage_ack_seen.prep_customer_mr_setup := '1'; when s_tracking_setup | s_tracking => v_ctrl_mmi.ctrl_cal_stage_ack_seen.tracking_setup := '1'; when others => null; end case; end if; -- special 'ack' (actually finished) triggers for phy_initialise, writing iram header info and s_cal if state = s_phy_initialise then if iram_status.init_done = '1' and dll_lock_counter = 0 then v_ctrl_mmi.ctrl_cal_stage_ack_seen.phy_initialise := '1'; end if; end if; if state = s_write_ihi then if iram_push_done = '1' then v_ctrl_mmi.ctrl_cal_stage_ack_seen.write_ihi := '1'; end if; end if; if state = s_cal and find_dis_bit(state, mmi_ctrl) = '0' then -- if cal state and calibration not disabled acknowledge v_ctrl_mmi.ctrl_cal_stage_ack_seen.cal := '1'; end if; if state = s_operational then v_ctrl_mmi.ctrl_calibration_success := '1'; end if; if state = s_non_operational then v_ctrl_mmi.ctrl_calibration_fail := '1'; end if; if state /= s_non_operational then v_ctrl_mmi.ctrl_current_active_block := master_ctrl_iram_push.active_block; v_ctrl_mmi.ctrl_current_stage := master_ctrl_op_rec.command; else v_ctrl_mmi.ctrl_current_active_block := v_ctrl_mmi.ctrl_current_active_block; v_ctrl_mmi.ctrl_current_stage := v_ctrl_mmi.ctrl_current_stage; end if; int_ctrl_prev_stage <= int_ctrl_current_stage; int_ctrl_current_stage <= v_ctrl_mmi.ctrl_current_stage; if int_ctrl_prev_stage /= int_ctrl_current_stage then v_ctrl_mmi.ctrl_current_stage_done := '0'; else if curr_ctrl.command_done = '1' then v_ctrl_mmi.ctrl_current_stage_done := '1'; end if; end if; v_ctrl_mmi.master_state_r := last_state; if mmi_ctrl.calibration_start = '1' or ctl_recalibrate_req = '1' then v_ctrl_mmi := defaults; ctrl_mmi <= defaults; end if; -- assert error codes here if curr_ctrl.command_err = '1' then v_ctrl_mmi.ctrl_err_code := curr_ctrl.command_result; elsif flag_ack_timeout = '1' then v_ctrl_mmi.ctrl_err_code := std_logic_vector(to_unsigned(c_err_ctrl_ack_timeout, v_ctrl_mmi.ctrl_err_code'length)); elsif flag_done_timeout = '1' then v_ctrl_mmi.ctrl_err_code := std_logic_vector(to_unsigned(c_err_ctrl_done_timeout, v_ctrl_mmi.ctrl_err_code'length)); elsif mtp_err = '1' then if mtp_no_valid_almt = '1' then v_ctrl_mmi.ctrl_err_code := std_logic_vector(to_unsigned(C_ERR_READ_MTP_NO_VALID_ALMT, v_ctrl_mmi.ctrl_err_code'length)); elsif mtp_both_valid_almt = '1' then v_ctrl_mmi.ctrl_err_code := std_logic_vector(to_unsigned(C_ERR_READ_MTP_BOTH_ALMT_PASS, v_ctrl_mmi.ctrl_err_code'length)); end if; end if; end if; end process; -- check if iram finished init process(iram_status) begin if GENERATE_ADDITIONAL_DBG_RTL = 0 then iram_init_complete <= '1'; else iram_init_complete <= iram_status.init_done; end if; end process; -- ----------------------------------------------------------------------------- -- master state machine -- (this controls the operation of the entire sequencer) -- the states are summarised as follows: -- s_reset -- s_phy_initialise - wait for dll lock and init done flag from iram -- s_init_dram, -- dram initialisation - reset sequence -- s_prog_cal_mr, -- dram initialisation - programming mode registers (once per chip select) -- s_write_ihi - write header information in iRAM -- s_cal - check if calibration to be executed -- s_write_btp - write burst training pattern -- s_write_mtp - write more training pattern -- s_rrp_reset - read resync phase setup - reset initial conditions -- s_rrp_sweep - read resync phase setup - sweep phases per chip select -- s_read_mtp - read training patterns to find correct alignment for 1100 burst -- (this is a special case of s_rrp_seek with no resych phase setting) -- s_rrp_seek - read resync phase setup - seek correct alignment -- s_rdv - read data valid setup -- s_poa - calibrate the postamble -- s_was - write datapath setup (ac to write data timing) -- s_adv_rd_lat - advertise read latency -- s_adv_wr_lat - advertise write latency -- s_tracking_setup - perform tracking (1st pass to setup mimic window) -- s_prep_customer_mr_setup - apply user mode register settings (in admin block) -- s_tracking - perform tracking (subsequent passes in user mode) -- s_operational - calibration successful and in user mode -- s_non_operational - calibration unsuccessful and in user mode -- ----------------------------------------------------------------------------- process(clk, rst_n) variable v_seen_ack : boolean; variable v_dis : std_logic; -- disable bit begin if rst_n = '0' then state <= s_reset; last_state <= s_reset; int_ctl_init_success <= '0'; int_ctl_init_fail <= '0'; v_seen_ack := false; hold_state <= '0'; cs_counter <= 0; mtp_almts_checked <= 0; ac_nt <= (others => '1'); ac_nt_almts_checked <= 0; reissue_cmd_req <= '0'; dis_state <= '0'; elsif rising_edge(clk) then last_state <= state; -- check if state_tx required if curr_ctrl.command_ack = '1' then v_seen_ack := true; end if; -- find disable bit for current state (do once to avoid exit mid-state) if state /= last_state then dis_state <= find_dis_bit(state, mmi_ctrl); end if; -- Set special conditions: if state = s_reset or state = s_operational or state = s_non_operational then dis_state <= '1'; end if; -- override to ensure execution of next state logic if (state = s_cal) then dis_state <= '1'; end if; -- if header writing in iram check finished if (state = s_write_ihi) then if iram_push_done = '1' or mmi_ctrl.hl_css.write_ihi_dis = '1' then dis_state <= '1'; else dis_state <= '0'; end if; end if; -- Special condition for initialisation if (state = s_phy_initialise) then if ((dll_lock_counter = 0) and (iram_init_complete = '1')) or (mmi_ctrl.hl_css.phy_initialise_dis = '1') then dis_state <= '1'; else dis_state <= '0'; end if; end if; if dis_state = '1' then v_seen_ack := false; elsif curr_ctrl.command_done = '1' then if v_seen_ack = false then report ctrl_report_prefix & "have not seen ack but have seen command done from " & t_ctrl_active_block'image(curr_active_block(master_ctrl_op_rec.command)) & "_block in state " & t_master_sm_state'image(state) severity warning; end if; v_seen_ack := false; end if; -- default do not reissue command request reissue_cmd_req <= '0'; if (hold_state = '1') then hold_state <= '0'; else if ((dis_state = '1') or (curr_ctrl.command_done = '1') or ((cal_cs_enabled(cs_counter) = '0') and (mcs_rw_state(state) = True))) then -- current chip select is disabled and read/write hold_state <= '1'; -- Only reset the below if making state change int_ctl_init_success <= '0'; int_ctl_init_fail <= '0'; -- default chip select counter gets reset to zero cs_counter <= 0; case state is when s_reset => state <= s_phy_initialise; ac_nt <= (others => '1'); mtp_almts_checked <= 0; ac_nt_almts_checked <= 0; when s_phy_initialise => state <= s_init_dram; when s_init_dram => state <= s_prog_cal_mr; when s_prog_cal_mr => if cs_counter = MEM_IF_NUM_RANKS - 1 then -- if no debug interface don't write iram header if GENERATE_ADDITIONAL_DBG_RTL = 1 then state <= s_write_ihi; else state <= s_cal; end if; else cs_counter <= cs_counter + 1; reissue_cmd_req <= '1'; end if; when s_write_ihi => state <= s_cal; when s_cal => if mmi_ctrl.hl_css.cal_dis = '0' then state <= s_write_btp; else state <= s_tracking_setup; end if; -- always enter s_cal before calibration so reset some variables here mtp_almts_checked <= 0; ac_nt_almts_checked <= 0; when s_write_btp => if cs_counter = MEM_IF_NUM_RANKS-1 or SIM_TIME_REDUCTIONS = 2 then state <= s_write_mtp; else cs_counter <= cs_counter + 1; -- only reissue command if current chip select enabled if cal_cs_enabled(cs_counter + 1) = '1' then reissue_cmd_req <= '1'; end if; end if; when s_write_mtp => if cs_counter = MEM_IF_NUM_RANKS - 1 or SIM_TIME_REDUCTIONS = 2 then if SIM_TIME_REDUCTIONS = 1 then state <= s_rdv; else state <= s_rrp_reset; end if; else cs_counter <= cs_counter + 1; -- only reissue command if current chip select enabled if cal_cs_enabled(cs_counter + 1) = '1' then reissue_cmd_req <= '1'; end if; end if; when s_rrp_reset => state <= s_rrp_sweep; when s_rrp_sweep => if cs_counter = MEM_IF_NUM_RANKS - 1 or mtp_almts_checked /= 2 or SIM_TIME_REDUCTIONS = 2 then if mtp_almts_checked /= 2 then state <= s_read_mtp; else state <= s_rrp_seek; end if; else cs_counter <= cs_counter + 1; -- only reissue command if current chip select enabled if cal_cs_enabled(cs_counter + 1) = '1' then reissue_cmd_req <= '1'; end if; end if; when s_read_mtp => if mtp_almts_checked /= 2 then mtp_almts_checked <= mtp_almts_checked + 1; end if; state <= s_rrp_reset; when s_rrp_seek => state <= s_rdv; when s_rdv => state <= s_was; when s_was => state <= s_adv_rd_lat; when s_adv_rd_lat => state <= s_adv_wr_lat; when s_adv_wr_lat => if dgrb_ctrl_ac_nt_good = '1' then state <= s_poa; else if ac_nt_almts_checked = (DWIDTH_RATIO/2 - 1) then state <= s_non_operational; else -- switch alignment and restart calibration ac_nt <= std_logic_vector(unsigned(ac_nt) + 1); ac_nt_almts_checked <= ac_nt_almts_checked + 1; if SIM_TIME_REDUCTIONS = 1 then state <= s_rdv; else state <= s_rrp_reset; end if; mtp_almts_checked <= 0; end if; end if; when s_poa => state <= s_tracking_setup; when s_tracking_setup => state <= s_prep_customer_mr_setup; when s_prep_customer_mr_setup => if cs_counter = MEM_IF_NUM_RANKS - 1 then -- s_prep_customer_mr_setup is always performed over all cs state <= s_operational; else cs_counter <= cs_counter + 1; reissue_cmd_req <= '1'; end if; when s_tracking => state <= s_operational; int_ctl_init_success <= int_ctl_init_success; int_ctl_init_fail <= int_ctl_init_fail; when s_operational => int_ctl_init_success <= '1'; int_ctl_init_fail <= '0'; hold_state <= '0'; if tracking_update_due = '1' and mmi_ctrl.hl_css.tracking_dis = '0' then state <= s_tracking; hold_state <= '1'; end if; when s_non_operational => int_ctl_init_success <= '0'; int_ctl_init_fail <= '1'; hold_state <= '0'; if last_state /= s_non_operational then -- print a warning on entering this state report ctrl_report_prefix & "memory calibration has failed (output from ctrl block)" severity WARNING; end if; when others => state <= t_master_sm_state'succ(state); end case; end if; end if; if flag_done_timeout = '1' -- no done signal from current active block or flag_ack_timeout = '1' -- or no ack signal from current active block or curr_ctrl.command_err = '1' -- or an error from current active block or mtp_err = '1' then -- or an error due to mtp alignment state <= s_non_operational; end if; if mmi_ctrl.calibration_start = '1' then -- restart calibration process state <= s_cal; end if; if ctl_recalibrate_req = '1' then -- restart all incl. initialisation state <= s_reset; end if; end if; end process; -- generate output calibration fail/success signals process(clk, rst_n) begin if rst_n = '0' then ctl_init_fail <= '0'; ctl_init_success <= '0'; elsif rising_edge(clk) then ctl_init_fail <= int_ctl_init_fail; ctl_init_success <= int_ctl_init_success; end if; end process; -- assign ac_nt to the output int_ac_nt process(ac_nt) begin int_ac_nt <= ac_nt; end process; -- ------------------------------------------------------------------------------ -- find correct mtp_almt from returned data -- ------------------------------------------------------------------------------ mtp_almt: block signal dvw_size_a0 : natural range 0 to 255; -- maximum size of command result signal dvw_size_a1 : natural range 0 to 255; begin process (clk, rst_n) variable v_dvw_a0_small : boolean; variable v_dvw_a1_small : boolean; begin if rst_n = '0' then mtp_correct_almt <= 0; dvw_size_a0 <= 0; dvw_size_a1 <= 0; mtp_no_valid_almt <= '0'; mtp_both_valid_almt <= '0'; mtp_err <= '0'; elsif rising_edge(clk) then -- update the dvw sizes if state = s_read_mtp then if curr_ctrl.command_done = '1' then if mtp_almts_checked = 0 then dvw_size_a0 <= to_integer(unsigned(curr_ctrl.command_result)); else dvw_size_a1 <= to_integer(unsigned(curr_ctrl.command_result)); end if; end if; end if; -- check dvw size and set mtp almt if dvw_size_a0 < dvw_size_a1 then mtp_correct_almt <= 1; else mtp_correct_almt <= 0; end if; -- error conditions if mtp_almts_checked = 2 and GENERATE_ADDITIONAL_DBG_RTL = 1 then -- if finished alignment checking (and GENERATE_ADDITIONAL_DBG_RTL set) -- perform size checks once per dvw if dvw_size_a0 < 3 then v_dvw_a0_small := true; else v_dvw_a0_small := false; end if; if dvw_size_a1 < 3 then v_dvw_a1_small := true; else v_dvw_a1_small := false; end if; if v_dvw_a0_small = true and v_dvw_a1_small = true then mtp_no_valid_almt <= '1'; mtp_err <= '1'; end if; if v_dvw_a0_small = false and v_dvw_a1_small = false then mtp_both_valid_almt <= '1'; mtp_err <= '1'; end if; else mtp_no_valid_almt <= '0'; mtp_both_valid_almt <= '0'; mtp_err <= '0'; end if; end if; end process; end block; -- ------------------------------------------------------------------------------ -- process to generate command outputs, based on state, last_state and mmi_ctrl. -- asynchronously -- ------------------------------------------------------------------------------ process (state, last_state, mmi_ctrl, reissue_cmd_req, cs_counter, mtp_almts_checked, mtp_correct_almt) begin master_ctrl_op_rec <= defaults; master_ctrl_iram_push <= defaults; case state is -- special condition states when s_reset | s_phy_initialise | s_cal => null; when s_write_ihi => if mmi_ctrl.hl_css.write_ihi_dis = '0' then master_ctrl_op_rec.command <= find_cmd(state); if state /= last_state then master_ctrl_op_rec.command_req <= '1'; end if; end if; when s_operational | s_non_operational => master_ctrl_op_rec.command <= find_cmd(state); when others => -- default condition for most states if find_dis_bit(state, mmi_ctrl) = '0' then master_ctrl_op_rec.command <= find_cmd(state); if state /= last_state or reissue_cmd_req = '1' then master_ctrl_op_rec.command_req <= '1'; end if; else if state = last_state then -- safe state exit if state disabled mid-calibration master_ctrl_op_rec.command <= find_cmd(state); end if; end if; end case; -- for multiple chip select commands assign operand to cs_counter master_ctrl_op_rec.command_op <= defaults; master_ctrl_op_rec.command_op.current_cs <= cs_counter; if state = s_rrp_sweep or state = s_read_mtp or state = s_poa then if mtp_almts_checked /= 2 or SIM_TIME_REDUCTIONS = 2 then master_ctrl_op_rec.command_op.single_bit <= '1'; end if; if mtp_almts_checked /= 2 then master_ctrl_op_rec.command_op.mtp_almt <= mtp_almts_checked; else master_ctrl_op_rec.command_op.mtp_almt <= mtp_correct_almt; end if; end if; -- set write mode and packing mode for iram if GENERATE_ADDITIONAL_DBG_RTL = 1 then case state is when s_rrp_sweep => master_ctrl_iram_push.write_mode <= overwrite_ram; master_ctrl_iram_push.packing_mode <= dq_bitwise; when s_rrp_seek | s_read_mtp => master_ctrl_iram_push.write_mode <= overwrite_ram; master_ctrl_iram_push.packing_mode <= dq_wordwise; when others => null; end case; end if; -- set current active block master_ctrl_iram_push.active_block <= curr_active_block(find_cmd(state)); end process; -- some concurc_read_burst_trent assignments to outputs process (master_ctrl_iram_push, master_ctrl_op_rec) begin ctrl_iram_push <= master_ctrl_iram_push; ctrl_op_rec <= master_ctrl_op_rec; cmd_req_asserted <= master_ctrl_op_rec.command_req; end process; -- ----------------------------------------------------------------------------- -- tracking interval counter -- ----------------------------------------------------------------------------- process(clk, rst_n) begin if rst_n = '0' then milisecond_tick_gen_count <= c_ticks_per_ms -1; tracking_ms_counter <= 0; tracking_update_due <= '0'; elsif rising_edge(clk) then if state = s_operational and last_state/= s_operational then if mmi_ctrl.tracking_orvd_to_10ms = '1' then milisecond_tick_gen_count <= c_ticks_per_10us -1; else milisecond_tick_gen_count <= c_ticks_per_ms -1; end if; tracking_ms_counter <= mmi_ctrl.tracking_period_ms; elsif state = s_operational then if milisecond_tick_gen_count = 0 and tracking_update_due /= '1' then if tracking_ms_counter = 0 then tracking_update_due <= '1'; else tracking_ms_counter <= tracking_ms_counter -1; end if; if mmi_ctrl.tracking_orvd_to_10ms = '1' then milisecond_tick_gen_count <= c_ticks_per_10us -1; else milisecond_tick_gen_count <= c_ticks_per_ms -1; end if; elsif milisecond_tick_gen_count /= 0 then milisecond_tick_gen_count <= milisecond_tick_gen_count -1; end if; else tracking_update_due <= '0'; end if; end if; end process; end architecture struct; -- -- ----------------------------------------------------------------------------- -- Abstract : top level for the non-levelling AFI PHY sequencer -- The top level instances the sub-blocks of the AFI PHY -- sequencer. In addition a number of multiplexing and high- -- level control operations are performed. This includes the -- multiplexing and generation of control signals for: the -- address and command DRAM interface and pll, oct and datapath -- latency control signals. -- ----------------------------------------------------------------------------- --altera message_off 10036 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; -- entity ddr_ctrl_ip_phy_alt_mem_phy_seq IS generic ( -- choice of FPGA device family and DRAM type FAMILY : string; MEM_IF_MEMTYPE : string; SPEED_GRADE : string; FAMILYGROUP_ID : natural; -- physical interface width definitions MEM_IF_DQS_WIDTH : natural; MEM_IF_DWIDTH : natural; MEM_IF_DM_WIDTH : natural; MEM_IF_DQ_PER_DQS : natural; DWIDTH_RATIO : natural; CLOCK_INDEX_WIDTH : natural; MEM_IF_CLK_PAIR_COUNT : natural; MEM_IF_ADDR_WIDTH : natural; MEM_IF_BANKADDR_WIDTH : natural; MEM_IF_CS_WIDTH : natural; MEM_IF_NUM_RANKS : natural; MEM_IF_RANKS_PER_SLOT : natural; ADV_LAT_WIDTH : natural; RESYNCHRONISE_AVALON_DBG : natural; -- 0 = false, 1 = true AV_IF_ADDR_WIDTH : natural; -- Not used for non-levelled seq CHIP_OR_DIMM : string; RDIMM_CONFIG_BITS : string; -- setup / algorithm information NOM_DQS_PHASE_SETTING : natural; SCAN_CLK_DIVIDE_BY : natural; RDP_ADDR_WIDTH : natural; PLL_STEPS_PER_CYCLE : natural; IOE_PHASES_PER_TCK : natural; IOE_DELAYS_PER_PHS : natural; MEM_IF_CLK_PS : natural; WRITE_DESKEW_T10 : natural; WRITE_DESKEW_HC_T10 : natural; WRITE_DESKEW_T9NI : natural; WRITE_DESKEW_HC_T9NI : natural; WRITE_DESKEW_T9I : natural; WRITE_DESKEW_HC_T9I : natural; WRITE_DESKEW_RANGE : natural; -- initial mode register settings PHY_DEF_MR_1ST : natural; PHY_DEF_MR_2ND : natural; PHY_DEF_MR_3RD : natural; PHY_DEF_MR_4TH : natural; MEM_IF_DQSN_EN : natural; -- default off for Cyclone-III MEM_IF_DQS_CAPTURE_EN : natural; GENERATE_ADDITIONAL_DBG_RTL : natural; -- 1 signals to include iram and mmi blocks and 0 not to include SINGLE_DQS_DELAY_CONTROL_CODE : natural; -- reserved for future use PRESET_RLAT : natural; -- reserved for future use EN_OCT : natural; -- Does the sequencer use OCT during calibration. OCT_LAT_WIDTH : natural; SIM_TIME_REDUCTIONS : natural; -- if 0 null, if 2 rrp for 1 dqs group and 1 cs FORCE_HC : natural; -- Use to force HardCopy in simulation. CAPABILITIES : natural; -- advertise capabilities i.e. which ctrl block states to execute (default all on) TINIT_TCK : natural; TINIT_RST : natural; GENERATE_TRACKING_PHASE_STORE : natural; -- reserved for future use IP_BUILDNUM : natural ); port ( -- clk / reset clk : in std_logic; rst_n : in std_logic; -- calibration status and prompt ctl_init_success : out std_logic; ctl_init_fail : out std_logic; ctl_init_warning : out std_logic; -- unused ctl_recalibrate_req : in std_logic; -- the following two signals are reserved for future use mem_ac_swapped_ranks : in std_logic_vector(MEM_IF_NUM_RANKS - 1 downto 0); ctl_cal_byte_lanes : in std_logic_vector(MEM_IF_NUM_RANKS * MEM_IF_DQS_WIDTH - 1 downto 0); -- pll reconfiguration seq_pll_inc_dec_n : out std_logic; seq_pll_start_reconfig : out std_logic; seq_pll_select : out std_logic_vector(CLOCK_INDEX_WIDTH - 1 downto 0); seq_pll_phs_shift_busy : in std_logic; pll_resync_clk_index : in std_logic_vector(CLOCK_INDEX_WIDTH - 1 downto 0); -- PLL phase used to select resync clock pll_measure_clk_index : in std_logic_vector(CLOCK_INDEX_WIDTH - 1 downto 0); -- PLL phase used to select mimic/measure clock -- scanchain associated signals (reserved for future use) seq_scan_clk : out std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); seq_scan_enable_dqs_config : out std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); seq_scan_update : out std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); seq_scan_din : out std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); seq_scan_enable_ck : out std_logic_vector(MEM_IF_CLK_PAIR_COUNT - 1 downto 0); seq_scan_enable_dqs : out std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); seq_scan_enable_dqsn : out std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); seq_scan_enable_dq : out std_logic_vector(MEM_IF_DWIDTH - 1 downto 0); seq_scan_enable_dm : out std_logic_vector(MEM_IF_DM_WIDTH - 1 downto 0); hr_rsc_clk : in std_logic; -- address / command interface (note these are mapped internally to the seq_ac record) seq_ac_addr : out std_logic_vector((DWIDTH_RATIO/2) * MEM_IF_ADDR_WIDTH - 1 downto 0); seq_ac_ba : out std_logic_vector((DWIDTH_RATIO/2) * MEM_IF_BANKADDR_WIDTH - 1 downto 0); seq_ac_cas_n : out std_logic_vector((DWIDTH_RATIO/2) - 1 downto 0); seq_ac_ras_n : out std_logic_vector((DWIDTH_RATIO/2) - 1 downto 0); seq_ac_we_n : out std_logic_vector((DWIDTH_RATIO/2) - 1 downto 0); seq_ac_cke : out std_logic_vector((DWIDTH_RATIO/2) * MEM_IF_NUM_RANKS - 1 downto 0); seq_ac_cs_n : out std_logic_vector((DWIDTH_RATIO/2) * MEM_IF_NUM_RANKS - 1 downto 0); seq_ac_odt : out std_logic_vector((DWIDTH_RATIO/2) * MEM_IF_NUM_RANKS - 1 downto 0); seq_ac_rst_n : out std_logic_vector((DWIDTH_RATIO/2) - 1 downto 0); seq_ac_sel : out std_logic; seq_mem_clk_disable : out std_logic; -- additional datapath latency (reserved for future use) seq_ac_add_1t_ac_lat_internal : out std_logic; seq_ac_add_1t_odt_lat_internal : out std_logic; seq_ac_add_2t : out std_logic; -- read datapath interface seq_rdp_reset_req_n : out std_logic; seq_rdp_inc_read_lat_1x : out std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); seq_rdp_dec_read_lat_1x : out std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); rdata : in std_logic_vector( DWIDTH_RATIO * MEM_IF_DWIDTH - 1 downto 0); -- read data valid (associated signals) interface seq_rdv_doing_rd : out std_logic_vector(MEM_IF_DQS_WIDTH * DWIDTH_RATIO/2 - 1 downto 0); rdata_valid : in std_logic_vector( DWIDTH_RATIO/2 - 1 downto 0); seq_rdata_valid_lat_inc : out std_logic; seq_rdata_valid_lat_dec : out std_logic; seq_ctl_rlat : out std_logic_vector(ADV_LAT_WIDTH - 1 downto 0); -- postamble interface (unused for Cyclone-III) seq_poa_lat_dec_1x : out std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); seq_poa_lat_inc_1x : out std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); seq_poa_protection_override_1x : out std_logic; -- OCT path control seq_oct_oct_delay : out std_logic_vector(OCT_LAT_WIDTH - 1 downto 0); seq_oct_oct_extend : out std_logic_vector(OCT_LAT_WIDTH - 1 downto 0); seq_oct_value : out std_logic; -- write data path interface seq_wdp_dqs_burst : out std_logic_vector((DWIDTH_RATIO/2) * MEM_IF_DQS_WIDTH - 1 downto 0); seq_wdp_wdata_valid : out std_logic_vector((DWIDTH_RATIO/2) * MEM_IF_DQS_WIDTH - 1 downto 0); seq_wdp_wdata : out std_logic_vector( DWIDTH_RATIO * MEM_IF_DWIDTH - 1 downto 0); seq_wdp_dm : out std_logic_vector( DWIDTH_RATIO * MEM_IF_DM_WIDTH - 1 downto 0); seq_wdp_dqs : out std_logic_vector( DWIDTH_RATIO - 1 downto 0); seq_wdp_ovride : out std_logic; seq_dqs_add_2t_delay : out std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); seq_ctl_wlat : out std_logic_vector(ADV_LAT_WIDTH - 1 downto 0); -- mimic path interface seq_mmc_start : out std_logic; mmc_seq_done : in std_logic; mmc_seq_value : in std_logic; -- parity signals (not used for non-levelled PHY) mem_err_out_n : in std_logic; parity_error_n : out std_logic; --synchronous Avalon debug interface (internally re-synchronised to input clock (a generic option)) dbg_seq_clk : in std_logic; dbg_seq_rst_n : in std_logic; dbg_seq_addr : in std_logic_vector(AV_IF_ADDR_WIDTH - 1 downto 0); dbg_seq_wr : in std_logic; dbg_seq_rd : in std_logic; dbg_seq_cs : in std_logic; dbg_seq_wr_data : in std_logic_vector(31 downto 0); seq_dbg_rd_data : out std_logic_vector(31 downto 0); seq_dbg_waitrequest : out std_logic ); end entity; library work; -- The record package (alt_mem_phy_record_pkg) is used to combine command and status signals -- (into records) to be passed between sequencer blocks. It also contains type and record definitions -- for the stages of DRAM memory calibration. -- use work.ddr_ctrl_ip_phy_alt_mem_phy_record_pkg.all; -- The registers package (alt_mem_phy_regs_pkg) is used to combine the definition of the -- registers for the mmi status registers and functions/procedures applied to the registers -- use work.ddr_ctrl_ip_phy_alt_mem_phy_regs_pkg.all; -- The constant package (alt_mem_phy_constants_pkg) contains global 'constants' which are fixed -- thoughout the sequencer and will not change (for constants which may change between sequencer -- instances generics are used) -- use work.ddr_ctrl_ip_phy_alt_mem_phy_constants_pkg.all; -- The iram address package (alt_mem_phy_iram_addr_pkg) is used to define the base addresses used -- for iram writes during calibration -- use work.ddr_ctrl_ip_phy_alt_mem_phy_iram_addr_pkg.all; -- The address and command package (alt_mem_phy_addr_cmd_pkg) is used to combine DRAM address -- and command signals in one record and unify the functions operating on this record. -- use work.ddr_ctrl_ip_phy_alt_mem_phy_addr_cmd_pkg.all; -- Individually include each of library files for the sub-blocks of the sequencer: -- use work.ddr_ctrl_ip_phy_alt_mem_phy_admin; -- use work.ddr_ctrl_ip_phy_alt_mem_phy_mmi; -- use work.ddr_ctrl_ip_phy_alt_mem_phy_iram; -- use work.ddr_ctrl_ip_phy_alt_mem_phy_dgrb; -- use work.ddr_ctrl_ip_phy_alt_mem_phy_dgwb; -- use work.ddr_ctrl_ip_phy_alt_mem_phy_ctrl; -- architecture struct of ddr_ctrl_ip_phy_alt_mem_phy_seq IS attribute altera_attribute : string; attribute altera_attribute of struct : architecture is "-name MESSAGE_DISABLE 18010"; -- debug signals (similar to those seen in the Quartus v8.0 DDR/DDR2 sequencer) signal rsu_multiple_valid_latencies_err : std_logic; -- true if >2 valid latency values are detected signal rsu_grt_one_dvw_err : std_logic; -- true if >1 data valid window is detected signal rsu_no_dvw_err : std_logic; -- true if no data valid window is detected signal rsu_codvw_phase : std_logic_vector(11 downto 0); -- set to the phase of the DVW detected if calibration is successful signal rsu_codvw_size : std_logic_vector(11 downto 0); -- set to the phase of the DVW detected if calibration is successful signal rsu_read_latency : std_logic_vector(ADV_LAT_WIDTH - 1 downto 0); -- set to the correct read latency if calibration is successful -- outputs from the dgrb to generate the above rsu_codvw_* signals and report status to the mmi signal dgrb_mmi : t_dgrb_mmi; -- admin to mmi interface signal regs_admin_ctrl_rec : t_admin_ctrl; -- mmi register settings information signal admin_regs_status_rec : t_admin_stat; -- admin status information -- odt enable from the admin block based on mr settings signal enable_odt : std_logic; -- iram status information (sent to the ctrl block) signal iram_status : t_iram_stat; -- dgrb iram write interface signal dgrb_iram : t_iram_push; -- ctrl to iram interface signal ctrl_idib_top : natural; -- current write location in the iram signal ctrl_active_block : t_ctrl_active_block; signal ctrl_iram_push : t_ctrl_iram; signal iram_push_done : std_logic; signal ctrl_iram_ihi_write : std_logic; -- local copies of calibration status signal ctl_init_success_int : std_logic; signal ctl_init_fail_int : std_logic; -- refresh period failure flag signal trefi_failure : std_logic; -- unified ctrl signal broadcast to all blocks from the ctrl block signal ctrl_broadcast : t_ctrl_command; -- standardised status report per block to control block signal admin_ctrl : t_ctrl_stat; signal dgwb_ctrl : t_ctrl_stat; signal dgrb_ctrl : t_ctrl_stat; -- mmi and ctrl block interface signal mmi_ctrl : t_mmi_ctrl; signal ctrl_mmi : t_ctrl_mmi; -- write datapath override signals signal dgwb_wdp_override : std_logic; signal dgrb_wdp_override : std_logic; -- address/command access request and grant between the dgrb/dgwb blocks and the admin block signal dgb_ac_access_gnt : std_logic; signal dgb_ac_access_gnt_r : std_logic; signal dgb_ac_access_req : std_logic; signal dgwb_ac_access_req : std_logic; signal dgrb_ac_access_req : std_logic; -- per block address/command record (multiplexed in this entity) signal admin_ac : t_addr_cmd_vector(0 to (DWIDTH_RATIO/2)-1); signal dgwb_ac : t_addr_cmd_vector(0 to (DWIDTH_RATIO/2)-1); signal dgrb_ac : t_addr_cmd_vector(0 to (DWIDTH_RATIO/2)-1); -- doing read signal signal seq_rdv_doing_rd_int : std_logic_vector(seq_rdv_doing_rd'range); -- local copy of interface to inc/dec latency on rdata_valid and postamble signal seq_rdata_valid_lat_dec_int : std_logic; signal seq_rdata_valid_lat_inc_int : std_logic; signal seq_poa_lat_inc_1x_int : std_logic_vector(MEM_IF_DQS_WIDTH -1 downto 0); signal seq_poa_lat_dec_1x_int : std_logic_vector(MEM_IF_DQS_WIDTH -1 downto 0); -- local copy of write/read latency signal seq_ctl_wlat_int : std_logic_vector(seq_ctl_wlat'range); signal seq_ctl_rlat_int : std_logic_vector(seq_ctl_rlat'range); -- parameterisation of dgrb / dgwb / admin blocks from mmi register settings signal parameterisation_rec : t_algm_paramaterisation; -- PLL reconfig signal seq_pll_phs_shift_busy_r : std_logic; signal seq_pll_phs_shift_busy_ccd : std_logic; signal dgrb_pll_inc_dec_n : std_logic; signal dgrb_pll_start_reconfig : std_logic; signal dgrb_pll_select : std_logic_vector(CLOCK_INDEX_WIDTH - 1 downto 0); signal dgrb_phs_shft_busy : std_logic; signal mmi_pll_inc_dec_n : std_logic; signal mmi_pll_start_reconfig : std_logic; signal mmi_pll_select : std_logic_vector(CLOCK_INDEX_WIDTH - 1 downto 0); signal pll_mmi : t_pll_mmi; signal mmi_pll : t_mmi_pll_reconfig; -- address and command 1t setting (unused for Full Rate) signal int_ac_nt : std_logic_vector(((DWIDTH_RATIO+2)/4) - 1 downto 0); signal dgrb_ctrl_ac_nt_good : std_logic; -- the following signals are reserved for future use signal ctl_cal_byte_lanes_r : std_logic_vector(ctl_cal_byte_lanes'range); signal mmi_setup : t_ctrl_cmd_id; signal dgwb_iram : t_iram_push; -- track number of poa / rdv adjustments (reporting only) signal poa_adjustments : natural; signal rdv_adjustments : natural; -- convert input generics from natural to std_logic_vector constant c_phy_def_mr_1st_sl_vector : std_logic_vector(15 downto 0) := std_logic_vector(to_unsigned(PHY_DEF_MR_1ST, 16)); constant c_phy_def_mr_2nd_sl_vector : std_logic_vector(15 downto 0) := std_logic_vector(to_unsigned(PHY_DEF_MR_2ND, 16)); constant c_phy_def_mr_3rd_sl_vector : std_logic_vector(15 downto 0) := std_logic_vector(to_unsigned(PHY_DEF_MR_3RD, 16)); constant c_phy_def_mr_4th_sl_vector : std_logic_vector(15 downto 0) := std_logic_vector(to_unsigned(PHY_DEF_MR_4TH, 16)); -- overrride on capabilities to speed up simulation time function capabilities_override(capabilities : natural; sim_time_reductions : natural) return natural is begin if sim_time_reductions = 1 then return 2**c_hl_css_reg_cal_dis_bit; -- disable calibration completely else return capabilities; end if; end function; -- set sequencer capabilities constant c_capabilities_override : natural := capabilities_override(CAPABILITIES, SIM_TIME_REDUCTIONS); constant c_capabilities : std_logic_vector(31 downto 0) := std_logic_vector(to_unsigned(c_capabilities_override,32)); -- setup for address/command interface constant c_seq_addr_cmd_config : t_addr_cmd_config_rec := set_config_rec(MEM_IF_ADDR_WIDTH, MEM_IF_BANKADDR_WIDTH, MEM_IF_NUM_RANKS, DWIDTH_RATIO, MEM_IF_MEMTYPE); -- setup for odt signals -- odt setting as implemented in the altera high-performance controller for ddrx memories constant c_odt_settings : t_odt_array(0 to MEM_IF_NUM_RANKS-1) := set_odt_values(MEM_IF_NUM_RANKS, MEM_IF_RANKS_PER_SLOT, MEM_IF_MEMTYPE); -- a prefix for all report signals to identify phy and sequencer block -- constant seq_report_prefix : string := "ddr_ctrl_ip_phy_alt_mem_phy_seq (top) : "; -- setup iram configuration constant c_iram_addresses : t_base_hdr_addresses := calc_iram_addresses(DWIDTH_RATIO, PLL_STEPS_PER_CYCLE, MEM_IF_DWIDTH, MEM_IF_NUM_RANKS, MEM_IF_DQS_CAPTURE_EN); constant c_int_iram_awidth : natural := c_iram_addresses.required_addr_bits; constant c_preset_cal_setup : t_preset_cal := setup_instant_on(SIM_TIME_REDUCTIONS, FAMILYGROUP_ID, MEM_IF_MEMTYPE, DWIDTH_RATIO, PLL_STEPS_PER_CYCLE, c_phy_def_mr_1st_sl_vector, c_phy_def_mr_2nd_sl_vector, c_phy_def_mr_3rd_sl_vector); constant c_preset_codvw_phase : natural := c_preset_cal_setup.codvw_phase; constant c_preset_codvw_size : natural := c_preset_cal_setup.codvw_size; constant c_tracking_interval_in_ms : natural := 128; constant c_mem_if_cal_bank : natural := 0; -- location to calibrate to constant c_mem_if_cal_base_col : natural := 0; -- default all zeros constant c_mem_if_cal_base_row : natural := 0; constant c_non_op_eval_md : string := "PIN_FINDER"; -- non_operational evaluation mode (used when GENERATE_ADDITIONAL_DBG_RTL = 1) begin -- architecture struct -- --------------------------------------------------------------- -- tie off unused signals to default values -- --------------------------------------------------------------- -- scan chain associated signals seq_scan_clk <= (others => '0'); seq_scan_enable_dqs_config <= (others => '0'); seq_scan_update <= (others => '0'); seq_scan_din <= (others => '0'); seq_scan_enable_ck <= (others => '0'); seq_scan_enable_dqs <= (others => '0'); seq_scan_enable_dqsn <= (others => '0'); seq_scan_enable_dq <= (others => '0'); seq_scan_enable_dm <= (others => '0'); seq_dqs_add_2t_delay <= (others => '0'); seq_rdp_inc_read_lat_1x <= (others => '0'); seq_rdp_dec_read_lat_1x <= (others => '0'); -- warning flag (not used in non-levelled sequencer) ctl_init_warning <= '0'; -- parity error flag (not used in non-levelled sequencer) parity_error_n <= '1'; -- admin: entity ddr_ctrl_ip_phy_alt_mem_phy_admin generic map ( MEM_IF_DQS_WIDTH => MEM_IF_DQS_WIDTH, MEM_IF_DWIDTH => MEM_IF_DWIDTH, MEM_IF_DM_WIDTH => MEM_IF_DM_WIDTH, MEM_IF_DQ_PER_DQS => MEM_IF_DQ_PER_DQS, DWIDTH_RATIO => DWIDTH_RATIO, CLOCK_INDEX_WIDTH => CLOCK_INDEX_WIDTH, MEM_IF_CLK_PAIR_COUNT => MEM_IF_CLK_PAIR_COUNT, MEM_IF_ADDR_WIDTH => MEM_IF_ADDR_WIDTH, MEM_IF_BANKADDR_WIDTH => MEM_IF_BANKADDR_WIDTH, MEM_IF_NUM_RANKS => MEM_IF_NUM_RANKS, ADV_LAT_WIDTH => ADV_LAT_WIDTH, MEM_IF_DQSN_EN => MEM_IF_DQSN_EN, MEM_IF_MEMTYPE => MEM_IF_MEMTYPE, MEM_IF_CAL_BANK => c_mem_if_cal_bank, MEM_IF_CAL_BASE_ROW => c_mem_if_cal_base_row, GENERATE_ADDITIONAL_DBG_RTL => GENERATE_ADDITIONAL_DBG_RTL, NON_OP_EVAL_MD => c_non_op_eval_md, MEM_IF_CLK_PS => MEM_IF_CLK_PS, TINIT_TCK => TINIT_TCK, TINIT_RST => TINIT_RST ) port map ( clk => clk, rst_n => rst_n, mem_ac_swapped_ranks => mem_ac_swapped_ranks, ctl_cal_byte_lanes => ctl_cal_byte_lanes_r, seq_ac => admin_ac, seq_ac_sel => seq_ac_sel, enable_odt => enable_odt, regs_admin_ctrl_rec => regs_admin_ctrl_rec, admin_regs_status_rec => admin_regs_status_rec, trefi_failure => trefi_failure, ctrl_admin => ctrl_broadcast, admin_ctrl => admin_ctrl, ac_access_req => dgb_ac_access_req, ac_access_gnt => dgb_ac_access_gnt, cal_fail => ctl_init_fail_int, cal_success => ctl_init_success_int, ctl_recalibrate_req => ctl_recalibrate_req ); -- selectively include the debug i/f (iram and mmi blocks) with_debug_if : if GENERATE_ADDITIONAL_DBG_RTL = 1 generate signal mmi_iram : t_iram_ctrl; signal mmi_iram_enable_writes : std_logic; signal rrp_mem_loc : natural range 0 to 2 ** c_int_iram_awidth - 1; signal command_req_r : std_logic; signal ctrl_broadcast_r : t_ctrl_command; begin -- register ctrl_broadcast locally process (clk, rst_n) begin if rst_n = '0' then ctrl_broadcast_r <= defaults; elsif rising_edge(clk) then ctrl_broadcast_r <= ctrl_broadcast; end if; end process; -- mmi : entity ddr_ctrl_ip_phy_alt_mem_phy_mmi generic map ( MEM_IF_DQS_WIDTH => MEM_IF_DQS_WIDTH, MEM_IF_DWIDTH => MEM_IF_DWIDTH, MEM_IF_DM_WIDTH => MEM_IF_DM_WIDTH, MEM_IF_DQ_PER_DQS => MEM_IF_DQ_PER_DQS, DWIDTH_RATIO => DWIDTH_RATIO, CLOCK_INDEX_WIDTH => CLOCK_INDEX_WIDTH, MEM_IF_CLK_PAIR_COUNT => MEM_IF_CLK_PAIR_COUNT, MEM_IF_ADDR_WIDTH => MEM_IF_ADDR_WIDTH, MEM_IF_BANKADDR_WIDTH => MEM_IF_BANKADDR_WIDTH, MEM_IF_NUM_RANKS => MEM_IF_NUM_RANKS, MEM_IF_DQS_CAPTURE => MEM_IF_DQS_CAPTURE_EN, ADV_LAT_WIDTH => ADV_LAT_WIDTH, RESYNCHRONISE_AVALON_DBG => RESYNCHRONISE_AVALON_DBG, AV_IF_ADDR_WIDTH => AV_IF_ADDR_WIDTH, NOM_DQS_PHASE_SETTING => NOM_DQS_PHASE_SETTING, SCAN_CLK_DIVIDE_BY => SCAN_CLK_DIVIDE_BY, RDP_ADDR_WIDTH => RDP_ADDR_WIDTH, PLL_STEPS_PER_CYCLE => PLL_STEPS_PER_CYCLE, IOE_PHASES_PER_TCK => IOE_PHASES_PER_TCK, IOE_DELAYS_PER_PHS => IOE_DELAYS_PER_PHS, MEM_IF_CLK_PS => MEM_IF_CLK_PS, PHY_DEF_MR_1ST => c_phy_def_mr_1st_sl_vector, PHY_DEF_MR_2ND => c_phy_def_mr_2nd_sl_vector, PHY_DEF_MR_3RD => c_phy_def_mr_3rd_sl_vector, PHY_DEF_MR_4TH => c_phy_def_mr_4th_sl_vector, MEM_IF_MEMTYPE => MEM_IF_MEMTYPE, PRESET_RLAT => PRESET_RLAT, CAPABILITIES => c_capabilities_override, USE_IRAM => '1', -- always use iram (generic is rfu) IRAM_AWIDTH => c_int_iram_awidth, TRACKING_INTERVAL_IN_MS => c_tracking_interval_in_ms, READ_LAT_WIDTH => ADV_LAT_WIDTH ) port map( clk => clk, rst_n => rst_n, dbg_seq_clk => dbg_seq_clk, dbg_seq_rst_n => dbg_seq_rst_n, dbg_seq_addr => dbg_seq_addr, dbg_seq_wr => dbg_seq_wr, dbg_seq_rd => dbg_seq_rd, dbg_seq_cs => dbg_seq_cs, dbg_seq_wr_data => dbg_seq_wr_data, seq_dbg_rd_data => seq_dbg_rd_data, seq_dbg_waitrequest => seq_dbg_waitrequest, regs_admin_ctrl => regs_admin_ctrl_rec, admin_regs_status => admin_regs_status_rec, mmi_iram => mmi_iram, mmi_iram_enable_writes => mmi_iram_enable_writes, iram_status => iram_status, mmi_ctrl => mmi_ctrl, ctrl_mmi => ctrl_mmi, int_ac_1t => int_ac_nt(0), invert_ac_1t => open, trefi_failure => trefi_failure, parameterisation_rec => parameterisation_rec, pll_mmi => pll_mmi, mmi_pll => mmi_pll, dgrb_mmi => dgrb_mmi ); -- iram : entity ddr_ctrl_ip_phy_alt_mem_phy_iram generic map( MEM_IF_MEMTYPE => MEM_IF_MEMTYPE, FAMILYGROUP_ID => FAMILYGROUP_ID, MEM_IF_DQS_WIDTH => MEM_IF_DQS_WIDTH, MEM_IF_DQ_PER_DQS => MEM_IF_DQ_PER_DQS, MEM_IF_DWIDTH => MEM_IF_DWIDTH, MEM_IF_DM_WIDTH => MEM_IF_DM_WIDTH, MEM_IF_NUM_RANKS => MEM_IF_NUM_RANKS, IRAM_AWIDTH => c_int_iram_awidth, REFRESH_COUNT_INIT => 12, PRESET_RLAT => PRESET_RLAT, PLL_STEPS_PER_CYCLE => PLL_STEPS_PER_CYCLE, CAPABILITIES => c_capabilities_override, IP_BUILDNUM => IP_BUILDNUM ) port map( clk => clk, rst_n => rst_n, mmi_iram => mmi_iram, mmi_iram_enable_writes => mmi_iram_enable_writes, iram_status => iram_status, iram_push_done => iram_push_done, ctrl_iram => ctrl_broadcast_r, dgrb_iram => dgrb_iram, admin_regs_status_rec => admin_regs_status_rec, ctrl_idib_top => ctrl_idib_top, ctrl_iram_push => ctrl_iram_push, dgwb_iram => dgwb_iram ); -- calculate where current data should go in the iram process (clk, rst_n) variable v_words_req : natural range 0 to 2 * MEM_IF_DWIDTH * PLL_STEPS_PER_CYCLE * DWIDTH_RATIO - 1; -- how many words are required begin if rst_n = '0' then ctrl_idib_top <= 0; command_req_r <= '0'; rrp_mem_loc <= 0; elsif rising_edge(clk) then if command_req_r = '0' and ctrl_broadcast_r.command_req = '1' then -- execute once on each command_req assertion -- default a 'safe location' ctrl_idib_top <= c_iram_addresses.safe_dummy; case ctrl_broadcast_r.command is when cmd_write_ihi => -- reset pointers rrp_mem_loc <= c_iram_addresses.rrp; ctrl_idib_top <= 0; -- write header to zero location always when cmd_rrp_sweep => -- add previous space requirement onto the current address ctrl_idib_top <= rrp_mem_loc; -- add the current space requirement to v_rrp_mem_loc -- there are (DWIDTH_RATIO/2) * PLL_STEPS_PER_CYCLE phases swept packed into 32 bit words per pin -- note: special case for single_bit calibration stages (e.g. read_mtp alignment) if ctrl_broadcast_r.command_op.single_bit = '1' then v_words_req := iram_wd_for_one_pin_rrp(DWIDTH_RATIO, PLL_STEPS_PER_CYCLE, MEM_IF_DWIDTH, MEM_IF_DQS_CAPTURE_EN); else v_words_req := iram_wd_for_full_rrp(DWIDTH_RATIO, PLL_STEPS_PER_CYCLE, MEM_IF_DWIDTH, MEM_IF_DQS_CAPTURE_EN); end if; v_words_req := v_words_req + 2; -- add 1 word location for header / footer information rrp_mem_loc <= rrp_mem_loc + v_words_req; when cmd_rrp_seek | cmd_read_mtp => -- add previous space requirement onto the current address ctrl_idib_top <= rrp_mem_loc; -- require 3 words - header, result and footer v_words_req := 3; rrp_mem_loc <= rrp_mem_loc + v_words_req; when others => null; end case; end if; command_req_r <= ctrl_broadcast_r.command_req; -- if recalibration request then reset iram address if ctl_recalibrate_req = '1' or mmi_ctrl.calibration_start = '1' then rrp_mem_loc <= c_iram_addresses.rrp; end if; end if; end process; end generate; -- with debug interface -- if no debug interface (iram/mmi block) tie off relevant signals without_debug_if : if GENERATE_ADDITIONAL_DBG_RTL = 0 generate constant c_slv_hl_stage_enable : std_logic_vector(31 downto 0) := std_logic_vector(to_unsigned(c_capabilities_override, 32)); constant c_hl_stage_enable : std_logic_vector(c_hl_ccs_num_stages-1 downto 0) := c_slv_hl_stage_enable(c_hl_ccs_num_stages-1 downto 0); constant c_pll_360_sweeps : natural := rrp_pll_phase_mult(DWIDTH_RATIO, MEM_IF_DQS_CAPTURE_EN); signal mmi_regs : t_mmi_regs := defaults; begin -- avalon interface signals seq_dbg_rd_data <= (others => '0'); seq_dbg_waitrequest <= '0'; -- The following registers are generated to simplify the assignments which follow -- but will be optimised away in synthesis mmi_regs.rw_regs <= defaults(c_phy_def_mr_1st_sl_vector, c_phy_def_mr_2nd_sl_vector, c_phy_def_mr_3rd_sl_vector, c_phy_def_mr_4th_sl_vector, NOM_DQS_PHASE_SETTING, PLL_STEPS_PER_CYCLE, c_pll_360_sweeps, c_tracking_interval_in_ms, c_hl_stage_enable); mmi_regs.ro_regs <= defaults(dgrb_mmi, ctrl_mmi, pll_mmi, mmi_regs.rw_regs.rw_if_test, '0', -- do not use iram MEM_IF_DQS_CAPTURE_EN, int_ac_nt(0), trefi_failure, iram_status, c_int_iram_awidth); process(mmi_regs) begin -- debug parameterisation signals regs_admin_ctrl_rec <= pack_record(mmi_regs.rw_regs); parameterisation_rec <= pack_record(mmi_regs.rw_regs); mmi_pll <= pack_record(mmi_regs.rw_regs); mmi_ctrl <= pack_record(mmi_regs.rw_regs); end process; -- from the iram iram_status <= defaults; iram_push_done <= '0'; end generate; -- without debug interface -- dgrb : entity ddr_ctrl_ip_phy_alt_mem_phy_dgrb generic map( MEM_IF_DQS_WIDTH => MEM_IF_DQS_WIDTH, MEM_IF_DQ_PER_DQS => MEM_IF_DQ_PER_DQS, MEM_IF_DWIDTH => MEM_IF_DWIDTH, MEM_IF_DM_WIDTH => MEM_IF_DM_WIDTH, MEM_IF_DQS_CAPTURE => MEM_IF_DQS_CAPTURE_EN, DWIDTH_RATIO => DWIDTH_RATIO, CLOCK_INDEX_WIDTH => CLOCK_INDEX_WIDTH, MEM_IF_ADDR_WIDTH => MEM_IF_ADDR_WIDTH, MEM_IF_BANKADDR_WIDTH => MEM_IF_BANKADDR_WIDTH, MEM_IF_NUM_RANKS => MEM_IF_NUM_RANKS, MEM_IF_MEMTYPE => MEM_IF_MEMTYPE, ADV_LAT_WIDTH => ADV_LAT_WIDTH, PRESET_RLAT => PRESET_RLAT, PLL_STEPS_PER_CYCLE => PLL_STEPS_PER_CYCLE, SIM_TIME_REDUCTIONS => SIM_TIME_REDUCTIONS, GENERATE_ADDITIONAL_DBG_RTL => GENERATE_ADDITIONAL_DBG_RTL, PRESET_CODVW_PHASE => c_preset_codvw_phase, PRESET_CODVW_SIZE => c_preset_codvw_size, MEM_IF_CAL_BANK => c_mem_if_cal_bank, MEM_IF_CAL_BASE_COL => c_mem_if_cal_base_col, EN_OCT => EN_OCT ) port map( clk => clk, rst_n => rst_n, dgrb_ctrl => dgrb_ctrl, ctrl_dgrb => ctrl_broadcast, parameterisation_rec => parameterisation_rec, phs_shft_busy => dgrb_phs_shft_busy, seq_pll_inc_dec_n => dgrb_pll_inc_dec_n, seq_pll_select => dgrb_pll_select, seq_pll_start_reconfig => dgrb_pll_start_reconfig, pll_resync_clk_index => pll_resync_clk_index, pll_measure_clk_index => pll_measure_clk_index, dgrb_iram => dgrb_iram, iram_push_done => iram_push_done, dgrb_ac => dgrb_ac, dgrb_ac_access_req => dgrb_ac_access_req, dgrb_ac_access_gnt => dgb_ac_access_gnt_r, seq_rdata_valid_lat_inc => seq_rdata_valid_lat_inc_int, seq_rdata_valid_lat_dec => seq_rdata_valid_lat_dec_int, seq_poa_lat_dec_1x => seq_poa_lat_dec_1x_int, seq_poa_lat_inc_1x => seq_poa_lat_inc_1x_int, rdata_valid => rdata_valid, rdata => rdata, doing_rd => seq_rdv_doing_rd_int, rd_lat => seq_ctl_rlat_int, wd_lat => seq_ctl_wlat_int, dgrb_wdp_ovride => dgrb_wdp_override, seq_oct_value => seq_oct_value, seq_mmc_start => seq_mmc_start, mmc_seq_done => mmc_seq_done, mmc_seq_value => mmc_seq_value, ctl_cal_byte_lanes => ctl_cal_byte_lanes_r, odt_settings => c_odt_settings, dgrb_ctrl_ac_nt_good => dgrb_ctrl_ac_nt_good, dgrb_mmi => dgrb_mmi ); -- dgwb : entity ddr_ctrl_ip_phy_alt_mem_phy_dgwb generic map( -- Physical IF width definitions MEM_IF_DQS_WIDTH => MEM_IF_DQS_WIDTH, MEM_IF_DQ_PER_DQS => MEM_IF_DQ_PER_DQS, MEM_IF_DWIDTH => MEM_IF_DWIDTH, MEM_IF_DM_WIDTH => MEM_IF_DM_WIDTH, DWIDTH_RATIO => DWIDTH_RATIO, MEM_IF_ADDR_WIDTH => MEM_IF_ADDR_WIDTH, MEM_IF_BANKADDR_WIDTH => MEM_IF_BANKADDR_WIDTH, MEM_IF_NUM_RANKS => MEM_IF_NUM_RANKS, MEM_IF_MEMTYPE => MEM_IF_MEMTYPE, ADV_LAT_WIDTH => ADV_LAT_WIDTH, MEM_IF_CAL_BANK => c_mem_if_cal_bank, MEM_IF_CAL_BASE_COL => c_mem_if_cal_base_col ) port map( clk => clk, rst_n => rst_n, parameterisation_rec => parameterisation_rec, dgwb_ctrl => dgwb_ctrl, ctrl_dgwb => ctrl_broadcast, dgwb_iram => dgwb_iram, iram_push_done => iram_push_done, dgwb_ac_access_req => dgwb_ac_access_req, dgwb_ac_access_gnt => dgb_ac_access_gnt_r, dgwb_dqs_burst => seq_wdp_dqs_burst, dgwb_wdata_valid => seq_wdp_wdata_valid, dgwb_wdata => seq_wdp_wdata, dgwb_dm => seq_wdp_dm, dgwb_dqs => seq_wdp_dqs, dgwb_wdp_ovride => dgwb_wdp_override, dgwb_ac => dgwb_ac, bypassed_rdata => rdata(DWIDTH_RATIO * MEM_IF_DWIDTH -1 downto (DWIDTH_RATIO-1) * MEM_IF_DWIDTH), odt_settings => c_odt_settings ); -- ctrl: entity ddr_ctrl_ip_phy_alt_mem_phy_ctrl generic map( FAMILYGROUP_ID => FAMILYGROUP_ID, MEM_IF_DLL_LOCK_COUNT => 1280/(DWIDTH_RATIO/2), MEM_IF_MEMTYPE => MEM_IF_MEMTYPE, DWIDTH_RATIO => DWIDTH_RATIO, IRAM_ADDRESSING => c_iram_addresses, MEM_IF_CLK_PS => MEM_IF_CLK_PS, TRACKING_INTERVAL_IN_MS => c_tracking_interval_in_ms, GENERATE_ADDITIONAL_DBG_RTL => GENERATE_ADDITIONAL_DBG_RTL, MEM_IF_NUM_RANKS => MEM_IF_NUM_RANKS, MEM_IF_DQS_WIDTH => MEM_IF_DQS_WIDTH, SIM_TIME_REDUCTIONS => SIM_TIME_REDUCTIONS, ACK_SEVERITY => warning ) port map( clk => clk, rst_n => rst_n, ctl_init_success => ctl_init_success_int, ctl_init_fail => ctl_init_fail_int, ctl_recalibrate_req => ctl_recalibrate_req, iram_status => iram_status, iram_push_done => iram_push_done, ctrl_op_rec => ctrl_broadcast, admin_ctrl => admin_ctrl, dgrb_ctrl => dgrb_ctrl, dgwb_ctrl => dgwb_ctrl, ctrl_iram_push => ctrl_iram_push, ctl_cal_byte_lanes => ctl_cal_byte_lanes_r, dgrb_ctrl_ac_nt_good => dgrb_ctrl_ac_nt_good, int_ac_nt => int_ac_nt, mmi_ctrl => mmi_ctrl, ctrl_mmi => ctrl_mmi ); -- ------------------------------------------------------------------ -- generate legacy rsu signals -- ------------------------------------------------------------------ process(rst_n, clk) begin if rst_n = '0' then rsu_multiple_valid_latencies_err <= '0'; rsu_grt_one_dvw_err <= '0'; rsu_no_dvw_err <= '0'; rsu_codvw_phase <= (others => '0'); rsu_codvw_size <= (others => '0'); rsu_read_latency <= (others => '0'); elsif rising_edge(clk) then if dgrb_ctrl.command_err = '1' then case to_integer(unsigned(dgrb_ctrl.command_result)) is when C_ERR_RESYNC_NO_VALID_PHASES => rsu_no_dvw_err <= '1'; when C_ERR_RESYNC_MULTIPLE_EQUAL_WINDOWS => rsu_multiple_valid_latencies_err <= '1'; when others => null; end case; end if; rsu_codvw_phase(dgrb_mmi.cal_codvw_phase'range) <= dgrb_mmi.cal_codvw_phase; rsu_codvw_size(dgrb_mmi.cal_codvw_size'range) <= dgrb_mmi.cal_codvw_size; rsu_read_latency <= seq_ctl_rlat_int; rsu_grt_one_dvw_err <= dgrb_mmi.codvw_grt_one_dvw; -- Reset the flag on a recal request : if ( ctl_recalibrate_req = '1') then rsu_grt_one_dvw_err <= '0'; rsu_no_dvw_err <= '0'; rsu_multiple_valid_latencies_err <= '0'; end if; end if; end process; -- --------------------------------------------------------------- -- top level multiplexing and ctrl functionality -- --------------------------------------------------------------- oct_delay_block : block constant DEFAULT_OCT_DELAY_CONST : integer := - 2; -- higher increases delay by one mem_clk cycle, lower decreases delay by one mem_clk cycle. constant DEFAULT_OCT_EXTEND : natural := 3; -- Returns additive latency extracted from mr0 as a natural number. function decode_cl(mr0 : in std_logic_vector(12 downto 0)) return natural is variable v_cl : natural range 0 to 2**4 - 1; begin if MEM_IF_MEMTYPE = "DDR" or MEM_IF_MEMTYPE = "DDR2" then v_cl := to_integer(unsigned(mr0(6 downto 4))); elsif MEM_IF_MEMTYPE = "DDR3" then v_cl := to_integer(unsigned(mr0(6 downto 4))) + 4; else report "Unsupported memory type " & MEM_IF_MEMTYPE severity failure; end if; return v_cl; end function; -- Returns additive latency extracted from mr1 as a natural number. function decode_al(mr1 : in std_logic_vector(12 downto 0)) return natural is variable v_al : natural range 0 to 2**4 - 1; begin if MEM_IF_MEMTYPE = "DDR" or MEM_IF_MEMTYPE = "DDR2" then v_al := to_integer(unsigned(mr1(5 downto 3))); elsif MEM_IF_MEMTYPE = "DDR3" then v_al := to_integer(unsigned(mr1(4 downto 3))); else report "Unsupported memory type " & MEM_IF_MEMTYPE severity failure; end if; return v_al; end function; -- Returns cas write latency extracted from mr2 as a natural number. function decode_cwl( mr0 : in std_logic_vector(12 downto 0); mr2 : in std_logic_vector(12 downto 0) ) return natural is variable v_cwl : natural range 0 to 2**4 - 1; begin if MEM_IF_MEMTYPE = "DDR" then v_cwl := 1; elsif MEM_IF_MEMTYPE = "DDR2" then v_cwl := decode_cl(mr0) - 1; elsif MEM_IF_MEMTYPE = "DDR3" then v_cwl := to_integer(unsigned(mr2(4 downto 3))) + 5; else report "Unsupported memory type " & MEM_IF_MEMTYPE severity failure; end if; return v_cwl; end function; begin -- Process to work out timings for OCT extension and delay with respect to doing_read. NOTE that it is calculated on the basis of CL, CWL, ctl_wlat oct_delay_proc : process(clk, rst_n) variable v_cl : natural range 0 to 2**4 - 1; -- Total read latency. variable v_cwl : natural range 0 to 2**4 - 1; -- Total write latency variable oct_delay : natural range 0 to 2**OCT_LAT_WIDTH - 1; variable v_wlat : natural range 0 to 2**ADV_LAT_WIDTH - 1; begin if rst_n = '0' then seq_oct_oct_delay <= (others => '0'); seq_oct_oct_extend <= std_logic_vector(to_unsigned(DEFAULT_OCT_EXTEND, OCT_LAT_WIDTH)); elsif rising_edge(clk) then if ctl_init_success_int = '1' then seq_oct_oct_extend <= std_logic_vector(to_unsigned(DEFAULT_OCT_EXTEND, OCT_LAT_WIDTH)); v_cl := decode_cl(admin_regs_status_rec.mr0); v_cwl := decode_cwl(admin_regs_status_rec.mr0, admin_regs_status_rec.mr2); if SIM_TIME_REDUCTIONS = 1 then v_wlat := c_preset_cal_setup.wlat; else v_wlat := to_integer(unsigned(seq_ctl_wlat_int)); end if; oct_delay := DWIDTH_RATIO * v_wlat / 2 + (v_cl - v_cwl) + DEFAULT_OCT_DELAY_CONST; if not (FAMILYGROUP_ID = 2) then -- CIII doesn't support OCT seq_oct_oct_delay <= std_logic_vector(to_unsigned(oct_delay, OCT_LAT_WIDTH)); end if; else seq_oct_oct_delay <= (others => '0'); seq_oct_oct_extend <= std_logic_vector(to_unsigned(DEFAULT_OCT_EXTEND, OCT_LAT_WIDTH)); end if; end if; end process; end block; -- control postamble protection override signal (seq_poa_protection_override_1x) process(clk, rst_n) variable v_warning_given : std_logic; begin if rst_n = '0' then seq_poa_protection_override_1x <= '0'; v_warning_given := '0'; elsif rising_edge(clk) then case ctrl_broadcast.command is when cmd_rdv | cmd_rrp_sweep | cmd_rrp_seek | cmd_prep_adv_rd_lat | cmd_prep_adv_wr_lat => seq_poa_protection_override_1x <= '1'; when others => seq_poa_protection_override_1x <= '0'; end case; end if; end process; ac_mux : block constant c_mem_clk_disable_pipe_len : natural := 3; signal seen_phy_init_complete : std_logic; signal mem_clk_disable : std_logic_vector(c_mem_clk_disable_pipe_len - 1 downto 0); signal ctrl_broadcast_r : t_ctrl_command; begin -- register ctrl_broadcast locally -- #for speed and to reduce fan out process (clk, rst_n) begin if rst_n = '0' then ctrl_broadcast_r <= defaults; elsif rising_edge(clk) then ctrl_broadcast_r <= ctrl_broadcast; end if; end process; -- multiplex mem interface control between admin, dgrb and dgwb process(clk, rst_n) variable v_seq_ac_mux : t_addr_cmd_vector(0 to (DWIDTH_RATIO/2)-1); begin if rst_n = '0' then seq_rdv_doing_rd <= (others => '0'); seq_mem_clk_disable <= '1'; mem_clk_disable <= (others => '1'); seen_phy_init_complete <= '0'; seq_ac_addr <= (others => '0'); seq_ac_ba <= (others => '0'); seq_ac_cas_n <= (others => '1'); seq_ac_ras_n <= (others => '1'); seq_ac_we_n <= (others => '1'); seq_ac_cke <= (others => '0'); seq_ac_cs_n <= (others => '1'); seq_ac_odt <= (others => '0'); seq_ac_rst_n <= (others => '0'); elsif rising_edge(clk) then seq_rdv_doing_rd <= seq_rdv_doing_rd_int; seq_mem_clk_disable <= mem_clk_disable(c_mem_clk_disable_pipe_len-1); mem_clk_disable(c_mem_clk_disable_pipe_len-1 downto 1) <= mem_clk_disable(c_mem_clk_disable_pipe_len-2 downto 0); if dgwb_ac_access_req = '1' and dgb_ac_access_gnt = '1' then v_seq_ac_mux := dgwb_ac; elsif dgrb_ac_access_req = '1' and dgb_ac_access_gnt = '1' then v_seq_ac_mux := dgrb_ac; else v_seq_ac_mux := admin_ac; end if; if ctl_recalibrate_req = '1' then mem_clk_disable(0) <= '1'; seen_phy_init_complete <= '0'; elsif ctrl_broadcast_r.command = cmd_init_dram and ctrl_broadcast_r.command_req = '1' then mem_clk_disable(0) <= '0'; seen_phy_init_complete <= '1'; end if; if seen_phy_init_complete /= '1' then -- if not initialised the phy hold in reset seq_ac_addr <= (others => '0'); seq_ac_ba <= (others => '0'); seq_ac_cas_n <= (others => '1'); seq_ac_ras_n <= (others => '1'); seq_ac_we_n <= (others => '1'); seq_ac_cke <= (others => '0'); seq_ac_cs_n <= (others => '1'); seq_ac_odt <= (others => '0'); seq_ac_rst_n <= (others => '0'); else if enable_odt = '0' then v_seq_ac_mux := mask(c_seq_addr_cmd_config, v_seq_ac_mux, odt, '0'); end if; unpack_addr_cmd_vector ( c_seq_addr_cmd_config, v_seq_ac_mux, seq_ac_addr, seq_ac_ba, seq_ac_cas_n, seq_ac_ras_n, seq_ac_we_n, seq_ac_cke, seq_ac_cs_n, seq_ac_odt, seq_ac_rst_n); end if; end if; end process; end block; -- register dgb_ac_access_gnt signal to ensure ODT set correctly in dgrb and dgwb prior to a read or write operation process(clk, rst_n) begin if rst_n = '0' then dgb_ac_access_gnt_r <= '0'; elsif rising_edge(clk) then dgb_ac_access_gnt_r <= dgb_ac_access_gnt; end if; end process; -- multiplex access request from dgrb/dgwb to admin block with checking for multiple accesses process (dgrb_ac_access_req, dgwb_ac_access_req) begin dgb_ac_access_req <= '0'; if dgwb_ac_access_req = '1' and dgrb_ac_access_req = '1' then report seq_report_prefix & "multiple accesses attempted from DGRB and DGWB to admin block via signals dg.b_ac_access_reg " severity failure; elsif dgwb_ac_access_req = '1' or dgrb_ac_access_req = '1' then dgb_ac_access_req <= '1'; end if; end process; rdv_poa_blk : block -- signals to control static setup of ctl_rdata_valid signal for instant on mode: constant c_static_rdv_offset : integer := c_preset_cal_setup.rdv_lat; -- required change in RDV latency (should always be > 0) signal static_rdv_offset : natural range 0 to abs(c_static_rdv_offset); -- signal to count # RDV shifts constant c_dly_rdv_set : natural := 7; -- delay between RDV shifts signal dly_rdv_inc_dec : std_logic; -- 1 = inc, 0 = dec signal rdv_set_delay : natural range 0 to c_dly_rdv_set; -- signal to delay RDV shifts -- same for poa protection constant c_static_poa_offset : integer := c_preset_cal_setup.poa_lat; signal static_poa_offset : natural range 0 to abs(c_static_poa_offset); constant c_dly_poa_set : natural := 7; signal dly_poa_inc_dec : std_logic; signal poa_set_delay : natural range 0 to c_dly_poa_set; -- function to abstract increment or decrement checking function set_inc_dec(offset : integer) return std_logic is begin if offset < 0 then return '1'; else return '0'; end if; end function; begin -- register postamble and rdata_valid latencies -- note: postamble unused for Cyclone-III -- RDV process(clk, rst_n) begin if rst_n = '0' then if SIM_TIME_REDUCTIONS = 1 then -- setup offset calc static_rdv_offset <= abs(c_static_rdv_offset); dly_rdv_inc_dec <= set_inc_dec(c_static_rdv_offset); rdv_set_delay <= c_dly_rdv_set; end if; seq_rdata_valid_lat_dec <= '0'; seq_rdata_valid_lat_inc <= '0'; elsif rising_edge(clk) then if SIM_TIME_REDUCTIONS = 1 then -- perform static setup of RDV signal if ctl_recalibrate_req = '1' then -- second reset condition -- setup offset calc static_rdv_offset <= abs(c_static_rdv_offset); dly_rdv_inc_dec <= set_inc_dec(c_static_rdv_offset); rdv_set_delay <= c_dly_rdv_set; else if static_rdv_offset /= 0 and rdv_set_delay = 0 then seq_rdata_valid_lat_dec <= not dly_rdv_inc_dec; seq_rdata_valid_lat_inc <= dly_rdv_inc_dec; static_rdv_offset <= static_rdv_offset - 1; rdv_set_delay <= c_dly_rdv_set; else -- once conplete pass through internal signals seq_rdata_valid_lat_dec <= seq_rdata_valid_lat_dec_int; seq_rdata_valid_lat_inc <= seq_rdata_valid_lat_inc_int; end if; if rdv_set_delay /= 0 then rdv_set_delay <= rdv_set_delay - 1; end if; end if; else -- no static setup seq_rdata_valid_lat_dec <= seq_rdata_valid_lat_dec_int; seq_rdata_valid_lat_inc <= seq_rdata_valid_lat_inc_int; end if; end if; end process; -- count number of RDV adjustments for debug process(clk, rst_n) begin if rst_n = '0' then rdv_adjustments <= 0; elsif rising_edge(clk) then if seq_rdata_valid_lat_dec_int = '1' then rdv_adjustments <= rdv_adjustments + 1; end if; if seq_rdata_valid_lat_inc_int = '1' then if rdv_adjustments = 0 then report seq_report_prefix & " read data valid adjustment wrap around detected - more increments than decrements" severity failure; else rdv_adjustments <= rdv_adjustments - 1; end if; end if; end if; end process; -- POA protection process(clk, rst_n) begin if rst_n = '0' then if SIM_TIME_REDUCTIONS = 1 then -- setup offset calc static_poa_offset <= abs(c_static_poa_offset); dly_poa_inc_dec <= set_inc_dec(c_static_poa_offset); poa_set_delay <= c_dly_poa_set; end if; seq_poa_lat_dec_1x <= (others => '0'); seq_poa_lat_inc_1x <= (others => '0'); elsif rising_edge(clk) then if SIM_TIME_REDUCTIONS = 1 then -- static setup if ctl_recalibrate_req = '1' then -- second reset condition -- setup offset calc static_poa_offset <= abs(c_static_poa_offset); dly_poa_inc_dec <= set_inc_dec(c_static_poa_offset); poa_set_delay <= c_dly_poa_set; else if static_poa_offset /= 0 and poa_set_delay = 0 then seq_poa_lat_dec_1x <= (others => not(dly_poa_inc_dec)); seq_poa_lat_inc_1x <= (others => dly_poa_inc_dec); static_poa_offset <= static_poa_offset - 1; poa_set_delay <= c_dly_poa_set; else seq_poa_lat_inc_1x <= seq_poa_lat_inc_1x_int; seq_poa_lat_dec_1x <= seq_poa_lat_dec_1x_int; end if; if poa_set_delay /= 0 then poa_set_delay <= poa_set_delay - 1; end if; end if; else -- no static setup seq_poa_lat_inc_1x <= seq_poa_lat_inc_1x_int; seq_poa_lat_dec_1x <= seq_poa_lat_dec_1x_int; end if; end if; end process; -- count POA protection adjustments for debug process(clk, rst_n) begin if rst_n = '0' then poa_adjustments <= 0; elsif rising_edge(clk) then if seq_poa_lat_dec_1x_int(0) = '1' then poa_adjustments <= poa_adjustments + 1; end if; if seq_poa_lat_inc_1x_int(0) = '1' then if poa_adjustments = 0 then report seq_report_prefix & " postamble adjustment wrap around detected - more increments than decrements" severity failure; else poa_adjustments <= poa_adjustments - 1; end if; end if; end if; end process; end block; -- register output fail/success signals - avoiding optimisation out process(clk, rst_n) begin if rst_n = '0' then ctl_init_fail <= '0'; ctl_init_success <= '0'; elsif rising_edge(clk) then ctl_init_fail <= ctl_init_fail_int; ctl_init_success <= ctl_init_success_int; end if; end process; -- ctl_cal_byte_lanes register -- seq_rdp_reset_req_n - when ctl_recalibrate_req issued process(clk,rst_n) begin if rst_n = '0' then seq_rdp_reset_req_n <= '0'; ctl_cal_byte_lanes_r <= (others => '1'); elsif rising_edge(clk) then ctl_cal_byte_lanes_r <= not ctl_cal_byte_lanes; if ctl_recalibrate_req = '1' then seq_rdp_reset_req_n <= '0'; else if ctrl_broadcast.command = cmd_rrp_sweep or SIM_TIME_REDUCTIONS = 1 then seq_rdp_reset_req_n <= '1'; end if; end if; end if; end process; -- register 1t addr/cmd and odt latency outputs process(clk, rst_n) begin if rst_n = '0' then seq_ac_add_1t_ac_lat_internal <= '0'; seq_ac_add_1t_odt_lat_internal <= '0'; seq_ac_add_2t <= '0'; elsif rising_edge(clk) then if SIM_TIME_REDUCTIONS = 1 then seq_ac_add_1t_ac_lat_internal <= c_preset_cal_setup.ac_1t; seq_ac_add_1t_odt_lat_internal <= c_preset_cal_setup.ac_1t; else seq_ac_add_1t_ac_lat_internal <= int_ac_nt(0); seq_ac_add_1t_odt_lat_internal <= int_ac_nt(0); end if; seq_ac_add_2t <= '0'; end if; end process; -- override write datapath signal generation process(dgwb_wdp_override, dgrb_wdp_override, ctl_init_success_int, ctl_init_fail_int) begin if ctl_init_success_int = '0' and ctl_init_fail_int = '0' then -- if calibrating seq_wdp_ovride <= dgwb_wdp_override or dgrb_wdp_override; else seq_wdp_ovride <= '0'; end if; end process; -- output write/read latency (override with preset values when sim time reductions equals 1 seq_ctl_wlat <= std_logic_vector(to_unsigned(c_preset_cal_setup.wlat,ADV_LAT_WIDTH)) when SIM_TIME_REDUCTIONS = 1 else seq_ctl_wlat_int; seq_ctl_rlat <= std_logic_vector(to_unsigned(c_preset_cal_setup.rlat,ADV_LAT_WIDTH)) when SIM_TIME_REDUCTIONS = 1 else seq_ctl_rlat_int; process (clk, rst_n) begin if rst_n = '0' then seq_pll_phs_shift_busy_r <= '0'; seq_pll_phs_shift_busy_ccd <= '0'; elsif rising_edge(clk) then seq_pll_phs_shift_busy_r <= seq_pll_phs_shift_busy; seq_pll_phs_shift_busy_ccd <= seq_pll_phs_shift_busy_r; end if; end process; pll_ctrl: block -- static resync setup variables for sim time reductions signal static_rst_offset : natural range 0 to 2*PLL_STEPS_PER_CYCLE; signal phs_shft_busy_1r : std_logic; signal pll_set_delay : natural range 100 downto 0; -- wait 100 clock cycles for clk to be stable before setting resync phase -- pll signal generation signal mmi_pll_active : boolean; signal seq_pll_phs_shift_busy_ccd_1t : std_logic; begin -- multiplex ppl interface between dgrb and mmi blocks -- plus static setup of rsc phase to a known 'good' condition process(clk,rst_n) begin if rst_n = '0' then seq_pll_inc_dec_n <= '0'; seq_pll_start_reconfig <= '0'; seq_pll_select <= (others => '0'); dgrb_phs_shft_busy <= '0'; -- static resync setup variables for sim time reductions if SIM_TIME_REDUCTIONS = 1 then static_rst_offset <= c_preset_codvw_phase; else static_rst_offset <= 0; end if; phs_shft_busy_1r <= '0'; pll_set_delay <= 100; elsif rising_edge(clk) then dgrb_phs_shft_busy <= '0'; if static_rst_offset /= 0 and -- not finished decrementing pll_set_delay = 0 and -- initial reset period over SIM_TIME_REDUCTIONS = 1 then -- in reduce sim time mode (optimse logic away when not in this mode) seq_pll_inc_dec_n <= '1'; seq_pll_start_reconfig <= '1'; seq_pll_select <= pll_resync_clk_index; if seq_pll_phs_shift_busy_ccd = '1' then -- no metastability hardening needed in simulation -- PLL phase shift started - so stop requesting a shift seq_pll_start_reconfig <= '0'; end if; if seq_pll_phs_shift_busy_ccd = '0' and phs_shft_busy_1r = '1' then -- PLL phase shift finished - so proceed to flush the datapath static_rst_offset <= static_rst_offset - 1; seq_pll_start_reconfig <= '0'; end if; phs_shft_busy_1r <= seq_pll_phs_shift_busy_ccd; else if ctrl_iram_push.active_block = ret_dgrb then seq_pll_inc_dec_n <= dgrb_pll_inc_dec_n; seq_pll_start_reconfig <= dgrb_pll_start_reconfig; seq_pll_select <= dgrb_pll_select; dgrb_phs_shft_busy <= seq_pll_phs_shift_busy_ccd; else seq_pll_inc_dec_n <= mmi_pll_inc_dec_n; seq_pll_start_reconfig <= mmi_pll_start_reconfig; seq_pll_select <= mmi_pll_select; end if; end if; if pll_set_delay /= 0 then pll_set_delay <= pll_set_delay - 1; end if; if ctl_recalibrate_req = '1' then pll_set_delay <= 100; end if; end if; end process; -- generate mmi pll signals process (clk, rst_n) begin if rst_n = '0' then pll_mmi.pll_busy <= '0'; pll_mmi.err <= (others => '0'); mmi_pll_inc_dec_n <= '0'; mmi_pll_start_reconfig <= '0'; mmi_pll_select <= (others => '0'); mmi_pll_active <= false; seq_pll_phs_shift_busy_ccd_1t <= '0'; elsif rising_edge(clk) then if mmi_pll_active = true then pll_mmi.pll_busy <= '1'; else pll_mmi.pll_busy <= mmi_pll.pll_phs_shft_up_wc or mmi_pll.pll_phs_shft_dn_wc; end if; if pll_mmi.err = "00" and dgrb_pll_start_reconfig = '1' then pll_mmi.err <= "01"; elsif pll_mmi.err = "00" and mmi_pll_active = true then pll_mmi.err <= "10"; elsif pll_mmi.err = "00" and dgrb_pll_start_reconfig = '1' and mmi_pll_active = true then pll_mmi.err <= "11"; end if; if mmi_pll.pll_phs_shft_up_wc = '1' and mmi_pll_active = false then mmi_pll_inc_dec_n <= '1'; mmi_pll_select <= std_logic_vector(to_unsigned(mmi_pll.pll_phs_shft_phase_sel,mmi_pll_select'length)); mmi_pll_active <= true; elsif mmi_pll.pll_phs_shft_dn_wc = '1' and mmi_pll_active = false then mmi_pll_inc_dec_n <= '0'; mmi_pll_select <= std_logic_vector(to_unsigned(mmi_pll.pll_phs_shft_phase_sel,mmi_pll_select'length)); mmi_pll_active <= true; elsif seq_pll_phs_shift_busy_ccd_1t = '1' and seq_pll_phs_shift_busy_ccd = '0' then mmi_pll_start_reconfig <= '0'; mmi_pll_active <= false; elsif mmi_pll_active = true and mmi_pll_start_reconfig = '0' and seq_pll_phs_shift_busy_ccd = '0' then mmi_pll_start_reconfig <= '1'; elsif seq_pll_phs_shift_busy_ccd_1t = '0' and seq_pll_phs_shift_busy_ccd = '1' then mmi_pll_start_reconfig <= '0'; end if; seq_pll_phs_shift_busy_ccd_1t <= seq_pll_phs_shift_busy_ccd; end if; end process; end block; -- pll_ctrl --synopsys synthesis_off reporting : block function pass_or_fail_report( cal_success : in std_logic; cal_fail : in std_logic ) return string is begin if cal_success = '1' and cal_fail = '1' then return "unknown state cal_fail and cal_success both high"; end if; if cal_success = '1' then return "PASSED"; end if; if cal_fail = '1' then return "FAILED"; end if; return "calibration report run whilst sequencer is still calibrating"; end function; function is_stage_disabled ( stage_name : in string; stage_dis : in std_logic ) return string is begin if stage_dis = '0' then return ""; else return stage_name & " stage is disabled" & LF; end if; end function; function disabled_stages ( capabilities : in std_logic_vector ) return string is begin return is_stage_disabled("all calibration", c_capabilities(c_hl_css_reg_cal_dis_bit)) & is_stage_disabled("initialisation", c_capabilities(c_hl_css_reg_phy_initialise_dis_bit)) & is_stage_disabled("DRAM initialisation", c_capabilities(c_hl_css_reg_init_dram_dis_bit)) & is_stage_disabled("iram header write", c_capabilities(c_hl_css_reg_write_ihi_dis_bit)) & is_stage_disabled("burst training pattern write", c_capabilities(c_hl_css_reg_write_btp_dis_bit)) & is_stage_disabled("more training pattern (MTP) write", c_capabilities(c_hl_css_reg_write_mtp_dis_bit)) & is_stage_disabled("check MTP pattern alignment calculation", c_capabilities(c_hl_css_reg_read_mtp_dis_bit)) & is_stage_disabled("read resynch phase reset stage", c_capabilities(c_hl_css_reg_rrp_reset_dis_bit)) & is_stage_disabled("read resynch phase sweep stage", c_capabilities(c_hl_css_reg_rrp_sweep_dis_bit)) & is_stage_disabled("read resynch phase seek stage (set phase)", c_capabilities(c_hl_css_reg_rrp_seek_dis_bit)) & is_stage_disabled("read data valid window setup", c_capabilities(c_hl_css_reg_rdv_dis_bit)) & is_stage_disabled("postamble calibration", c_capabilities(c_hl_css_reg_poa_dis_bit)) & is_stage_disabled("write latency timing calc", c_capabilities(c_hl_css_reg_was_dis_bit)) & is_stage_disabled("advertise read latency", c_capabilities(c_hl_css_reg_adv_rd_lat_dis_bit)) & is_stage_disabled("advertise write latency", c_capabilities(c_hl_css_reg_adv_wr_lat_dis_bit)) & is_stage_disabled("write customer mode register settings", c_capabilities(c_hl_css_reg_prep_customer_mr_setup_dis_bit)) & is_stage_disabled("tracking", c_capabilities(c_hl_css_reg_tracking_dis_bit)); end function; function ac_nt_report( ac_nt : in std_logic_vector; dgrb_ctrl_ac_nt_good : in std_logic; preset_cal_setup : in t_preset_cal) return string is variable v_ac_nt : std_logic_vector(0 downto 0); begin if SIM_TIME_REDUCTIONS = 1 then v_ac_nt(0) := preset_cal_setup.ac_1t; if v_ac_nt(0) = '1' then return "-- statically set address and command 1T delay: add 1T delay" & LF; else return "-- statically set address and command 1T delay: no 1T delay" & LF; end if; else v_ac_nt(0) := ac_nt(0); if dgrb_ctrl_ac_nt_good = '1' then if v_ac_nt(0) = '1' then return "-- chosen address and command 1T delay: add 1T delay" & LF; else return "-- chosen address and command 1T delay: no 1T delay" & LF; end if; else return "-- no valid address and command phase chosen (calibration FAILED)" & LF; end if; end if; end function; function read_resync_report ( codvw_phase : in std_logic_vector; codvw_size : in std_logic_vector; ctl_rlat : in std_logic_vector; ctl_wlat : in std_logic_vector; preset_cal_setup : in t_preset_cal) return string is begin if SIM_TIME_REDUCTIONS = 1 then return "-- read resynch phase static setup (no calibration run) report:" & LF & " -- statically set centre of data valid window phase : " & natural'image(preset_cal_setup.codvw_phase) & LF & " -- statically set centre of data valid window size : " & natural'image(preset_cal_setup.codvw_size) & LF & " -- statically set read latency (ctl_rlat) : " & natural'image(preset_cal_setup.rlat) & LF & " -- statically set write latency (ctl_wlat) : " & natural'image(preset_cal_setup.wlat) & LF & " -- note: this mode only works for simulation and sets resync phase" & LF & " to a known good operating condition for no test bench" & LF & " delays on mem_dq signal" & LF; else return "-- PHY read latency (ctl_rlat) is : " & natural'image(to_integer(unsigned(ctl_rlat))) & LF & "-- address/command to PHY write latency (ctl_wlat) is : " & natural'image(to_integer(unsigned(ctl_wlat))) & LF & "-- read resynch phase calibration report:" & LF & " -- calibrated centre of data valid window phase : " & natural'image(to_integer(unsigned(codvw_phase))) & LF & " -- calibrated centre of data valid window size : " & natural'image(to_integer(unsigned(codvw_size))) & LF; end if; end function; function poa_rdv_adjust_report( poa_adjust : in natural; rdv_adjust : in natural; preset_cal_setup : in t_preset_cal) return string is begin if SIM_TIME_REDUCTIONS = 1 then return "Statically set poa and rdv (adjustments from reset value):" & LF & "poa 'dec' adjustments = " & natural'image(preset_cal_setup.poa_lat) & LF & "rdv 'dec' adjustments = " & natural'image(preset_cal_setup.rdv_lat) & LF; else return "poa 'dec' adjustments = " & natural'image(poa_adjust) & LF & "rdv 'dec' adjustments = " & natural'image(rdv_adjust) & LF; end if; end function; function calibration_report ( capabilities : in std_logic_vector; cal_success : in std_logic; cal_fail : in std_logic; ctl_rlat : in std_logic_vector; ctl_wlat : in std_logic_vector; codvw_phase : in std_logic_vector; codvw_size : in std_logic_vector; ac_nt : in std_logic_vector; dgrb_ctrl_ac_nt_good : in std_logic; preset_cal_setup : in t_preset_cal; poa_adjust : in natural; rdv_adjust : in natural) return string is begin return seq_report_prefix & " report..." & LF & "-----------------------------------------------------------------------" & LF & "-- **** ALTMEMPHY CALIBRATION has completed ****" & LF & "-- Status:" & LF & "-- calibration has : " & pass_or_fail_report(cal_success, cal_fail) & LF & read_resync_report(codvw_phase, codvw_size, ctl_rlat, ctl_wlat, preset_cal_setup) & ac_nt_report(ac_nt, dgrb_ctrl_ac_nt_good, preset_cal_setup) & poa_rdv_adjust_report(poa_adjust, rdv_adjust, preset_cal_setup) & disabled_stages(capabilities) & "-----------------------------------------------------------------------"; end function; begin -- ------------------------------------------------------- -- calibration result reporting -- ------------------------------------------------------- process(rst_n, clk) variable v_reports_written : std_logic; variable v_cal_request_r : std_logic; variable v_rewrite_report : std_logic; begin if rst_n = '0' then v_reports_written := '0'; v_cal_request_r := '0'; v_rewrite_report := '0'; elsif Rising_Edge(clk) then if v_reports_written = '0' then if ctl_init_success_int = '1' or ctl_init_fail_int = '1' then v_reports_written := '1'; report calibration_report(c_capabilities, ctl_init_success_int, ctl_init_fail_int, seq_ctl_rlat_int, seq_ctl_wlat_int, dgrb_mmi.cal_codvw_phase, dgrb_mmi.cal_codvw_size, int_ac_nt, dgrb_ctrl_ac_nt_good, c_preset_cal_setup, poa_adjustments, rdv_adjustments ) severity note; end if; end if; -- if recalibrate request triggered watch for cal success / fail going low and re-trigger report writing if ctl_recalibrate_req = '1' and v_cal_request_r = '0' then v_rewrite_report := '1'; end if; if v_rewrite_report = '1' and ctl_init_success_int = '0' and ctl_init_fail_int = '0' then v_reports_written := '0'; v_rewrite_report := '0'; end if; v_cal_request_r := ctl_recalibrate_req; end if; end process; -- ------------------------------------------------------- -- capabilities vector reporting and coarse PHY setup sanity checks -- ------------------------------------------------------- process(rst_n, clk) variable reports_written : std_logic; begin if rst_n = '0' then reports_written := '0'; elsif Rising_Edge(clk) then if reports_written = '0' then reports_written := '1'; if MEM_IF_MEMTYPE="DDR" or MEM_IF_MEMTYPE="DDR2" or MEM_IF_MEMTYPE="DDR3" then if DWIDTH_RATIO = 2 or DWIDTH_RATIO = 4 then report disabled_stages(c_capabilities) severity note; else report seq_report_prefix & "unsupported rate for non-levelling AFI PHY sequencer - only full- or half-rate supported" severity warning; end if; else report seq_report_prefix & "memory type " & MEM_IF_MEMTYPE & " is not supported in non-levelling AFI PHY sequencer" severity failure; end if; end if; end if; end process; end block; -- reporting --synopsys synthesis_on end architecture struct;
gpl-2.0
furrtek/portapack-havoc
hardware/portapack_h1/cpld/20150901/top.vhd
2
4891
-- -- Copyright (C) 2012 Jared Boone, ShareBrained Technology, Inc. -- -- This file is part of PortaPack. -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2, or (at your option) -- any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; see the file COPYING. If not, write to -- the Free Software Foundation, Inc., 51 Franklin Street, -- Boston, MA 02110-1301, USA. library ieee; use ieee.std_logic_1164.all; entity top is port ( MCU_D : inout std_logic_vector(7 downto 0); MCU_DIR : in std_logic; MCU_IO_STBX : in std_logic; MCU_LCD_WRX : in std_logic; MCU_ADDR : in std_logic; MCU_LCD_TE : out std_logic; MCU_P2_8 : in std_logic; MCU_LCD_RDX : in std_logic; TP_U : out std_logic; TP_D : out std_logic; TP_L : out std_logic; TP_R : out std_logic; SW_SEL : in std_logic; SW_ROT_A : in std_logic; SW_ROT_B : in std_logic; SW_U : in std_logic; SW_D : in std_logic; SW_L : in std_logic; SW_R : in std_logic; LCD_RESETX : out std_logic; LCD_RS : out std_logic; LCD_WRX : out std_logic; LCD_RDX : out std_logic; LCD_DB : inout std_logic_vector(15 downto 0); LCD_TE : in std_logic; LCD_BACKLIGHT : out std_logic ); end top; architecture rtl of top is signal switches : std_logic_vector(7 downto 0); type data_direction_t is (from_mcu, to_mcu); signal data_dir : data_direction_t; signal mcu_data_out_lcd : std_logic_vector(7 downto 0); signal mcu_data_out_io : std_logic_vector(7 downto 0); signal mcu_data_out : std_logic_vector(7 downto 0); signal mcu_data_in : std_logic_vector(7 downto 0); signal lcd_data_in : std_logic_vector(15 downto 0); signal lcd_data_in_mux : std_logic_vector(7 downto 0); signal lcd_data_out : std_logic_vector(15 downto 0); signal lcd_data_in_q : std_logic_vector(7 downto 0) := (others => '0'); signal lcd_data_out_q : std_logic_vector(7 downto 0) := (others => '0'); signal tp_q : std_logic_vector(7 downto 0) := (others => '0'); signal lcd_reset_q : std_logic := '1'; signal lcd_backlight_q : std_logic := '0'; signal dir_read : boolean; signal dir_write : boolean; signal lcd_read_strobe : boolean; signal lcd_write_strobe : boolean; signal lcd_write : boolean; signal io_strobe : boolean; signal io_read_strobe : boolean; signal io_write_strobe : boolean; begin -- I/O data switches <= LCD_TE & not SW_ROT_B & not SW_ROT_A & not SW_SEL & not SW_U & not SW_D & not SW_L & not SW_R; TP_U <= tp_q(3) when tp_q(7) = '1' else 'Z'; TP_D <= tp_q(2) when tp_q(6) = '1' else 'Z'; TP_L <= tp_q(1) when tp_q(5) = '1' else 'Z'; TP_R <= tp_q(0) when tp_q(4) = '1' else 'Z'; LCD_BACKLIGHT <= lcd_backlight_q; MCU_LCD_TE <= LCD_TE; -- State management data_dir <= to_mcu when MCU_DIR = '1' else from_mcu; dir_read <= (data_dir = to_mcu); dir_write <= (data_dir = from_mcu); io_strobe <= (MCU_IO_STBX = '0'); io_read_strobe <= io_strobe and dir_read; lcd_read_strobe <= (MCU_LCD_RDX = '0'); lcd_write <= not lcd_read_strobe; -- LCD interface LCD_RS <= MCU_ADDR; LCD_RDX <= MCU_LCD_RDX; LCD_WRX <= MCU_LCD_WRX; lcd_data_out <= lcd_data_out_q & mcu_data_in; lcd_data_in <= LCD_DB; LCD_DB <= lcd_data_out when lcd_write else (others => 'Z'); LCD_RESETX <= not lcd_reset_q; -- MCU interface mcu_data_out_lcd <= lcd_data_in(15 downto 8) when lcd_read_strobe else lcd_data_in_q; mcu_data_out_io <= switches; mcu_data_out <= mcu_data_out_io when io_read_strobe else mcu_data_out_lcd; mcu_data_in <= MCU_D; MCU_D <= mcu_data_out when dir_read else (others => 'Z'); -- Synchronous behaviors: -- LCD write: Capture LCD high byte on LCD_WRX falling edge. process(MCU_LCD_WRX, mcu_data_in) begin if falling_edge(MCU_LCD_WRX) then lcd_data_out_q <= mcu_data_in; end if; end process; -- LCD read: Capture LCD low byte on LCD_RD falling edge. process(MCU_LCD_RDX, lcd_data_in) begin if rising_edge(MCU_LCD_RDX) then lcd_data_in_q <= lcd_data_in(7 downto 0); end if; end process; -- I/O write (to resistive touch panel): Capture data from -- MCU and hold on TP pins until further notice. process(MCU_IO_STBX, dir_write, mcu_data_in, MCU_ADDR) begin if rising_edge(MCU_IO_STBX) and dir_write then if MCU_ADDR = '0' then tp_q <= mcu_data_in; else lcd_reset_q <= mcu_data_in(0); lcd_backlight_q <= mcu_data_in(7); end if; end if; end process; end rtl;
gpl-2.0
steveicarus/iverilog
ivtest/ivltests/vhdl_and23_bit.vhd
4
286
library ieee; use ieee.numeric_bit.all; entity and23 is port ( a_i : in bit_vector (22 downto 0); b_i : in bit_vector (22 downto 0); c_o : out bit_vector (22 downto 0) ); end entity and23; architecture rtl of and23 is begin c_o <= a_i and b_i; end architecture rtl;
gpl-2.0
steveicarus/iverilog
ivtest/ivltests/vhdl_not104_stdlogic.vhd
4
263
library ieee; use ieee.std_logic_1164.all; entity not104 is port ( a_i : in std_logic_vector (103 downto 0); c_o : out std_logic_vector (103 downto 0) ); end entity not104; architecture rtl of not104 is begin c_o <= not a_i; end architecture rtl;
gpl-2.0
bmazin/SDR
Projects/FirmwareTests/chan1024/dark_pfb_core10.vhd
1
1559
library IEEE; use IEEE.std_logic_1164.all; entity dark_pfb_core10 is port ( ce_1: in std_logic; clk_1: in std_logic; data0: in std_logic_vector(23 downto 0); data1: in std_logic_vector(23 downto 0); data2: in std_logic_vector(23 downto 0); data3: in std_logic_vector(23 downto 0); data4: in std_logic_vector(23 downto 0); data5: in std_logic_vector(23 downto 0); data6: in std_logic_vector(23 downto 0); data7: in std_logic_vector(23 downto 0); skip_pfb: in std_logic; sync_in: in std_logic; bin0_t0: out std_logic_vector(35 downto 0); bin0_t1: out std_logic_vector(35 downto 0); bin1_t0: out std_logic_vector(35 downto 0); bin1_t1: out std_logic_vector(35 downto 0); bin2_t0: out std_logic_vector(35 downto 0); bin2_t1: out std_logic_vector(35 downto 0); bin3_t0: out std_logic_vector(35 downto 0); bin3_t1: out std_logic_vector(35 downto 0); bin4_t0: out std_logic_vector(35 downto 0); bin4_t1: out std_logic_vector(35 downto 0); bin5_t0: out std_logic_vector(35 downto 0); bin5_t1: out std_logic_vector(35 downto 0); bin6_t0: out std_logic_vector(35 downto 0); bin6_t1: out std_logic_vector(35 downto 0); bin7_t0: out std_logic_vector(35 downto 0); bin7_t1: out std_logic_vector(35 downto 0); bin_ctr: out std_logic_vector(7 downto 0); fft_rdy: out std_logic; overflow: out std_logic_vector(3 downto 0) ); end dark_pfb_core10; architecture structural of dark_pfb_core10 is begin end structural;
gpl-2.0
steveicarus/iverilog
ivtest/ivltests/vhdl_concat_func.vhd
2
1437
-- Copyright (c) 2015 CERN -- Maciej Suminski <[email protected]> -- -- This source code is free software; you can redistribute it -- and/or modify it in source code form under the terms of the GNU -- General Public License as published by the Free Software -- Foundation; either version 2 of the License, or (at your option) -- any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA -- Test for concatenation of function call results. library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity concat_func is port(in_word : in std_logic_vector(7 downto 0); out_word : out std_logic_vector(7 downto 0)); end entity concat_func; architecture test of concat_func is begin process(in_word) variable tmp : unsigned(7 downto 0); variable int : integer; begin tmp := unsigned(in_word); int := to_integer(tmp); out_word <= in_word(7 downto 6) & std_logic_vector(to_unsigned(int, 3)) & std_logic_vector(resize(tmp, 3)); end process; end architecture test;
gpl-2.0
steveicarus/iverilog
ivtest/ivltests/vhdl_umul23_stdlogic.vhd
4
310
library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity umul23 is port ( a_i : in unsigned (22 downto 0); b_i : in unsigned (22 downto 0); c_o : out unsigned (45 downto 0) ); end entity umul23; architecture rtl of umul23 is begin c_o <= a_i * b_i; end architecture rtl;
gpl-2.0
zebarnabe/music-keyboard-vhdl
src/main/keyMatrixLED.vhd
1
1146
---------------------------------------------------------------------------------- -- Company: -- Engineer: -- -- Create Date: 01:10:16 07/01/2015 -- Design Name: -- Module Name: keyMatrixLED - Behavioral -- Project Name: -- Target Devices: -- Tool versions: -- Description: -- -- Dependencies: -- -- Revision: -- Revision 0.01 - File Created -- Additional Comments: -- ---------------------------------------------------------------------------------- library IEEE; use IEEE.STD_LOGIC_1164.ALL; -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values --use IEEE.NUMERIC_STD.ALL; -- Uncomment the following library declaration if instantiating -- any Xilinx primitives in this code. --library UNISIM; --use UNISIM.VComponents.all; entity keyMatrixLED is Port ( keyMatrix : in STD_LOGIC_VECTOR (31 downto 0); led : out STD_LOGIC_VECTOR (7 downto 0)); end keyMatrixLED; architecture Behavioral of keyMatrixLED is begin led <= (keyMatrix(31 downto 24) xor keyMatrix(23 downto 16) xor keyMatrix(15 downto 8) xor keyMatrix(7 downto 0)); end Behavioral;
gpl-2.0
steveicarus/iverilog
ivtest/ivltests/vhdl_prefix_array.vhd
3
1689
-- Copyright (c) 2015 CERN -- Maciej Suminski <[email protected]> -- -- This source code is free software; you can redistribute it -- and/or modify it in source code form under the terms of the GNU -- General Public License as published by the Free Software -- Foundation; either version 2 of the License, or (at your option) -- any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA -- Example to test prefix for VTypeArray (and using function as index). library ieee; use ieee.std_logic_1164.all; entity prefix_array is port(sel_word : in std_logic_vector(1 downto 0); out_word : out integer); end entity prefix_array; architecture test of prefix_array is type t_timeouts is record a : integer; b : integer; end record; type t_timeouts_table is array (natural range <>) of t_timeouts; constant c_TIMEOUTS_TABLE : t_timeouts_table(3 downto 0) := (0 => (a => 1, b => 2), 1 => (a => 3, b => 4), 2 => (a => 5, b => 6), 3 => (a => 7, b => 8)); begin process(sel_word) begin out_word <= to_unsigned((c_TIMEOUTS_TABLE(to_integer(unsigned(sel_word))).a), 32); end process; end architecture test;
gpl-2.0
steveicarus/iverilog
ivtest/ivltests/vhdl_umul23_bit.vhd
4
281
library ieee; use ieee.numeric_bit.all; entity umul23 is port ( a_i : in unsigned (22 downto 0); b_i : in unsigned (22 downto 0); c_o : out unsigned (45 downto 0) ); end entity umul23; architecture rtl of umul23 is begin c_o <= a_i * b_i; end architecture rtl;
gpl-2.0
huxiaolei/xapp1078_2014.4_zybo
design/work/project_2/project_2.srcs/sources_1/ipshared/xilinx.com/lib_cdc_v1_0/d3fab4a1/hdl/src/vhdl/cdc_sync.vhd
21
47317
--Generic Help --C_CDC_TYPE : Defines the type of CDC needed -- 0 means pulse synchronizer. Used to transfer one clock pulse -- from prmry domain to scndry domain. -- 1 means level synchronizer. Used to transfer level signal. -- 2 means level synchronizer with ack. Used to transfer level -- signal. Input signal should change only when prmry_ack is detected -- --C_FLOP_INPUT : when set to 1 adds one flop stage to the input prmry_in signal -- Set to 0 when incoming signal is purely floped signal. -- --C_RESET_STATE : Generally sync flops need not have resets. However, in some cases -- it might be needed. -- 0 means reset not needed for sync flops -- 1 means reset needed for sync flops. i -- In this case prmry_resetn should be in prmry clock, -- while scndry_reset should be in scndry clock. -- --C_SINGLE_BIT : CDC should normally be done for single bit signals only. -- However, based on design buses can also be CDC'ed. -- 0 means it is a bus. In this case input be connected to prmry_vect_in. -- Output is on scndry_vect_out. -- 1 means it is a single bit. In this case input be connected to prmry_in. -- Output is on scndry_out. -- --C_VECTOR_WIDTH : defines the size of bus. This is irrelevant when C_SINGLE_BIT = 1 -- --C_MTBF_STAGES : Defines the number of sync stages needed. Allowed values are 0 to 6. -- Value of 0, 1 is allowed only for level CDC. -- Min value for Pulse CDC is 2 -- --Whenever this file is used following XDC constraint has to be added -- set_false_path -to [get_pins -hier *cdc_to*/D] --IO Ports -- -- prmry_aclk : clock of originating domain (source domain) -- prmry_resetn : sync reset of originating clock domain (source domain) -- prmry_in : input signal bit. This should be a pure flop output without -- any combi logic. This is source. -- prmry_vect_in : bus signal. From Source domain. -- prmry_ack : Ack signal, valid for one clock period, in prmry_aclk domain. -- Used only when C_CDC_TYPE = 2 -- scndry_aclk : destination clock. -- scndry_resetn : sync reset of destination domain -- scndry_out : sync'ed output in destination domain. Single bit. -- scndry_vect_out : sync'ed output in destination domain. bus. library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; use ieee.std_logic_misc.all; library unisim; use unisim.vcomponents.FDR; entity cdc_sync is generic ( C_CDC_TYPE : integer range 0 to 2 := 1 ; -- 0 is pulse synch -- 1 is level synch -- 2 is ack based level sync C_RESET_STATE : integer range 0 to 1 := 0 ; -- 0 is reset not needed -- 1 is reset needed C_SINGLE_BIT : integer range 0 to 1 := 1 ; -- 0 is bus input -- 1 is single bit input C_FLOP_INPUT : integer range 0 to 1 := 0 ; C_VECTOR_WIDTH : integer range 0 to 32 := 32 ; C_MTBF_STAGES : integer range 0 to 6 := 2 -- Vector Data witdth ); port ( prmry_aclk : in std_logic ; -- prmry_resetn : in std_logic ; -- prmry_in : in std_logic ; -- prmry_vect_in : in std_logic_vector -- (C_VECTOR_WIDTH - 1 downto 0) ; -- prmry_ack : out std_logic ; -- scndry_aclk : in std_logic ; -- scndry_resetn : in std_logic ; -- -- -- Primary to Secondary Clock Crossing -- scndry_out : out std_logic ; -- -- scndry_vect_out : out std_logic_vector -- (C_VECTOR_WIDTH - 1 downto 0) -- ); end cdc_sync; ------------------------------------------------------------------------------- -- Architecture ------------------------------------------------------------------------------- architecture implementation of cdc_sync is attribute DowngradeIPIdentifiedWarnings : string; attribute DowngradeIPIdentifiedWarnings of implementation : architecture is "yes"; --attribute DONT_TOUCH : STRING; --attribute KEEP : STRING; --attribute DONT_TOUCH of implementation : architecture is "yes"; signal prmry_resetn1 : std_logic := '0'; signal scndry_resetn1 : std_logic := '0'; signal prmry_reset2 : std_logic := '0'; signal scndry_reset2 : std_logic := '0'; --attribute KEEP of prmry_resetn1 : signal is "true"; --attribute KEEP of scndry_resetn1 : signal is "true"; ------------------------------------------------------------------------------- -- Functions ------------------------------------------------------------------------------- -- No Functions Declared ------------------------------------------------------------------------------- -- Constants Declarations ------------------------------------------------------------------------------- -- No Constants Declared ------------------------------------------------------------------------------- -- Begin architecture logic ------------------------------------------------------------------------------- begin HAS_RESET : if C_RESET_STATE = 1 generate begin prmry_resetn1 <= prmry_resetn; scndry_resetn1 <= scndry_resetn; end generate HAS_RESET; HAS_NO_RESET : if C_RESET_STATE = 0 generate begin prmry_resetn1 <= '1'; scndry_resetn1 <= '1'; end generate HAS_NO_RESET; prmry_reset2 <= not prmry_resetn1; scndry_reset2 <= not scndry_resetn1; -- Generate PULSE clock domain crossing GENERATE_PULSE_P_S_CDC_OPEN_ENDED : if C_CDC_TYPE = 0 generate -- Primary to Secondary signal s_out_d1_cdc_to : std_logic := '0'; --attribute DONT_TOUCH of s_out_d1_cdc_to : signal is "true"; signal s_out_d2 : std_logic := '0'; signal s_out_d3 : std_logic := '0'; signal s_out_d4 : std_logic := '0'; signal s_out_d5 : std_logic := '0'; signal s_out_d6 : std_logic := '0'; signal s_out_d7 : std_logic := '0'; signal s_out_re : std_logic := '0'; signal prmry_in_xored : std_logic := '0'; signal p_in_d1_cdc_from : std_logic := '0'; ----------------------------------------------------------------------------- -- ATTRIBUTE Declarations ----------------------------------------------------------------------------- -- Prevent x-propagation on clock-domain crossing register ATTRIBUTE async_reg : STRING; ATTRIBUTE async_reg OF REG_P_IN2_cdc_to : label IS "true"; ATTRIBUTE async_reg OF P_IN_CROSS2SCNDRY_s_out_d2 : label IS "true"; ATTRIBUTE async_reg OF P_IN_CROSS2SCNDRY_s_out_d3 : label IS "true"; ATTRIBUTE async_reg OF P_IN_CROSS2SCNDRY_s_out_d4 : label IS "true"; ATTRIBUTE async_reg OF P_IN_CROSS2SCNDRY_s_out_d5 : label IS "true"; ATTRIBUTE async_reg OF P_IN_CROSS2SCNDRY_s_out_d6 : label IS "true"; ATTRIBUTE async_reg OF P_IN_CROSS2SCNDRY_s_out_d7 : label IS "true"; begin --***************************************************************************** --** Asynchronous Pulse Clock Crossing ** --** PRIMARY TO SECONDARY OPEN-ENDED ** --***************************************************************************** scndry_vect_out <= (others => '0'); prmry_ack <= '0'; prmry_in_xored <= prmry_in xor p_in_d1_cdc_from; --------------------------------------REG_P_IN : process(prmry_aclk) -------------------------------------- begin -------------------------------------- if(prmry_aclk'EVENT and prmry_aclk ='1')then -------------------------------------- if(prmry_resetn1 = '0') then -- and C_RESET_STATE = 1)then -------------------------------------- p_in_d1_cdc_from <= '0'; -------------------------------------- else -------------------------------------- p_in_d1_cdc_from <= prmry_in_xored; -------------------------------------- end if; -------------------------------------- end if; -------------------------------------- end process REG_P_IN; REG_P_IN_cdc_from : component FDR generic map(INIT => '0' )port map ( Q => p_in_d1_cdc_from, C => prmry_aclk, D => prmry_in_xored, R => prmry_reset2 ); REG_P_IN2_cdc_to : component FDR generic map(INIT => '0' )port map ( Q => s_out_d1_cdc_to, C => scndry_aclk, D => p_in_d1_cdc_from, R => scndry_reset2 ); ------------------------------------ P_IN_CROSS2SCNDRY : process(scndry_aclk) ------------------------------------ begin ------------------------------------ if(scndry_aclk'EVENT and scndry_aclk ='1')then ------------------------------------ if(scndry_resetn1 = '0') then -- and C_RESET_STATE = 1)then ------------------------------------ s_out_d2 <= '0'; ------------------------------------ s_out_d3 <= '0'; ------------------------------------ s_out_d4 <= '0'; ------------------------------------ s_out_d5 <= '0'; ------------------------------------ s_out_d6 <= '0'; ------------------------------------ s_out_d7 <= '0'; ------------------------------------ scndry_out <= '0'; ------------------------------------ else ------------------------------------ s_out_d2 <= s_out_d1_cdc_to; ------------------------------------ s_out_d3 <= s_out_d2; ------------------------------------ s_out_d4 <= s_out_d3; ------------------------------------ s_out_d5 <= s_out_d4; ------------------------------------ s_out_d6 <= s_out_d5; ------------------------------------ s_out_d7 <= s_out_d6; ------------------------------------ scndry_out <= s_out_re; ------------------------------------ end if; ------------------------------------ end if; ------------------------------------ end process P_IN_CROSS2SCNDRY; P_IN_CROSS2SCNDRY_s_out_d2 : component FDR generic map(INIT => '0' )port map ( Q => s_out_d2, C => scndry_aclk, D => s_out_d1_cdc_to, R => scndry_reset2 ); P_IN_CROSS2SCNDRY_s_out_d3 : component FDR generic map(INIT => '0' )port map ( Q => s_out_d3, C => scndry_aclk, D => s_out_d2, R => scndry_reset2 ); P_IN_CROSS2SCNDRY_s_out_d4 : component FDR generic map(INIT => '0' )port map ( Q => s_out_d4, C => scndry_aclk, D => s_out_d3, R => scndry_reset2 ); P_IN_CROSS2SCNDRY_s_out_d5 : component FDR generic map(INIT => '0' )port map ( Q => s_out_d5, C => scndry_aclk, D => s_out_d4, R => scndry_reset2 ); P_IN_CROSS2SCNDRY_s_out_d6 : component FDR generic map(INIT => '0' )port map ( Q => s_out_d6, C => scndry_aclk, D => s_out_d5, R => scndry_reset2 ); P_IN_CROSS2SCNDRY_s_out_d7 : component FDR generic map(INIT => '0' )port map ( Q => s_out_d7, C => scndry_aclk, D => s_out_d6, R => scndry_reset2 ); P_IN_CROSS2SCNDRY_scndry_out : component FDR generic map(INIT => '0' )port map ( Q => scndry_out, C => scndry_aclk, D => s_out_re, R => scndry_reset2 ); MTBF_2 : if C_MTBF_STAGES = 2 generate begin s_out_re <= s_out_d2 xor s_out_d3; end generate MTBF_2; MTBF_3 : if C_MTBF_STAGES = 3 generate begin s_out_re <= s_out_d3 xor s_out_d4; end generate MTBF_3; MTBF_4 : if C_MTBF_STAGES = 4 generate begin s_out_re <= s_out_d4 xor s_out_d5; end generate MTBF_4; MTBF_5 : if C_MTBF_STAGES = 5 generate begin s_out_re <= s_out_d5 xor s_out_d6; end generate MTBF_5; MTBF_6 : if C_MTBF_STAGES = 6 generate begin s_out_re <= s_out_d6 xor s_out_d7; end generate MTBF_6; -- Feed secondary pulse out end generate GENERATE_PULSE_P_S_CDC_OPEN_ENDED; -- Generate LEVEL clock domain crossing with reset state = 0 GENERATE_LEVEL_P_S_CDC : if C_CDC_TYPE = 1 generate begin -- Primary to Secondary SINGLE_BIT : if C_SINGLE_BIT = 1 generate signal p_level_in_d1_cdc_from : std_logic := '0'; signal p_level_in_int : std_logic := '0'; signal s_level_out_d1_cdc_to : std_logic := '0'; --attribute DONT_TOUCH of s_level_out_d1_cdc_to : signal is "true"; signal s_level_out_d2 : std_logic := '0'; signal s_level_out_d3 : std_logic := '0'; signal s_level_out_d4 : std_logic := '0'; signal s_level_out_d5 : std_logic := '0'; signal s_level_out_d6 : std_logic := '0'; ----------------------------------------------------------------------------- -- ATTRIBUTE Declarations ----------------------------------------------------------------------------- -- Prevent x-propagation on clock-domain crossing register ATTRIBUTE async_reg : STRING; ATTRIBUTE async_reg OF CROSS_PLEVEL_IN2SCNDRY_IN_cdc_to : label IS "true"; ATTRIBUTE async_reg OF CROSS_PLEVEL_IN2SCNDRY_s_level_out_d2 : label IS "true"; ATTRIBUTE async_reg OF CROSS_PLEVEL_IN2SCNDRY_s_level_out_d3 : label IS "true"; ATTRIBUTE async_reg OF CROSS_PLEVEL_IN2SCNDRY_s_level_out_d4 : label IS "true"; ATTRIBUTE async_reg OF CROSS_PLEVEL_IN2SCNDRY_s_level_out_d5 : label IS "true"; ATTRIBUTE async_reg OF CROSS_PLEVEL_IN2SCNDRY_s_level_out_d6 : label IS "true"; begin --***************************************************************************** --** Asynchronous Level Clock Crossing ** --** PRIMARY TO SECONDARY ** --***************************************************************************** -- register is scndry to provide clean ff output to clock crossing logic scndry_vect_out <= (others => '0'); prmry_ack <= '0'; INPUT_FLOP : if C_FLOP_INPUT = 1 generate begin ---------------------------------- REG_PLEVEL_IN : process(prmry_aclk) ---------------------------------- begin ---------------------------------- if(prmry_aclk'EVENT and prmry_aclk ='1')then ---------------------------------- if(prmry_resetn1 = '0') then -- and C_RESET_STATE = 1)then ---------------------------------- p_level_in_d1_cdc_from <= '0'; ---------------------------------- else ---------------------------------- p_level_in_d1_cdc_from <= prmry_in; ---------------------------------- end if; ---------------------------------- end if; ---------------------------------- end process REG_PLEVEL_IN; REG_PLEVEL_IN_cdc_from : component FDR generic map(INIT => '0' )port map ( Q => p_level_in_d1_cdc_from, C => prmry_aclk, D => prmry_in, R => prmry_reset2 ); p_level_in_int <= p_level_in_d1_cdc_from; end generate INPUT_FLOP; NO_INPUT_FLOP : if C_FLOP_INPUT = 0 generate begin p_level_in_int <= prmry_in; end generate NO_INPUT_FLOP; CROSS_PLEVEL_IN2SCNDRY_IN_cdc_to : component FDR generic map(INIT => '0' )port map ( Q => s_level_out_d1_cdc_to, C => scndry_aclk, D => p_level_in_int, R => scndry_reset2 ); ------------------------------ CROSS_PLEVEL_IN2SCNDRY : process(scndry_aclk) ------------------------------ begin ------------------------------ if(scndry_aclk'EVENT and scndry_aclk ='1')then ------------------------------ if(scndry_resetn1 = '0') then -- and C_RESET_STATE = 1)then ------------------------------ s_level_out_d2 <= '0'; ------------------------------ s_level_out_d3 <= '0'; ------------------------------ s_level_out_d4 <= '0'; ------------------------------ s_level_out_d5 <= '0'; ------------------------------ s_level_out_d6 <= '0'; ------------------------------ else ------------------------------ s_level_out_d2 <= s_level_out_d1_cdc_to; ------------------------------ s_level_out_d3 <= s_level_out_d2; ------------------------------ s_level_out_d4 <= s_level_out_d3; ------------------------------ s_level_out_d5 <= s_level_out_d4; ------------------------------ s_level_out_d6 <= s_level_out_d5; ------------------------------ end if; ------------------------------ end if; ------------------------------ end process CROSS_PLEVEL_IN2SCNDRY; CROSS_PLEVEL_IN2SCNDRY_s_level_out_d2 : component FDR generic map(INIT => '0' )port map ( Q => s_level_out_d2, C => scndry_aclk, D => s_level_out_d1_cdc_to, R => scndry_reset2 ); CROSS_PLEVEL_IN2SCNDRY_s_level_out_d3 : component FDR generic map(INIT => '0' )port map ( Q => s_level_out_d3, C => scndry_aclk, D => s_level_out_d2, R => scndry_reset2 ); CROSS_PLEVEL_IN2SCNDRY_s_level_out_d4 : component FDR generic map(INIT => '0' )port map ( Q => s_level_out_d4, C => scndry_aclk, D => s_level_out_d3, R => scndry_reset2 ); CROSS_PLEVEL_IN2SCNDRY_s_level_out_d5 : component FDR generic map(INIT => '0' )port map ( Q => s_level_out_d5, C => scndry_aclk, D => s_level_out_d4, R => scndry_reset2 ); CROSS_PLEVEL_IN2SCNDRY_s_level_out_d6 : component FDR generic map(INIT => '0' )port map ( Q => s_level_out_d6, C => scndry_aclk, D => s_level_out_d5, R => scndry_reset2 ); MTBF_L1 : if C_MTBF_STAGES = 1 generate begin scndry_out <= s_level_out_d1_cdc_to; end generate MTBF_L1; MTBF_L2 : if C_MTBF_STAGES = 2 generate begin scndry_out <= s_level_out_d2; end generate MTBF_L2; MTBF_L3 : if C_MTBF_STAGES = 3 generate begin scndry_out <= s_level_out_d3; end generate MTBF_L3; MTBF_L4 : if C_MTBF_STAGES = 4 generate begin scndry_out <= s_level_out_d4; end generate MTBF_L4; MTBF_L5 : if C_MTBF_STAGES = 5 generate begin scndry_out <= s_level_out_d5; end generate MTBF_L5; MTBF_L6 : if C_MTBF_STAGES = 6 generate begin scndry_out <= s_level_out_d6; end generate MTBF_L6; end generate SINGLE_BIT; MULTI_BIT : if C_SINGLE_BIT = 0 generate signal p_level_in_bus_int : std_logic_vector (C_VECTOR_WIDTH - 1 downto 0); signal p_level_in_bus_d1_cdc_from : std_logic_vector(C_VECTOR_WIDTH - 1 downto 0); signal s_level_out_bus_d1_cdc_to : std_logic_vector(C_VECTOR_WIDTH - 1 downto 0); --attribute DONT_TOUCH of s_level_out_bus_d1_cdc_to : signal is "true"; signal s_level_out_bus_d1_cdc_tig : std_logic_vector(C_VECTOR_WIDTH - 1 downto 0); signal s_level_out_bus_d2 : std_logic_vector(C_VECTOR_WIDTH - 1 downto 0); signal s_level_out_bus_d3 : std_logic_vector(C_VECTOR_WIDTH - 1 downto 0); signal s_level_out_bus_d4 : std_logic_vector(C_VECTOR_WIDTH - 1 downto 0); signal s_level_out_bus_d5 : std_logic_vector(C_VECTOR_WIDTH - 1 downto 0); signal s_level_out_bus_d6 : std_logic_vector(C_VECTOR_WIDTH - 1 downto 0); ----------------------------------------------------------------------------- -- ATTRIBUTE Declarations ----------------------------------------------------------------------------- -- Prevent x-propagation on clock-domain crossing register ATTRIBUTE async_reg : STRING; -----------------ATTRIBUTE async_reg OF s_level_out_bus_d2 : SIGNAL IS "true"; -----------------ATTRIBUTE async_reg OF s_level_out_bus_d3 : SIGNAL IS "true"; -----------------ATTRIBUTE async_reg OF s_level_out_bus_d4 : SIGNAL IS "true"; -----------------ATTRIBUTE async_reg OF s_level_out_bus_d5 : SIGNAL IS "true"; -----------------ATTRIBUTE async_reg OF s_level_out_bus_d6 : SIGNAL IS "true"; begin --***************************************************************************** --** Asynchronous Level Clock Crossing ** --** PRIMARY TO SECONDARY ** --***************************************************************************** -- register is scndry to provide clean ff output to clock crossing logic scndry_out <= '0'; prmry_ack <= '0'; INPUT_FLOP_BUS : if C_FLOP_INPUT = 1 generate begin ----------------------------------- REG_PLEVEL_IN : process(prmry_aclk) ----------------------------------- begin ----------------------------------- if(prmry_aclk'EVENT and prmry_aclk ='1')then ----------------------------------- if(prmry_resetn1 = '0') then -- and C_RESET_STATE = 1)then ----------------------------------- p_level_in_bus_d1_cdc_from <= (others => '0'); ----------------------------------- else ----------------------------------- p_level_in_bus_d1_cdc_from <= prmry_vect_in; ----------------------------------- end if; ----------------------------------- end if; ----------------------------------- end process REG_PLEVEL_IN; FOR_REG_PLEVEL_IN: for i in 0 to (C_VECTOR_WIDTH-1) generate begin REG_PLEVEL_IN_p_level_in_bus_d1_cdc_from : component FDR generic map(INIT => '0' )port map ( Q => p_level_in_bus_d1_cdc_from (i), C => prmry_aclk, D => prmry_vect_in (i), R => prmry_reset2 ); end generate FOR_REG_PLEVEL_IN; p_level_in_bus_int <= p_level_in_bus_d1_cdc_from; end generate INPUT_FLOP_BUS; NO_INPUT_FLOP_BUS : if C_FLOP_INPUT = 0 generate begin p_level_in_bus_int <= prmry_vect_in; end generate NO_INPUT_FLOP_BUS; FOR_IN_cdc_to: for i in 0 to (C_VECTOR_WIDTH-1) generate ATTRIBUTE async_reg OF CROSS2_PLEVEL_IN2SCNDRY_IN_cdc_to : label IS "true"; begin CROSS2_PLEVEL_IN2SCNDRY_IN_cdc_to : component FDR generic map(INIT => '0' )port map ( Q => s_level_out_bus_d1_cdc_to (i), C => scndry_aclk, D => p_level_in_bus_int (i), R => scndry_reset2 ); end generate FOR_IN_cdc_to; ----------------------------------------- CROSS_PLEVEL_IN2SCNDRY : process(scndry_aclk) ----------------------------------------- begin ----------------------------------------- if(scndry_aclk'EVENT and scndry_aclk ='1')then ----------------------------------------- if(scndry_resetn1 = '0') then -- and C_RESET_STATE = 1)then ----------------------------------------- s_level_out_bus_d2 <= (others => '0'); ----------------------------------------- s_level_out_bus_d3 <= (others => '0'); ----------------------------------------- s_level_out_bus_d4 <= (others => '0'); ----------------------------------------- s_level_out_bus_d5 <= (others => '0'); ----------------------------------------- s_level_out_bus_d6 <= (others => '0'); ----------------------------------------- else ----------------------------------------- s_level_out_bus_d2 <= s_level_out_bus_d1_cdc_to; ----------------------------------------- s_level_out_bus_d3 <= s_level_out_bus_d2; ----------------------------------------- s_level_out_bus_d4 <= s_level_out_bus_d3; ----------------------------------------- s_level_out_bus_d5 <= s_level_out_bus_d4; ----------------------------------------- s_level_out_bus_d6 <= s_level_out_bus_d5; ----------------------------------------- end if; ----------------------------------------- end if; ----------------------------------------- end process CROSS_PLEVEL_IN2SCNDRY; FOR_CROSS_PLEVEL_IN2SCNDRY_bus_d2: for i in 0 to (C_VECTOR_WIDTH-1) generate ATTRIBUTE async_reg OF CROSS2_PLEVEL_IN2SCNDRY_s_level_out_bus_d2 : label IS "true"; begin CROSS2_PLEVEL_IN2SCNDRY_s_level_out_bus_d2 : component FDR generic map(INIT => '0' )port map ( Q => s_level_out_bus_d2 (i), C => scndry_aclk, D => s_level_out_bus_d1_cdc_to (i), R => scndry_reset2 ); end generate FOR_CROSS_PLEVEL_IN2SCNDRY_bus_d2; FOR_CROSS_PLEVEL_IN2SCNDRY_bus_d3: for i in 0 to (C_VECTOR_WIDTH-1) generate ATTRIBUTE async_reg OF CROSS2_PLEVEL_IN2SCNDRY_s_level_out_bus_d3 : label IS "true"; begin CROSS2_PLEVEL_IN2SCNDRY_s_level_out_bus_d3 : component FDR generic map(INIT => '0' )port map ( Q => s_level_out_bus_d3 (i), C => scndry_aclk, D => s_level_out_bus_d2 (i), R => scndry_reset2 ); end generate FOR_CROSS_PLEVEL_IN2SCNDRY_bus_d3; FOR_CROSS_PLEVEL_IN2SCNDRY_bus_d4: for i in 0 to (C_VECTOR_WIDTH-1) generate ATTRIBUTE async_reg OF CROSS2_PLEVEL_IN2SCNDRY_s_level_out_bus_d4 : label IS "true"; begin CROSS2_PLEVEL_IN2SCNDRY_s_level_out_bus_d4 : component FDR generic map(INIT => '0' )port map ( Q => s_level_out_bus_d4 (i), C => scndry_aclk, D => s_level_out_bus_d3 (i), R => scndry_reset2 ); end generate FOR_CROSS_PLEVEL_IN2SCNDRY_bus_d4; FOR_CROSS_PLEVEL_IN2SCNDRY_bus_d5: for i in 0 to (C_VECTOR_WIDTH-1) generate ATTRIBUTE async_reg OF CROSS2_PLEVEL_IN2SCNDRY_s_level_out_bus_d5 : label IS "true"; begin CROSS2_PLEVEL_IN2SCNDRY_s_level_out_bus_d5 : component FDR generic map(INIT => '0' )port map ( Q => s_level_out_bus_d5 (i), C => scndry_aclk, D => s_level_out_bus_d4 (i), R => scndry_reset2 ); end generate FOR_CROSS_PLEVEL_IN2SCNDRY_bus_d5; FOR_CROSS_PLEVEL_IN2SCNDRY_bus_d6: for i in 0 to (C_VECTOR_WIDTH-1) generate ATTRIBUTE async_reg OF CROSS2_PLEVEL_IN2SCNDRY_s_level_out_bus_d6 : label IS "true"; begin CROSS2_PLEVEL_IN2SCNDRY_s_level_out_bus_d6 : component FDR generic map(INIT => '0' )port map ( Q => s_level_out_bus_d6 (i), C => scndry_aclk, D => s_level_out_bus_d5 (i), R => scndry_reset2 ); end generate FOR_CROSS_PLEVEL_IN2SCNDRY_bus_d6; MTBF_L1 : if C_MTBF_STAGES = 1 generate begin scndry_vect_out <= s_level_out_bus_d1_cdc_to; end generate MTBF_L1; MTBF_L2 : if C_MTBF_STAGES = 2 generate begin scndry_vect_out <= s_level_out_bus_d2; end generate MTBF_L2; MTBF_L3 : if C_MTBF_STAGES = 3 generate begin scndry_vect_out <= s_level_out_bus_d3; end generate MTBF_L3; MTBF_L4 : if C_MTBF_STAGES = 4 generate begin scndry_vect_out <= s_level_out_bus_d4; end generate MTBF_L4; MTBF_L5 : if C_MTBF_STAGES = 5 generate begin scndry_vect_out <= s_level_out_bus_d5; end generate MTBF_L5; MTBF_L6 : if C_MTBF_STAGES = 6 generate begin scndry_vect_out <= s_level_out_bus_d6; end generate MTBF_L6; end generate MULTI_BIT; end generate GENERATE_LEVEL_P_S_CDC; GENERATE_LEVEL_ACK_P_S_CDC : if C_CDC_TYPE = 2 generate -- Primary to Secondary signal p_level_in_d1_cdc_from : std_logic := '0'; signal p_level_in_int : std_logic := '0'; signal s_level_out_d1_cdc_to : std_logic := '0'; --attribute DONT_TOUCH of s_level_out_d1_cdc_to : signal is "true"; signal s_level_out_d2 : std_logic := '0'; signal s_level_out_d3 : std_logic := '0'; signal s_level_out_d4 : std_logic := '0'; signal s_level_out_d5 : std_logic := '0'; signal s_level_out_d6 : std_logic := '0'; signal p_level_out_d1_cdc_to : std_logic := '0'; --attribute DONT_TOUCH of p_level_out_d1_cdc_to : signal is "true"; signal p_level_out_d2 : std_logic := '0'; signal p_level_out_d3 : std_logic := '0'; signal p_level_out_d4 : std_logic := '0'; signal p_level_out_d5 : std_logic := '0'; signal p_level_out_d6 : std_logic := '0'; signal p_level_out_d7 : std_logic := '0'; signal scndry_out_int : std_logic := '0'; signal prmry_pulse_ack : std_logic := '0'; ----------------------------------------------------------------------------- -- ATTRIBUTE Declarations ----------------------------------------------------------------------------- -- Prevent x-propagation on clock-domain crossing register ATTRIBUTE async_reg : STRING; ATTRIBUTE async_reg OF CROSS3_PLEVEL_IN2SCNDRY_IN_cdc_to : label IS "true"; ATTRIBUTE async_reg OF CROSS_PLEVEL_IN2SCNDRY_s_level_out_d2 : label IS "true"; ATTRIBUTE async_reg OF CROSS_PLEVEL_IN2SCNDRY_s_level_out_d3 : label IS "true"; ATTRIBUTE async_reg OF CROSS_PLEVEL_IN2SCNDRY_s_level_out_d4 : label IS "true"; ATTRIBUTE async_reg OF CROSS_PLEVEL_IN2SCNDRY_s_level_out_d5 : label IS "true"; ATTRIBUTE async_reg OF CROSS_PLEVEL_IN2SCNDRY_s_level_out_d6 : label IS "true"; ATTRIBUTE async_reg OF CROSS_PLEVEL_SCNDRY2PRMRY_p_level_out_d1_cdc_to : label IS "true"; ATTRIBUTE async_reg OF CROSS_PLEVEL_SCNDRY2PRMRY_p_level_out_d2 : label IS "true"; ATTRIBUTE async_reg OF CROSS_PLEVEL_SCNDRY2PRMRY_p_level_out_d3 : label IS "true"; ATTRIBUTE async_reg OF CROSS_PLEVEL_SCNDRY2PRMRY_p_level_out_d4 : label IS "true"; ATTRIBUTE async_reg OF CROSS_PLEVEL_SCNDRY2PRMRY_p_level_out_d5 : label IS "true"; ATTRIBUTE async_reg OF CROSS_PLEVEL_SCNDRY2PRMRY_p_level_out_d6 : label IS "true"; ATTRIBUTE async_reg OF CROSS_PLEVEL_SCNDRY2PRMRY_p_level_out_d7 : label IS "true"; begin --***************************************************************************** --** Asynchronous Level Clock Crossing ** --** PRIMARY TO SECONDARY ** --***************************************************************************** -- register is scndry to provide clean ff output to clock crossing logic scndry_vect_out <= (others => '0'); INPUT_FLOP : if C_FLOP_INPUT = 1 generate begin ------------------------------------------ REG_PLEVEL_IN : process(prmry_aclk) ------------------------------------------ begin ------------------------------------------ if(prmry_aclk'EVENT and prmry_aclk ='1')then ------------------------------------------ if(prmry_resetn1 = '0') then -- and C_RESET_STATE = 1)then ------------------------------------------ p_level_in_d1_cdc_from <= '0'; ------------------------------------------ else ------------------------------------------ p_level_in_d1_cdc_from <= prmry_in; ------------------------------------------ end if; ------------------------------------------ end if; ------------------------------------------ end process REG_PLEVEL_IN; REG_PLEVEL_IN_cdc_from : component FDR generic map(INIT => '0' )port map ( Q => p_level_in_d1_cdc_from, C => prmry_aclk, D => prmry_in, R => prmry_reset2 ); p_level_in_int <= p_level_in_d1_cdc_from; end generate INPUT_FLOP; NO_INPUT_FLOP : if C_FLOP_INPUT = 0 generate begin p_level_in_int <= prmry_in; end generate NO_INPUT_FLOP; CROSS3_PLEVEL_IN2SCNDRY_IN_cdc_to : component FDR generic map(INIT => '0' )port map ( Q => s_level_out_d1_cdc_to, C => scndry_aclk, D => p_level_in_int, R => scndry_reset2 ); ------------------------------------------------ CROSS_PLEVEL_IN2SCNDRY : process(scndry_aclk) ------------------------------------------------ begin ------------------------------------------------ if(scndry_aclk'EVENT and scndry_aclk ='1')then ------------------------------------------------ if(scndry_resetn1 = '0') then -- and C_RESET_STATE = 1)then ------------------------------------------------ s_level_out_d2 <= '0'; ------------------------------------------------ s_level_out_d3 <= '0'; ------------------------------------------------ s_level_out_d4 <= '0'; ------------------------------------------------ s_level_out_d5 <= '0'; ------------------------------------------------ s_level_out_d6 <= '0'; ------------------------------------------------ else ------------------------------------------------ s_level_out_d2 <= s_level_out_d1_cdc_to; ------------------------------------------------ s_level_out_d3 <= s_level_out_d2; ------------------------------------------------ s_level_out_d4 <= s_level_out_d3; ------------------------------------------------ s_level_out_d5 <= s_level_out_d4; ------------------------------------------------ s_level_out_d6 <= s_level_out_d5; ------------------------------------------------ end if; ------------------------------------------------ end if; ------------------------------------------------ end process CROSS_PLEVEL_IN2SCNDRY; CROSS_PLEVEL_IN2SCNDRY_s_level_out_d2 : component FDR generic map(INIT => '0' )port map ( Q => s_level_out_d2, C => scndry_aclk, D => s_level_out_d1_cdc_to, R => scndry_reset2 ); CROSS_PLEVEL_IN2SCNDRY_s_level_out_d3 : component FDR generic map(INIT => '0' )port map ( Q => s_level_out_d3, C => scndry_aclk, D => s_level_out_d2, R => scndry_reset2 ); CROSS_PLEVEL_IN2SCNDRY_s_level_out_d4 : component FDR generic map(INIT => '0' )port map ( Q => s_level_out_d4, C => scndry_aclk, D => s_level_out_d3, R => scndry_reset2 ); CROSS_PLEVEL_IN2SCNDRY_s_level_out_d5 : component FDR generic map(INIT => '0' )port map ( Q => s_level_out_d5, C => scndry_aclk, D => s_level_out_d4, R => scndry_reset2 ); CROSS_PLEVEL_IN2SCNDRY_s_level_out_d6 : component FDR generic map(INIT => '0' )port map ( Q => s_level_out_d6, C => scndry_aclk, D => s_level_out_d5, R => scndry_reset2 ); --------------------------------------------------- CROSS_PLEVEL_SCNDRY2PRMRY : process(prmry_aclk) --------------------------------------------------- begin --------------------------------------------------- if(prmry_aclk'EVENT and prmry_aclk ='1')then --------------------------------------------------- if(prmry_resetn1 = '0') then -- and C_RESET_STATE = 1)then --------------------------------------------------- p_level_out_d1_cdc_to <= '0'; --------------------------------------------------- p_level_out_d2 <= '0'; --------------------------------------------------- p_level_out_d3 <= '0'; --------------------------------------------------- p_level_out_d4 <= '0'; --------------------------------------------------- p_level_out_d5 <= '0'; --------------------------------------------------- p_level_out_d6 <= '0'; --------------------------------------------------- p_level_out_d7 <= '0'; --------------------------------------------------- prmry_ack <= '0'; --------------------------------------------------- else --------------------------------------------------- p_level_out_d1_cdc_to <= scndry_out_int; --------------------------------------------------- p_level_out_d2 <= p_level_out_d1_cdc_to; --------------------------------------------------- p_level_out_d3 <= p_level_out_d2; --------------------------------------------------- p_level_out_d4 <= p_level_out_d3; --------------------------------------------------- p_level_out_d5 <= p_level_out_d4; --------------------------------------------------- p_level_out_d6 <= p_level_out_d5; --------------------------------------------------- p_level_out_d7 <= p_level_out_d6; --------------------------------------------------- prmry_ack <= prmry_pulse_ack; --------------------------------------------------- end if; --------------------------------------------------- end if; --------------------------------------------------- end process CROSS_PLEVEL_SCNDRY2PRMRY; CROSS_PLEVEL_SCNDRY2PRMRY_p_level_out_d1_cdc_to : component FDR generic map(INIT => '0' )port map ( Q => p_level_out_d1_cdc_to, C => prmry_aclk, D => scndry_out_int, R => prmry_reset2 ); CROSS_PLEVEL_SCNDRY2PRMRY_p_level_out_d2 : component FDR generic map(INIT => '0' )port map ( Q => p_level_out_d2, C => prmry_aclk, D => p_level_out_d1_cdc_to, R => prmry_reset2 ); CROSS_PLEVEL_SCNDRY2PRMRY_p_level_out_d3 : component FDR generic map(INIT => '0' )port map ( Q => p_level_out_d3, C => prmry_aclk, D => p_level_out_d2, R => prmry_reset2 ); CROSS_PLEVEL_SCNDRY2PRMRY_p_level_out_d4 : component FDR generic map(INIT => '0' )port map ( Q => p_level_out_d4, C => prmry_aclk, D => p_level_out_d3, R => prmry_reset2 ); CROSS_PLEVEL_SCNDRY2PRMRY_p_level_out_d5 : component FDR generic map(INIT => '0' )port map ( Q => p_level_out_d5, C => prmry_aclk, D => p_level_out_d4, R => prmry_reset2 ); CROSS_PLEVEL_SCNDRY2PRMRY_p_level_out_d6 : component FDR generic map(INIT => '0' )port map ( Q => p_level_out_d6, C => prmry_aclk, D => p_level_out_d5, R => prmry_reset2 ); CROSS_PLEVEL_SCNDRY2PRMRY_p_level_out_d7 : component FDR generic map(INIT => '0' )port map ( Q => p_level_out_d7, C => prmry_aclk, D => p_level_out_d6, R => prmry_reset2 ); CROSS_PLEVEL_SCNDRY2PRMRY_prmry_ack : component FDR generic map(INIT => '0' )port map ( Q => prmry_ack, C => prmry_aclk, D => prmry_pulse_ack, R => prmry_reset2 ); MTBF_L2 : if C_MTBF_STAGES = 2 or C_MTBF_STAGES = 1 generate begin scndry_out_int <= s_level_out_d2; --prmry_pulse_ack <= p_level_out_d3 xor p_level_out_d2; prmry_pulse_ack <= (not p_level_out_d3) and p_level_out_d2; end generate MTBF_L2; MTBF_L3 : if C_MTBF_STAGES = 3 generate begin scndry_out_int <= s_level_out_d3; --prmry_pulse_ack <= p_level_out_d4 xor p_level_out_d3; prmry_pulse_ack <= (not p_level_out_d4) and p_level_out_d3; end generate MTBF_L3; MTBF_L4 : if C_MTBF_STAGES = 4 generate begin scndry_out_int <= s_level_out_d4; --prmry_pulse_ack <= p_level_out_d5 xor p_level_out_d4; prmry_pulse_ack <= (not p_level_out_d5) and p_level_out_d4; end generate MTBF_L4; MTBF_L5 : if C_MTBF_STAGES = 5 generate begin scndry_out_int <= s_level_out_d5; --prmry_pulse_ack <= p_level_out_d6 xor p_level_out_d5; prmry_pulse_ack <= (not p_level_out_d6) and p_level_out_d5; end generate MTBF_L5; MTBF_L6 : if C_MTBF_STAGES = 6 generate begin scndry_out_int <= s_level_out_d6; --prmry_pulse_ack <= p_level_out_d7 xor p_level_out_d6; prmry_pulse_ack <= (not p_level_out_d7) and p_level_out_d6; end generate MTBF_L6; scndry_out <= scndry_out_int; end generate GENERATE_LEVEL_ACK_P_S_CDC; end implementation;
gpl-2.0
steveicarus/iverilog
ivtest/ivltests/vhdl_subtypes.vhd
2
1354
-- Copyright (c) 2016 CERN -- Maciej Suminski <[email protected]> -- -- This source code is free software; you can redistribute it -- and/or modify it in source code form under the terms of the GNU -- General Public License as published by the Free Software -- Foundation; either version 2 of the License, or (at your option) -- any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA -- Test for subtype definitions. library ieee; use ieee.std_logic_1164.all; use ieee.numeric_bit.all; use work.vhdl_subtypes_pkg.all; entity vhdl_subtypes is port( a : out int_type_const; b : out int_type; c : out int_type_downto; d : out time_type; e : out uns_type_const ); end vhdl_subtypes; architecture test of vhdl_subtypes is begin process begin a <= 1; b <= 2; c <= 3; d <= 4 s; e <= 5; wait; end process; end test;
gpl-2.0
steveicarus/iverilog
ivtest/ivltests/vhdl_ssub23_bit.vhd
4
275
library ieee; use ieee.numeric_bit.all; entity ssub23 is port ( a_i : in signed (22 downto 0); b_i : in signed (22 downto 0); c_o : out signed (22 downto 0) ); end entity ssub23; architecture rtl of ssub23 is begin c_o <= a_i - b_i; end architecture rtl;
gpl-2.0
steveicarus/iverilog
ivtest/ivltests/varray1.vhd
4
4463
library ieee; use ieee.std_logic_1164.all; package diq_pkg is component Add_Synth generic (n: integer); port (a,b: in std_logic_vector (n-1 downto 0); cin: in std_logic; comp : out std_logic; sum : out std_logic_vector (n-1 downto 0) ); end component; component Inc_Synth generic (n: integer); port (a: in std_logic_vector (n-1 downto 0); sum : out std_logic_vector (n-1 downto 0) ); end component; end package; library ieee; use ieee.std_logic_1164.all; use work.diq_pkg.all; entity diq_array is generic (width: integer := 8; size: integer := 7); port (clk,reset: in std_logic; din,bin,xin: in std_logic_vector (width-1 downto 0); lin: in std_logic_vector (2 downto 0); lout: out std_logic_vector (2 downto 0); dout,bout,xout: out std_logic_vector (width-1 downto 0) ); end diq_array; architecture systolic of diq_array is component diq generic (n: integer ); port (clk,reset: in std_logic; lin: in std_logic_vector (2 downto 0); din,bin,xin: in std_logic_vector (n-1 downto 0); lout: out std_logic_vector (2 downto 0); dout,bout,xout: out std_logic_vector (n-1 downto 0) ); end component; type path is array (0 to size) of std_logic_vector (width-1 downto 0); type l_path is array (0 to size) of std_logic_vector (2 downto 0); signal x_path, d_path, b_path: path; signal l_int: l_path; begin gen_arrays: for i in 0 to size-1 generate each_array: diq generic map (n => width) port map (clk => clk, din => d_path(i), bin => b_path(i), reset => reset, xin => x_path(i), lin => l_int(i), dout => d_path(i+1), bout => b_path(i+1), xout => x_path(i+1), lout => l_int(i+1) ); end generate; d_path(0) <= din; b_path(0) <= bin; x_path(0) <= xin; l_int(0) <= lin; dout <= d_path(size); bout <= b_path(size); xout <= x_path(size); lout <= l_int(size); end systolic; library ieee; use ieee.std_logic_1164.all; use work.diq_pkg.all; entity diq is generic (n: integer := 8); port (clk, reset: in std_logic; din,bin,xin: in std_logic_vector (n-1 downto 0); lin: in std_logic_vector (2 downto 0); dout,bout,xout: out std_logic_vector (n-1 downto 0); lout: out std_logic_vector (2 downto 0) ); end diq; architecture diq_wordlevel of diq is signal b_int, d_int, x_int, x_inv: std_logic_vector (n-1 downto 0); signal l_int, l_inc: std_logic_vector (2 downto 0); signal sel: std_logic; signal zero,uno: std_logic; begin d_reg: process(clk,reset) begin if reset = '1' then d_int <= (others => '0'); elsif (clk'event and clk = '1') then d_int <= din; end if; end process; l_reg: process(clk,reset) begin if reset = '1' then l_int <= (others => '0'); elsif (clk'event and clk = '1') then l_int <= lin; end if; end process; b_reg: process(clk,reset) begin if reset = '1' then b_int <= (others => '0'); elsif (clk'event and clk = '1') then b_int <= bin; end if; end process; x_reg: process(clk,reset) begin if reset = '1' then x_int <= (others => '0'); elsif (clk'event and clk = '1') then x_int <= xin; end if; end process; zero <= '0'; uno <= '1'; addition: Add_Synth generic map (n => n) port map (a => b_int, b => d_int, cin => zero, comp => open, sum => bout); x_inv <= not x_int; comparison: Add_Synth generic map (n => n) port map (a => b_int, b => x_inv, cin => uno, comp => sel, sum => open); incrementer: Inc_Synth generic map (n => 3) port map (a => l_int, sum => l_inc); -- outputs lout <= l_inc when (sel = '1') else l_int; dout <= d_int; xout <= x_int; end diq_wordlevel; library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; entity Inc_Synth is generic (n: integer := 8); port (a: in std_logic_vector (n-1 downto 0); sum: out std_logic_vector (n-1 downto 0) ); end Inc_Synth; architecture compact_inc of Inc_Synth is signal cx: std_logic_vector (n downto 0); begin cx <= ('0' & a) + '1'; sum <= cx (n-1 downto 0); end compact_inc; library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; entity Add_Synth is generic (n: integer := 8); port (a, b: in std_logic_vector (n-1 downto 0); sum: out std_logic_vector (n-1 downto 0); cin: in std_logic; comp: out std_logic ); end Add_Synth; architecture compact of Add_Synth is signal cx: std_logic_vector (n downto 0); begin cx <= ('0' & a) + ('0' & b) + cin; sum <= cx (n-1 downto 0); comp <= cx(n-1); end compact;
gpl-2.0
steveicarus/iverilog
ivtest/ivltests/vhdl_or104_stdlogic.vhd
4
309
library ieee; use ieee.std_logic_1164.all; entity or104 is port ( a_i : in std_logic_vector (103 downto 0); b_i : in std_logic_vector (103 downto 0); c_o : out std_logic_vector (103 downto 0) ); end entity or104; architecture rtl of or104 is begin c_o <= a_i or b_i; end architecture rtl;
gpl-2.0
steveicarus/iverilog
ivtest/ivltests/vhdl_wait.vhd
2
1480
-- Copyright (c) 2015 CERN -- @author Maciej Suminski <[email protected]> -- -- This source code is free software; you can redistribute it -- and/or modify it in source code form under the terms of the GNU -- General Public License as published by the Free Software -- Foundation; either version 2 of the License, or (at your option) -- any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA -- 'wait on' & 'wait until' test library ieee; use ieee.std_logic_1164.all; entity vhdl_wait is port(a : in std_logic_vector(1 downto 0); b : out std_logic_vector(1 downto 0)); end vhdl_wait; architecture test of vhdl_wait is begin process begin report "final wait test"; wait; end process; process begin wait on a(0); report "wait 1 completed"; -- acknowledge wait 1 b(0) <= '1'; end process; process begin wait until(a(1) = '1' and a(1)'event); report "wait 2 completed"; -- acknowledge wait 2 b(1) <= '1'; end process; end test;
gpl-2.0
huxiaolei/xapp1078_2014.4_zybo
design/work/project_2/project_2.srcs/sources_1/ipshared/xilinx.com/irq_gen_v1_1/f141c1dc/hdl/vhdl/pselect_f.vhd
2
12603
------------------------------------------------------------------------------- -- $Id: pselect_f.vhd,v 1.1.4.1 2010/09/14 22:35:47 dougt Exp $ ------------------------------------------------------------------------------- -- pselect_f.vhd - entity/architecture pair ------------------------------------------------------------------------------- -- -- ************************************************************************* -- ** ** -- ** DISCLAIMER OF LIABILITY ** -- ** ** -- ** This text/file contains proprietary, confidential ** -- ** information of Xilinx, Inc., is distributed under ** -- ** license from Xilinx, Inc., and may be used, copied ** -- ** and/or disclosed only pursuant to the terms of a valid ** -- ** license agreement with Xilinx, Inc. Xilinx hereby ** -- ** grants you a license to use this text/file solely for ** -- ** design, simulation, implementation and creation of ** -- ** design files limited to Xilinx devices or technologies. ** -- ** Use with non-Xilinx devices or technologies is expressly ** -- ** prohibited and immediately terminates your license unless ** -- ** covered by a separate agreement. ** -- ** ** -- ** Xilinx is providing this design, code, or information ** -- ** "as-is" solely for use in developing programs and ** -- ** solutions for Xilinx devices, with no obligation on the ** -- ** part of Xilinx to provide support. By providing this design, ** -- ** code, or information as one possible implementation of ** -- ** this feature, application or standard, Xilinx is making no ** -- ** representation that this implementation is free from any ** -- ** claims of infringement. You are responsible for obtaining ** -- ** any rights you may require for your implementation. ** -- ** Xilinx expressly disclaims any warranty whatsoever with ** -- ** respect to the adequacy of the implementation, including ** -- ** but not limited to any warranties or representations that this ** -- ** implementation is free from claims of infringement, implied ** -- ** warranties of merchantability or fitness for a particular ** -- ** purpose. ** -- ** ** -- ** Xilinx products are not intended for use in life support ** -- ** appliances, devices, or systems. Use in such applications is ** -- ** expressly prohibited. ** -- ** ** -- ** Any modifications that are made to the Source Code are ** -- ** done at the user?s sole risk and will be unsupported. ** -- ** The Xilinx Support Hotline does not have access to source ** -- ** code and therefore cannot answer specific questions related ** -- ** to source HDL. The Xilinx Hotline support of original source ** -- ** code IP shall only address issues and questions related ** -- ** to the standard Netlist version of the core (and thus ** -- ** indirectly, the original core source). ** -- ** ** -- ** Copyright (c) 2008-2010 Xilinx, Inc. All rights reserved. ** -- ** ** -- ** This copyright and support notice must be retained as part ** -- ** of this text at all times. ** -- ** ** -- ************************************************************************* -- ------------------------------------------------------------------------------- -- Filename: pselect_f.vhd -- -- Description: -- (Note: At least as early as I.31, XST implements a carry- -- chain structure for most decoders when these are coded in -- inferrable VHLD. An example of such code can be seen -- below in the "INFERRED_GEN" Generate Statement. -- -- -> New code should not need to instantiate pselect-type -- components. -- -- -> Existing code can be ported to Virtex5 and later by -- replacing pselect instances by pselect_f instances. -- As long as the C_FAMILY parameter is not included -- in the Generic Map, an inferred implementation -- will result. -- -- -> If the designer wishes to force an explicit carry- -- chain implementation, pselect_f can be used with -- the C_FAMILY parameter set to the target -- Xilinx FPGA family. -- ) -- -- Parameterizeable peripheral select (address decode). -- AValid qualifier comes in on Carry In at bottom -- of carry chain. -- -- -- VHDL-Standard: VHDL'93 ------------------------------------------------------------------------------- -- Structure: pselect_f.vhd -- family_support.vhd -- ------------------------------------------------------------------------------- -- History: -- Vaibhav & FLO 05/26/06 First Version -- -- DET 1/17/2008 v3_00_a -- ~~~~~~ -- - Changed proc_common library version to v3_00_a -- - Incorporated new disclaimer header -- ^^^^^^ -- ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- -- Naming Conventions: -- active low signals: "*_n" -- clock signals: "clk", "clk_div#", "clk_#x" -- reset signals: "rst", "rst_n" -- generics: "C_*" -- user defined types: "*_TYPE" -- state machine next state: "*_ns" -- state machine current state: "*_cs" -- combinatorial signals: "*_com" -- pipelined or register delay signals: "*_d#" -- counter signals: "*cnt*" -- clock enable signals: "*_ce" -- internal version of output port "*_i" -- device pins: "*_pin" -- ports: - Names begin with Uppercase -- processes: "*_PROCESS" -- component instantiations: "<ENTITY_>I_<#|FUNC> ------------------------------------------------------------------------------- library IEEE; use IEEE.std_logic_1164.all; library unisim; use unisim.all; library my_ipif; use my_ipif.family_support.native_lut_size; use my_ipif.family_support.supported; use my_ipif.family_support.u_muxcy; ----------------------------------------------------------------------------- -- Entity section ----------------------------------------------------------------------------- ------------------------------------------------------------------------------- -- Definition of Generics: -- C_AB -- number of address bits to decode -- C_AW -- width of address bus -- C_BAR -- base address of peripheral (peripheral select -- is asserted when the C_AB most significant -- address bits match the C_AB most significant -- C_BAR bits -- Definition of Ports: -- A -- address input -- AValid -- address qualifier -- CS -- peripheral select ------------------------------------------------------------------------------- entity pselect_f is generic ( C_AB : integer := 9; C_AW : integer := 32; C_BAR : std_logic_vector; C_FAMILY : string := "nofamily" ); port ( A : in std_logic_vector(0 to C_AW-1); AValid : in std_logic; CS : out std_logic ); end entity pselect_f; ----------------------------------------------------------------------------- -- Architecture section ----------------------------------------------------------------------------- architecture imp of pselect_f is component MUXCY is port ( O : out std_logic; CI : in std_logic; DI : in std_logic; S : in std_logic ); end component MUXCY; constant NLS : natural := native_lut_size(C_FAMILY); constant USE_INFERRED : boolean := not supported(C_FAMILY, u_MUXCY) or NLS=0 -- LUT not supported. or C_AB <= NLS; -- Just one LUT -- needed. ----------------------------------------------------------------------------- -- C_BAR may not be indexed from 0 and may not be ascending; -- BAR recasts C_BAR to have these properties. ----------------------------------------------------------------------------- constant BAR : std_logic_vector(0 to C_BAR'length-1) := C_BAR; type bo2sl_type is array (boolean) of std_logic; constant bo2sl : bo2sl_type := (false => '0', true => '1'); function min(i, j: integer) return integer is begin if i<j then return i; else return j; end if; end; begin ------------------------------------------------------------------------------ -- Check that the generics are valid. ------------------------------------------------------------------------------ -- synthesis translate_off assert (C_AB <= C_BAR'length) and (C_AB <= C_AW) report "pselect_f generic error: " & "(C_AB <= C_BAR'length) and (C_AB <= C_AW)" & " does not hold." severity failure; -- synthesis translate_on ------------------------------------------------------------------------------ -- Build a behavioral decoder ------------------------------------------------------------------------------ INFERRED_GEN : if (USE_INFERRED = TRUE ) generate begin XST_WA:if C_AB > 0 generate CS <= AValid when A(0 to C_AB-1) = BAR (0 to C_AB-1) else '0' ; end generate XST_WA; PASS_ON_GEN:if C_AB = 0 generate CS <= AValid ; end generate PASS_ON_GEN; end generate INFERRED_GEN; ------------------------------------------------------------------------------ -- Build a structural decoder using the fast carry chain ------------------------------------------------------------------------------ GEN_STRUCTURAL_A : if (USE_INFERRED = FALSE ) generate constant NUM_LUTS : integer := (C_AB+(NLS-1))/NLS; signal lut_out : std_logic_vector(0 to NUM_LUTS); -- XST workaround signal carry_chain : std_logic_vector(0 to NUM_LUTS); begin carry_chain(NUM_LUTS) <= AValid; -- Initialize start of carry chain. CS <= carry_chain(0); -- Assign end of carry chain to output. XST_WA: if NUM_LUTS > 0 generate -- workaround for XST begin GEN_DECODE: for i in 0 to NUM_LUTS-1 generate constant NI : natural := i; constant BTL : positive := min(NLS, C_AB-NI*NLS);-- num Bits This LUT begin lut_out(i) <= bo2sl(A(NI*NLS to NI*NLS+BTL-1) = -- LUT BAR(NI*NLS to NI*NLS+BTL-1)); MUXCY_I: component MUXCY -- MUXCY port map ( O => carry_chain(i), CI => carry_chain(i+1), DI => '0', S => lut_out(i) ); end generate GEN_DECODE; end generate XST_WA; end generate GEN_STRUCTURAL_A; end imp;
gpl-2.0
steveicarus/iverilog
ivtest/ivltests/vhdl_string.vhd
2
1324
-- Copyright (c) 2015 CERN -- Maciej Suminski <[email protected]> -- -- This source code is free software; you can redistribute it -- and/or modify it in source code form under the terms of the GNU -- General Public License as published by the Free Software -- Foundation; either version 2 of the License, or (at your option) -- any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA -- Test string escaping in VHDL. library ieee; use ieee.std_logic_1164.all; entity vhdl_string is port (start : in std_logic); end entity vhdl_string; architecture test of vhdl_string is begin process (start) variable test_str : string(1 to 4) := "VHDL"; begin report ""; report """"; report "test"; report test_str; report ("brackets test"); report ((("multiple brackets test"))); report """quotation "" marks "" test"""; end process; end architecture test;
gpl-2.0
steveicarus/iverilog
ivtest/ivltests/vhdl_report.vhd
3
2134
-- Copyright (c) 2015 CERN -- Maciej Suminski <[email protected]> -- -- This source code is free software; you can redistribute it -- and/or modify it in source code form under the terms of the GNU -- General Public License as published by the Free Software -- Foundation; either version 2 of the License, or (at your option) -- any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA -- Report & assert tests. library ieee; use ieee.std_logic_1164.all; use work.vhdl_report_pkg.all; entity vhdl_report is port (start_test : in std_logic); end vhdl_report; architecture test of vhdl_report is begin process(start_test) begin if(start_test = '1') then -- Report without severity specified, by default it is NOTE report "normal report"; -- Report with severity specified -- should continue execution when severity != FAILURE report "report with severity" severity ERROR; -- Assert, no report, no severity specified, by default it is ERROR assert false; -- Assert with report, no severity specified, by default it is ERROR assert 1 = 0 report "assert with report"; -- Assert without report, severity specified -- should continue execution when severity != FAILURE assert 1 = 2 severity NOTE; -- Assert with report and severity specified assert false report "assert with report & severity" severity FAILURE; -- FAILURE causes program to stop report "this should never be shown"; end if; end process; end architecture test;
gpl-2.0
steveicarus/iverilog
ivtest/ivltests/forgen.vhd
4
1259
library ieee; use ieee.std_logic_1164.all; -- This is a simple test of the initialization assignment for -- signals. We also let a generic into the test. entity test is generic (width : integer := 4); port (clk : in std_logic; src0, src1 : in std_logic_vector (width-1 downto 0); dst : out std_logic_vector (width-1 downto 0)); end test; library ieee; use ieee.std_logic_1164.all; entity reg_xor is port (clk : in std_logic; src0, src1 : in std_logic; dst : out std_logic); end reg_xor; architecture operation of test is component reg_xor port (clk : in std_logic; src0, src1 : in std_logic; dst : out std_logic); end component; begin vec: for idx in width-1 downto 0 generate slice: reg_xor port map (clk => clk, src0 => src0(idx), src1 => src1(idx), dst => dst(idx)); end generate vec; end operation; architecture operation of reg_xor is signal tmp : std_logic; begin tmp <= src0 xor src1; step: process (clk) begin -- process step if clk'event and clk = '1' then -- rising clock edge dst <= tmp; end if; end process step; end operation;
gpl-2.0
zebarnabe/music-keyboard-vhdl
src/main/periodMap.vhd
1
3773
---------------------------------------------------------------------------------- -- Company: -- Engineer: -- -- Create Date: 02:37:35 10/24/2015 -- Design Name: -- Module Name: periodMap - Behavioral -- Project Name: -- Target Devices: -- Tool versions: -- Description: -- -- Dependencies: -- -- Revision: -- Revision 0.01 - File Created -- Additional Comments: -- ---------------------------------------------------------------------------------- library IEEE; use IEEE.STD_LOGIC_1164.ALL; -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values use IEEE.NUMERIC_STD.ALL; -- Uncomment the following library declaration if instantiating -- any Xilinx primitives in this code. --library UNISIM; --use UNISIM.VComponents.all; entity periodMap is Port ( clk : in STD_LOGIC; key : in STD_LOGIC_VECTOR (31 downto 0); sig : out STD_LOGIC_VECTOR (7 downto 0)); end periodMap; architecture Behavioral of periodMap is component voiceSynth port ( clk : in STD_LOGIC; enable : in STD_LOGIC; period : in unsigned (15 downto 0); sig : out STD_LOGIC_VECTOR (7 downto 0)); end component; type vectorPeriod is array (natural range <>) of unsigned(15 downto 0); constant keyPeriodMap : vectorPeriod(0 to 31) := ( to_unsigned(17896, 16), to_unsigned(16892, 16), to_unsigned(15944, 16), to_unsigned(15049, 16), to_unsigned(14204, 16), to_unsigned(13407, 16), to_unsigned(12654, 16), to_unsigned(11944, 16), to_unsigned(11274, 16), to_unsigned(10641, 16), to_unsigned(10044, 16), to_unsigned(9480, 16), to_unsigned(8948, 16), to_unsigned(8446, 16), to_unsigned(7972, 16), to_unsigned(7524, 16), to_unsigned(7102, 16), to_unsigned(6703, 16), to_unsigned(6327, 16), to_unsigned(5972, 16), to_unsigned(5637, 16), to_unsigned(5320, 16), to_unsigned(5022, 16), to_unsigned(4740, 16), to_unsigned(4474, 16), to_unsigned(4223, 16), to_unsigned(3986, 16), to_unsigned(3762, 16), to_unsigned(3551, 16), to_unsigned(3351, 16), to_unsigned(3163, 16), to_unsigned(2986, 16) ); type vectorSignal is array (natural range <>) of std_logic_vector(7 downto 0); signal signalMap : vectorSignal(31 downto 0); signal sigOut : std_logic_vector(12 downto 0); begin GEN_REG: for I in 0 to 31 generate voiceSynthInstance: voiceSynth port map ( clk => clk, enable => key(I), period => keyPeriodMap(I), sig => signalMap(I) ); end generate GEN_REG; sigOut <= std_logic_vector( resize(unsigned(signalMap(0)),13)+ resize(unsigned(signalMap(1)),13)+ resize(unsigned(signalMap(2)),13)+ resize(unsigned(signalMap(3)),13)+ resize(unsigned(signalMap(4)),13)+ resize(unsigned(signalMap(5)),13)+ resize(unsigned(signalMap(6)),13)+ resize(unsigned(signalMap(7)),13)+ resize(unsigned(signalMap(8)),13)+ resize(unsigned(signalMap(9)),13)+ resize(unsigned(signalMap(10)),13)+ resize(unsigned(signalMap(11)),13)+ resize(unsigned(signalMap(12)),13)+ resize(unsigned(signalMap(13)),13)+ resize(unsigned(signalMap(14)),13)+ resize(unsigned(signalMap(15)),13)+ resize(unsigned(signalMap(16)),13)+ resize(unsigned(signalMap(17)),13)+ resize(unsigned(signalMap(18)),13)+ resize(unsigned(signalMap(19)),13)+ resize(unsigned(signalMap(20)),13)+ resize(unsigned(signalMap(21)),13)+ resize(unsigned(signalMap(22)),13)+ resize(unsigned(signalMap(23)),13)+ resize(unsigned(signalMap(24)),13)+ resize(unsigned(signalMap(25)),13)+ resize(unsigned(signalMap(26)),13)+ resize(unsigned(signalMap(27)),13)+ resize(unsigned(signalMap(28)),13)+ resize(unsigned(signalMap(29)),13)+ resize(unsigned(signalMap(30)),13)+ resize(unsigned(signalMap(31)),13)); sig <= sigOut(12 downto 5); end Behavioral;
gpl-2.0
huxiaolei/xapp1078_2014.4_zybo
design/work/project_2/project_2.srcs/sources_1/ipshared/xilinx.com/irq_gen_v1_1/f141c1dc/hdl/vhdl/proc_common_pkg.vhd
4
18741
------------------------------------------------------------------------------- -- $Id: proc_common_pkg.vhd,v 1.1.4.46 2010/10/28 01:14:32 ostlerf Exp $ ------------------------------------------------------------------------------- -- Processor Common Library Package ------------------------------------------------------------------------------- -- -- ************************************************************************* -- ** ** -- ** DISCLAIMER OF LIABILITY ** -- ** ** -- ** This text/file contains proprietary, confidential ** -- ** information of Xilinx, Inc., is distributed under ** -- ** license from Xilinx, Inc., and may be used, copied ** -- ** and/or disclosed only pursuant to the terms of a valid ** -- ** license agreement with Xilinx, Inc. Xilinx hereby ** -- ** grants you a license to use this text/file solely for ** -- ** design, simulation, implementation and creation of ** -- ** design files limited to Xilinx devices or technologies. ** -- ** Use with non-Xilinx devices or technologies is expressly ** -- ** prohibited and immediately terminates your license unless ** -- ** covered by a separate agreement. ** -- ** ** -- ** Xilinx is providing this design, code, or information ** -- ** "as-is" solely for use in developing programs and ** -- ** solutions for Xilinx devices, with no obligation on the ** -- ** part of Xilinx to provide support. By providing this design, ** -- ** code, or information as one possible implementation of ** -- ** this feature, application or standard, Xilinx is making no ** -- ** representation that this implementation is free from any ** -- ** claims of infringement. You are responsible for obtaining ** -- ** any rights you may require for your implementation. ** -- ** Xilinx expressly disclaims any warranty whatsoever with ** -- ** respect to the adequacy of the implementation, including ** -- ** but not limited to any warranties or representations that this ** -- ** implementation is free from claims of infringement, implied ** -- ** warranties of merchantability or fitness for a particular ** -- ** purpose. ** -- ** ** -- ** Xilinx products are not intended for use in life support ** -- ** appliances, devices, or systems. Use in such applications is ** -- ** expressly prohibited. ** -- ** ** -- ** Any modifications that are made to the Source Code are ** -- ** done at the user’s sole risk and will be unsupported. ** -- ** The Xilinx Support Hotline does not have access to source ** -- ** code and therefore cannot answer specific questions related ** -- ** to source HDL. The Xilinx Hotline support of original source ** -- ** code IP shall only address issues and questions related ** -- ** to the standard Netlist version of the core (and thus ** -- ** indirectly, the original core source). ** -- ** ** -- ** Copyright (c) 2001-2010 Xilinx, Inc. All rights reserved. ** -- ** ** -- ** This copyright and support notice must be retained as part ** -- ** of this text at all times. ** -- ** ** -- ************************************************************************* -- ------------------------------------------------------------------------------- -- Filename: proc_common_pkg.vhd -- Version: v1.21b -- Description: This file contains the constants and functions used in the -- processor common library components. -- ------------------------------------------------------------------------------- -- Structure: -- ------------------------------------------------------------------------------- -- Author: ALS -- History: -- ALS 09/12/01 -- Created from opb_arb_pkg.vhd -- -- ALS 09/21/01 -- ^^^^^^ -- Added pwr function. Replaced log2 function with one that works for XST. -- ~~~~~~ -- -- ALS 12/07/01 -- ^^^^^^ -- Added Addr_bits function. -- ~~~~~~ -- ALS 01/31/02 -- ^^^^^^ -- Added max2 function. -- ~~~~~~ -- FLO 02/22/02 -- ^^^^^^ -- Extended input argument range of log2 function to 2^30. Also, added -- a check that the argument does not exceed this value; a failure -- assertion violation is generated if it does not. -- ~~~~~~ -- FLO 08/31/06 -- ^^^^^^ -- Removed type TARGET_FAMILY_TYPE and functions Get_Reg_File_Area and -- Get_RLOC_Name. These objects are not used. Further, the functions -- produced misleading warnings (CR419886, CR419898). -- ~~~~~~ -- FLO 05/25/07 -- ^^^^^^ -- -Reimplemented function pad_power2 to correct error when the input -- argument is 1. (fixes CR 303469) -- -Added function clog2(x), which returns the integer ceiling of the -- base 2 logarithm of x. This function can be used in place of log2 -- when wishing to avoid the XST warning, "VHDL Assertion Statement -- with non constant condition is ignored". -- ~~~~~~ -- -- DET 1/17/2008 v3_00_a -- ~~~~~~ -- - Incorporated new disclaimer header -- ^^^^^^ -- -- DET 5/8/2009 v3_00_a for EDK L.SP2 -- ~~~~~~ -- - Per CR520627 -- - Added synthesis translate_off/on constructs to the log2 function -- around the assertion statement. This removes a repetative XST Warning -- in SRP files about a non-constant assertion check. -- ^^^^^^ -- FL0 20/27/2010 -- ^^^^^^ -- Removed 42 TBD comment, again. (CR 568493) -- ~~~~~~ -- ------------------------------------------------------------------------------- -- Naming Conventions: -- active low signals: "*_n" -- clock signals: "clk", "clk_div#", "clk_#x" -- reset signals: "rst", "rst_n" -- generics: "C_*" -- user defined types: "*_TYPE" -- state machine next state: "*_ns" -- state machine current state: "*_cs" -- combinatorial signals: "*_com" -- pipelined or register delay signals: "*_d#" -- counter signals: "*cnt*" -- clock enable signals: "*_ce" -- internal version of output port "*_i" -- device pins: "*_pin" -- ports: - Names begin with Uppercase -- processes: "*_PROCESS" -- component instantiations: "<ENTITY_>I_<#|FUNC> ------------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; -- need conversion function to convert reals/integers to std logic vectors use ieee.std_logic_arith.conv_std_logic_vector; use ieee.std_logic_arith.all; use ieee.std_logic_unsigned.all; package proc_common_pkg is ------------------------------------------------------------------------------- -- Type Declarations ------------------------------------------------------------------------------- type CHAR_TO_INT_TYPE is array (character) of integer; -- type INTEGER_ARRAY_TYPE is array (natural range <>) of integer; -- Type SLV64_ARRAY_TYPE is array (natural range <>) of std_logic_vector(0 to 63); ------------------------------------------------------------------------------- -- Function and Procedure Declarations ------------------------------------------------------------------------------- function max2 (num1, num2 : integer) return integer; function min2 (num1, num2 : integer) return integer; function Addr_Bits(x,y : std_logic_vector) return integer; function clog2(x : positive) return natural; function pad_power2 ( in_num : integer ) return integer; function pad_4 ( in_num : integer ) return integer; function log2(x : natural) return integer; function pwr(x: integer; y: integer) return integer; function String_To_Int(S : string) return integer; function itoa (int : integer) return string; ------------------------------------------------------------------------------- -- Constant Declarations ------------------------------------------------------------------------------- -- the RESET_ACTIVE constant should denote the logic level of an active reset constant RESET_ACTIVE : std_logic := '1'; -- table containing strings representing hex characters for conversion to -- integers constant STRHEX_TO_INT_TABLE : CHAR_TO_INT_TYPE := ('0' => 0, '1' => 1, '2' => 2, '3' => 3, '4' => 4, '5' => 5, '6' => 6, '7' => 7, '8' => 8, '9' => 9, 'A'|'a' => 10, 'B'|'b' => 11, 'C'|'c' => 12, 'D'|'d' => 13, 'E'|'e' => 14, 'F'|'f' => 15, others => -1); end proc_common_pkg; package body proc_common_pkg is ------------------------------------------------------------------------------- -- Function Definitions ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- -- Function max2 -- -- This function returns the greater of two numbers. ------------------------------------------------------------------------------- function max2 (num1, num2 : integer) return integer is begin if num1 >= num2 then return num1; else return num2; end if; end function max2; ------------------------------------------------------------------------------- -- Function min2 -- -- This function returns the lesser of two numbers. ------------------------------------------------------------------------------- function min2 (num1, num2 : integer) return integer is begin if num1 <= num2 then return num1; else return num2; end if; end function min2; ------------------------------------------------------------------------------- -- Function Addr_bits -- -- function to convert an address range (base address and an upper address) -- into the number of upper address bits needed for decoding a device -- select signal. will handle slices and big or little endian ------------------------------------------------------------------------------- function Addr_Bits(x,y : std_logic_vector) return integer is variable addr_xor : std_logic_vector(x'range); variable count : integer := 0; begin assert x'length = y'length and (x'ascending xnor y'ascending) report "Addr_Bits: arguments are not the same type" severity ERROR; addr_xor := x xor y; for i in x'range loop if addr_xor(i) = '1' then return count; end if; count := count + 1; end loop; return x'length; end Addr_Bits; -------------------------------------------------------------------------------- -- Function clog2 - returns the integer ceiling of the base 2 logarithm of x, -- i.e., the least integer greater than or equal to log2(x). -------------------------------------------------------------------------------- function clog2(x : positive) return natural is variable r : natural := 0; variable rp : natural := 1; -- rp tracks the value 2**r begin while rp < x loop -- Termination condition T: x <= 2**r -- Loop invariant L: 2**(r-1) < x r := r + 1; if rp > integer'high - rp then exit; end if; -- If doubling rp overflows -- the integer range, the doubled value would exceed x, so safe to exit. rp := rp + rp; end loop; -- L and T <-> 2**(r-1) < x <= 2**r <-> (r-1) < log2(x) <= r return r; -- end clog2; ------------------------------------------------------------------------------- -- Function pad_power2 -- -- This function returns the next power of 2 from the input number. If the -- input number is a power of 2, this function returns the input number. -- -- This function is used to round up the number of masters to the next power -- of 2 if the number of masters is not already a power of 2. -- -- Input argument 0, which is not a power of two, is accepted and returns 0. -- Input arguments less than 0 are not allowed. ------------------------------------------------------------------------------- -- function pad_power2 (in_num : integer ) return integer is begin if in_num = 0 then return 0; else return 2**(clog2(in_num)); end if; end pad_power2; ------------------------------------------------------------------------------- -- Function pad_4 -- -- This function returns the next multiple of 4 from the input number. If the -- input number is a multiple of 4, this function returns the input number. -- ------------------------------------------------------------------------------- -- function pad_4 (in_num : integer ) return integer is variable out_num : integer; begin out_num := (((in_num-1)/4) + 1)*4; return out_num; end pad_4; ------------------------------------------------------------------------------- -- Function log2 -- returns number of bits needed to encode x choices -- x = 0 returns 0 -- x = 1 returns 0 -- x = 2 returns 1 -- x = 4 returns 2, etc. ------------------------------------------------------------------------------- -- function log2(x : natural) return integer is variable i : integer := 0; variable val: integer := 1; begin if x = 0 then return 0; else for j in 0 to 29 loop -- for loop for XST if val >= x then null; else i := i+1; val := val*2; end if; end loop; -- Fix per CR520627 XST was ignoring this anyway and printing a -- Warning in SRP file. This will get rid of the warning and not -- impact simulation. -- synthesis translate_off assert val >= x report "Function log2 received argument larger" & " than its capability of 2^30. " severity failure; -- synthesis translate_on return i; end if; end function log2; ------------------------------------------------------------------------------- -- Function pwr -- x**y -- negative numbers not allowed for y ------------------------------------------------------------------------------- function pwr(x: integer; y: integer) return integer is variable z : integer := 1; begin if y = 0 then return 1; else for i in 1 to y loop z := z * x; end loop; return z; end if; end function pwr; ------------------------------------------------------------------------------- -- Function itoa -- -- The itoa function converts an integer to a text string. -- This function is required since `image doesn't work in Synplicity -- Valid input range is -9999 to 9999 ------------------------------------------------------------------------------- -- function itoa (int : integer) return string is type table is array (0 to 9) of string (1 to 1); constant LUT : table := ("0", "1", "2", "3", "4", "5", "6", "7", "8", "9"); variable str1 : string(1 to 1); variable str2 : string(1 to 2); variable str3 : string(1 to 3); variable str4 : string(1 to 4); variable str5 : string(1 to 5); variable abs_int : natural; variable thousands_place : natural; variable hundreds_place : natural; variable tens_place : natural; variable ones_place : natural; variable sign : integer; begin abs_int := abs(int); if abs_int > int then sign := -1; else sign := 1; end if; thousands_place := abs_int/1000; hundreds_place := (abs_int-thousands_place*1000)/100; tens_place := (abs_int-thousands_place*1000-hundreds_place*100)/10; ones_place := (abs_int-thousands_place*1000-hundreds_place*100-tens_place*10); if sign>0 then if thousands_place>0 then str4 := LUT(thousands_place) & LUT(hundreds_place) & LUT(tens_place) & LUT(ones_place); return str4; elsif hundreds_place>0 then str3 := LUT(hundreds_place) & LUT(tens_place) & LUT(ones_place); return str3; elsif tens_place>0 then str2 := LUT(tens_place) & LUT(ones_place); return str2; else str1 := LUT(ones_place); return str1; end if; else if thousands_place>0 then str5 := "-" & LUT(thousands_place) & LUT(hundreds_place) & LUT(tens_place) & LUT(ones_place); return str5; elsif hundreds_place>0 then str4 := "-" & LUT(hundreds_place) & LUT(tens_place) & LUT(ones_place); return str4; elsif tens_place>0 then str3 := "-" & LUT(tens_place) & LUT(ones_place); return str3; else str2 := "-" & LUT(ones_place); return str2; end if; end if; end itoa; ----------------------------------------------------------------------------- -- Function String_To_Int -- -- Converts a string of hex character to an integer -- accept negative numbers ----------------------------------------------------------------------------- function String_To_Int(S : String) return Integer is variable Result : integer := 0; variable Temp : integer := S'Left; variable Negative : integer := 1; begin for I in S'Left to S'Right loop if (S(I) = '-') then Temp := 0; Negative := -1; else Temp := STRHEX_TO_INT_TABLE(S(I)); if (Temp = -1) then assert false report "Wrong value in String_To_Int conversion " & S(I) severity error; end if; end if; Result := Result * 16 + Temp; end loop; return (Negative * Result); end String_To_Int; end package body proc_common_pkg;
gpl-2.0
steveicarus/iverilog
ivtest/ivltests/gxor.vhd
4
909
library ieee; use ieee.std_logic_1164.all; entity gxor is port (a, b: in std_logic; z : out std_logic); end gxor; architecture gxor_rtl of gxor is begin z <= a xor b; end architecture gxor_rtl; library ieee; use ieee.std_logic_1164.all; entity gxor_reduce is generic (half_width: integer := 4); port (a: in std_logic_vector (2*half_width-1 downto 0); ar: out std_logic); end gxor_reduce; architecture gxor_reduce_rtl of gxor_reduce is component gxor is port (a, b: in std_logic; z : out std_logic); end component; --type path is array (0 to size/2) of std_logic; signal x_int: std_logic_vector (2*half_width downto 0); begin x_int(2*half_width) <= '0'; -- MSB gen_xor: for i in 2*half_width downto 1 generate each_gate: gxor port map (a => x_int(i), b => a(i-1), z => x_int(i-1) ); end generate; ar <= x_int(0); end architecture gxor_reduce_rtl;
gpl-2.0
steveicarus/iverilog
ivtest/ivltests/vhdl_textio_write.vhd
2
2341
-- Copyright (c) 2015 CERN -- Maciej Suminski <[email protected]> -- -- This source code is free software; you can redistribute it -- and/or modify it in source code form under the terms of the GNU -- General Public License as published by the Free Software -- Foundation; either version 2 of the License, or (at your option) -- any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA -- Test writing files using std.textio library. library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; use std.textio.all; entity vhdl_textio_write is port( wr : in std_logic ); end vhdl_textio_write; architecture test of vhdl_textio_write is begin write_data: process(wr) file data_file : text open write_mode is "vhdl_textio.tmp"; variable data_line : line; variable data_string : string(6 downto 1); variable data_int, data_hex : integer; variable data_bool : boolean; variable data_real : real; variable data_time : time; variable data_vector : std_logic_vector(5 downto 0); begin data_string := "string"; data_int := 123; data_hex := X"F3"; data_bool := true; data_real := 12.21; data_time := 100 s; data_vector := "1100XZ"; -- Test writing different variable types write(data_line, data_int); writeline(data_file, data_line); write(data_line, data_bool); writeline(data_file, data_line); write(data_line, data_time); writeline(data_file, data_line); hwrite(data_line, data_hex); writeline(data_file, data_line); write(data_line, data_real); writeline(data_file, data_line); write(data_line, data_string); writeline(data_file, data_line); write(data_line, data_vector); writeline(data_file, data_line); end process; end test;
gpl-2.0
steveicarus/iverilog
ivtest/ivltests/vhdl_xor104_stdlogic.vhd
4
313
library ieee; use ieee.std_logic_1164.all; entity xor104 is port ( a_i : in std_logic_vector (103 downto 0); b_i : in std_logic_vector (103 downto 0); c_o : out std_logic_vector (103 downto 0) ); end entity xor104; architecture rtl of xor104 is begin c_o <= a_i xor b_i; end architecture rtl;
gpl-2.0
huxiaolei/xapp1078_2014.4_zybo
design/src/my_ip/irq_gen_v1_00_a/hdl/vhdl/irq_gen.vhd
2
17014
------------------------------------------------------------------------------ -- irq_gen.vhd - entity/architecture pair ------------------------------------------------------------------------------ -- IMPORTANT: -- DO NOT MODIFY THIS FILE EXCEPT IN THE DESIGNATED SECTIONS. -- -- SEARCH FOR --USER TO DETERMINE WHERE CHANGES ARE ALLOWED. -- -- TYPICALLY, THE ONLY ACCEPTABLE CHANGES INVOLVE ADDING NEW -- PORTS AND GENERICS THAT GET PASSED THROUGH TO THE INSTANTIATION -- OF THE USER_LOGIC ENTITY. ------------------------------------------------------------------------------ -- -- *************************************************************************** -- ** Copyright (c) 1995-2012 Xilinx, Inc. All rights reserved. ** -- ** ** -- ** Xilinx, Inc. ** -- ** XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" ** -- ** AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND ** -- ** SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, ** -- ** OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, ** -- ** APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION ** -- ** THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT, ** -- ** AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE ** -- ** FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY ** -- ** WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE ** -- ** IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR ** -- ** REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF ** -- ** INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ** -- ** FOR A PARTICULAR PURPOSE. ** -- ** ** -- *************************************************************************** -- ------------------------------------------------------------------------------ -- Filename: irq_gen.vhd -- Version: 1.00.a -- Description: Top level design, instantiates library components and user logic. -- Date: Wed May 30 12:34:16 2012 (by Create and Import Peripheral Wizard) -- VHDL Standard: VHDL'93 ------------------------------------------------------------------------------ -- Naming Conventions: -- active low signals: "*_n" -- clock signals: "clk", "clk_div#", "clk_#x" -- reset signals: "rst", "rst_n" -- generics: "C_*" -- user defined types: "*_TYPE" -- state machine next state: "*_ns" -- state machine current state: "*_cs" -- combinatorial signals: "*_com" -- pipelined or register delay signals: "*_d#" -- counter signals: "*cnt*" -- clock enable signals: "*_ce" -- internal version of output port: "*_i" -- device pins: "*_pin" -- ports: "- Names begin with Uppercase" -- processes: "*_PROCESS" -- component instantiations: "<ENTITY_>I_<#|FUNC>" ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all; use ieee.std_logic_unsigned.all; library my_ipif; use my_ipif.ipif_pkg.SLV64_ARRAY_TYPE; use my_ipif.ipif_pkg.INTEGER_ARRAY_TYPE; use my_ipif.ipif_pkg.calc_start_ce_index; use my_ipif.ipif_pkg.calc_num_ce; -- library proc_common_v3_00_a; -- use proc_common_v3_00_a.proc_common_pkg.all; -- use proc_common_v3_00_a.ipif_pkg.all; -- -- library axi_lite_ipif_v1_01_a; -- use axi_lite_ipif_v1_01_a.axi_lite_ipif; library irq_gen_v1_00_a; use irq_gen_v1_00_a.user_logic; ------------------------------------------------------------------------------ -- Entity section ------------------------------------------------------------------------------ -- Definition of Generics: -- C_S_AXI_DATA_WIDTH -- AXI4LITE slave: Data width -- C_S_AXI_ADDR_WIDTH -- AXI4LITE slave: Address Width -- C_S_AXI_MIN_SIZE -- AXI4LITE slave: Min Size -- C_USE_WSTRB -- AXI4LITE slave: Write Strobe -- C_DPHASE_TIMEOUT -- AXI4LITE slave: Data Phase Timeout -- C_BASEADDR -- AXI4LITE slave: base address -- C_HIGHADDR -- AXI4LITE slave: high address -- C_FAMILY -- FPGA Family -- C_NUM_REG -- Number of software accessible registers -- C_NUM_MEM -- Number of address-ranges -- C_SLV_AWIDTH -- Slave interface address bus width -- C_SLV_DWIDTH -- Slave interface data bus width -- -- Definition of Ports: -- S_AXI_ACLK -- AXI4LITE slave: Clock -- S_AXI_ARESETN -- AXI4LITE slave: Reset -- S_AXI_AWADDR -- AXI4LITE slave: Write address -- S_AXI_AWVALID -- AXI4LITE slave: Write address valid -- S_AXI_WDATA -- AXI4LITE slave: Write data -- S_AXI_WSTRB -- AXI4LITE slave: Write strobe -- S_AXI_WVALID -- AXI4LITE slave: Write data valid -- S_AXI_BREADY -- AXI4LITE slave: Response ready -- S_AXI_ARADDR -- AXI4LITE slave: Read address -- S_AXI_ARVALID -- AXI4LITE slave: Read address valid -- S_AXI_RREADY -- AXI4LITE slave: Read data ready -- S_AXI_ARREADY -- AXI4LITE slave: read addres ready -- S_AXI_RDATA -- AXI4LITE slave: Read data -- S_AXI_RRESP -- AXI4LITE slave: Read data response -- S_AXI_RVALID -- AXI4LITE slave: Read data valid -- S_AXI_WREADY -- AXI4LITE slave: Write data ready -- S_AXI_BRESP -- AXI4LITE slave: Response -- S_AXI_BVALID -- AXI4LITE slave: Resonse valid -- S_AXI_AWREADY -- AXI4LITE slave: Wrte address ready ------------------------------------------------------------------------------ entity irq_gen is generic ( -- ADD USER GENERICS BELOW THIS LINE --------------- --USER generics added here -- ADD USER GENERICS ABOVE THIS LINE --------------- -- DO NOT EDIT BELOW THIS LINE --------------------- -- Bus protocol parameters, do not add to or delete C_S_AXI_DATA_WIDTH : integer := 32; C_S_AXI_ADDR_WIDTH : integer := 32; C_S_AXI_MIN_SIZE : std_logic_vector := X"000001FF"; C_USE_WSTRB : integer := 0; C_DPHASE_TIMEOUT : integer := 8; C_BASEADDR : std_logic_vector := X"FFFFFFFF"; C_HIGHADDR : std_logic_vector := X"00000000"; C_FAMILY : string := "virtex6"; C_NUM_REG : integer := 1; C_NUM_MEM : integer := 1; C_SLV_AWIDTH : integer := 32; C_SLV_DWIDTH : integer := 32 -- DO NOT EDIT ABOVE THIS LINE --------------------- ); port ( -- ADD USER PORTS BELOW THIS LINE ------------------ IRQ : out std_logic; VIO_IRQ_TICK : in std_logic; vio_rise_edge : out std_logic; slv_reg : out std_logic; -- ADD USER PORTS ABOVE THIS LINE ------------------ -- DO NOT EDIT BELOW THIS LINE --------------------- -- Bus protocol ports, do not add to or delete S_AXI_ACLK : in std_logic; S_AXI_ARESETN : in std_logic; S_AXI_AWADDR : in std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0); S_AXI_AWVALID : in std_logic; S_AXI_WDATA : in std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0); S_AXI_WSTRB : in std_logic_vector((C_S_AXI_DATA_WIDTH/8)-1 downto 0); S_AXI_WVALID : in std_logic; S_AXI_BREADY : in std_logic; S_AXI_ARADDR : in std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0); S_AXI_ARVALID : in std_logic; S_AXI_RREADY : in std_logic; S_AXI_ARREADY : out std_logic; S_AXI_RDATA : out std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0); S_AXI_RRESP : out std_logic_vector(1 downto 0); S_AXI_RVALID : out std_logic; S_AXI_WREADY : out std_logic; S_AXI_BRESP : out std_logic_vector(1 downto 0); S_AXI_BVALID : out std_logic; S_AXI_AWREADY : out std_logic -- DO NOT EDIT ABOVE THIS LINE --------------------- ); attribute MAX_FANOUT : string; attribute SIGIS : string; attribute MAX_FANOUT of S_AXI_ACLK : signal is "10000"; attribute MAX_FANOUT of S_AXI_ARESETN : signal is "10000"; attribute SIGIS of S_AXI_ACLK : signal is "Clk"; attribute SIGIS of S_AXI_ARESETN : signal is "Rst"; end entity irq_gen; ------------------------------------------------------------------------------ -- Architecture section ------------------------------------------------------------------------------ architecture IMP of irq_gen is constant USER_SLV_DWIDTH : integer := C_S_AXI_DATA_WIDTH; constant IPIF_SLV_DWIDTH : integer := C_S_AXI_DATA_WIDTH; constant ZERO_ADDR_PAD : std_logic_vector(0 to 31) := (others => '0'); constant USER_SLV_BASEADDR : std_logic_vector := C_BASEADDR; constant USER_SLV_HIGHADDR : std_logic_vector := C_HIGHADDR; constant IPIF_ARD_ADDR_RANGE_ARRAY : SLV64_ARRAY_TYPE := ( ZERO_ADDR_PAD & USER_SLV_BASEADDR, -- user logic slave space base address ZERO_ADDR_PAD & USER_SLV_HIGHADDR -- user logic slave space high address ); constant USER_SLV_NUM_REG : integer := 1; constant USER_NUM_REG : integer := USER_SLV_NUM_REG; constant TOTAL_IPIF_CE : integer := USER_NUM_REG; constant IPIF_ARD_NUM_CE_ARRAY : INTEGER_ARRAY_TYPE := ( 0 => (USER_SLV_NUM_REG) -- number of ce for user logic slave space ); ------------------------------------------ -- Index for CS/CE ------------------------------------------ constant USER_SLV_CS_INDEX : integer := 0; constant USER_SLV_CE_INDEX : integer := calc_start_ce_index(IPIF_ARD_NUM_CE_ARRAY, USER_SLV_CS_INDEX); constant USER_CE_INDEX : integer := USER_SLV_CE_INDEX; ------------------------------------------ -- IP Interconnect (IPIC) signal declarations ------------------------------------------ signal ipif_Bus2IP_Clk : std_logic; signal ipif_Bus2IP_Resetn : std_logic; signal ipif_Bus2IP_Addr : std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0); signal ipif_Bus2IP_RNW : std_logic; signal ipif_Bus2IP_BE : std_logic_vector(IPIF_SLV_DWIDTH/8-1 downto 0); signal ipif_Bus2IP_CS : std_logic_vector((IPIF_ARD_ADDR_RANGE_ARRAY'LENGTH)/2-1 downto 0); signal ipif_Bus2IP_RdCE : std_logic_vector(calc_num_ce(IPIF_ARD_NUM_CE_ARRAY)-1 downto 0); signal ipif_Bus2IP_WrCE : std_logic_vector(calc_num_ce(IPIF_ARD_NUM_CE_ARRAY)-1 downto 0); signal ipif_Bus2IP_Data : std_logic_vector(IPIF_SLV_DWIDTH-1 downto 0); signal ipif_IP2Bus_WrAck : std_logic; signal ipif_IP2Bus_RdAck : std_logic; signal ipif_IP2Bus_Error : std_logic; signal ipif_IP2Bus_Data : std_logic_vector(IPIF_SLV_DWIDTH-1 downto 0); signal user_Bus2IP_RdCE : std_logic_vector(USER_NUM_REG-1 downto 0); signal user_Bus2IP_WrCE : std_logic_vector(USER_NUM_REG-1 downto 0); signal user_IP2Bus_Data : std_logic_vector(USER_SLV_DWIDTH-1 downto 0); signal user_IP2Bus_RdAck : std_logic; signal user_IP2Bus_WrAck : std_logic; signal user_IP2Bus_Error : std_logic; begin ------------------------------------------ -- instantiate axi_lite_ipif ------------------------------------------ AXI_LITE_IPIF_I : entity my_ipif.axi_lite_ipif generic map ( C_S_AXI_DATA_WIDTH => IPIF_SLV_DWIDTH, C_S_AXI_ADDR_WIDTH => C_S_AXI_ADDR_WIDTH, C_S_AXI_MIN_SIZE => C_S_AXI_MIN_SIZE, C_USE_WSTRB => C_USE_WSTRB, C_DPHASE_TIMEOUT => C_DPHASE_TIMEOUT, C_ARD_ADDR_RANGE_ARRAY => IPIF_ARD_ADDR_RANGE_ARRAY, C_ARD_NUM_CE_ARRAY => IPIF_ARD_NUM_CE_ARRAY, C_FAMILY => C_FAMILY ) port map ( S_AXI_ACLK => S_AXI_ACLK, S_AXI_ARESETN => S_AXI_ARESETN, S_AXI_AWADDR => S_AXI_AWADDR, S_AXI_AWVALID => S_AXI_AWVALID, S_AXI_WDATA => S_AXI_WDATA, S_AXI_WSTRB => S_AXI_WSTRB, S_AXI_WVALID => S_AXI_WVALID, S_AXI_BREADY => S_AXI_BREADY, S_AXI_ARADDR => S_AXI_ARADDR, S_AXI_ARVALID => S_AXI_ARVALID, S_AXI_RREADY => S_AXI_RREADY, S_AXI_ARREADY => S_AXI_ARREADY, S_AXI_RDATA => S_AXI_RDATA, S_AXI_RRESP => S_AXI_RRESP, S_AXI_RVALID => S_AXI_RVALID, S_AXI_WREADY => S_AXI_WREADY, S_AXI_BRESP => S_AXI_BRESP, S_AXI_BVALID => S_AXI_BVALID, S_AXI_AWREADY => S_AXI_AWREADY, Bus2IP_Clk => ipif_Bus2IP_Clk, Bus2IP_Resetn => ipif_Bus2IP_Resetn, Bus2IP_Addr => ipif_Bus2IP_Addr, Bus2IP_RNW => ipif_Bus2IP_RNW, Bus2IP_BE => ipif_Bus2IP_BE, Bus2IP_CS => ipif_Bus2IP_CS, Bus2IP_RdCE => ipif_Bus2IP_RdCE, Bus2IP_WrCE => ipif_Bus2IP_WrCE, Bus2IP_Data => ipif_Bus2IP_Data, IP2Bus_WrAck => ipif_IP2Bus_WrAck, IP2Bus_RdAck => ipif_IP2Bus_RdAck, IP2Bus_Error => ipif_IP2Bus_Error, IP2Bus_Data => ipif_IP2Bus_Data ); ------------------------------------------ -- instantiate User Logic ------------------------------------------ USER_LOGIC_I : entity irq_gen_v1_00_a.user_logic generic map ( -- MAP USER GENERICS BELOW THIS LINE --------------- --USER generics mapped here -- MAP USER GENERICS ABOVE THIS LINE --------------- C_NUM_REG => USER_NUM_REG, C_SLV_DWIDTH => USER_SLV_DWIDTH ) port map ( -- MAP USER PORTS BELOW THIS LINE ------------------ IRQ => IRQ, VIO_IRQ_TICK => VIO_IRQ_TICK, vio_rise_edge => vio_rise_edge, slv_reg => slv_reg, -- MAP USER PORTS ABOVE THIS LINE ------------------ Bus2IP_Clk => ipif_Bus2IP_Clk, Bus2IP_Resetn => ipif_Bus2IP_Resetn, Bus2IP_Data => ipif_Bus2IP_Data, Bus2IP_BE => ipif_Bus2IP_BE, Bus2IP_RdCE => user_Bus2IP_RdCE, Bus2IP_WrCE => user_Bus2IP_WrCE, IP2Bus_Data => user_IP2Bus_Data, IP2Bus_RdAck => user_IP2Bus_RdAck, IP2Bus_WrAck => user_IP2Bus_WrAck, IP2Bus_Error => user_IP2Bus_Error ); ------------------------------------------ -- connect internal signals ------------------------------------------ ipif_IP2Bus_Data <= user_IP2Bus_Data; ipif_IP2Bus_WrAck <= user_IP2Bus_WrAck; ipif_IP2Bus_RdAck <= user_IP2Bus_RdAck; ipif_IP2Bus_Error <= user_IP2Bus_Error; user_Bus2IP_RdCE <= ipif_Bus2IP_RdCE(USER_NUM_REG-1 downto 0); user_Bus2IP_WrCE <= ipif_Bus2IP_WrCE(USER_NUM_REG-1 downto 0); end IMP;
gpl-2.0
BenBoZ/realtimestagram
src/rgb2hsv_tb.vhd
2
6052
-- This file is part of Realtimestagram. -- -- Realtimestagram is free software: you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation, either version 2 of the License, or -- (at your option) any later version. -- -- Realtimestagram is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with Realtimestagram. If not, see <http://www.gnu.org/licenses/>. library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; use work.config_const_pkg.all; --! Used for calculation of h_count and v_count port width use ieee.math_real.all; --======================================================================================-- entity rgb2hsv_tb is generic ( input_file: string := "tst/input/smpte_bars.pnm"; --! Input file of test output_file: string := "tst/output/rgb2hsv_smpte_bars.pnm"; --! Output file of test image_width: integer := const_imagewidth; --! Width of input image image_height: integer := const_imageheight --! Height of input image ); end entity; --======================================================================================-- architecture structural of rgb2hsv_tb is --===================component declaration===================-- component test_bench_driver_color is generic ( wordsize: integer := const_wordsize; input_file: string := input_file; output_file: string := output_file; clk_period_ns: time := 1 ns; rst_after: time := 9 ns; rst_duration: time := 8 ns; dut_delay: integer := 6 ); port ( clk: out std_logic; rst: out std_logic; enable: out std_logic; h_count: out std_logic_vector; v_count: out std_logic_vector; red_pixel_from_file: out std_logic_vector; green_pixel_from_file: out std_logic_vector; blue_pixel_from_file: out std_logic_vector; red_pixel_to_file: in std_logic_vector; green_pixel_to_file: in std_logic_vector; blue_pixel_to_file: in std_logic_vector ); end component; ---------------------------------------------------------------------------------------------- component rgb2hsv is generic ( wordsize: integer := 8 --! input image wordsize in bits ); port ( -- inputs clk: in std_logic; --! completely clocked process rst: in std_logic; --! asynchronous reset enable: in std_logic; --! enables block pixel_red_i: in std_logic_vector; --! the input pixel pixel_green_i: in std_logic_vector; --! the input pixel pixel_blue_i: in std_logic_vector; --! the input pixel -- outputs pixel_hue_o: out std_logic_vector; pixel_sat_o: out std_logic_vector; pixel_val_o: out std_logic_vector ); end component; ---------------------------------------------------------------------------------------------- --===================signal declaration===================-- signal clk: std_logic := '0'; signal rst: std_logic := '0'; signal enable: std_logic := '0'; signal h_count: std_logic_vector((integer(ceil(log2(real(image_width))))-1) downto 0) := (others => '0'); signal v_count: std_logic_vector((integer(ceil(log2(real(image_height))))-1) downto 0) := (others => '0'); signal red_pixel_from_file: std_logic_vector((const_wordsize-1) downto 0) := (others => '0'); signal green_pixel_from_file: std_logic_vector((const_wordsize-1) downto 0) := (others => '0'); signal blue_pixel_from_file: std_logic_vector((const_wordsize-1) downto 0) := (others => '0'); signal red_pixel_to_file: std_logic_vector((const_wordsize-1) downto 0) := (others => '0'); signal green_pixel_to_file: std_logic_vector((const_wordsize-1) downto 0) := (others => '0'); signal blue_pixel_to_file: std_logic_vector((const_wordsize-1) downto 0) := (others => '0'); begin --===================component instantiation===================-- tst_driver: test_bench_driver_color port map( clk => clk, rst => rst, enable => enable, h_count => h_count, v_count => v_count, red_pixel_from_file => red_pixel_from_file, green_pixel_from_file => green_pixel_from_file, blue_pixel_from_file => blue_pixel_from_file, red_pixel_to_file => red_pixel_to_file, green_pixel_to_file => green_pixel_to_file, blue_pixel_to_file => blue_pixel_to_file ); device_under_test: rgb2hsv port map( clk => clk, rst => rst, enable => enable, pixel_red_i => red_pixel_from_file, pixel_green_i => green_pixel_from_file, pixel_blue_i => blue_pixel_from_file, pixel_hue_o => red_pixel_to_file, pixel_sat_o => green_pixel_to_file, pixel_val_o => blue_pixel_to_file ); end architecture;
gpl-2.0
huxiaolei/xapp1078_2014.4_zybo
design/src/my_ip/irq_gen_v1_00_a/hdl/vhdl/axi_lite_ipif.vhd
2
14090
------------------------------------------------------------------- -- (c) Copyright 1984 - 2012 Xilinx, Inc. All rights reserved. -- -- -- -- This file contains confidential and proprietary information -- -- of Xilinx, Inc. and is protected under U.S. and -- -- international copyright and other intellectual property -- -- laws. -- -- -- -- DISCLAIMER -- -- This disclaimer is not a license and does not grant any -- -- rights to the materials distributed herewith. Except as -- -- otherwise provided in a valid license issued to you by -- -- Xilinx, and to the maximum extent permitted by applicable -- -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- -- (2) Xilinx shall not be liable (whether in contract or tort, -- -- including negligence, or under any other theory of -- -- liability) for any loss or damage of any kind or nature -- -- related to, arising under or in connection with these -- -- materials, including for any direct, or any indirect, -- -- special, incidental, or consequential loss or damage -- -- (including loss of data, profits, goodwill, or any type of -- -- loss or damage suffered as a result of any action brought -- -- by a third party) even if such damage or loss was -- -- reasonably foreseeable or Xilinx had been advised of the -- -- possibility of the same. -- -- -- -- CRITICAL APPLICATIONS -- -- Xilinx products are not designed or intended to be fail- -- -- safe, or for use in any application requiring fail-safe -- -- performance, such as life-support or safety devices or -- -- systems, Class III medical devices, nuclear facilities, -- -- applications related to the deployment of airbags, or any -- -- other applications that could lead to death, personal -- -- injury, or severe property or environmental damage -- -- (individually and collectively, "Critical -- -- Applications"). Customer assumes the sole risk and -- -- liability of any use of Xilinx products in Critical -- -- Applications, subject only to applicable laws and -- -- regulations governing limitations on product liability. -- -- -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- -- PART OF THIS FILE AT ALL TIMES. -- ------------------------------------------------------------------- -- ************************************************************************ -- ------------------------------------------------------------------------------- -- Filename: axi_lite_ipif.vhd -- Version: v1.01.a -- Description: This is the top level design file for the axi_lite_ipif -- function. It provides a standardized slave interface -- between the IP and the AXI. This version supports -- single read/write transfers only. It does not provide -- address pipelining or simultaneous read and write -- operations. ------------------------------------------------------------------------------- -- Structure: This section shows the hierarchical structure of axi_lite_ipif. -- -- --axi_lite_ipif.vhd -- --slave_attachment.vhd -- --address_decoder.vhd ------------------------------------------------------------------------------- -- Author: BSB -- -- History: -- -- BSB 05/20/10 -- First version -- ~~~~~~ -- - Created the first version v1.00.a -- ^^^^^^ -- ~~~~~~ -- SK 06/09/10 -- v1.01.a -- 1. updated to reduce the utilization -- Closed CR #574507 -- 2. Optimized the state machine code -- 3. Optimized the address decoder logic to generate the CE's with common logic -- 4. Address GAP decoding logic is removed and timeout counter is made active -- for all transactions. -- ^^^^^^ ------------------------------------------------------------------------------- -- Naming Conventions: -- active low signals: "*_n" -- clock signals: "clk", "clk_div#", "clk_#x" -- reset signals: "rst", "rst_n" -- generics: "C_*" -- user defined types: "*_TYPE" -- state machine next state: "*_ns" -- state machine current state: "*_cs" -- combinatorial signals: "*_cmb" -- pipelined or register delay signals: "*_d#" -- counter signals: "*cnt*" -- clock enable signals: "*_ce" -- internal version of output port "*_i" -- device pins: "*_pin" -- ports: - Names begin with Uppercase -- processes: "*_PROCESS" -- component instantiations: "<ENTITY_>I_<#|FUNC> ------------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.numeric_std.all; use ieee.std_logic_misc.all; library my_ipif; use my_ipif.ipif_pkg.SLV64_ARRAY_TYPE; use my_ipif.ipif_pkg.INTEGER_ARRAY_TYPE; use my_ipif.ipif_pkg.calc_num_ce; ------------------------------------------------------------------------------- -- Definition of Generics ------------------------------------------------------------------------------- -- C_S_AXI_DATA_WIDTH -- AXI data bus width -- C_S_AXI_ADDR_WIDTH -- AXI address bus width -- C_S_AXI_MIN_SIZE -- Minimum address range of the IP -- C_USE_WSTRB -- Use write strobs or not -- C_DPHASE_TIMEOUT -- Data phase time out counter -- C_ARD_ADDR_RANGE_ARRAY-- Base /High Address Pair for each Address Range -- C_ARD_NUM_CE_ARRAY -- Desired number of chip enables for an address range -- C_FAMILY -- Target FPGA family ------------------------------------------------------------------------------- -- Definition of Ports ------------------------------------------------------------------------------- -- S_AXI_ACLK -- AXI Clock -- S_AXI_ARESETN -- AXI Reset -- S_AXI_AWADDR -- AXI Write address -- S_AXI_AWVALID -- Write address valid -- S_AXI_AWREADY -- Write address ready -- S_AXI_WDATA -- Write data -- S_AXI_WSTRB -- Write strobes -- S_AXI_WVALID -- Write valid -- S_AXI_WREADY -- Write ready -- S_AXI_BRESP -- Write response -- S_AXI_BVALID -- Write response valid -- S_AXI_BREADY -- Response ready -- S_AXI_ARADDR -- Read address -- S_AXI_ARVALID -- Read address valid -- S_AXI_ARREADY -- Read address ready -- S_AXI_RDATA -- Read data -- S_AXI_RRESP -- Read response -- S_AXI_RVALID -- Read valid -- S_AXI_RREADY -- Read ready -- Bus2IP_Clk -- Synchronization clock provided to User IP -- Bus2IP_Reset -- Active high reset for use by the User IP -- Bus2IP_Addr -- Desired address of read or write operation -- Bus2IP_RNW -- Read or write indicator for the transaction -- Bus2IP_BE -- Byte enables for the data bus -- Bus2IP_CS -- Chip select for the transcations -- Bus2IP_RdCE -- Chip enables for the read -- Bus2IP_WrCE -- Chip enables for the write -- Bus2IP_Data -- Write data bus to the User IP -- IP2Bus_Data -- Input Read Data bus from the User IP -- IP2Bus_WrAck -- Active high Write Data qualifier from the IP -- IP2Bus_RdAck -- Active high Read Data qualifier from the IP -- IP2Bus_Error -- Error signal from the IP ------------------------------------------------------------------------------- entity axi_lite_ipif is generic ( C_S_AXI_DATA_WIDTH : integer range 32 to 32 := 32; C_S_AXI_ADDR_WIDTH : integer := 32; C_S_AXI_MIN_SIZE : std_logic_vector(31 downto 0):= X"000001FF"; C_USE_WSTRB : integer := 0; C_DPHASE_TIMEOUT : integer range 0 to 512 := 8; C_ARD_ADDR_RANGE_ARRAY: SLV64_ARRAY_TYPE := -- not used ( X"0000_0000_7000_0000", -- IP user0 base address X"0000_0000_7000_00FF", -- IP user0 high address X"0000_0000_7000_0100", -- IP user1 base address X"0000_0000_7000_01FF" -- IP user1 high address ); C_ARD_NUM_CE_ARRAY : INTEGER_ARRAY_TYPE := -- not used ( 4, -- User0 CE Number 12 -- User1 CE Number ); C_FAMILY : string := "virtex6" ); port ( --System signals S_AXI_ACLK : in std_logic; S_AXI_ARESETN : in std_logic; S_AXI_AWADDR : in std_logic_vector (C_S_AXI_ADDR_WIDTH-1 downto 0); S_AXI_AWVALID : in std_logic; S_AXI_AWREADY : out std_logic; S_AXI_WDATA : in std_logic_vector (C_S_AXI_DATA_WIDTH-1 downto 0); S_AXI_WSTRB : in std_logic_vector ((C_S_AXI_DATA_WIDTH/8)-1 downto 0); S_AXI_WVALID : in std_logic; S_AXI_WREADY : out std_logic; S_AXI_BRESP : out std_logic_vector(1 downto 0); S_AXI_BVALID : out std_logic; S_AXI_BREADY : in std_logic; S_AXI_ARADDR : in std_logic_vector (C_S_AXI_ADDR_WIDTH-1 downto 0); S_AXI_ARVALID : in std_logic; S_AXI_ARREADY : out std_logic; S_AXI_RDATA : out std_logic_vector (C_S_AXI_DATA_WIDTH-1 downto 0); S_AXI_RRESP : out std_logic_vector(1 downto 0); S_AXI_RVALID : out std_logic; S_AXI_RREADY : in std_logic; -- Controls to the IP/IPIF modules Bus2IP_Clk : out std_logic; Bus2IP_Resetn : out std_logic; Bus2IP_Addr : out std_logic_vector ((C_S_AXI_ADDR_WIDTH-1) downto 0); Bus2IP_RNW : out std_logic; Bus2IP_BE : out std_logic_vector (((C_S_AXI_DATA_WIDTH/8)-1) downto 0); Bus2IP_CS : out std_logic_vector (((C_ARD_ADDR_RANGE_ARRAY'LENGTH)/2-1) downto 0); Bus2IP_RdCE : out std_logic_vector ((calc_num_ce(C_ARD_NUM_CE_ARRAY)-1) downto 0); Bus2IP_WrCE : out std_logic_vector ((calc_num_ce(C_ARD_NUM_CE_ARRAY)-1) downto 0); Bus2IP_Data : out std_logic_vector ((C_S_AXI_DATA_WIDTH-1) downto 0); IP2Bus_Data : in std_logic_vector ((C_S_AXI_DATA_WIDTH-1) downto 0); IP2Bus_WrAck : in std_logic; IP2Bus_RdAck : in std_logic; IP2Bus_Error : in std_logic ); end axi_lite_ipif; ------------------------------------------------------------------------------- -- Architecture ------------------------------------------------------------------------------- architecture imp of axi_lite_ipif is ------------------------------------------------------------------------------- -- Begin architecture logic ------------------------------------------------------------------------------- begin ------------------------------------------------------------------------------- -- Slave Attachment ------------------------------------------------------------------------------- I_SLAVE_ATTACHMENT: entity work.slave_attachment generic map( C_ARD_ADDR_RANGE_ARRAY => C_ARD_ADDR_RANGE_ARRAY, C_ARD_NUM_CE_ARRAY => C_ARD_NUM_CE_ARRAY, C_IPIF_ABUS_WIDTH => C_S_AXI_ADDR_WIDTH, C_IPIF_DBUS_WIDTH => C_S_AXI_DATA_WIDTH, C_USE_WSTRB => C_USE_WSTRB, C_DPHASE_TIMEOUT => C_DPHASE_TIMEOUT, C_S_AXI_MIN_SIZE => C_S_AXI_MIN_SIZE, C_FAMILY => C_FAMILY ) port map( -- AXI signals S_AXI_ACLK => S_AXI_ACLK, S_AXI_ARESETN => S_AXI_ARESETN, S_AXI_AWADDR => S_AXI_AWADDR, S_AXI_AWVALID => S_AXI_AWVALID, S_AXI_AWREADY => S_AXI_AWREADY, S_AXI_WDATA => S_AXI_WDATA, S_AXI_WSTRB => S_AXI_WSTRB, S_AXI_WVALID => S_AXI_WVALID, S_AXI_WREADY => S_AXI_WREADY, S_AXI_BRESP => S_AXI_BRESP, S_AXI_BVALID => S_AXI_BVALID, S_AXI_BREADY => S_AXI_BREADY, S_AXI_ARADDR => S_AXI_ARADDR, S_AXI_ARVALID => S_AXI_ARVALID, S_AXI_ARREADY => S_AXI_ARREADY, S_AXI_RDATA => S_AXI_RDATA, S_AXI_RRESP => S_AXI_RRESP, S_AXI_RVALID => S_AXI_RVALID, S_AXI_RREADY => S_AXI_RREADY, -- IPIC signals Bus2IP_Clk => Bus2IP_Clk, Bus2IP_Resetn => Bus2IP_Resetn, Bus2IP_Addr => Bus2IP_Addr, Bus2IP_RNW => Bus2IP_RNW, Bus2IP_BE => Bus2IP_BE, Bus2IP_CS => Bus2IP_CS, Bus2IP_RdCE => Bus2IP_RdCE, Bus2IP_WrCE => Bus2IP_WrCE, Bus2IP_Data => Bus2IP_Data, IP2Bus_Data => IP2Bus_Data, IP2Bus_WrAck => IP2Bus_WrAck, IP2Bus_RdAck => IP2Bus_RdAck, IP2Bus_Error => IP2Bus_Error ); end imp;
gpl-2.0
huxiaolei/xapp1078_2014.4_zybo
design/work/project_2/project_2.srcs/sources_1/ipshared/xilinx.com/irq_gen_v1_1/f141c1dc/hdl/vhdl/axi_lite_ipif.vhd
2
14090
------------------------------------------------------------------- -- (c) Copyright 1984 - 2012 Xilinx, Inc. All rights reserved. -- -- -- -- This file contains confidential and proprietary information -- -- of Xilinx, Inc. and is protected under U.S. and -- -- international copyright and other intellectual property -- -- laws. -- -- -- -- DISCLAIMER -- -- This disclaimer is not a license and does not grant any -- -- rights to the materials distributed herewith. Except as -- -- otherwise provided in a valid license issued to you by -- -- Xilinx, and to the maximum extent permitted by applicable -- -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- -- (2) Xilinx shall not be liable (whether in contract or tort, -- -- including negligence, or under any other theory of -- -- liability) for any loss or damage of any kind or nature -- -- related to, arising under or in connection with these -- -- materials, including for any direct, or any indirect, -- -- special, incidental, or consequential loss or damage -- -- (including loss of data, profits, goodwill, or any type of -- -- loss or damage suffered as a result of any action brought -- -- by a third party) even if such damage or loss was -- -- reasonably foreseeable or Xilinx had been advised of the -- -- possibility of the same. -- -- -- -- CRITICAL APPLICATIONS -- -- Xilinx products are not designed or intended to be fail- -- -- safe, or for use in any application requiring fail-safe -- -- performance, such as life-support or safety devices or -- -- systems, Class III medical devices, nuclear facilities, -- -- applications related to the deployment of airbags, or any -- -- other applications that could lead to death, personal -- -- injury, or severe property or environmental damage -- -- (individually and collectively, "Critical -- -- Applications"). Customer assumes the sole risk and -- -- liability of any use of Xilinx products in Critical -- -- Applications, subject only to applicable laws and -- -- regulations governing limitations on product liability. -- -- -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- -- PART OF THIS FILE AT ALL TIMES. -- ------------------------------------------------------------------- -- ************************************************************************ -- ------------------------------------------------------------------------------- -- Filename: axi_lite_ipif.vhd -- Version: v1.01.a -- Description: This is the top level design file for the axi_lite_ipif -- function. It provides a standardized slave interface -- between the IP and the AXI. This version supports -- single read/write transfers only. It does not provide -- address pipelining or simultaneous read and write -- operations. ------------------------------------------------------------------------------- -- Structure: This section shows the hierarchical structure of axi_lite_ipif. -- -- --axi_lite_ipif.vhd -- --slave_attachment.vhd -- --address_decoder.vhd ------------------------------------------------------------------------------- -- Author: BSB -- -- History: -- -- BSB 05/20/10 -- First version -- ~~~~~~ -- - Created the first version v1.00.a -- ^^^^^^ -- ~~~~~~ -- SK 06/09/10 -- v1.01.a -- 1. updated to reduce the utilization -- Closed CR #574507 -- 2. Optimized the state machine code -- 3. Optimized the address decoder logic to generate the CE's with common logic -- 4. Address GAP decoding logic is removed and timeout counter is made active -- for all transactions. -- ^^^^^^ ------------------------------------------------------------------------------- -- Naming Conventions: -- active low signals: "*_n" -- clock signals: "clk", "clk_div#", "clk_#x" -- reset signals: "rst", "rst_n" -- generics: "C_*" -- user defined types: "*_TYPE" -- state machine next state: "*_ns" -- state machine current state: "*_cs" -- combinatorial signals: "*_cmb" -- pipelined or register delay signals: "*_d#" -- counter signals: "*cnt*" -- clock enable signals: "*_ce" -- internal version of output port "*_i" -- device pins: "*_pin" -- ports: - Names begin with Uppercase -- processes: "*_PROCESS" -- component instantiations: "<ENTITY_>I_<#|FUNC> ------------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.numeric_std.all; use ieee.std_logic_misc.all; library my_ipif; use my_ipif.ipif_pkg.SLV64_ARRAY_TYPE; use my_ipif.ipif_pkg.INTEGER_ARRAY_TYPE; use my_ipif.ipif_pkg.calc_num_ce; ------------------------------------------------------------------------------- -- Definition of Generics ------------------------------------------------------------------------------- -- C_S_AXI_DATA_WIDTH -- AXI data bus width -- C_S_AXI_ADDR_WIDTH -- AXI address bus width -- C_S_AXI_MIN_SIZE -- Minimum address range of the IP -- C_USE_WSTRB -- Use write strobs or not -- C_DPHASE_TIMEOUT -- Data phase time out counter -- C_ARD_ADDR_RANGE_ARRAY-- Base /High Address Pair for each Address Range -- C_ARD_NUM_CE_ARRAY -- Desired number of chip enables for an address range -- C_FAMILY -- Target FPGA family ------------------------------------------------------------------------------- -- Definition of Ports ------------------------------------------------------------------------------- -- S_AXI_ACLK -- AXI Clock -- S_AXI_ARESETN -- AXI Reset -- S_AXI_AWADDR -- AXI Write address -- S_AXI_AWVALID -- Write address valid -- S_AXI_AWREADY -- Write address ready -- S_AXI_WDATA -- Write data -- S_AXI_WSTRB -- Write strobes -- S_AXI_WVALID -- Write valid -- S_AXI_WREADY -- Write ready -- S_AXI_BRESP -- Write response -- S_AXI_BVALID -- Write response valid -- S_AXI_BREADY -- Response ready -- S_AXI_ARADDR -- Read address -- S_AXI_ARVALID -- Read address valid -- S_AXI_ARREADY -- Read address ready -- S_AXI_RDATA -- Read data -- S_AXI_RRESP -- Read response -- S_AXI_RVALID -- Read valid -- S_AXI_RREADY -- Read ready -- Bus2IP_Clk -- Synchronization clock provided to User IP -- Bus2IP_Reset -- Active high reset for use by the User IP -- Bus2IP_Addr -- Desired address of read or write operation -- Bus2IP_RNW -- Read or write indicator for the transaction -- Bus2IP_BE -- Byte enables for the data bus -- Bus2IP_CS -- Chip select for the transcations -- Bus2IP_RdCE -- Chip enables for the read -- Bus2IP_WrCE -- Chip enables for the write -- Bus2IP_Data -- Write data bus to the User IP -- IP2Bus_Data -- Input Read Data bus from the User IP -- IP2Bus_WrAck -- Active high Write Data qualifier from the IP -- IP2Bus_RdAck -- Active high Read Data qualifier from the IP -- IP2Bus_Error -- Error signal from the IP ------------------------------------------------------------------------------- entity axi_lite_ipif is generic ( C_S_AXI_DATA_WIDTH : integer range 32 to 32 := 32; C_S_AXI_ADDR_WIDTH : integer := 32; C_S_AXI_MIN_SIZE : std_logic_vector(31 downto 0):= X"000001FF"; C_USE_WSTRB : integer := 0; C_DPHASE_TIMEOUT : integer range 0 to 512 := 8; C_ARD_ADDR_RANGE_ARRAY: SLV64_ARRAY_TYPE := -- not used ( X"0000_0000_7000_0000", -- IP user0 base address X"0000_0000_7000_00FF", -- IP user0 high address X"0000_0000_7000_0100", -- IP user1 base address X"0000_0000_7000_01FF" -- IP user1 high address ); C_ARD_NUM_CE_ARRAY : INTEGER_ARRAY_TYPE := -- not used ( 4, -- User0 CE Number 12 -- User1 CE Number ); C_FAMILY : string := "virtex6" ); port ( --System signals S_AXI_ACLK : in std_logic; S_AXI_ARESETN : in std_logic; S_AXI_AWADDR : in std_logic_vector (C_S_AXI_ADDR_WIDTH-1 downto 0); S_AXI_AWVALID : in std_logic; S_AXI_AWREADY : out std_logic; S_AXI_WDATA : in std_logic_vector (C_S_AXI_DATA_WIDTH-1 downto 0); S_AXI_WSTRB : in std_logic_vector ((C_S_AXI_DATA_WIDTH/8)-1 downto 0); S_AXI_WVALID : in std_logic; S_AXI_WREADY : out std_logic; S_AXI_BRESP : out std_logic_vector(1 downto 0); S_AXI_BVALID : out std_logic; S_AXI_BREADY : in std_logic; S_AXI_ARADDR : in std_logic_vector (C_S_AXI_ADDR_WIDTH-1 downto 0); S_AXI_ARVALID : in std_logic; S_AXI_ARREADY : out std_logic; S_AXI_RDATA : out std_logic_vector (C_S_AXI_DATA_WIDTH-1 downto 0); S_AXI_RRESP : out std_logic_vector(1 downto 0); S_AXI_RVALID : out std_logic; S_AXI_RREADY : in std_logic; -- Controls to the IP/IPIF modules Bus2IP_Clk : out std_logic; Bus2IP_Resetn : out std_logic; Bus2IP_Addr : out std_logic_vector ((C_S_AXI_ADDR_WIDTH-1) downto 0); Bus2IP_RNW : out std_logic; Bus2IP_BE : out std_logic_vector (((C_S_AXI_DATA_WIDTH/8)-1) downto 0); Bus2IP_CS : out std_logic_vector (((C_ARD_ADDR_RANGE_ARRAY'LENGTH)/2-1) downto 0); Bus2IP_RdCE : out std_logic_vector ((calc_num_ce(C_ARD_NUM_CE_ARRAY)-1) downto 0); Bus2IP_WrCE : out std_logic_vector ((calc_num_ce(C_ARD_NUM_CE_ARRAY)-1) downto 0); Bus2IP_Data : out std_logic_vector ((C_S_AXI_DATA_WIDTH-1) downto 0); IP2Bus_Data : in std_logic_vector ((C_S_AXI_DATA_WIDTH-1) downto 0); IP2Bus_WrAck : in std_logic; IP2Bus_RdAck : in std_logic; IP2Bus_Error : in std_logic ); end axi_lite_ipif; ------------------------------------------------------------------------------- -- Architecture ------------------------------------------------------------------------------- architecture imp of axi_lite_ipif is ------------------------------------------------------------------------------- -- Begin architecture logic ------------------------------------------------------------------------------- begin ------------------------------------------------------------------------------- -- Slave Attachment ------------------------------------------------------------------------------- I_SLAVE_ATTACHMENT: entity work.slave_attachment generic map( C_ARD_ADDR_RANGE_ARRAY => C_ARD_ADDR_RANGE_ARRAY, C_ARD_NUM_CE_ARRAY => C_ARD_NUM_CE_ARRAY, C_IPIF_ABUS_WIDTH => C_S_AXI_ADDR_WIDTH, C_IPIF_DBUS_WIDTH => C_S_AXI_DATA_WIDTH, C_USE_WSTRB => C_USE_WSTRB, C_DPHASE_TIMEOUT => C_DPHASE_TIMEOUT, C_S_AXI_MIN_SIZE => C_S_AXI_MIN_SIZE, C_FAMILY => C_FAMILY ) port map( -- AXI signals S_AXI_ACLK => S_AXI_ACLK, S_AXI_ARESETN => S_AXI_ARESETN, S_AXI_AWADDR => S_AXI_AWADDR, S_AXI_AWVALID => S_AXI_AWVALID, S_AXI_AWREADY => S_AXI_AWREADY, S_AXI_WDATA => S_AXI_WDATA, S_AXI_WSTRB => S_AXI_WSTRB, S_AXI_WVALID => S_AXI_WVALID, S_AXI_WREADY => S_AXI_WREADY, S_AXI_BRESP => S_AXI_BRESP, S_AXI_BVALID => S_AXI_BVALID, S_AXI_BREADY => S_AXI_BREADY, S_AXI_ARADDR => S_AXI_ARADDR, S_AXI_ARVALID => S_AXI_ARVALID, S_AXI_ARREADY => S_AXI_ARREADY, S_AXI_RDATA => S_AXI_RDATA, S_AXI_RRESP => S_AXI_RRESP, S_AXI_RVALID => S_AXI_RVALID, S_AXI_RREADY => S_AXI_RREADY, -- IPIC signals Bus2IP_Clk => Bus2IP_Clk, Bus2IP_Resetn => Bus2IP_Resetn, Bus2IP_Addr => Bus2IP_Addr, Bus2IP_RNW => Bus2IP_RNW, Bus2IP_BE => Bus2IP_BE, Bus2IP_CS => Bus2IP_CS, Bus2IP_RdCE => Bus2IP_RdCE, Bus2IP_WrCE => Bus2IP_WrCE, Bus2IP_Data => Bus2IP_Data, IP2Bus_Data => IP2Bus_Data, IP2Bus_WrAck => IP2Bus_WrAck, IP2Bus_RdAck => IP2Bus_RdAck, IP2Bus_Error => IP2Bus_Error ); end imp;
gpl-2.0
db-electronics/SMSFlashCart
src/SMSMapper.vhd
1
5520
--************************************************************* -- db Mapper -- Copyright 2015 Rene Richard -- DEVICE : EPM3064ATC100-10 --************************************************************* -- -- Description: -- This is a VHDL implementation of an SMS Sega Mapper -- it is intended to be used on the db Electronics SMS Homebrew Carts -- Supported Flash Memory Configurations: -- 2Mbit (1x 2Mbit) -- 4Mbit (1x 4Mbit) -- 8Mbit (1x 4Mbit) -- Support RAM Configurations -- 32KB -- -- for a complete description of SMS Mappers, go to http://www.smspower.org/Development/Mappers --************************************************************* -- -- RAM and Misc. Register -- $FFFC -- bit 7: ROM Write Enable -- when '1' writes to ROM (i.e. Flash) are enabled -- when '0' writes to mapper registers are enabled -- bit 3: RAM Enable -- when '1' RAM will be mapped into slot 2, overriding any ROM banking via $ffff -- when '0' ROM banking is effective -- bit 2: RAM Bank Select -- when '1' maps the upper 16KB of RAM into slot 2 -- when '0' maps the lower 16KB of RAM into slot 2 --************************************************************* library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity SMSMapper is generic( SLOT0ENABLE : boolean := true; SLOT1ENABLE : boolean := true ); port ( --input from sms ADDR_p : in std_logic_vector(15 downto 0); DATA_p : in std_logic_vector(7 downto 0); nRST_p : in std_logic; nWR_p : in std_logic; nCE_p : in std_logic; --output to ROM nROMWE_p : out std_logic; nROMCE_p : out std_logic; ROMADDR1914_p : out std_logic_vector(5 downto 0); --output to serial EEPROM EE_CS_p : out std_logic; EE_SO_p : out std_logic; EE_SI_p : out std_logic; EE_SCK_p : out std_logic; --output to SRAM nSRAMCE_p : out std_logic; nSRAMWE_p : out std_logic; SRAMADDR14_p : out std_logic ); end entity; architecture SMSMapper_a of SMSMapper is --internal data and address signals for easy write back if ever needed signal datain_s : std_logic_vector(7 downto 0); signal addr_s : std_logic_vector(15 downto 0); --Mapper slot registers, fitter will optimize any unused bits signal romSlot1_s : std_logic_vector(5 downto 0); signal romSlot2_s : std_logic_vector(5 downto 0); signal mapAddr_s : std_logic_vector(5 downto 0); --internal rom signals signal romWrEn_s : std_logic; signal nRomCE_s : std_logic; signal nRomWE_s : std_logic; --RAM mapping signals signal ramEn_s : std_logic; signal ramBank_s : std_logic; begin --internal data and address signals addr_s <= ADDR_p; datain_s <= DATA_p; --output mapping to ROM and RAM SRAMADDR14_p <= ramBank_s; --high order address bits and WE and CE must be open-drain to meet 5V requirements -- 1K pull-up on each of these lines ROMADDR1914_p(0) <= '0' when mapAddr_s(0) = '0' else 'Z'; ROMADDR1914_p(1) <= '0' when mapAddr_s(1) = '0' else 'Z'; ROMADDR1914_p(2) <= '0' when mapAddr_s(2) = '0' else 'Z'; ROMADDR1914_p(3) <= '0' when mapAddr_s(3) = '0' else 'Z'; ROMADDR1914_p(4) <= '0' when mapAddr_s(4) = '0' else 'Z'; ROMADDR1914_p(5) <= '0' when mapAddr_s(5) = '0' else 'Z'; --ROM Write Gating with bit7 of $FFFC nRomWE_s <= nWR_p when romWrEn_s = '1' else '1'; nROMWE_p <= '0' when nRomWE_s = '0' else 'Z'; nROMCE_p <= '0' when nRomCE_s = '0' else 'Z'; --default values for now, todo later EE_CS_p <= '1'; EE_SO_p <= '1'; EE_SI_p <= '1'; EE_SCK_p <= '1'; --RAM mapping and miscellaneous functions register ram0: process( nRST_p, nWR_p, nCE_p, addr_s ) begin if nRST_p = '0' then romWrEn_s <= '0'; ramEn_s <= '0'; ramBank_s <= '0'; --nWR rises before address and mreq on Z80 elsif falling_edge(nWR_p) then if addr_s = x"FFFC" and nCE_p = '0' then romWrEn_s <= datain_s(7); ramEn_s <= datain_s(3); ramBank_s <= datain_s(2); end if; end if; end process; --mapper registers mappers: process( nRST_p, nWR_p, nCE_p, addr_s) begin if nRST_p = '0' then romSlot1_s <= "000001"; romSlot2_s <= "000010"; --nWR rises before address and mreq on Z80 elsif falling_edge(nWR_p) then if nCE_p = '0' then case addr_s is when x"FFFE" => romSlot1_s <= datain_s(5 downto 0); when x"FFFF" => romSlot2_s <= datain_s(5 downto 0); when others => null; end case; end if; end if; end process; --banking select --only looks at address, this way the address setup and hold times can be respected banking: process( addr_s ) begin mapAddr_s <= (others=>'0'); case addr_s(15 downto 14) is when "01" => mapAddr_s <= romSlot1_s(5 downto 0); when "10" => mapAddr_s <= romSlot2_s(5 downto 0); when others => mapAddr_s <= (others=>'0'); end case; end process; --drive chip select lines chipSelect: process( addr_s, ramEn_s, nCE_p ) begin nSRAMWE_p <= '1'; nSRAMCE_p <= '1'; nRomCE_s <= '1'; case addr_s(15 downto 14) is --slot 0 when "00" => nRomCE_s <= nCE_p; --slot 1 when "01" => nRomCE_s <= nCE_p; --slot 2 when "10" => --RAM mapping has priority in Slot 2 if ramEn_s = '1' then nSRAMCE_p <= nCE_p; nSRAMWE_p <= nWR_p; else --select upper or lower ROM based on A19 nRomCE_s <= nCE_p; end if; when others => --don't drive anything in slot 4 nSRAMWE_p <= '1'; nSRAMCE_p <= '1'; nRomCE_s <= '1'; end case; end process; end SMSMapper_a;
gpl-2.0
steveicarus/iverilog
ivtest/ivltests/vhdl_test7.vhd
2
629
-- -- Author: Pawel Szostek ([email protected]) -- Date: 28.07.2011 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity dummy is port ( input : in std_logic_vector(7 downto 0); output : out std_logic_vector(7 downto 0) ); end; architecture behaviour of dummy is begin L: process(input) variable tmp : std_logic_vector(7 downto 0); begin tmp := input; -- use multiple assignments to the same variable tmp := (7 => input(7), others => '1'); -- inluding slices in a process output <= tmp; end process; end;
gpl-2.0
steveicarus/iverilog
ivtest/ivltests/vhdl_ssub23_stdlogic.vhd
4
304
library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity ssub23 is port ( a_i : in signed (22 downto 0); b_i : in signed (22 downto 0); c_o : out signed (22 downto 0) ); end entity ssub23; architecture rtl of ssub23 is begin c_o <= a_i - b_i; end architecture rtl;
gpl-2.0
steveicarus/iverilog
ivtest/ivltests/work7b/fdc.vhd
8
432
-- a D-type flip-flop with synchronous reset library ieee; use ieee.std_logic_1164.all; entity fdc is port (clk: in std_logic; reset: in std_logic; d: in std_logic; q: out std_logic ); end fdc; architecture fdc_rtl of fdc is begin i_finish: process (clk) begin if (clk'event and clk = '1') then if (reset = '1') then q <= '0'; else q <= d; end if; end if; end process; end fdc_rtl;
gpl-2.0
steveicarus/iverilog
ivtest/ivltests/vhdl_notg_stdlogic.vhd
4
264
library IEEE; use IEEE.std_logic_1164.all; entity not_gate is port ( a_i : in std_logic; -- inputs c_o : out std_logic -- output ); end entity not_gate; architecture rtl of not_gate is begin c_o <= not a_i; end architecture rtl;
gpl-2.0
steveicarus/iverilog
ivtest/ivltests/vhdl_and_gate.vhd
8
295
library IEEE; use IEEE.std_logic_1164.all; entity and_gate is port ( a_i : in std_logic; -- inputs b_i : in std_logic; c_o : out std_logic -- output ); end entity and_gate; architecture rtl of and_gate is begin c_o <= a_i and b_i; end architecture rtl;
gpl-2.0
schmr/grlib
grlib-gpl-1.3.7-b4144/lib/gaisler/misc/grgpio.in.vhd
6
208
-- GPIO port constant CFG_GRGPIO_ENABLE : integer := CONFIG_GRGPIO_ENABLE; constant CFG_GRGPIO_IMASK : integer := 16#CONFIG_GRGPIO_IMASK#; constant CFG_GRGPIO_WIDTH : integer := CONFIG_GRGPIO_WIDTH;
gpl-2.0
schmr/grlib
grlib-gpl-1.3.7-b4144/lib/grlib/stdlib/stdlib.vhd
1
19811
------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ----------------------------------------------------------------------------- -- Package: stdlib -- File: stdlib.vhd -- Author: Jiri Gaisler - Gaisler Research -- Description: Package for common VHDL functions ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; -- pragma translate_off use std.textio.all; -- pragma translate_on library grlib; use grlib.version.all; package stdlib is constant LIBVHDL_VERSION : integer := grlib_version; constant LIBVHDL_BUILD : integer := grlib_build; -- pragma translate_off constant LIBVHDL_DATE : string := grlib_date; -- pragma translate_on constant zero32 : std_logic_vector(31 downto 0) := (others => '0'); constant zero64 : std_logic_vector(63 downto 0) := (others => '0'); constant zero128 : std_logic_vector(127 downto 0) := (others => '0'); constant one32 : std_logic_vector(31 downto 0) := (others => '1'); constant one64 : std_logic_vector(63 downto 0) := (others => '1'); constant one128 : std_logic_vector(127 downto 0) := (others => '1'); type log2arr is array(0 to 512) of integer; constant log2 : log2arr := ( 0,0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, others => 9); constant log2x : log2arr := ( 0,1,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, others => 9); function log2ext(i: integer) return integer; function decode(v : std_logic_vector) return std_logic_vector; function genmux(s,v : std_logic_vector) return std_ulogic; function xorv(d : std_logic_vector) return std_ulogic; function orv(d : std_logic_vector) return std_ulogic; function andv(d : std_logic_vector) return std_ulogic; function notx(d : std_logic_vector) return boolean; function notx(d : std_ulogic) return boolean; function "-" (d : std_logic_vector; i : integer) return std_logic_vector; function "-" (i : integer; d : std_logic_vector) return std_logic_vector; function "+" (d : std_logic_vector; i : integer) return std_logic_vector; function "+" (i : integer; d : std_logic_vector) return std_logic_vector; function "-" (d : std_logic_vector; i : std_ulogic) return std_logic_vector; function "+" (d : std_logic_vector; i : std_ulogic) return std_logic_vector; function "-" (a, b : std_logic_vector) return std_logic_vector; function "+" (a, b : std_logic_vector) return std_logic_vector; function "*" (a, b : std_logic_vector) return std_logic_vector; function unsigned_mul (a, b : std_logic_vector) return std_logic_vector; function signed_mul (a, b : std_logic_vector) return std_logic_vector; function mixed_mul (a, b : std_logic_vector; sign : std_logic) return std_logic_vector; --function ">" (a, b : std_logic_vector) return boolean; function "<" (i : integer; b : std_logic_vector) return boolean; function conv_integer(v : std_logic_vector) return integer; function conv_integer(v : std_logic) return integer; function conv_std_logic_vector(i : integer; w : integer) return std_logic_vector; function conv_std_logic_vector_signed(i : integer; w : integer) return std_logic_vector; function conv_std_logic(b : boolean) return std_ulogic; attribute sync_set_reset : string; attribute async_set_reset : string; -- Reporting and diagnostics -- pragma translate_off function tost(v:std_logic_vector) return string; function tost(v:std_logic) return string; function tost(i : integer) return string; function tost_any(s: std_ulogic) return string; function tost_bits(s: std_logic_vector) return string; function tost(b: boolean) return string; function tost(r: real) return string; procedure print(s : string); component report_version generic (msg1, msg2, msg3, msg4 : string := ""; mdel : integer := 4); end component; component report_design generic (msg1, fabtech, memtech : string := ""; mdel : integer := 4); end component; -- pragma translate_on function unary_to_slv(i: std_logic_vector) return std_logic_vector; end; package body stdlib is function notx(d : std_logic_vector) return boolean is variable res : boolean; begin res := true; -- pragma translate_off res := not is_x(d); -- pragma translate_on return (res); end; function notx(d : std_ulogic) return boolean is variable res : boolean; begin res := true; -- pragma translate_off res := not is_x(d); -- pragma translate_on return (res); end; -- generic decoder function decode(v : std_logic_vector) return std_logic_vector is variable res : std_logic_vector((2**v'length)-1 downto 0); variable i : integer range res'range; begin res := (others => '0'); i := 0; if notx(v) then i := to_integer(unsigned(v)); end if; res(i) := '1'; return(res); end; -- generic multiplexer function genmux(s,v : std_logic_vector) return std_ulogic is variable res : std_logic_vector(v'length-1 downto 0); variable i : integer range res'range; begin res := v; i := 0; if notx(s) then i := to_integer(unsigned(s)); end if; return(res(i)); end; -- vector XOR function xorv(d : std_logic_vector) return std_ulogic is variable tmp : std_ulogic; begin tmp := '0'; for i in d'range loop tmp := tmp xor d(i); end loop; return(tmp); end; -- vector OR function orv(d : std_logic_vector) return std_ulogic is variable tmp : std_ulogic; begin tmp := '0'; for i in d'range loop tmp := tmp or d(i); end loop; return(tmp); end; -- vector AND function andv(d : std_logic_vector) return std_ulogic is variable tmp : std_ulogic; begin tmp := '1'; for i in d'range loop tmp := tmp and d(i); end loop; return(tmp); end; -- unsigned multiplication function "*" (a, b : std_logic_vector) return std_logic_vector is variable z : std_logic_vector(a'length+b'length-1 downto 0); begin -- pragma translate_off if notx(a&b) then -- pragma translate_on return(std_logic_vector(unsigned(a) * unsigned(b))); -- pragma translate_off else z := (others =>'X'); return(z); end if; -- pragma translate_on end; -- signed multiplication function signed_mul (a, b : std_logic_vector) return std_logic_vector is variable z : std_logic_vector(a'length+b'length-1 downto 0); begin -- pragma translate_off if notx(a&b) then -- pragma translate_on return(std_logic_vector(signed(a) * signed(b))); -- pragma translate_off else z := (others =>'X'); return(z); end if; -- pragma translate_on end; -- unsigned multiplication function unsigned_mul (a, b : std_logic_vector) return std_logic_vector is variable z : std_logic_vector(a'length+b'length-1 downto 0); begin -- pragma translate_off if notx(a&b) then -- pragma translate_on return(std_logic_vector(unsigned(a) * unsigned(b))); -- pragma translate_off else z := (others =>'X'); return(z); end if; -- pragma translate_on end; -- signed/unsigned multiplication function mixed_mul (a, b : std_logic_vector; sign : std_logic) return std_logic_vector is variable z : std_logic_vector(a'length+b'length-1 downto 0); begin -- pragma translate_off if notx(a&b) then -- pragma translate_on if sign = '0' then return(std_logic_vector(unsigned(a) * unsigned(b))); else return(std_logic_vector(signed(a) * signed(b))); end if; -- pragma translate_off else z := (others =>'X'); return(z); end if; -- pragma translate_on end; -- unsigned addition function "+" (a, b : std_logic_vector) return std_logic_vector is variable x : std_logic_vector(a'length-1 downto 0); variable y : std_logic_vector(b'length-1 downto 0); begin -- pragma translate_off if notx(a&b) then -- pragma translate_on return(std_logic_vector(unsigned(a) + unsigned(b))); -- pragma translate_off else x := (others =>'X'); y := (others =>'X'); if (x'length > y'length) then return(x); else return(y); end if; end if; -- pragma translate_on end; function "+" (i : integer; d : std_logic_vector) return std_logic_vector is variable x : std_logic_vector(d'length-1 downto 0); begin -- pragma translate_off if notx(d) then -- pragma translate_on return(std_logic_vector(unsigned(d) + i)); -- pragma translate_off else x := (others =>'X'); return(x); end if; -- pragma translate_on end; function "+" (d : std_logic_vector; i : integer) return std_logic_vector is variable x : std_logic_vector(d'length-1 downto 0); begin -- pragma translate_off if notx(d) then -- pragma translate_on return(std_logic_vector(unsigned(d) + i)); -- pragma translate_off else x := (others =>'X'); return(x); end if; -- pragma translate_on end; function "+" (d : std_logic_vector; i : std_ulogic) return std_logic_vector is variable x : std_logic_vector(d'length-1 downto 0); variable y : std_logic_vector(0 downto 0); begin y(0) := i; -- pragma translate_off if notx(d) then -- pragma translate_on return(std_logic_vector(unsigned(d) + unsigned(y))); -- pragma translate_off else x := (others =>'X'); return(x); end if; -- pragma translate_on end; -- unsigned subtraction function "-" (a, b : std_logic_vector) return std_logic_vector is variable x : std_logic_vector(a'length-1 downto 0); variable y : std_logic_vector(b'length-1 downto 0); begin -- pragma translate_off if notx(a&b) then -- pragma translate_on return(std_logic_vector(unsigned(a) - unsigned(b))); -- pragma translate_off else x := (others =>'X'); y := (others =>'X'); if (x'length > y'length) then return(x); else return(y); end if; end if; -- pragma translate_on end; function "-" (d : std_logic_vector; i : integer) return std_logic_vector is variable x : std_logic_vector(d'length-1 downto 0); begin -- pragma translate_off if notx(d) then -- pragma translate_on return(std_logic_vector(unsigned(d) - i)); -- pragma translate_off else x := (others =>'X'); return(x); end if; -- pragma translate_on end; function "-" (i : integer; d : std_logic_vector) return std_logic_vector is variable x : std_logic_vector(d'length-1 downto 0); begin -- pragma translate_off if notx(d) then -- pragma translate_on return(std_logic_vector(i - unsigned(d))); -- pragma translate_off else x := (others =>'X'); return(x); end if; -- pragma translate_on end; function "-" (d : std_logic_vector; i : std_ulogic) return std_logic_vector is variable x : std_logic_vector(d'length-1 downto 0); variable y : std_logic_vector(0 downto 0); begin y(0) := i; -- pragma translate_off if notx(d) then -- pragma translate_on return(std_logic_vector(unsigned(d) - unsigned(y))); -- pragma translate_off else x := (others =>'X'); return(x); end if; -- pragma translate_on end; function ">=" (a, b : std_logic_vector) return boolean is begin return(unsigned(a) >= unsigned(b)); end; function "<" (i : integer; b : std_logic_vector) return boolean is begin return( i < to_integer(unsigned(b))); end; function ">" (a, b : std_logic_vector) return boolean is begin return(unsigned(a) > unsigned(b)); end; function conv_integer(v : std_logic_vector) return integer is begin if notx(v) then return(to_integer(unsigned(v))); else return(0); end if; end; function conv_integer(v : std_logic) return integer is begin if notx(v) then if v = '1' then return(1); else return(0); end if; else return(0); end if; end; function conv_std_logic_vector(i : integer; w : integer) return std_logic_vector is variable tmp : std_logic_vector(w-1 downto 0); begin tmp := std_logic_vector(to_unsigned(i, w)); return(tmp); end; function conv_std_logic_vector_signed(i : integer; w : integer) return std_logic_vector is variable tmp : std_logic_vector(w-1 downto 0); begin tmp := std_logic_vector(to_signed(i, w)); return(tmp); end; function conv_std_logic(b : boolean) return std_ulogic is begin if b then return('1'); else return('0'); end if; end; function log2ext(i: integer) return integer is -- variable v: std_logic_vector(31 downto 0); begin -- workaround for DC bug -- if i=0 then return 0; end if; -- v := std_logic_vector(to_unsigned((i-1),v'length)); -- for x in v'high downto v'low loop -- if v(x)='1' then return x+1; end if; -- end loop; -- return 0; for x in 1 to 32 loop if (2**x > i) then return (x-1); end if; end loop; return 32; end; -- pragma translate_off subtype nibble is std_logic_vector(3 downto 0); function todec(i:integer) return character is begin case i is when 0 => return('0'); when 1 => return('1'); when 2 => return('2'); when 3 => return('3'); when 4 => return('4'); when 5 => return('5'); when 6 => return('6'); when 7 => return('7'); when 8 => return('8'); when 9 => return('9'); when others => return('0'); end case; end; function tohex(n:nibble) return character is begin case n is when "0000" => return('0'); when "0001" => return('1'); when "0010" => return('2'); when "0011" => return('3'); when "0100" => return('4'); when "0101" => return('5'); when "0110" => return('6'); when "0111" => return('7'); when "1000" => return('8'); when "1001" => return('9'); when "1010" => return('a'); when "1011" => return('b'); when "1100" => return('c'); when "1101" => return('d'); when "1110" => return('e'); when "1111" => return('f'); when others => return('X'); end case; end; function tost(v:std_logic_vector) return string is constant vlen : natural := v'length; --' constant slen : natural := (vlen+3)/4; variable vv : std_logic_vector(0 to slen*4-1) := (others => '0'); variable s : string(1 to slen); variable nz : boolean := false; variable index : integer := -1; begin vv(slen*4-vlen to slen*4-1) := v; for i in 0 to slen-1 loop if (vv(i*4 to i*4+3) = "0000") and nz and (i /= (slen-1)) then index := i; else nz := false; s(i+1) := tohex(vv(i*4 to i*4+3)); end if; end loop; if ((index +2) = slen) then return(s(slen to slen)); else return(string'("0x") & s(index+2 to slen)); end if; --' end; function tost(v:std_logic) return string is begin if to_x01(v) = '1' then return("1"); else return("0"); end if; end; function tost_any(s: std_ulogic) return string is begin case s is when '1' => return "1"; when '0' => return "0"; when '-' => return "-"; when 'U' => return "U"; when 'X' => return "X"; when 'Z' => return "Z"; when 'H' => return "H"; when 'L' => return "L"; when 'W' => return "W"; end case; end; function tost_bits(s: std_logic_vector) return string is constant len: natural := s'length; variable str: string(1 to len); variable i: integer; begin i := 1; for x in s'range loop str(i to i) := tost_any(s(x)); i := i+1; end loop; return str; end; function tost(b: boolean) return string is begin if b then return "true"; else return "false"; end if; end tost; function tost(i : integer) return string is variable L : line; variable s, x : string(1 to 128); variable n, tmp : integer := 0; begin tmp := i; if i < 0 then tmp := -i; end if; loop s(128-n) := todec(tmp mod 10); tmp := tmp / 10; n := n+1; if tmp = 0 then exit; end if; end loop; x(1 to n) := s(129-n to 128); if i < 0 then return "-" & x(1 to n); end if; return(x(1 to n)); end; function tost(r: real) return string is variable x: real; variable i,j: integer; variable s: string(1 to 30); variable c: character; begin if r = 0.0 then return "0.0000"; elsif r < 0.0 then return "-" & tost(-r); elsif r < 0.001 then x:=r; i:=0; while x<1.0 loop x:=x*10.0; i:=i+1; end loop; return tost(x) & "e-" & tost(i); elsif r >= 1000000.0 then x:=10000000.0; i:=6; while r>=x loop x:=x*10.0; i:=i+1; end loop; return tost(10.0*r/x) & "e+" & tost(i); else i:=0; x:=r+0.00005; while x >= 10.0 loop x:=x/10.0; i:=i+1; end loop; j := 1; while i > -5 loop if x >= 9.0 then c:='9'; x:=x-9.0; elsif x >= 8.0 then c:='8'; x:=x-8.0; elsif x >= 7.0 then c:='7'; x:=x-7.0; elsif x >= 6.0 then c:='6'; x:=x-6.0; elsif x >= 5.0 then c:='5'; x:=x-5.0; elsif x >= 4.0 then c:='4'; x:=x-4.0; elsif x >= 3.0 then c:='3'; x:=x-3.0; elsif x >= 2.0 then c:='2'; x:=x-2.0; elsif x >= 1.0 then c:='1'; x:=x-1.0; else c:='0'; end if; s(j) := c; j:=j+1; if i=0 then s(j):='.'; j:=j+1; end if; i:=i-1; x := x * 10.0; end loop; return s(1 to j-1); end if; end tost; procedure print(s : string) is variable L : line; begin L := new string'(s); writeline(output, L); end; -- pragma translate_on function unary_to_slv(i: std_logic_vector) return std_logic_vector is variable o : std_logic_vector(log2(i'length)-1 downto 0); begin -- -- 16 bits unary to binary conversion -- o(0) := i(1) or i(3) or i(5) or i(7) or i(9) or i(11) or i(13) or i(15); -- o(1) := i(2) or i(3) or i(6) or i(7) or i(10) or i(11) or i(14) or i(15); -- o(2) := i(4) or i(5) or i(6) or i(7) or i(12) or i(13) or i(14) or i(15); -- o(3) := i(8) or i(9) or i(10) or i(11) or i(12) or i(13) or i(14) or i(15); -- -- -- parametrized conversion -- -- o(0) := i(1); -- -- o(0) := unary_to_slv(i(3 downto 2)) or unary_to_slv(i(1 downto 0)); -- o(1) := orv(i(3 downto 2)); -- -- o(1 downto 0) := unary_to_slv(i(7 downto 4)) or unary_to_slv(i(3 downto 0)); -- o(2) := orv(i(7 downto 4)); -- -- o(2 downto 0) := unary_to_slv(i(15 downto 8)) or unary_to_slv(i(7 downto 0)); -- o(3) := orv(i(15 downto 8)); -- assert i'length = 0 or i'length = 2**log2(i'length) report "unary_to_slv: input vector size must be power of 2" severity failure; if i'length > 2 then -- recursion on left and right halves o(log2(i'length)-2 downto 0) := unary_to_slv(i(i'left downto (i'left-i'length/2+1))) or unary_to_slv(i((i'left-i'length/2) downto i'right)); o(log2(i'length)-1) := orv(i(i'left downto (i'left-i'length/2+1))); else o(0 downto 0) := ( 0 => i(i'left)); end if; return o; end unary_to_slv; end;
gpl-2.0
schmr/grlib
grlib-gpl-1.3.7-b4144/boards/altera-c5ekit/syspll1.vhd
3
15913
-- megafunction wizard: %Altera PLL v13.0% -- GENERATION: XML -- syspll1.vhd -- Generated using ACDS version 13.0 156 at 2013.07.12.16:42:19 library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all; entity syspll1 is port ( refclk : in std_logic := '0'; -- refclk.clk rst : in std_logic := '0'; -- reset.reset outclk_0 : out std_logic; -- outclk0.clk locked : out std_logic -- locked.export ); end entity syspll1; architecture rtl of syspll1 is component syspll1_0002 is port ( refclk : in std_logic := 'X'; -- clk rst : in std_logic := 'X'; -- reset outclk_0 : out std_logic; -- clk locked : out std_logic -- export ); end component syspll1_0002; begin syspll1_inst : component syspll1_0002 port map ( refclk => refclk, -- refclk.clk rst => rst, -- reset.reset outclk_0 => outclk_0, -- outclk0.clk locked => locked -- locked.export ); end architecture rtl; -- of syspll1 -- Retrieval info: <?xml version="1.0"?> --<!-- -- Generated by Altera MegaWizard Launcher Utility version 1.0 -- ************************************************************ -- THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE! -- ************************************************************ -- Copyright (C) 1991-2013 Altera Corporation -- Any megafunction design, and related net list (encrypted or decrypted), -- support information, device programming or simulation file, and any other -- associated documentation or information provided by Altera or a partner -- under Altera's Megafunction Partnership Program may be used only to -- program PLD devices (but not masked PLD devices) from Altera. Any other -- use of such megafunction design, net list, support information, device -- programming or simulation file, or any other related documentation or -- information is prohibited for any other purpose, including, but not -- limited to modification, reverse engineering, de-compiling, or use with -- any other silicon devices, unless such use is explicitly licensed under -- a separate agreement with Altera or a megafunction partner. Title to -- the intellectual property, including patents, copyrights, trademarks, -- trade secrets, or maskworks, embodied in any such megafunction design, -- net list, support information, device programming or simulation file, or -- any other related documentation or information provided by Altera or a -- megafunction partner, remains with Altera, the megafunction partner, or -- their respective licensors. No other licenses, including any licenses -- needed under any third party's intellectual property, are provided herein. ----> -- Retrieval info: <instance entity-name="altera_pll" version="13.0" > -- Retrieval info: <generic name="device_family" value="Cyclone V" /> -- Retrieval info: <generic name="gui_device_speed_grade" value="7" /> -- Retrieval info: <generic name="gui_pll_mode" value="Integer-N PLL" /> -- Retrieval info: <generic name="gui_reference_clock_frequency" value="50.0" /> -- Retrieval info: <generic name="gui_channel_spacing" value="0.0" /> -- Retrieval info: <generic name="gui_operation_mode" value="normal" /> -- Retrieval info: <generic name="gui_feedback_clock" value="Global Clock" /> -- Retrieval info: <generic name="gui_fractional_cout" value="32" /> -- Retrieval info: <generic name="gui_dsm_out_sel" value="1st_order" /> -- Retrieval info: <generic name="gui_use_locked" value="true" /> -- Retrieval info: <generic name="gui_en_adv_params" value="false" /> -- Retrieval info: <generic name="gui_number_of_clocks" value="1" /> -- Retrieval info: <generic name="gui_multiply_factor" value="1" /> -- Retrieval info: <generic name="gui_frac_multiply_factor" value="1" /> -- Retrieval info: <generic name="gui_divide_factor_n" value="1" /> -- Retrieval info: <generic name="gui_output_clock_frequency0" value="100.0" /> -- Retrieval info: <generic name="gui_divide_factor_c0" value="1" /> -- Retrieval info: <generic name="gui_actual_output_clock_frequency0" value="0 MHz" /> -- Retrieval info: <generic name="gui_ps_units0" value="ps" /> -- Retrieval info: <generic name="gui_phase_shift0" value="0" /> -- Retrieval info: <generic name="gui_phase_shift_deg0" value="0" /> -- Retrieval info: <generic name="gui_actual_phase_shift0" value="0" /> -- Retrieval info: <generic name="gui_duty_cycle0" value="50" /> -- Retrieval info: <generic name="gui_output_clock_frequency1" value="75.0" /> -- Retrieval info: <generic name="gui_divide_factor_c1" value="1" /> -- Retrieval info: <generic name="gui_actual_output_clock_frequency1" value="0 MHz" /> -- Retrieval info: <generic name="gui_ps_units1" value="ps" /> -- Retrieval info: <generic name="gui_phase_shift1" value="-500" /> -- Retrieval info: <generic name="gui_phase_shift_deg1" value="0" /> -- Retrieval info: <generic name="gui_actual_phase_shift1" value="0" /> -- Retrieval info: <generic name="gui_duty_cycle1" value="50" /> -- Retrieval info: <generic name="gui_output_clock_frequency2" value="100.0" /> -- Retrieval info: <generic name="gui_divide_factor_c2" value="1" /> -- Retrieval info: <generic name="gui_actual_output_clock_frequency2" value="0 MHz" /> -- Retrieval info: <generic name="gui_ps_units2" value="ps" /> -- Retrieval info: <generic name="gui_phase_shift2" value="0" /> -- Retrieval info: <generic name="gui_phase_shift_deg2" value="0" /> -- Retrieval info: <generic name="gui_actual_phase_shift2" value="0" /> -- Retrieval info: <generic name="gui_duty_cycle2" value="50" /> -- Retrieval info: <generic name="gui_output_clock_frequency3" value="100.0" /> -- Retrieval info: <generic name="gui_divide_factor_c3" value="1" /> -- Retrieval info: <generic name="gui_actual_output_clock_frequency3" value="0 MHz" /> -- Retrieval info: <generic name="gui_ps_units3" value="ps" /> -- Retrieval info: <generic name="gui_phase_shift3" value="0" /> -- Retrieval info: <generic name="gui_phase_shift_deg3" value="0" /> -- Retrieval info: <generic name="gui_actual_phase_shift3" value="0" /> -- Retrieval info: <generic name="gui_duty_cycle3" value="50" /> -- Retrieval info: <generic name="gui_output_clock_frequency4" value="100.0" /> -- Retrieval info: <generic name="gui_divide_factor_c4" value="1" /> -- Retrieval info: <generic name="gui_actual_output_clock_frequency4" value="0 MHz" /> -- Retrieval info: <generic name="gui_ps_units4" value="ps" /> -- Retrieval info: <generic name="gui_phase_shift4" value="0" /> -- Retrieval info: <generic name="gui_phase_shift_deg4" value="0" /> -- Retrieval info: <generic name="gui_actual_phase_shift4" value="0" /> -- Retrieval info: <generic name="gui_duty_cycle4" value="50" /> -- Retrieval info: <generic name="gui_output_clock_frequency5" value="100.0" /> -- Retrieval info: <generic name="gui_divide_factor_c5" value="1" /> -- Retrieval info: <generic name="gui_actual_output_clock_frequency5" value="0 MHz" /> -- Retrieval info: <generic name="gui_ps_units5" value="ps" /> -- Retrieval info: <generic name="gui_phase_shift5" value="0" /> -- Retrieval info: <generic name="gui_phase_shift_deg5" value="0" /> -- Retrieval info: <generic name="gui_actual_phase_shift5" value="0" /> -- Retrieval info: <generic name="gui_duty_cycle5" value="50" /> -- Retrieval info: <generic name="gui_output_clock_frequency6" value="100.0" /> -- Retrieval info: <generic name="gui_divide_factor_c6" value="1" /> -- Retrieval info: <generic name="gui_actual_output_clock_frequency6" value="0 MHz" /> -- Retrieval info: <generic name="gui_ps_units6" value="ps" /> -- Retrieval info: <generic name="gui_phase_shift6" value="0" /> -- Retrieval info: <generic name="gui_phase_shift_deg6" value="0" /> -- Retrieval info: <generic name="gui_actual_phase_shift6" value="0" /> -- Retrieval info: <generic name="gui_duty_cycle6" value="50" /> -- Retrieval info: <generic name="gui_output_clock_frequency7" value="100.0" /> -- Retrieval info: <generic name="gui_divide_factor_c7" value="1" /> -- Retrieval info: <generic name="gui_actual_output_clock_frequency7" value="0 MHz" /> -- Retrieval info: <generic name="gui_ps_units7" value="ps" /> -- Retrieval info: <generic name="gui_phase_shift7" value="0" /> -- Retrieval info: <generic name="gui_phase_shift_deg7" value="0" /> -- Retrieval info: <generic name="gui_actual_phase_shift7" value="0" /> -- Retrieval info: <generic name="gui_duty_cycle7" value="50" /> -- Retrieval info: <generic name="gui_output_clock_frequency8" value="100.0" /> -- Retrieval info: <generic name="gui_divide_factor_c8" value="1" /> -- Retrieval info: <generic name="gui_actual_output_clock_frequency8" value="0 MHz" /> -- Retrieval info: <generic name="gui_ps_units8" value="ps" /> -- Retrieval info: <generic name="gui_phase_shift8" value="0" /> -- Retrieval info: <generic name="gui_phase_shift_deg8" value="0" /> -- Retrieval info: <generic name="gui_actual_phase_shift8" value="0" /> -- Retrieval info: <generic name="gui_duty_cycle8" value="50" /> -- Retrieval info: <generic name="gui_output_clock_frequency9" value="100.0" /> -- Retrieval info: <generic name="gui_divide_factor_c9" value="1" /> -- Retrieval info: <generic name="gui_actual_output_clock_frequency9" value="0 MHz" /> -- Retrieval info: <generic name="gui_ps_units9" value="ps" /> -- Retrieval info: <generic name="gui_phase_shift9" value="0" /> -- Retrieval info: <generic name="gui_phase_shift_deg9" value="0" /> -- Retrieval info: <generic name="gui_actual_phase_shift9" value="0" /> -- Retrieval info: <generic name="gui_duty_cycle9" value="50" /> -- Retrieval info: <generic name="gui_output_clock_frequency10" value="100.0" /> -- Retrieval info: <generic name="gui_divide_factor_c10" value="1" /> -- Retrieval info: <generic name="gui_actual_output_clock_frequency10" value="0 MHz" /> -- Retrieval info: <generic name="gui_ps_units10" value="ps" /> -- Retrieval info: <generic name="gui_phase_shift10" value="0" /> -- Retrieval info: <generic name="gui_phase_shift_deg10" value="0" /> -- Retrieval info: <generic name="gui_actual_phase_shift10" value="0" /> -- Retrieval info: <generic name="gui_duty_cycle10" value="50" /> -- Retrieval info: <generic name="gui_output_clock_frequency11" value="100.0" /> -- Retrieval info: <generic name="gui_divide_factor_c11" value="1" /> -- Retrieval info: <generic name="gui_actual_output_clock_frequency11" value="0 MHz" /> -- Retrieval info: <generic name="gui_ps_units11" value="ps" /> -- Retrieval info: <generic name="gui_phase_shift11" value="0" /> -- Retrieval info: <generic name="gui_phase_shift_deg11" value="0" /> -- Retrieval info: <generic name="gui_actual_phase_shift11" value="0" /> -- Retrieval info: <generic name="gui_duty_cycle11" value="50" /> -- Retrieval info: <generic name="gui_output_clock_frequency12" value="100.0" /> -- Retrieval info: <generic name="gui_divide_factor_c12" value="1" /> -- Retrieval info: <generic name="gui_actual_output_clock_frequency12" value="0 MHz" /> -- Retrieval info: <generic name="gui_ps_units12" value="ps" /> -- Retrieval info: <generic name="gui_phase_shift12" value="0" /> -- Retrieval info: <generic name="gui_phase_shift_deg12" value="0" /> -- Retrieval info: <generic name="gui_actual_phase_shift12" value="0" /> -- Retrieval info: <generic name="gui_duty_cycle12" value="50" /> -- Retrieval info: <generic name="gui_output_clock_frequency13" value="100.0" /> -- Retrieval info: <generic name="gui_divide_factor_c13" value="1" /> -- Retrieval info: <generic name="gui_actual_output_clock_frequency13" value="0 MHz" /> -- Retrieval info: <generic name="gui_ps_units13" value="ps" /> -- Retrieval info: <generic name="gui_phase_shift13" value="0" /> -- Retrieval info: <generic name="gui_phase_shift_deg13" value="0" /> -- Retrieval info: <generic name="gui_actual_phase_shift13" value="0" /> -- Retrieval info: <generic name="gui_duty_cycle13" value="50" /> -- Retrieval info: <generic name="gui_output_clock_frequency14" value="100.0" /> -- Retrieval info: <generic name="gui_divide_factor_c14" value="1" /> -- Retrieval info: <generic name="gui_actual_output_clock_frequency14" value="0 MHz" /> -- Retrieval info: <generic name="gui_ps_units14" value="ps" /> -- Retrieval info: <generic name="gui_phase_shift14" value="0" /> -- Retrieval info: <generic name="gui_phase_shift_deg14" value="0" /> -- Retrieval info: <generic name="gui_actual_phase_shift14" value="0" /> -- Retrieval info: <generic name="gui_duty_cycle14" value="50" /> -- Retrieval info: <generic name="gui_output_clock_frequency15" value="100.0" /> -- Retrieval info: <generic name="gui_divide_factor_c15" value="1" /> -- Retrieval info: <generic name="gui_actual_output_clock_frequency15" value="0 MHz" /> -- Retrieval info: <generic name="gui_ps_units15" value="ps" /> -- Retrieval info: <generic name="gui_phase_shift15" value="0" /> -- Retrieval info: <generic name="gui_phase_shift_deg15" value="0" /> -- Retrieval info: <generic name="gui_actual_phase_shift15" value="0" /> -- Retrieval info: <generic name="gui_duty_cycle15" value="50" /> -- Retrieval info: <generic name="gui_output_clock_frequency16" value="100.0" /> -- Retrieval info: <generic name="gui_divide_factor_c16" value="1" /> -- Retrieval info: <generic name="gui_actual_output_clock_frequency16" value="0 MHz" /> -- Retrieval info: <generic name="gui_ps_units16" value="ps" /> -- Retrieval info: <generic name="gui_phase_shift16" value="0" /> -- Retrieval info: <generic name="gui_phase_shift_deg16" value="0" /> -- Retrieval info: <generic name="gui_actual_phase_shift16" value="0" /> -- Retrieval info: <generic name="gui_duty_cycle16" value="50" /> -- Retrieval info: <generic name="gui_output_clock_frequency17" value="100.0" /> -- Retrieval info: <generic name="gui_divide_factor_c17" value="1" /> -- Retrieval info: <generic name="gui_actual_output_clock_frequency17" value="0 MHz" /> -- Retrieval info: <generic name="gui_ps_units17" value="ps" /> -- Retrieval info: <generic name="gui_phase_shift17" value="0" /> -- Retrieval info: <generic name="gui_phase_shift_deg17" value="0" /> -- Retrieval info: <generic name="gui_actual_phase_shift17" value="0" /> -- Retrieval info: <generic name="gui_duty_cycle17" value="50" /> -- Retrieval info: <generic name="gui_pll_auto_reset" value="Off" /> -- Retrieval info: <generic name="gui_pll_bandwidth_preset" value="Auto" /> -- Retrieval info: <generic name="gui_en_reconf" value="false" /> -- Retrieval info: <generic name="gui_en_dps_ports" value="false" /> -- Retrieval info: <generic name="gui_en_phout_ports" value="false" /> -- Retrieval info: <generic name="gui_mif_generate" value="false" /> -- Retrieval info: <generic name="gui_enable_mif_dps" value="false" /> -- Retrieval info: <generic name="gui_dps_cntr" value="C0" /> -- Retrieval info: <generic name="gui_dps_num" value="1" /> -- Retrieval info: <generic name="gui_dps_dir" value="Positive" /> -- Retrieval info: <generic name="gui_refclk_switch" value="false" /> -- Retrieval info: <generic name="gui_refclk1_frequency" value="100.0" /> -- Retrieval info: <generic name="gui_switchover_mode" value="Automatic Switchover" /> -- Retrieval info: <generic name="gui_switchover_delay" value="0" /> -- Retrieval info: <generic name="gui_active_clk" value="false" /> -- Retrieval info: <generic name="gui_clk_bad" value="false" /> -- Retrieval info: <generic name="gui_enable_cascade_out" value="false" /> -- Retrieval info: <generic name="gui_enable_cascade_in" value="false" /> -- Retrieval info: <generic name="gui_pll_cascading_mode" value="Create an adjpllin signal to connect with an upstream PLL" /> -- Retrieval info: <generic name="AUTO_REFCLK_CLOCK_RATE" value="-1" /> -- Retrieval info: </instance> -- IPFS_FILES : syspll1.vho -- RELATED_FILES: syspll1.vhd, syspll1_0002.v
gpl-2.0
a4a881d4/ringbus4xilinx
src/config/dma_config.vhd
2
2122
--------------------------------------------------------------------------------------------------- -- -- Title : dma_config -- Design : ring bus -- Author : Zhao Ming -- Company : a4a881d4 -- --------------------------------------------------------------------------------------------------- -- -- File : dma_config.vhd -- Generated : 2013/9/10 -- From : -- By : -- --------------------------------------------------------------------------------------------------- -- -- Description : dma reg config -- -- Rev: 3.1 -- --------------------------------------------------------------------------------------------------- library IEEE; use IEEE.STD_LOGIC_1164.all; package dma_config is -- DMA reg constant reg_RESET : std_logic_vector( 3 downto 0 ) := "0000"; constant reg_START : std_logic_vector( 3 downto 0 ) := "1111"; constant reg_DADDR : std_logic_vector( 3 downto 0 ) := "0001"; constant reg_SADDR : std_logic_vector( 3 downto 0 ) := "0010"; constant reg_LEN : std_logic_vector( 3 downto 0 ) := "0011"; -- BUS reg constant reg_BADDR : std_logic_vector( 3 downto 0 ) := "0100"; constant reg_BID : std_logic_vector( 3 downto 0 ) := "0101"; -- constant reg_BUSY : std_logic_vector( 3 downto 0 ) := "0000"; constant max_payload : natural := 32; component DMANP generic( Bwidth : natural := 128; SAwidth : natural := 16; DAwidth : natural := 32; Lwidth : natural := 16 ); port( -- system signal clk : in STD_LOGIC; rst : in STD_LOGIC; -- Tx interface header: out std_logic_vector(Bwidth-1 downto 0); Req : out std_logic; laddr : out std_logic_vector(SAwidth-1 downto 0); busy : in std_logic; tx_sop : in std_logic; -- CPU bus CS : in std_logic; wr : in std_logic; rd : in std_logic; addr : in std_logic_vector( 3 downto 0 ); Din : in std_logic_vector( 7 downto 0 ); Dout : out std_logic_vector( 7 downto 0 ); cpuClk : in std_logic; -- Priority en : in std_logic ); end component; end dma_config;
gpl-2.0
schmr/grlib
grlib-gpl-1.3.7-b4144/designs/leon3-asic/leon3core.vhd
1
32942
----------------------------------------------------------------------------- -- LEON3 Demonstration design -- Copyright (C) 2013 Fredrik Ringhage, Aeroflex Gaisler ------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; library grlib; use grlib.amba.all; use grlib.stdlib.all; use grlib.devices.all; library techmap; use techmap.gencomp.all; library gaisler; use gaisler.memctrl.all; use gaisler.leon3.all; use gaisler.uart.all; use gaisler.i2c.all; use gaisler.spi.all; use gaisler.misc.all; use gaisler.jtag.all; use gaisler.spacewire.all; use gaisler.net.all; library esa; use esa.memoryctrl.all; use work.config.all; entity leon3core is generic ( fabtech : integer := CFG_FABTECH; memtech : integer := CFG_MEMTECH; padtech : integer := CFG_PADTECH; clktech : integer := CFG_CLKTECH; disas : integer := CFG_DISAS; -- Enable disassembly to console dbguart : integer := CFG_DUART; -- Print UART on console pclow : integer := CFG_PCLOW; scantest : integer := CFG_SCAN ); port ( resetn : in std_ulogic; clksel : in std_logic_vector(1 downto 0); clk : in std_ulogic; clkapb : in std_ulogic; clklock : in std_ulogic; errorn : out std_ulogic; address : out std_logic_vector(27 downto 0); datain : in std_logic_vector(31 downto 0); dataout : out std_logic_vector(31 downto 0); dataen : out std_logic_vector(31 downto 0); cbin : in std_logic_vector(7 downto 0); cbout : out std_logic_vector(7 downto 0); cben : out std_logic_vector(7 downto 0); sdcsn : out std_logic_vector (1 downto 0); -- sdram chip select sdwen : out std_ulogic; -- sdram write enable sdrasn : out std_ulogic; -- sdram ras sdcasn : out std_ulogic; -- sdram cas sddqm : out std_logic_vector (3 downto 0); -- sdram dqm dsutx : out std_ulogic; -- DSU tx data dsurx : in std_ulogic; -- DSU rx data dsuen : in std_ulogic; dsubre : in std_ulogic; dsuact : out std_ulogic; txd1 : out std_ulogic; -- UART1 tx data rxd1 : in std_ulogic; -- UART1 rx data txd2 : out std_ulogic; -- UART2 tx data rxd2 : in std_ulogic; -- UART2 rx data ramsn : out std_logic_vector (4 downto 0); ramoen : out std_logic_vector (4 downto 0); rwen : out std_logic_vector (3 downto 0); oen : out std_ulogic; writen : out std_ulogic; read : out std_ulogic; iosn : out std_ulogic; romsn : out std_logic_vector (1 downto 0); brdyn : in std_ulogic; bexcn : in std_ulogic; wdogn : out std_ulogic; gpioin : in std_logic_vector(CFG_GRGPIO_WIDTH-1 downto 0); -- I/O port gpioout : out std_logic_vector(CFG_GRGPIO_WIDTH-1 downto 0); -- I/O port gpioen : out std_logic_vector(CFG_GRGPIO_WIDTH-1 downto 0); -- I/O port i2c_sclout : out std_ulogic; i2c_sclen : out std_ulogic; i2c_sclin : in std_ulogic; i2c_sdaout : out std_ulogic; i2c_sdaen : out std_ulogic; i2c_sdain : in std_ulogic; spi_miso : in std_ulogic; spi_mosi : out std_ulogic; spi_sck : out std_ulogic; spi_slvsel : out std_logic_vector(CFG_SPICTRL_SLVS-1 downto 0); prom32 : in std_ulogic; spw_clksel : in std_logic_vector(1 downto 0); spw_clk : in std_ulogic; spw_rxd : in std_logic_vector(0 to CFG_SPW_NUM-1); spw_rxs : in std_logic_vector(0 to CFG_SPW_NUM-1); spw_txd : out std_logic_vector(0 to CFG_SPW_NUM-1); spw_txs : out std_logic_vector(0 to CFG_SPW_NUM-1); gtx_clk : in std_ulogic; erx_clk : in std_ulogic; erxd : in std_logic_vector(7 downto 0); erx_dv : in std_ulogic; etx_clk : in std_ulogic; etxd : out std_logic_vector(7 downto 0); etx_en : out std_ulogic; etx_er : out std_ulogic; erx_er : in std_ulogic; erx_col : in std_ulogic; erx_crs : in std_ulogic; emdint : in std_ulogic; emdioin : in std_logic; emdioout : out std_logic; emdioen : out std_logic; emdc : out std_ulogic; trst : in std_ulogic; tck : in std_ulogic; tms : in std_ulogic; tdi : in std_ulogic; tdo : out std_ulogic; tdoen : out std_ulogic; scanen : in std_ulogic; testen : in std_ulogic; testrst : in std_ulogic; testoen : in std_ulogic; chain_tck : out std_ulogic; chain_tckn : out std_ulogic; chain_tdi : out std_ulogic; chain_tdo : in std_ulogic; bsshft : out std_ulogic; bscapt : out std_ulogic; bsupdi : out std_ulogic; bsupdo : out std_ulogic; bsdrive : out std_ulogic; bshighz : out std_ulogic ); end; architecture rtl of leon3core is --constant is_asic : integer := 1 - is_fpga(fabtech); --constant blength : integer := 12; --constant CFG_NCLKS : integer := 7; constant maxahbmsp : integer := CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG+CFG_GRETH; constant maxahbm : integer := (CFG_SPW_NUM*CFG_SPW_EN) + maxahbmsp; signal vcc, gnd : std_logic_vector(4 downto 0); signal memi : memory_in_type; signal memo : memory_out_type; signal wpo : wprot_out_type; signal sdi : sdctrl_in_type; signal sdo : sdram_out_type; signal apbi : apb_slv_in_type; signal apbo : apb_slv_out_vector := (others => apb_none); signal ahbsi : ahb_slv_in_type; signal ahbso : ahb_slv_out_vector := (others => ahbs_none); signal ahbmi : ahb_mst_in_type; signal ahbmo : ahb_mst_out_vector := (others => ahbm_none); signal rstn, rstraw : std_ulogic; signal rstapbn, rstapbraw : std_ulogic; signal u1i, u2i, dui : uart_in_type; signal u1o, u2o, duo : uart_out_type; signal irqi : irq_in_vector(0 to CFG_NCPU-1); signal irqo : irq_out_vector(0 to CFG_NCPU-1); signal dbgi : l3_debug_in_vector(0 to CFG_NCPU-1); signal dbgo : l3_debug_out_vector(0 to CFG_NCPU-1); signal dsui : dsu_in_type; signal dsuo : dsu_out_type; signal gpti : gptimer_in_type; signal gpto : gptimer_out_type; signal gpioi, gpioi2 : gpio_in_type; signal gpioo, gpioo2 : gpio_out_type; signal i2ci : i2c_in_type; signal i2co : i2c_out_type; signal spii : spi_in_type; signal spio : spi_out_type; signal ethi : eth_in_type; signal etho : eth_out_type; -- signal tck, tms, tdi, tdo : std_ulogic; signal jtck, jtckn, jtdi, jrst, jtdo, jcapt, jshft, jupd, jiupd: std_ulogic; signal jninst: std_logic_vector(7 downto 0); signal spwi : grspw_in_type_vector(0 to CFG_SPW_NUM-1); signal spwo : grspw_out_type_vector(0 to CFG_SPW_NUM-1); signal spw_rxclk : std_logic_vector(CFG_SPW_NUM*2-1 downto 0); signal dtmp : std_logic_vector(0 to CFG_SPW_NUM-1); signal stmp : std_logic_vector(0 to CFG_SPW_NUM-1); signal stati : ahbstat_in_type; -- SPW Clock Gating signals signal enphy : std_logic_vector(CFG_SPW_NUM-1 downto 0); signal spwrstn : std_logic_vector(CFG_SPW_NUM-1 downto 0); signal gspwclk : std_logic_vector(CFG_SPW_NUM-1 downto 0); signal rxclko : std_logic_vector(CFG_SPW_NUM-1 downto 0); signal lspwclkn : std_logic_vector(CFG_SPW_NUM-1 downto 0); signal spwclkn : std_logic_vector(CFG_SPW_NUM-1 downto 0); signal rxclkphyo : std_logic_vector(CFG_SPW_NUM-1 downto 0); signal disclk : std_logic_vector(CFG_SPW_NUM-1 downto 0); signal disrxclk0 : std_logic_vector(CFG_SPW_NUM-1 downto 0); signal disrxclk1 : std_logic_vector(CFG_SPW_NUM-1 downto 0); signal distxclk : std_logic_vector(CFG_SPW_NUM-1 downto 0); signal distxclkn : std_logic_vector(CFG_SPW_NUM-1 downto 0); signal gclk : std_logic_vector(CFG_SPW_NUM-1 downto 0); signal grxclk0 : std_logic_vector(CFG_SPW_NUM-1 downto 0); signal grxclk1 : std_logic_vector(CFG_SPW_NUM-1 downto 0); signal gtxclk : std_logic_vector(CFG_SPW_NUM-1 downto 0); signal gtxclkn : std_logic_vector(CFG_SPW_NUM-1 downto 0); signal grst : std_logic_vector(CFG_SPW_NUM-1 downto 0); signal crst : std_logic_vector(CFG_SPW_NUM-1 downto 0); constant IOAEN : integer := 0; constant CFG_SDEN : integer := CFG_MCTRL_LEON2; constant CFG_INVCLK : integer := CFG_MCTRL_INVCLK; constant BOARD_FREQ : integer := 50000; -- Board frequency in KHz constant sysfreq : integer := (CFG_CLKMUL/CFG_CLKDIV)*40000; constant OEPOL : integer := padoen_polarity(padtech); constant CPU_FREQ : integer := 100000; begin ---------------------------------------------------------------------- --- Reset and Clock generation ------------------------------------- ---------------------------------------------------------------------- vcc <= (others => '1'); gnd <= (others => '0'); wpo.wprothit <= '0'; -- no write protection rstgen0 : rstgen -- reset generator generic map (syncrst => CFG_NOASYNC, scanen => scantest, syncin => 1) port map (resetn, clk, clklock, rstn, rstraw, testrst); rstgen1 : rstgen -- reset generator generic map (syncrst => CFG_NOASYNC, scanen => scantest, syncin => 1) port map (resetn, clkapb, clklock, rstapbn, rstapbraw, testrst); ---------------------------------------------------------------------- --- AHB CONTROLLER -------------------------------------------------- ---------------------------------------------------------------------- ahbctrl0 : ahbctrl -- AHB arbiter/multiplexer generic map (defmast => CFG_DEFMST, split => CFG_SPLIT, rrobin => CFG_RROBIN, ioaddr => CFG_AHBIO, ioen => IOAEN, nahbm => maxahbm, nahbs => 8) port map (rstn, clk, ahbmi, ahbmo, ahbsi, ahbso, testen, testrst, scanen, testoen); ---------------------------------------------------------------------- --- LEON3 processor and DSU ----------------------------------------- ---------------------------------------------------------------------- cpu : for i in 0 to CFG_NCPU-1 generate leon3s0 : leon3cg -- LEON3 processor generic map (i, fabtech, memtech, CFG_NWIN, CFG_DSU, CFG_FPU, CFG_V8, 0, CFG_MAC, pclow, CFG_NOTAG, CFG_NWP, CFG_ICEN, CFG_IREPL, CFG_ISETS, CFG_ILINE, CFG_ISETSZ, CFG_ILOCK, CFG_DCEN, CFG_DREPL, CFG_DSETS, CFG_DLINE, CFG_DSETSZ, CFG_DLOCK, CFG_DSNOOP, CFG_ILRAMEN, CFG_ILRAMSZ, CFG_ILRAMADDR, CFG_DLRAMEN, CFG_DLRAMSZ, CFG_DLRAMADDR, CFG_MMUEN, CFG_ITLBNUM, CFG_DTLBNUM, CFG_TLB_TYPE, CFG_TLB_REP, CFG_LDDEL, disas, CFG_ITBSZ, CFG_PWD, CFG_SVT, CFG_RSTADDR, CFG_NCPU-1, CFG_DFIXED, CFG_SCAN, CFG_MMU_PAGE, CFG_BP) port map (clk, rstn, ahbmi, ahbmo(i), ahbsi, ahbso, irqi(i), irqo(i), dbgi(i), dbgo(i), clk); end generate; errorn <= dbgo(0).error when OEPOL = 0 else not dbgo(0).error; dsugen : if CFG_DSU = 1 generate dsu0 : dsu3 -- LEON3 Debug Support Unit generic map (hindex => 2, haddr => 16#900#, hmask => 16#F00#, ncpu => CFG_NCPU, tbits => 30, tech => memtech, irq => 0, kbytes => CFG_ATBSZ) port map (rstn, clk, ahbmi, ahbsi, ahbso(2), dbgo, dbgi, dsui, dsuo); dsui.enable <= dsuen; dsui.break <= dsubre; dsuact <= dsuo.active; end generate; nodsu : if CFG_DSU = 0 generate ahbso(2) <= ahbs_none; dsuo.tstop <= '0'; dsuo.active <= '0'; end generate; dcomgen : if CFG_AHB_UART = 1 generate ahbuart0: ahbuart -- Debug UART generic map (hindex => CFG_NCPU, pindex => 7, paddr => 7) port map (rstn, clk, dui, duo, apbi, apbo(7), ahbmi, ahbmo(CFG_NCPU)); dui.rxd <= dsurx; dsutx <= duo.txd; end generate; nouah : if CFG_AHB_UART = 0 generate apbo(7) <= apb_none; end generate; ahbjtaggen0 :if CFG_AHB_JTAG = 1 generate ahbjtag0 : ahbjtag generic map(tech => fabtech, part => JTAG_EXAMPLE_PART, hindex => CFG_NCPU+CFG_AHB_UART, scantest => scantest, oepol => OEPOL) port map(rstn, clk, tck, tms, tdi, tdo, ahbmi, ahbmo(CFG_NCPU+CFG_AHB_UART), jtck, jtdi, open, jrst, jcapt, jshft, jupd, jtdo, trst, tdoen, '0', jtckn, jninst, jiupd); end generate; ---------------------------------------------------------------------- --- Memory controllers ---------------------------------------------- ---------------------------------------------------------------------- address <= memo.address(27 downto 0); ramsn <= memo.ramsn(4 downto 0); romsn <= memo.romsn(1 downto 0); oen <= memo.oen; rwen <= memo.wrn; ramoen <= memo.ramoen(4 downto 0); writen <= memo.writen; read <= memo.read; iosn <= memo.iosn; dataout <= memo.data(31 downto 0); dataen <= memo.vbdrive(31 downto 0); memi.data(31 downto 0) <= datain; sdwen <= sdo.sdwen; sdrasn <= sdo.rasn; sdcasn <= sdo.casn; sddqm <= sdo.dqm(3 downto 0); sdcsn <= sdo.sdcsn; cbout <= memo.cb(7 downto 0); cben <= memo.vcdrive(7 downto 0); memi.bwidth <= prom32 & '0'; mg2 : if CFG_MCTRL_LEON2 = 1 generate -- LEON2 memory controller mctrl0 : mctrl generic map (hindex => 0, pindex => 0, paddr => 0, srbanks => 4+CFG_MCTRL_5CS, sden => CFG_MCTRL_SDEN, ram8 => CFG_MCTRL_RAM8BIT, ram16 => CFG_MCTRL_RAM16BIT, invclk => CFG_MCTRL_INVCLK, sepbus => CFG_MCTRL_SEPBUS, sdbits => 32 + 32*CFG_MCTRL_SD64, pageburst => CFG_MCTRL_PAGE, oepol => OEPOL) port map (rstn, clk, memi, memo, ahbsi, ahbso(0), apbi, apbo(0), wpo, sdo); end generate; nosd0 : if (CFG_SDEN = 0) generate -- no SDRAM controller sdo.sdcsn <= (others => '1'); end generate; memi.writen <= '1'; memi.wrn <= "1111"; memi.brdyn <= brdyn; memi.bexcn <= bexcn; mg0 : if CFG_MCTRL_LEON2 = 0 generate -- None PROM/SRAM controller apbo(0) <= apb_none; ahbso(0) <= ahbs_none; memo.ramsn <= (others => '1'); memo.romsn <= (others => '1'); end generate; ---------------------------------------------------------------------- --- APB Bridge and various periherals ------------------------------- ---------------------------------------------------------------------- apbctrl0 : apbctrl -- AHB/APB bridge generic map (hindex => 1, haddr => CFG_APBADDR) port map (rstapbn, clkapb, ahbsi, ahbso(1), apbi, apbo ); ua1 : if CFG_UART1_ENABLE /= 0 generate apbuart0 : apbuart -- UART 1 generic map (pindex => 1, paddr => 1, pirq => 2, console => dbguart, fifosize => CFG_UART1_FIFO) port map (rstapbn, clkapb, apbi, apbo(1), u1i, u1o); u1i.ctsn <= '0'; u1i.extclk <= '0'; txd1 <= u1o.txd; u1i.rxd <= rxd1; end generate; noua0 : if CFG_UART1_ENABLE = 0 generate apbo(1) <= apb_none; end generate; ua2 : if CFG_UART2_ENABLE /= 0 generate uart2 : apbuart -- UART 2 generic map (pindex => 9, paddr => 9, pirq => 9, fifosize => CFG_UART2_FIFO) port map (rstapbn, clkapb, apbi, apbo(9), u2i, u2o); u2i.rxd <= rxd2; u2i.ctsn <= '0'; u2i.extclk <= '0'; txd2 <= u2o.txd; end generate; noua1 : if CFG_UART2_ENABLE = 0 generate apbo(9) <= apb_none; end generate; irqctrl : if CFG_IRQ3_ENABLE /= 0 generate irqctrl0 : irqmp -- interrupt controller generic map (pindex => 2, paddr => 2, ncpu => CFG_NCPU) port map (rstn, clk, apbi, apbo(2), irqo, irqi); end generate; irq3 : if CFG_IRQ3_ENABLE = 0 generate x : for i in 0 to CFG_NCPU-1 generate irqi(i).irl <= "0000"; end generate; apbo(2) <= apb_none; end generate; gpt : if CFG_GPT_ENABLE /= 0 generate gptimer0 : gptimer -- timer unit generic map (pindex => 3, paddr => 3, pirq => CFG_GPT_IRQ, sepirq => CFG_GPT_SEPIRQ, sbits => CFG_GPT_SW, ntimers => CFG_GPT_NTIM, nbits => CFG_GPT_TW, wdog => CFG_GPT_WDOGEN*CFG_GPT_WDOG) port map (rstapbn, clkapb, apbi, apbo(3), gpti, gpto); gpti.dhalt <= dsuo.tstop; gpti.extclk <= '0'; wdogn <= gpto.wdogn when OEPOL = 0 else gpto.wdog; end generate; notim : if CFG_GPT_ENABLE = 0 generate apbo(3) <= apb_none; end generate; gpio0 : if CFG_GRGPIO_ENABLE /= 0 generate -- GR GPIO unit grgpio0: grgpio generic map( pindex => 6, paddr => 6, imask => CFG_GRGPIO_IMASK, nbits => CFG_GRGPIO_WIDTH, oepol => OEPOL, syncrst => CFG_NOASYNC) port map( rstapbn, clkapb, apbi, apbo(6), gpioi, gpioo); gpioout <= gpioo.dout(CFG_GRGPIO_WIDTH-1 downto 0); gpioen <= gpioo.oen(CFG_GRGPIO_WIDTH-1 downto 0); gpioi.din(CFG_GRGPIO_WIDTH-1 downto 0) <= gpioin; end generate; nogpio : if CFG_GRGPIO_ENABLE = 0 generate apbo(5) <= apb_none; end generate; i2cm: if CFG_I2C_ENABLE = 1 generate -- I2C master i2c0 : i2cmst generic map (pindex => 5, paddr => 5, pmask => 16#FFF#, pirq => 13, filter => 9) port map (rstapbn, clkapb, apbi, apbo(5), i2ci, i2co); i2c_sclout <= i2co.scl; i2c_sclen <= i2co.scloen; i2ci.scl <= i2c_sclin; i2c_sdaout <= i2co.sda; i2c_sdaen <= i2co.sdaoen; i2ci.sda <= i2c_sdain; end generate i2cm; noi2cm: if CFG_I2C_ENABLE = 0 generate apbo(5) <= apb_none; end generate; spic: if CFG_SPICTRL_ENABLE = 1 generate -- SPI controller spictrl0 : spictrl generic map( pindex => 8, paddr => 8, pmask => 16#fff#, pirq => 8, fdepth => CFG_SPICTRL_FIFO, slvselen => CFG_SPICTRL_SLVREG, slvselsz => CFG_SPICTRL_SLVS, oepol => oepol, odmode => CFG_SPICTRL_ODMODE, automode => CFG_SPICTRL_AM, aslvsel => CFG_SPICTRL_ASEL, twen => CFG_SPICTRL_TWEN, maxwlen => CFG_SPICTRL_MAXWLEN, syncram => CFG_SPICTRL_SYNCRAM, memtech => memtech, ft => CFG_SPICTRL_FT, scantest => scantest) port map( rstn => rstapbn, clk => clkapb, apbi => apbi, apbo => apbo(8), spii => spii, spio => spio, slvsel => spi_slvsel); spii.sck <= '0'; spii.mosi <= '0'; spii.miso <= spi_miso; spi_mosi <= spio.mosi; spi_sck <= spio.sck; spii.astart <= '0'; --unused spii.spisel <= '1'; --unused (master only) end generate spic; nospi: if CFG_SPICTRL_ENABLE = 0 generate apbo(14) <= apb_none; end generate; ahbs : if CFG_AHBSTAT = 1 generate -- AHB status register stati.cerror(0) <= memo.ce; ahbstat0 : ahbstat generic map (pindex => 15, paddr => 15, pirq => 1, nftslv => CFG_AHBSTATN) port map (rstn, clk, ahbmi, ahbsi, stati, apbi, apbo(15)); end generate; nop2 : if CFG_AHBSTAT = 0 generate apbo(15) <= apb_none; end generate; ------------------------------------------------------------------------------- -- JTAG Boundary scan ------------------------------------------------------------------------------- bscangen: if CFG_BOUNDSCAN_EN /= 0 generate xtapgen: if CFG_AHB_JTAG = 0 generate t0: tap generic map (tech => fabtech, irlen => 6, scantest => scantest, oepol => OEPOL) port map (trst,tck,tms,tdi,tdo, jtck,jtdi,open,jrst,jcapt,jshft,jupd,open,open,'1',jtdo,'0',jninst,jiupd,jtckn,testen,testrst,testoen,tdoen,'0'); end generate; bc0: bscanctrl port map ( trst,jtck,jtckn,jtdi,jninst,jiupd,jrst,jcapt,jshft,jupd,jtdo, chain_tdi, chain_tdo, bsshft, bscapt, bsupdi, bsupdo, bsdrive, bshighz, gnd(0), testen, testrst); chain_tck <= jtck; chain_tckn <= jtckn; end generate; nobscangen: if CFG_BOUNDSCAN_EN = 0 generate chain_tck <= '0'; chain_tckn <= '0'; chain_tdi <= '0'; bsshft <= '0'; bscapt <= '0'; bsupdi <= '0'; bsupdo <= '0'; bsdrive <= '0'; bshighz <= '0'; end generate; ----------------------------------------------------------------------- --- SPACEWIRE ------------------------------------------------------- ----------------------------------------------------------------------- spw : if CFG_SPW_EN > 0 generate swloop : for i in 0 to CFG_SPW_NUM-1 generate spwi(i).clkdiv10 <= "000" & gpioo.val(10 downto 8) & "11" when spw_clksel(1 downto 0) = "11" else "0000" & gpioo.val(10 downto 8) & '1' when spw_clksel(1 downto 0) = "10" else "00000" & gpioo.val(10 downto 8); spwi(i).timerrstval <= '0' & gpioo.val(15 downto 11) & "111111" when clksel(1 downto 0) = "11" else "00" & gpioo.val(15 downto 11) & "11111" when clksel(1 downto 0) = "10" else "000" & gpioo.val(15 downto 11) & "1111"; spwi(i).dcrstval <= "00" & gpioo.val(15 downto 11) & "111" when clksel(1 downto 0) = "11" else "000" & gpioo.val(15 downto 11) & "10" when clksel(1 downto 0) = "10" else "0000" & gpioo.val(15 downto 11) & '0'; -- GRSPW PHY #1 spw1_input: if CFG_SPW_GRSPW = 1 generate x : process begin assert false report "ASIC Leon3 Ref design do not support GRSPW #1" severity failure; wait; end process; end generate spw1_input; -- GRSPW PHY #2 spw2_input: if CFG_SPW_GRSPW = 2 generate ------------------------------------------------------------------------------ -- SpW Physical layer ------------------------------------------------------------------------------ --phy_loop : for i in 0 to CFG_SPWRTR_SPWPORTS-1 generate rstphy0 : rstgen generic map( acthigh => 0, -- CFG_RSTGEN_ACTHIGH, syncrst => CFG_NOASYNC, -- CFG_RSTGEN_SYNCRST, scanen => scantest, syncin => 1) port map ( rstin => rstn, clk => spw_clk, clklock => clklock, rstout => spwrstn(i), rstoutraw => open, testrst => testrst, testen => testen); -- Only add clockgating to tech lib which supports clock gates clkgatephygen : if (has_clkand(fabtech) = 1) generate -- Sync clock to clock domain spwclkreg : process(spw_clk) is begin if rising_edge(spw_clk) then -- Only disable phy when rx and tx is disabled -- TODO: Add SW register to enable/disable the router enphy(i) <= '1'; end if; end process; -- Disable spw phy clock when port is not used spw_phy0_enable : clkand generic map ( tech => fabtech, ren => 0) port map ( i => spw_clk, en => enphy(i), o => gspwclk(i), tsten => testen); -- Select rx clock (Should be removed by optimization if RX and TX clock is same i.e. normal case for ASIC) spw_rxclk(i) <= spw_clk when (CFG_SPW_RTSAME = 1) else rxclkphyo(i); end generate; noclkgategen : if (has_clkand(fabtech) = 0) generate enphy(i) <= '1'; gspwclk(i) <= spw_clk; spw_rxclk(i) <= spw_clk when (CFG_SPW_RTSAME = 1) else rxclkphyo(i); end generate; notecclkmux : if (has_clkmux(fabtech) = 0) generate spwclkn(i) <= spw_clk when (testen = '1' and scantest = 1) else not spw_clk; end generate; tecclkmux : if (has_clkmux(fabtech) = 1) generate -- Use SET protected cells spwclkni0: clkinv generic map (tech => fabtech) port map (spw_clk, lspwclkn(i)); spwclknm0 : clkmux generic map (tech => fabtech) port map (lspwclkn(i),spw_clk,testen,spwclkn(i)); end generate; spw_phy0 : grspw2_phy generic map( scantest => scantest, tech => fabtech, input_type => CFG_SPW_INPUT) port map( rstn => spwrstn(i), rxclki => gspwclk(i), rxclkin => spwclkn(i), nrxclki => spwclkn(i), di => dtmp(i), si => stmp(i), do => spwi(i).d(1 downto 0), dov => spwi(i).dv(1 downto 0), dconnect => spwi(i).dconnect(1 downto 0), rxclko => rxclkphyo(i), testrst => testrst, testen => testen); dtmp(i) <= spw_rxd(i); stmp(i) <= spw_rxs(i); spw_txd(i) <= spwo(i).d(0); spw_txs(i) <= spwo(i).s(0); spwi(i).nd <= (others => '0'); -- Only used in GRSPW spwi(i).dv(3 downto 2) <= "00"; -- For second port --end generate; end generate spw2_input; spw1_codec: if CFG_SPW_GRSPW = 1 generate x : process begin assert false report "ASIC Leon3 Ref design do not support GRSPW #1" severity failure; wait; end process; end generate spw1_codec; spw2_codec: if CFG_SPW_GRSPW = 2 generate rstcodec0 : rstgen generic map( acthigh => 0, -- CFG_RSTGEN_ACTHIGH, syncrst => CFG_NOASYNC, -- CFG_RSTGEN_SYNCRST, scanen => scantest, syncin => 1) port map ( rstin => rstn, clk => spw_clk, clklock => clklock, rstout => crst(i), rstoutraw => open, testrst => testrst, testen => testen); -- TODO: Fix SW control signals disclk(i) <= '0'; disrxclk0(i) <= '0'; disrxclk1(i) <= '0'; distxclk(i) <= '0'; distxclkn(i) <= '0'; port0_clkgate : grspw_codec_clockgate generic map ( tech => fabtech, scantest => scantest, ports => CFG_SPW_PORTS, output_type => CFG_SPW_OUTPUT, clkgate => 1 ) port map ( rst => crst(i), clk => spw_clk, rxclk0 => spw_rxclk(i), rxclk1 => '0', txclk => spw_clk, txclkn => '0', testen => testen, testrst => testrst, disableclk => disclk(i), disablerxclk0 => disrxclk0(i), disablerxclk1 => disrxclk1(i), disabletxclk => distxclk(i), disabletxclkn => distxclkn(i), grst => grst(i), gclk => gclk(i), grxclk0 => grxclk0(i), grxclk1 => grxclk1(i), gtxclk => gtxclk(i), gtxclkn => gtxclkn(i) ); grspw0 : grspw2 generic map( tech => fabtech, -- : integer range 0 to NTECH := inferred; hindex => maxahbmsp+i, -- : integer range 0 to NAHBMST-1 := 0; pindex => i+10, -- : integer range 0 to NAPBSLV-1 := 0; paddr => i+10, -- : integer range 0 to 16#FFF# := 0; --pmask : integer range 0 to 16#FFF# := 16#FFF#; pirq => i+10, -- : integer range 0 to NAHBIRQ-1 := 0; rmap => CFG_SPW_RMAP, -- : integer range 0 to 2 := 0; rmapcrc => CFG_SPW_RMAPCRC, -- : integer range 0 to 1 := 0; fifosize1 => CFG_SPW_AHBFIFO, -- : integer range 4 to 32 := 32; fifosize2 => CFG_SPW_RXFIFO, -- : integer range 16 to 64 := 64; rxclkbuftype => 0, -- : integer range 0 to 2 := 0; rxunaligned => CFG_SPW_RXUNAL, -- : integer range 0 to 1 := 0; rmapbufs => CFG_SPW_RMAPBUF, -- : integer range 2 to 8 := 4; ft => CFG_SPW_FT, -- : integer range 0 to 2 := 0; scantest => scantest, -- : integer range 0 to 1 := 0; ports => CFG_SPW_PORTS, -- : integer range 1 to 2 := 1; dmachan => CFG_SPW_DMACHAN, -- : integer range 1 to 4 := 1; memtech => memtech, -- : integer range 0 to NTECH := DEFMEMTECH; techfifo => has_2pram(memtech), -- : integer range 0 to 1 := 1; input_type => CFG_SPW_INPUT, -- : integer range 0 to 4 := 0; output_type => CFG_SPW_OUTPUT, -- : integer range 0 to 2 := 0; rxtx_sameclk => CFG_SPW_RTSAME, -- : integer range 0 to 1 := 0; netlist => CFG_SPW_NETLIST -- : integer range 0 to 1 := 0; ) port map ( rst => grst(i), clk => gclk(i), rxclk0 => grxclk0(i), rxclk1 => grxclk1(i), txclk => gtxclk(i), txclkn => gtxclkn(i), ahbmi => ahbmi, ahbmo => ahbmo(maxahbmsp+i), apbi => apbi, apbo => apbo(i+10), swni => spwi(i), swno => spwo(i) ); end generate spw2_codec; end generate; end generate; nospw : if CFG_SPW_EN = 0 generate spw_txd <= (others => '0'); spw_txs <= (others => '0'); end generate; ----------------------------------------------------------------------- --- ETHERNET --------------------------------------------------------- ----------------------------------------------------------------------- eth0 : if CFG_GRETH = 1 generate -- Gaisler ethernet MAC e1 : grethm generic map(hindex => CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG, pindex => 13, paddr => 13, pirq => 12, memtech => memtech, mdcscaler => CPU_FREQ/1000, enable_mdio => 1, fifosize => CFG_ETH_FIFO, nsync => 1, edcl => CFG_DSU_ETH, edclbufsz => CFG_ETH_BUF, macaddrh => CFG_ETH_ENM, macaddrl => CFG_ETH_ENL, phyrstadr => 7, ipaddrh => CFG_ETH_IPM, ipaddrl => CFG_ETH_IPL, giga => CFG_GRETH1G, enable_mdint => 1) port map(rst => rstn, clk => clk, ahbmi => ahbmi, ahbmo => ahbmo(CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG), apbi => apbi, apbo => apbo(13), ethi => ethi, etho => etho); ethi.gtx_clk <= gtx_clk; ethi.rx_clk <= erx_clk; ethi.rxd(7 downto 0) <= erxd; ethi.rx_dv <= erx_dv; ethi.tx_clk <= etx_clk; etxd <= etho.txd(7 downto 0); etx_en <= etho.tx_en; etx_er <= etho.tx_er; ethi.mdint <= emdint; ethi.mdio_i <= emdioin; emdioout <= etho.mdio_o; emdioen <= etho.mdio_oe; emdc <= etho.mdc; ethi.rx_er <= erx_er; ethi.rx_col <= erx_col; ethi.rx_crs <= erx_crs; end generate; ----------------------------------------------------------------------- --- Drive unused bus elements --------------------------------------- ----------------------------------------------------------------------- noam1 : for i in maxahbm to NAHBMST-1 generate ahbmo(i) <= ahbm_none; end generate; -- noap0 : for i in 12+(CFG_SPW_NUM*CFG_SPW_EN) to NAPBSLV-1-CFG_AHBSTAT -- generate apbo(i) <= apb_none; end generate; noah0 : for i in 9 to NAHBSLV-1 generate ahbso(i) <= ahbs_none; end generate; ----------------------------------------------------------------------- --- Boot message ---------------------------------------------------- ----------------------------------------------------------------------- -- pragma translate_off x : report_design generic map ( msg1 => "LEON3 ASIC Demonstration design", fabtech => tech_table(fabtech), memtech => tech_table(memtech), mdel => 1 ); -- pragma translate_on end;
gpl-2.0
schmr/grlib
grlib-gpl-1.3.7-b4144/designs/leon3-terasic-de4/pll_125.vhd
3
5558
library ieee; use ieee.std_logic_1164.all; library altera_mf; use altera_mf.all; entity pll_125 is port( inclk0 : in std_logic := '0'; c0 : out std_logic ); end pll_125; architecture syn of pll_125 is COMPONENT altpll GENERIC ( bandwidth_type : STRING; clk0_divide_by : NATURAL; clk0_duty_cycle : NATURAL; clk0_multiply_by : NATURAL; clk0_phase_shift : STRING; clk1_divide_by : NATURAL; clk1_duty_cycle : NATURAL; clk1_multiply_by : NATURAL; clk1_phase_shift : STRING; clk2_divide_by : NATURAL; clk2_duty_cycle : NATURAL; clk2_multiply_by : NATURAL; clk2_phase_shift : STRING; clk3_divide_by : NATURAL; clk3_duty_cycle : NATURAL; clk3_multiply_by : NATURAL; clk3_phase_shift : STRING; clk4_divide_by : NATURAL; clk4_duty_cycle : NATURAL; clk4_multiply_by : NATURAL; clk4_phase_shift : STRING; clk5_divide_by : NATURAL; clk5_duty_cycle : NATURAL; clk5_multiply_by : NATURAL; clk5_phase_shift : STRING; compensate_clock : STRING; inclk0_input_frequency : NATURAL; intended_device_family : STRING; lpm_hint : STRING; lpm_type : STRING; operation_mode : STRING; pll_type : STRING; port_activeclock : STRING; port_areset : STRING; port_clkbad0 : STRING; port_clkbad1 : STRING; port_clkloss : STRING; port_clkswitch : STRING; port_configupdate : STRING; port_fbin : STRING; port_fbout : STRING; port_inclk0 : STRING; port_inclk1 : STRING; port_locked : STRING; port_pfdena : STRING; port_phasecounterselect : STRING; port_phasedone : STRING; port_phasestep : STRING; port_phaseupdown : STRING; port_pllena : STRING; port_scanaclr : STRING; port_scanclk : STRING; port_scanclkena : STRING; port_scandata : STRING; port_scandataout : STRING; port_scandone : STRING; port_scanread : STRING; port_scanwrite : STRING; port_clk0 : STRING; port_clk1 : STRING; port_clk2 : STRING; port_clk3 : STRING; port_clk4 : STRING; port_clk5 : STRING; port_clk6 : STRING; port_clk7 : STRING; port_clk8 : STRING; port_clk9 : STRING; port_clkena0 : STRING; port_clkena1 : STRING; port_clkena2 : STRING; port_clkena3 : STRING; port_clkena4 : STRING; port_clkena5 : STRING; self_reset_on_loss_lock : STRING; using_fbmimicbidir_port : STRING; width_clock : NATURAL ); PORT ( phasestep : IN STD_LOGIC ; phaseupdown : IN STD_LOGIC ; inclk : IN STD_LOGIC_VECTOR (1 DOWNTO 0); phasecounterselect : IN STD_LOGIC_VECTOR (3 DOWNTO 0); locked : OUT STD_LOGIC ; phasedone : OUT STD_LOGIC ; areset : IN STD_LOGIC ; clk : OUT STD_LOGIC_VECTOR (9 DOWNTO 0); scanclk : IN STD_LOGIC ); END COMPONENT; signal sub_wire3 : std_logic_vector(1 downto 0); signal sub_wire0 : std_logic_vector(9 downto 0); begin sub_wire3 <= '0' & inclk0; c0 <= sub_wire0(0); altpll_component : altpll generic map ( bandwidth_type => "AUTO", clk0_divide_by => 2, clk0_duty_cycle => 50, clk0_multiply_by => 5, clk0_phase_shift => "0", clk1_divide_by => 2, clk1_duty_cycle => 50, clk1_multiply_by => 5, clk1_phase_shift => "0", clk2_divide_by => 2, clk2_duty_cycle => 50, clk2_multiply_by => 5, clk2_phase_shift => "0", clk3_divide_by => 2, clk3_duty_cycle => 50, clk3_multiply_by => 5, clk3_phase_shift => "0", clk4_divide_by => 2, clk4_duty_cycle => 50, clk4_multiply_by => 5, clk4_phase_shift => "0", clk5_divide_by => 2, clk5_duty_cycle => 50, clk5_multiply_by => 5, clk5_phase_shift => "0", compensate_clock => "CLK0", inclk0_input_frequency => 20000, intended_device_family => "Stratix IV", lpm_hint => "CBX_MODULE_PREFIX=pll_125", lpm_type => "altpll", operation_mode => "NORMAL", pll_type => "AUTO", port_activeclock => "PORT_UNUSED", port_areset => "PORT_UNUSED", port_clkbad0 => "PORT_UNUSED", port_clkbad1 => "PORT_UNUSED", port_clkloss => "PORT_UNUSED", port_clkswitch => "PORT_UNUSED", port_configupdate => "PORT_UNUSED", port_fbin => "PORT_UNUSED", port_fbout => "PORT_UNUSED", port_inclk0 => "PORT_USED", port_inclk1 => "PORT_UNUSED", port_locked => "PORT_UNUSED", port_pfdena => "PORT_UNUSED", port_phasecounterselect => "PORT_UNUSED", port_phasedone => "PORT_UNUSED", port_phasestep => "PORT_UNUSED", port_phaseupdown => "PORT_UNUSED", port_pllena => "PORT_UNUSED", port_scanaclr => "PORT_UNUSED", port_scanclk => "PORT_UNUSED", port_scanclkena => "PORT_UNUSED", port_scandata => "PORT_UNUSED", port_scandataout => "PORT_UNUSED", port_scandone => "PORT_UNUSED", port_scanread => "PORT_UNUSED", port_scanwrite => "PORT_UNUSED", port_clk0 => "PORT_USED", port_clk1 => "PORT_UNUSED", port_clk2 => "PORT_UNUSED", port_clk3 => "PORT_UNUSED", port_clk4 => "PORT_UNUSED", port_clk5 => "PORT_UNUSED", port_clk6 => "PORT_UNUSED", port_clk7 => "PORT_UNUSED", port_clk8 => "PORT_UNUSED", port_clk9 => "PORT_UNUSED", port_clkena0 => "PORT_UNUSED", port_clkena1 => "PORT_UNUSED", port_clkena2 => "PORT_UNUSED", port_clkena3 => "PORT_UNUSED", port_clkena4 => "PORT_UNUSED", port_clkena5 => "PORT_UNUSED", using_fbmimicbidir_port => "OFF", self_reset_on_loss_lock => "OFF", width_clock => 10 ) port map ( inclk => sub_wire3, clk => sub_wire0, areset => '0', phasecounterselect => "1111", phasestep => '1', phaseupdown => '1', scanclk => '0' ); end architecture syn;
gpl-2.0
schmr/grlib
grlib-gpl-1.3.7-b4144/lib/gaisler/sim/ahbrep.vhd
1
4668
------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ----------------------------------------------------------------------------- -- Entity: ahbrep -- File: ahbrep.vhd -- Author: Jiri Gaisler - Gaisler Reserch -- Description: Test report module with AHB interface -- -- See also the work.debug.grtestmod module for a module connected via a -- PROM/IO interface. -- -- The base address of the module can be defined for the systest software via -- the define GRLIB_REPORTDEV_BASE. ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; library gaisler; use gaisler.sim.all; library grlib; use grlib.stdlib.all; use grlib.stdio.all; use grlib.devices.all; use grlib.amba.all; use std.textio.all; entity ahbrep is generic ( hindex : integer := 0; haddr : integer := 0; hmask : integer := 16#fff#; halt : integer := 1); port ( rst : in std_ulogic; clk : in std_ulogic; ahbsi : in ahb_slv_in_type; ahbso : out ahb_slv_out_type ); end; architecture rtl of ahbrep is constant abits : integer := 31; constant hconfig : ahb_config_type := ( 0 => ahb_device_reg ( VENDOR_GAISLER, GAISLER_GRTESTMOD, 0, 0, 0), 4 => ahb_membar(haddr, '0', '0', hmask), others => zero32); type reg_type is record hwrite : std_ulogic; hsel : std_ulogic; haddr : std_logic_vector(31 downto 0); htrans : std_logic_vector(1 downto 0); end record; signal r, rin : reg_type; begin ahbso.hresp <= "00"; ahbso.hsplit <= (others => '0'); ahbso.hirq <= (others => '0'); ahbso.hrdata <= (others => '0'); ahbso.hconfig <= hconfig; ahbso.hindex <= hindex; ahbso.hready <= '1'; log : process(clk, ahbsi ) variable errno, errcnt, subtest, vendorid, deviceid : integer; variable addr : std_logic_vector(21 downto 2); variable hwdata : std_logic_vector(31 downto 0); variable v : reg_type; begin if falling_edge(clk) then if (ahbsi.hready = '1') then v.haddr := ahbsi.haddr; v.hsel := ahbsi.hsel(hindex); v.hwrite := ahbsi.hwrite; v.htrans := ahbsi.htrans; end if; if (r.hsel and r.htrans(1) and r.hwrite and rst) = '1' then hwdata := ahbreadword(ahbsi.hwdata, r.haddr(4 downto 2)); case r.haddr(7 downto 2) is when "000000" => vendorid := conv_integer(hwdata(31 downto 24)); deviceid := conv_integer(hwdata(23 downto 12)); print(iptable(vendorid).device_table(deviceid)); when "000001" => errno := conv_integer(hwdata(15 downto 0)); if (halt = 1) then assert false report "test failed, error (" & tost(errno) & ")" severity failure; else assert false report "test failed, error (" & tost(errno) & ")" severity warning; end if; when "000010" => subtest := conv_integer(hwdata(7 downto 0)); call_subtest(vendorid, deviceid, subtest); when "000100" => print (""); print ("**** GRLIB system test starting ****"); errcnt := 0; when "000101" => if errcnt = 0 then print ("Test passed, halting with IU error mode"); elsif errcnt = 1 then print ("1 error detected, halting with IU error mode"); else print (tost(errcnt) & " errors detected, halting with IU error mode"); end if; print (""); when "000110" => grlib.testlib.print("Checkpoint " & tost(conv_integer(hwdata(15 downto 0)))); when others => end case; end if; end if; rin <= v; end process; reg : process (clk) begin if rising_edge(clk) then r <= rin; end if; end process; -- pragma translate_off bootmsg : report_version generic map ("testmod" & tost(hindex) & ": Test report module"); -- pragma translate_on end;
gpl-2.0
schmr/grlib
grlib-gpl-1.3.7-b4144/designs/leon3-altera-ep3c25-eek/ahbrom.vhd
3
8961
---------------------------------------------------------------------------- -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2009 Aeroflex Gaisler ---------------------------------------------------------------------------- -- Entity: ahbrom -- File: ahbrom.vhd -- Author: Jiri Gaisler - Gaisler Research -- Description: AHB rom. 0/1-waitstate read ---------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; library grlib; use grlib.amba.all; use grlib.stdlib.all; use grlib.devices.all; entity ahbrom is generic ( hindex : integer := 0; haddr : integer := 0; hmask : integer := 16#fff#; pipe : integer := 0; tech : integer := 0; kbytes : integer := 1); port ( rst : in std_ulogic; clk : in std_ulogic; ahbsi : in ahb_slv_in_type; ahbso : out ahb_slv_out_type ); end; architecture rtl of ahbrom is constant abits : integer := 10; constant bytes : integer := 560; constant hconfig : ahb_config_type := ( 0 => ahb_device_reg ( VENDOR_GAISLER, GAISLER_AHBROM, 0, 0, 0), 4 => ahb_membar(haddr, '1', '1', hmask), others => zero32); signal romdata : std_logic_vector(31 downto 0); signal addr : std_logic_vector(abits-1 downto 2); signal hsel, hready : std_ulogic; begin ahbso.hresp <= "00"; ahbso.hsplit <= (others => '0'); ahbso.hirq <= (others => '0'); ahbso.hconfig <= hconfig; ahbso.hindex <= hindex; reg : process (clk) begin if rising_edge(clk) then addr <= ahbsi.haddr(abits-1 downto 2); end if; end process; p0 : if pipe = 0 generate ahbso.hrdata <= ahbdrivedata(romdata); ahbso.hready <= '1'; end generate; p1 : if pipe = 1 generate reg2 : process (clk) begin if rising_edge(clk) then hsel <= ahbsi.hsel(hindex) and ahbsi.htrans(1); hready <= ahbsi.hready; ahbso.hready <= (not rst) or (hsel and hready) or (ahbsi.hsel(hindex) and not ahbsi.htrans(1) and ahbsi.hready); ahbso.hrdata <= ahbdrivedata(romdata); end if; end process; end generate; comb : process (addr) begin case conv_integer(addr) is when 16#00000# => romdata <= X"81D82000"; when 16#00001# => romdata <= X"03000004"; when 16#00002# => romdata <= X"821060E0"; when 16#00003# => romdata <= X"81884000"; when 16#00004# => romdata <= X"81900000"; when 16#00005# => romdata <= X"81980000"; when 16#00006# => romdata <= X"81800000"; when 16#00007# => romdata <= X"A1800000"; when 16#00008# => romdata <= X"01000000"; when 16#00009# => romdata <= X"03002040"; when 16#0000A# => romdata <= X"8210600F"; when 16#0000B# => romdata <= X"C2A00040"; when 16#0000C# => romdata <= X"84100000"; when 16#0000D# => romdata <= X"01000000"; when 16#0000E# => romdata <= X"01000000"; when 16#0000F# => romdata <= X"01000000"; when 16#00010# => romdata <= X"01000000"; when 16#00011# => romdata <= X"01000000"; when 16#00012# => romdata <= X"80108002"; when 16#00013# => romdata <= X"01000000"; when 16#00014# => romdata <= X"01000000"; when 16#00015# => romdata <= X"01000000"; when 16#00016# => romdata <= X"01000000"; when 16#00017# => romdata <= X"01000000"; when 16#00018# => romdata <= X"87444000"; when 16#00019# => romdata <= X"8608E01F"; when 16#0001A# => romdata <= X"88100000"; when 16#0001B# => romdata <= X"8A100000"; when 16#0001C# => romdata <= X"8C100000"; when 16#0001D# => romdata <= X"8E100000"; when 16#0001E# => romdata <= X"A0100000"; when 16#0001F# => romdata <= X"A2100000"; when 16#00020# => romdata <= X"A4100000"; when 16#00021# => romdata <= X"A6100000"; when 16#00022# => romdata <= X"A8100000"; when 16#00023# => romdata <= X"AA100000"; when 16#00024# => romdata <= X"AC100000"; when 16#00025# => romdata <= X"AE100000"; when 16#00026# => romdata <= X"90100000"; when 16#00027# => romdata <= X"92100000"; when 16#00028# => romdata <= X"94100000"; when 16#00029# => romdata <= X"96100000"; when 16#0002A# => romdata <= X"98100000"; when 16#0002B# => romdata <= X"9A100000"; when 16#0002C# => romdata <= X"9C100000"; when 16#0002D# => romdata <= X"9E100000"; when 16#0002E# => romdata <= X"86A0E001"; when 16#0002F# => romdata <= X"16BFFFEF"; when 16#00030# => romdata <= X"81E00000"; when 16#00031# => romdata <= X"82102002"; when 16#00032# => romdata <= X"81904000"; when 16#00033# => romdata <= X"03000004"; when 16#00034# => romdata <= X"821060E0"; when 16#00035# => romdata <= X"81884000"; when 16#00036# => romdata <= X"01000000"; when 16#00037# => romdata <= X"01000000"; when 16#00038# => romdata <= X"01000000"; when 16#00039# => romdata <= X"83480000"; when 16#0003A# => romdata <= X"8330600C"; when 16#0003B# => romdata <= X"80886001"; when 16#0003C# => romdata <= X"02800024"; when 16#0003D# => romdata <= X"01000000"; when 16#0003E# => romdata <= X"07000000"; when 16#0003F# => romdata <= X"8610E178"; when 16#00040# => romdata <= X"C108C000"; when 16#00041# => romdata <= X"C118C000"; when 16#00042# => romdata <= X"C518C000"; when 16#00043# => romdata <= X"C918C000"; when 16#00044# => romdata <= X"CD18C000"; when 16#00045# => romdata <= X"D118C000"; when 16#00046# => romdata <= X"D518C000"; when 16#00047# => romdata <= X"D918C000"; when 16#00048# => romdata <= X"DD18C000"; when 16#00049# => romdata <= X"E118C000"; when 16#0004A# => romdata <= X"E518C000"; when 16#0004B# => romdata <= X"E918C000"; when 16#0004C# => romdata <= X"ED18C000"; when 16#0004D# => romdata <= X"F118C000"; when 16#0004E# => romdata <= X"F518C000"; when 16#0004F# => romdata <= X"F918C000"; when 16#00050# => romdata <= X"FD18C000"; when 16#00051# => romdata <= X"01000000"; when 16#00052# => romdata <= X"01000000"; when 16#00053# => romdata <= X"01000000"; when 16#00054# => romdata <= X"01000000"; when 16#00055# => romdata <= X"01000000"; when 16#00056# => romdata <= X"89A00842"; when 16#00057# => romdata <= X"01000000"; when 16#00058# => romdata <= X"01000000"; when 16#00059# => romdata <= X"01000000"; when 16#0005A# => romdata <= X"01000000"; when 16#0005B# => romdata <= X"10800005"; when 16#0005C# => romdata <= X"01000000"; when 16#0005D# => romdata <= X"01000000"; when 16#0005E# => romdata <= X"00000000"; when 16#0005F# => romdata <= X"00000000"; when 16#00060# => romdata <= X"87444000"; when 16#00061# => romdata <= X"8730E01C"; when 16#00062# => romdata <= X"8688E00F"; when 16#00063# => romdata <= X"12800016"; when 16#00064# => romdata <= X"03200000"; when 16#00065# => romdata <= X"05040E00"; when 16#00066# => romdata <= X"8410A133"; when 16#00067# => romdata <= X"C4204000"; when 16#00068# => romdata <= X"0539A803"; when 16#00069# => romdata <= X"8410A261"; when 16#0006A# => romdata <= X"C4206004"; when 16#0006B# => romdata <= X"050003FC"; when 16#0006C# => romdata <= X"C4206008"; when 16#0006D# => romdata <= X"82103860"; when 16#0006E# => romdata <= X"C4004000"; when 16#0006F# => romdata <= X"8530A00C"; when 16#00070# => romdata <= X"03000004"; when 16#00071# => romdata <= X"82106009"; when 16#00072# => romdata <= X"80A04002"; when 16#00073# => romdata <= X"12800006"; when 16#00074# => romdata <= X"033FFC00"; when 16#00075# => romdata <= X"82106100"; when 16#00076# => romdata <= X"0539A81B"; when 16#00077# => romdata <= X"8410A260"; when 16#00078# => romdata <= X"C4204000"; when 16#00079# => romdata <= X"05000008"; when 16#0007A# => romdata <= X"82100000"; when 16#0007B# => romdata <= X"80A0E000"; when 16#0007C# => romdata <= X"02800005"; when 16#0007D# => romdata <= X"01000000"; when 16#0007E# => romdata <= X"82004002"; when 16#0007F# => romdata <= X"10BFFFFC"; when 16#00080# => romdata <= X"8620E001"; when 16#00081# => romdata <= X"3D1003FF"; when 16#00082# => romdata <= X"BC17A3E0"; when 16#00083# => romdata <= X"BC278001"; when 16#00084# => romdata <= X"9C27A060"; when 16#00085# => romdata <= X"03100000"; when 16#00086# => romdata <= X"81C04000"; when 16#00087# => romdata <= X"01000000"; when 16#00088# => romdata <= X"00000000"; when 16#00089# => romdata <= X"00000000"; when 16#0008A# => romdata <= X"00000000"; when 16#0008B# => romdata <= X"00000000"; when 16#0008C# => romdata <= X"00000000"; when others => romdata <= (others => '-'); end case; end process; -- pragma translate_off bootmsg : report_version generic map ("ahbrom" & tost(hindex) & ": 32-bit AHB ROM Module, " & tost(bytes/4) & " words, " & tost(abits-2) & " address bits" ); -- pragma translate_on end;
gpl-2.0
schmr/grlib
grlib-gpl-1.3.7-b4144/designs/leon3-altera-ep2s60-sdr/leon3mp.vhd
1
20639
------------------------------------------------------------------------------ -- LEON3 Demonstration design -- Copyright (C) 2004 Jiri Gaisler, Gaisler Research ------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; library grlib; use grlib.amba.all; use grlib.stdlib.all; library techmap; use techmap.gencomp.all; library gaisler; use gaisler.memctrl.all; use gaisler.leon3.all; use gaisler.uart.all; use gaisler.misc.all; use gaisler.jtag.all; library esa; use esa.memoryctrl.all; use work.config.all; entity leon3mp is generic ( fabtech : integer := CFG_FABTECH; memtech : integer := CFG_MEMTECH; padtech : integer := CFG_PADTECH; clktech : integer := CFG_CLKTECH; ncpu : integer := CFG_NCPU; disas : integer := CFG_DISAS; -- Enable disassembly to console dbguart : integer := CFG_DUART; -- Print UART on console pclow : integer := CFG_PCLOW; freq : integer := 50000 -- frequency of main clock (used for PLLs) ); port ( resetn : in std_ulogic; clk : in std_ulogic; errorn : out std_ulogic; -- Shared bus address : out std_logic_vector(23 downto 0); data : inout std_logic_vector(31 downto 0); -- SRAM ramsn : out std_ulogic; ramoen : out std_ulogic; rwen : out std_ulogic; mben : out std_logic_vector(3 downto 0); -- pragma translate_off iosn : out std_ulogic; -- pragma translate_on -- FLASH romsn : out std_ulogic; oen : out std_ulogic; writen : out std_ulogic; byten : out std_ulogic; wpn : out std_ulogic; sa : out std_logic_vector(11 downto 0); sd : inout std_logic_vector(31 downto 0); sdclk : out std_ulogic; sdcke : out std_logic; -- sdram clock enable sdcsn : out std_logic; -- sdram chip select sdwen : out std_ulogic; -- sdram write enable sdrasn : out std_ulogic; -- sdram ras sdcasn : out std_ulogic; -- sdram cas sddqm : out std_logic_vector (3 downto 0); -- sdram dqm sdba : out std_logic_vector(1 downto 0); -- sdram bank address -- debug support unit dsutx : out std_ulogic; -- DSU tx data dsurx : in std_ulogic; -- DSU rx data dsubren : in std_ulogic; dsuact : out std_ulogic; -- console UART rxd1 : in std_ulogic; txd1 : out std_ulogic; -- for smsc lan chip eth_aen : out std_logic; eth_readn : out std_logic; eth_writen: out std_logic; eth_nbe : out std_logic_vector(3 downto 0); eth_lclk : out std_ulogic; eth_nads : out std_logic; eth_ncycle : out std_logic; eth_wnr : out std_logic; eth_nvlbus : out std_logic; eth_nrdyrtn : out std_logic; eth_ndatacs : out std_logic; gpio : inout std_logic_vector(CFG_GRGPIO_WIDTH-1 downto 0) -- I/O port ); end; architecture rtl of leon3mp is constant blength : integer := 12; constant fifodepth : integer := 8; constant maxahbm : integer := NCPU+CFG_AHB_UART+CFG_AHB_JTAG; signal vcc, gnd : std_logic_vector(7 downto 0); signal memi : memory_in_type; signal memo : memory_out_type; signal wpo : wprot_out_type; signal sdi : sdctrl_in_type; signal sdo : sdram_out_type; signal sdo2 : sdctrl_out_type; --for smc lan chip signal s_eth_aen : std_logic; signal s_eth_readn : std_logic; signal s_eth_writen: std_logic; signal s_eth_nbe : std_logic_vector(3 downto 0); signal apbi : apb_slv_in_type; signal apbo : apb_slv_out_vector := (others => apb_none); signal ahbsi : ahb_slv_in_type; signal ahbso : ahb_slv_out_vector := (others => ahbs_none); signal ahbmi : ahb_mst_in_type; signal ahbmo : ahb_mst_out_vector := (others => ahbm_none); signal clkm, rstn, sdclkl : std_ulogic; signal cgi : clkgen_in_type; signal cgo : clkgen_out_type; signal u1i, dui : uart_in_type; signal u1o, duo : uart_out_type; signal irqi : irq_in_vector(0 to NCPU-1); signal irqo : irq_out_vector(0 to NCPU-1); signal dbgi : l3_debug_in_vector(0 to NCPU-1); signal dbgo : l3_debug_out_vector(0 to NCPU-1); signal dsui : dsu_in_type; signal dsuo : dsu_out_type; signal gpti : gptimer_in_type; signal gpioi : gpio_in_type; signal gpioo : gpio_out_type; constant IOAEN : integer := 1; constant CFG_SDEN : integer := CFG_MCTRL_SDEN ; constant CFG_INVCLK : integer := CFG_MCTRL_INVCLK; signal dsubre : std_ulogic; component smc_mctrl generic ( hindex : integer := 0; pindex : integer := 0; romaddr : integer := 16#000#; rommask : integer := 16#E00#; ioaddr : integer := 16#200#; iomask : integer := 16#E00#; ramaddr : integer := 16#400#; rammask : integer := 16#C00#; paddr : integer := 0; pmask : integer := 16#fff#; wprot : integer := 0; invclk : integer := 0; fast : integer := 0; romasel : integer := 28; sdrasel : integer := 29; srbanks : integer := 4; ram8 : integer := 0; ram16 : integer := 0; sden : integer := 0; sepbus : integer := 0; sdbits : integer := 32; sdlsb : integer := 2; oepol : integer := 0; syncrst : integer := 0 ); port ( rst : in std_ulogic; clk : in std_ulogic; memi : in memory_in_type; memo : out memory_out_type; ahbsi : in ahb_slv_in_type; ahbso : out ahb_slv_out_type; apbi : in apb_slv_in_type; apbo : out apb_slv_out_type; wpo : in wprot_out_type; sdo : out sdram_out_type; eth_aen : out std_ulogic; -- for smsc lan chip eth_readn : out std_ulogic; -- for smsc lan chip eth_writen: out std_ulogic; -- for smsc lan chip eth_nbe : out std_logic_vector(3 downto 0) -- for smsc lan chip ); end component; begin ---------------------------------------------------------------------- --- Reset and Clock generation ------------------------------------- ---------------------------------------------------------------------- vcc <= (others => '1'); gnd <= (others => '0'); cgi.pllctrl <= "00"; cgi.pllrst <= not resetn; cgi.pllref <= '0'; clkgen0 : clkgen -- clock generator using toplevel generic 'freq' generic map (tech => CFG_CLKTECH, clk_mul => CFG_CLKMUL, clk_div => CFG_CLKDIV, sdramen => CFG_MCTRL_SDEN, noclkfb => CFG_CLK_NOFB, freq => freq) port map (clkin => clk, pciclkin => gnd(0), clk => clkm, clkn => open, clk2x => open, sdclk => sdclkl, pciclk => open, cgi => cgi, cgo => cgo); sdclk_pad : outpad generic map (tech => padtech, slew => 1, strength => 24) port map (sdclk, sdclkl); rst0 : rstgen -- reset generator port map (resetn, clkm, cgo.clklock, rstn); ---------------------------------------------------------------------- --- AHB CONTROLLER -------------------------------------------------- ---------------------------------------------------------------------- ahb0 : ahbctrl -- AHB arbiter/multiplexer generic map (defmast => CFG_DEFMST, split => CFG_SPLIT, rrobin => CFG_RROBIN, ioaddr => CFG_AHBIO, ioen => IOAEN, nahbm => maxahbm, nahbs => 8) port map (rstn, clkm, ahbmi, ahbmo, ahbsi, ahbso); ---------------------------------------------------------------------- --- LEON3 processor and DSU ----------------------------------------- ---------------------------------------------------------------------- l3 : if CFG_LEON3 = 1 generate cpu : for i in 0 to NCPU-1 generate u0 : leon3s -- LEON3 processor generic map (i, fabtech, memtech, CFG_NWIN, CFG_DSU, CFG_FPU, CFG_V8, 0, CFG_MAC, pclow, CFG_NOTAG, CFG_NWP, CFG_ICEN, CFG_IREPL, CFG_ISETS, CFG_ILINE, CFG_ISETSZ, CFG_ILOCK, CFG_DCEN, CFG_DREPL, CFG_DSETS, CFG_DLINE, CFG_DSETSZ, CFG_DLOCK, CFG_DSNOOP, CFG_ILRAMEN, CFG_ILRAMSZ, CFG_ILRAMADDR, CFG_DLRAMEN, CFG_DLRAMSZ, CFG_DLRAMADDR, CFG_MMUEN, CFG_ITLBNUM, CFG_DTLBNUM, CFG_TLB_TYPE, CFG_TLB_REP, CFG_LDDEL, disas, CFG_ITBSZ, CFG_PWD, CFG_SVT, CFG_RSTADDR, NCPU-1) port map (clkm, rstn, ahbmi, ahbmo(i), ahbsi, ahbso, irqi(i), irqo(i), dbgi(i), dbgo(i)); end generate; errorn_pad : odpad generic map (tech => padtech) port map (errorn, dbgo(0).error); dsugen : if CFG_DSU = 1 generate dsu0 : dsu3 -- LEON3 Debug Support Unit generic map (hindex => 2, haddr => 16#900#, hmask => 16#F00#, ncpu => NCPU, tbits => 30, tech => memtech, irq => 0, kbytes => CFG_ATBSZ) port map (rstn, clkm, ahbmi, ahbsi, ahbso(2), dbgo, dbgi, dsui, dsuo); dsui.enable <= '1'; dsubre_pad : inpad generic map (tech => padtech) port map (dsubre, dsui.break); dsuact_pad : outpad generic map (tech => padtech) port map (dsuact, dsuo.active); end generate; end generate; nodsu : if CFG_DSU = 0 generate ahbso(2) <= ahbs_none; dsuo.tstop <= '0'; dsuo.active <= '0'; end generate; dcomgen : if CFG_AHB_UART = 1 generate dcom0 : ahbuart -- Debug UART generic map (hindex => NCPU, pindex => 4, paddr => 7) port map (rstn, clkm, dui, duo, apbi, apbo(4), ahbmi, ahbmo(NCPU)); dsurx_pad : inpad generic map (tech => padtech) port map (dsurx, dui.rxd); dsutx_pad : outpad generic map (tech => padtech) port map (dsutx, duo.txd); end generate; nouah : if CFG_AHB_UART = 0 generate apbo(4) <= apb_none; end generate; ahbjtaggen0 : if CFG_AHB_JTAG = 1 generate ahbjtag0 : ahbjtag generic map(tech => fabtech, hindex => CFG_NCPU+CFG_AHB_UART) port map(rstn, clkm, gnd(0), gnd(0), gnd(0), open, ahbmi, ahbmo(CFG_NCPU+CFG_AHB_UART), open, open, open, open, open, open, open, gnd(0)); end generate; ---------------------------------------------------------------------- --- Memory controllers ---------------------------------------------- ---------------------------------------------------------------------- src : if CFG_SRCTRL = 1 generate -- 32-bit PROM/SRAM controller sr0 : srctrl generic map (hindex => 0, ramws => CFG_SRCTRL_RAMWS, romws => CFG_SRCTRL_PROMWS, ramaddr => 16#400#, prom8en => CFG_SRCTRL_8BIT, rmw => CFG_SRCTRL_RMW) port map (rstn, clkm, ahbsi, ahbso(0), memi, memo, sdo2); apbo(0) <= apb_none; end generate; mg2 : if CFG_MCTRL_LEON2 = 1 generate -- LEON2 memory controller sr1 : smc_mctrl generic map (hindex => 0, pindex => 0, paddr => 0, srbanks => 2, sden => CFG_MCTRL_SDEN, ram8 => CFG_MCTRL_RAM8BIT, ram16 => CFG_MCTRL_RAM16BIT, invclk => CFG_MCTRL_INVCLK, sepbus => CFG_MCTRL_SEPBUS, sdbits => 32 + 32*CFG_MCTRL_SD64) port map (rstn, clkm, memi, memo, ahbsi, ahbso(0), apbi, apbo(0), wpo, sdo, s_eth_aen, s_eth_readn, s_eth_writen, s_eth_nbe); sdpads : if CFG_MCTRL_SDEN = 1 generate -- SDRAM controller sd2 : if CFG_MCTRL_SEPBUS = 1 generate sa_pad : outpadv generic map (width => 12) port map (sa, memo.sa(11 downto 0)); sdba_pad : outpadv generic map (width => 2) port map (sdba, memo.sa(14 downto 13)); bdr : for i in 0 to 3 generate sd_pad : iopadv generic map (tech => padtech, width => 8) port map (sd(31-i*8 downto 24-i*8), memo.data(31-i*8 downto 24-i*8), memo.bdrive(i), memi.sd(31-i*8 downto 24-i*8)); sd2 : if CFG_MCTRL_SD64 = 1 generate sd_pad2 : iopadv generic map (tech => padtech, width => 8) port map (sd(31-i*8+32 downto 24-i*8+32), memo.data(31-i*8 downto 24-i*8), memo.bdrive(i), memi.sd(31-i*8+32 downto 24-i*8+32)); end generate; end generate; end generate; sdwen_pad : outpad generic map (tech => padtech) port map (sdwen, sdo.sdwen); sdras_pad : outpad generic map (tech => padtech) port map (sdrasn, sdo.rasn); sdcas_pad : outpad generic map (tech => padtech) port map (sdcasn, sdo.casn); sddqm_pad : outpadv generic map (width =>4, tech => padtech) port map (sddqm, sdo.dqm(3 downto 0)); end generate; sdcke_pad : outpad generic map (tech => padtech) port map (sdcke, sdo.sdcke(0)); sdcsn_pad : outpad generic map (tech => padtech) port map (sdcsn, sdo.sdcsn(0)); end generate; wpn <= '1'; byten <= '0'; nosd0 : if (CFG_MCTRL_LEON2 = 0) generate -- no SDRAM controller sdcke_pad : outpad generic map (tech => padtech) port map (sdcke, vcc(0)); sdcsn_pad : outpad generic map (tech => padtech) port map (sdcsn, vcc(0)); end generate; memi.brdyn <= '1'; memi.bexcn <= '1'; memi.writen <= '1'; memi.wrn <= "1111"; memi.bwidth <= "00"; mg0 : if not ((CFG_SRCTRL = 1) or (CFG_MCTRL_LEON2 = 1)) generate -- no prom/sram pads apbo(0) <= apb_none; ahbso(0) <= ahbs_none; rams_pad : outpad generic map (tech => padtech) port map (ramsn, vcc(0)); roms_pad : outpad generic map (tech => padtech) port map (romsn, vcc(0)); end generate; mgpads : if (CFG_SRCTRL = 1) or (CFG_MCTRL_LEON2 = 1) generate -- prom/sram pads addr_pad : outpadv generic map (width => 24, tech => padtech) port map (address, memo.address(23 downto 0)); memb_pad : outpadv generic map (width => 4, tech => padtech) port map (mben, memo.mben); rams_pad : outpad generic map (tech => padtech) port map (ramsn, memo.ramsn(0)); roms_pad : outpad generic map (tech => padtech) port map (romsn, memo.romsn(0)); oen_pad : outpad generic map (tech => padtech) port map (oen, memo.oen); rwen_pad : outpad generic map (tech => padtech) port map (rwen, memo.wrn(0)); roen_pad : outpad generic map (tech => padtech) port map (ramoen, memo.ramoen(0)); wri_pad : outpad generic map (tech => padtech) port map (writen, memo.writen); -- pragma translate_off iosn_pad : outpad generic map (tech => padtech) port map (iosn, memo.iosn); -- pragma translate_on -- for smc lan chip eth_aen_pad : outpad generic map (tech => padtech) port map (eth_aen, s_eth_aen); eth_readn_pad : outpad generic map (tech => padtech) port map (eth_readn, s_eth_readn); eth_writen_pad : outpad generic map (tech => padtech) port map (eth_writen, s_eth_writen); eth_nbe_pad : outpadv generic map (width => 4, tech => padtech) port map (eth_nbe, s_eth_nbe); bdr : for i in 0 to 3 generate data_pad : iopadv generic map (tech => padtech, width => 8) port map (data(31-i*8 downto 24-i*8), memo.data(31-i*8 downto 24-i*8), memo.bdrive(i), memi.data(31-i*8 downto 24-i*8)); end generate; end generate; ---------------------------------------------------------------------- --- APB Bridge and various periherals ------------------------------- ---------------------------------------------------------------------- apb0 : apbctrl -- AHB/APB bridge generic map (hindex => 1, haddr => CFG_APBADDR) port map (rstn, clkm, ahbsi, ahbso(1), apbi, apbo); ua1 : if CFG_UART1_ENABLE /= 0 generate uart1 : apbuart -- UART 1 generic map (pindex => 1, paddr => 1, pirq => 2, console => dbguart, fifosize => CFG_UART1_FIFO) port map (rstn, clkm, apbi, apbo(1), u1i, u1o); u1i.rxd <= rxd1; u1i.ctsn <= '0'; u1i.extclk <= '0'; txd1 <= u1o.txd; end generate; noua0 : if CFG_UART1_ENABLE = 0 generate apbo(1) <= apb_none; end generate; irqctrl : if CFG_IRQ3_ENABLE /= 0 generate irqctrl0 : irqmp -- interrupt controller generic map (pindex => 2, paddr => 2, ncpu => NCPU) port map (rstn, clkm, apbi, apbo(2), irqo, irqi); end generate; irq3 : if CFG_IRQ3_ENABLE = 0 generate x : for i in 0 to NCPU-1 generate irqi(i).irl <= "0000"; end generate; apbo(2) <= apb_none; end generate; gpt : if CFG_GPT_ENABLE /= 0 generate timer0 : gptimer -- timer unit generic map (pindex => 3, paddr => 3, pirq => CFG_GPT_IRQ, sepirq => CFG_GPT_SEPIRQ, sbits => CFG_GPT_SW, ntimers => CFG_GPT_NTIM, nbits => CFG_GPT_TW) port map (rstn, clkm, apbi, apbo(3), gpti, open); gpti.dhalt <= dsuo.tstop; gpti.extclk <= '0'; end generate; notim : if CFG_GPT_ENABLE = 0 generate apbo(3) <= apb_none; end generate; gpio0 : if CFG_GRGPIO_ENABLE /= 0 generate -- GPIO unit grgpio0: grgpio generic map(pindex => 5, paddr => 5, imask => CFG_GRGPIO_IMASK, nbits => CFG_GRGPIO_WIDTH) port map(rst => rstn, clk => clkm, apbi => apbi, apbo => apbo(5), gpioi => gpioi, gpioo => gpioo); pio_pads : for i in 0 to CFG_GRGPIO_WIDTH-1 generate pio_pad : iopad generic map (tech => padtech) port map (gpio(i), gpioo.dout(i), gpioo.oen(i), gpioi.din(i)); end generate; end generate; ----------------------------------------------------------------------- --- AHB ROM ---------------------------------------------------------- ----------------------------------------------------------------------- bpromgen : if CFG_AHBROMEN /= 0 generate brom : entity work.ahbrom generic map (hindex => 6, haddr => CFG_AHBRODDR, pipe => CFG_AHBROPIP) port map ( rstn, clkm, ahbsi, ahbso(6)); end generate; nobpromgen : if CFG_AHBROMEN = 0 generate ahbso(6) <= ahbs_none; end generate; ----------------------------------------------------------------------- --- AHB RAM ---------------------------------------------------------- ----------------------------------------------------------------------- ahbramgen : if CFG_AHBRAMEN = 1 generate ahbram0 : ahbram generic map (hindex => 3, haddr => CFG_AHBRADDR, tech => CFG_MEMTECH, kbytes => CFG_AHBRSZ, pipe => CFG_AHBRPIPE) port map (rstn, clkm, ahbsi, ahbso(3)); end generate; nram : if CFG_AHBRAMEN = 0 generate ahbso(3) <= ahbs_none; end generate; ----------------------------------------------------------------------- --- Drive unused bus elements --------------------------------------- ----------------------------------------------------------------------- nam1 : for i in (NCPU+CFG_AHB_UART+CFG_AHB_JTAG) to NAHBMST-1 generate ahbmo(i) <= ahbm_none; end generate; nap0 : for i in 6 to NAPBSLV-1 generate apbo(i) <= apb_none; end generate; nah0 : for i in 7 to NAHBSLV-1 generate ahbso(i) <= ahbs_none; end generate; -- invert signal for input via a key dsubre <= not dsubren; -- for smc lan chip eth_lclk <= vcc(0); eth_nads <= gnd(0); eth_ncycle <= vcc(0); eth_wnr <= vcc(0); eth_nvlbus <= vcc(0); eth_nrdyrtn <= vcc(0); eth_ndatacs <= vcc(0); ----------------------------------------------------------------------- --- Boot message ---------------------------------------------------- ----------------------------------------------------------------------- -- pragma translate_off x : report_design generic map ( msg1 => "LEON3 Altera EP2C60 SDR Demonstration design", fabtech => tech_table(fabtech), memtech => tech_table(memtech), mdel => 1 ); -- pragma translate_on end;
gpl-2.0
schmr/grlib
grlib-gpl-1.3.7-b4144/lib/techmap/altera_mf/tap_altera_mf.vhd
1
4934
------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ----------------------------------------------------------------------------- -- Entity: tap_altera -- File: tap_altera_gen.vhd -- Author: Edvin Catovic - Gaisler Research -- Description: Altera TAP controllers wrappers ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; -- pragma translate_off library altera_mf; use altera_mf.altera_mf_components.all; use altera_mf.sld_virtual_jtag; -- pragma translate_on entity altera_tap is port ( tapi_tdo1 : in std_ulogic; tapi_tdo2 : in std_ulogic; tapo_tck : out std_ulogic; tapo_tdi : out std_ulogic; tapo_inst : out std_logic_vector(7 downto 0); tapo_rst : out std_ulogic; tapo_capt : out std_ulogic; tapo_shft : out std_ulogic; tapo_upd : out std_ulogic; tapo_xsel1 : out std_ulogic; tapo_xsel2 : out std_ulogic ); end; architecture rtl of altera_tap is signal ir0 : std_logic_vector(7 downto 0); component sld_virtual_jtag generic ( --lpm_hint : string := "UNUSED"; --lpm_type : string := "sld_virtual_jtag"; sld_auto_instance_index : string := "NO"; sld_instance_index : natural := 0; sld_ir_width : natural := 1; sld_sim_action : string := "UNUSED" --sld_sim_n_scan : natural := 0; --sld_sim_total_length : natural := 0 ); port( ir_in : out std_logic_vector(sld_ir_width-1 downto 0); ir_out : in std_logic_vector(sld_ir_width-1 downto 0); jtag_state_cdr : out std_logic; jtag_state_cir : out std_logic; jtag_state_e1dr : out std_logic; jtag_state_e1ir : out std_logic; jtag_state_e2dr : out std_logic; jtag_state_e2ir : out std_logic; jtag_state_pdr : out std_logic; jtag_state_pir : out std_logic; jtag_state_rti : out std_logic; jtag_state_sdr : out std_logic; jtag_state_sdrs : out std_logic; jtag_state_sir : out std_logic; jtag_state_sirs : out std_logic; jtag_state_tlr : out std_logic; jtag_state_udr : out std_logic; jtag_state_uir : out std_logic; tck : out std_logic; tdi : out std_logic; tdo : in std_logic; tms : out std_logic; virtual_state_cdr : out std_logic; virtual_state_cir : out std_logic; virtual_state_e1dr : out std_logic; virtual_state_e2dr : out std_logic; virtual_state_pdr : out std_logic; virtual_state_sdr : out std_logic; virtual_state_udr : out std_logic; virtual_state_uir : out std_logic ); end component; begin tapo_rst <= '0'; tapo_xsel1 <= '0'; tapo_xsel2 <= '0'; u0 : sld_virtual_jtag generic map (sld_ir_width => 8, sld_auto_instance_index => "NO", sld_instance_index => 0) port map (ir_in => tapo_inst, ir_out => ir0, jtag_state_cdr => open, jtag_state_cir => open, jtag_state_e1dr => open, jtag_state_e1ir => open, jtag_state_e2dr => open, jtag_state_e2ir => open, jtag_state_pdr => open, jtag_state_pir => open, jtag_state_rti => open, jtag_state_sdr => open, jtag_state_sdrs => open, jtag_state_sir => open, jtag_state_sirs => open, jtag_state_tlr => open, jtag_state_udr => open, jtag_state_uir => open, tck => tapo_tck, tdi => tapo_tdi, tdo => tapi_tdo1, tms => open, virtual_state_cdr => tapo_capt, virtual_state_cir => open, virtual_state_e1dr => open, virtual_state_e2dr => open, virtual_state_pdr => open, virtual_state_sdr => tapo_shft, virtual_state_udr => tapo_upd, virtual_state_uir => open); end;
gpl-2.0
schmr/grlib
grlib-gpl-1.3.7-b4144/lib/opencores/i2c/i2coc.vhd
3
3225
--------------------------------------------------------------------- ---- ---- ---- Copyright (C) 2000 Richard Herveille ---- ---- [email protected] ---- ---- ---- ---- This source file may be used and distributed without ---- ---- restriction provided that this copyright statement is not ---- ---- removed from the file and that any derivative work contains ---- ---- the original copyright notice and the associated disclaimer.---- ---- ---- ---- THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY ---- ---- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ---- ---- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ---- ---- FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR ---- ---- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, ---- ---- INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ---- ---- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE ---- ---- GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR ---- ---- BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ---- ---- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ---- ---- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT ---- ---- OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ---- ---- POSSIBILITY OF SUCH DAMAGE. ---- ---- ---- --------------------------------------------------------------------- -- Package containing i2c master byte controller component. Component -- declaration expanded and separated into this file by [email protected]. library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; package i2coc is component i2c_master_byte_ctrl is generic (filter : integer; dynfilt : integer); port ( clk : in std_logic; rst : in std_logic; -- active high reset nReset : in std_logic; -- asynchornous active low reset -- (not used in GRLIB) ena : in std_logic; -- core enable signal clk_cnt : in std_logic_vector(15 downto 0); -- 4x SCL -- input signals start, stop, read, write, ack_in : std_logic; din : in std_logic_vector(7 downto 0); filt : in std_logic_vector((filter-1)*dynfilt downto 0); -- output signals cmd_ack : out std_logic; ack_out : out std_logic; i2c_busy : out std_logic; i2c_al : out std_logic; dout : out std_logic_vector(7 downto 0); -- i2c lines scl_i : in std_logic; -- i2c clock line input scl_o : out std_logic; -- i2c clock line output scl_oen : out std_logic; -- i2c clock line output enable, active low sda_i : in std_logic; -- i2c data line input sda_o : out std_logic; -- i2c data line output sda_oen : out std_logic -- i2c data line output enable, active low ); end component i2c_master_byte_ctrl; end;
gpl-2.0
schmr/grlib
grlib-gpl-1.3.7-b4144/lib/gaisler/leon3/leon3.in.vhd
1
2977
-- LEON3 processor core constant CFG_LEON3 : integer := CONFIG_LEON3; constant CFG_NCPU : integer := CONFIG_PROC_NUM; constant CFG_NWIN : integer := CONFIG_IU_NWINDOWS; constant CFG_V8 : integer := CFG_IU_V8 + 4*CFG_IU_MUL_STRUCT; constant CFG_MAC : integer := CONFIG_IU_MUL_MAC; constant CFG_BP : integer := CONFIG_IU_BP; constant CFG_SVT : integer := CONFIG_IU_SVT; constant CFG_RSTADDR : integer := 16#CONFIG_IU_RSTADDR#; constant CFG_LDDEL : integer := CONFIG_IU_LDELAY; constant CFG_NOTAG : integer := CONFIG_NOTAG; constant CFG_NWP : integer := CONFIG_IU_WATCHPOINTS; constant CFG_PWD : integer := CONFIG_PWD*2; constant CFG_FPU : integer := CONFIG_FPU + 16*CONFIG_FPU_NETLIST + 32*CONFIG_FPU_GRFPU_SHARED; constant CFG_GRFPUSH : integer := CONFIG_FPU_GRFPU_SHARED; constant CFG_ICEN : integer := CONFIG_ICACHE_ENABLE; constant CFG_ISETS : integer := CFG_IU_ISETS; constant CFG_ISETSZ : integer := CFG_ICACHE_SZ; constant CFG_ILINE : integer := CFG_ILINE_SZ; constant CFG_IREPL : integer := CFG_ICACHE_ALGORND; constant CFG_ILOCK : integer := CONFIG_ICACHE_LOCK; constant CFG_ILRAMEN : integer := CONFIG_ICACHE_LRAM; constant CFG_ILRAMADDR: integer := 16#CONFIG_ICACHE_LRSTART#; constant CFG_ILRAMSZ : integer := CFG_ILRAM_SIZE; constant CFG_DCEN : integer := CONFIG_DCACHE_ENABLE; constant CFG_DSETS : integer := CFG_IU_DSETS; constant CFG_DSETSZ : integer := CFG_DCACHE_SZ; constant CFG_DLINE : integer := CFG_DLINE_SZ; constant CFG_DREPL : integer := CFG_DCACHE_ALGORND; constant CFG_DLOCK : integer := CONFIG_DCACHE_LOCK; constant CFG_DSNOOP : integer := CONFIG_DCACHE_SNOOP*2 + 4*CONFIG_DCACHE_SNOOP_SEPTAG; constant CFG_DFIXED : integer := 16#CONFIG_CACHE_FIXED#; constant CFG_DLRAMEN : integer := CONFIG_DCACHE_LRAM; constant CFG_DLRAMADDR: integer := 16#CONFIG_DCACHE_LRSTART#; constant CFG_DLRAMSZ : integer := CFG_DLRAM_SIZE; constant CFG_MMUEN : integer := CONFIG_MMUEN; constant CFG_ITLBNUM : integer := CONFIG_ITLBNUM; constant CFG_DTLBNUM : integer := CONFIG_DTLBNUM; constant CFG_TLB_TYPE : integer := CONFIG_TLB_TYPE + CFG_MMU_FASTWB*2; constant CFG_TLB_REP : integer := CONFIG_TLB_REP; constant CFG_MMU_PAGE : integer := CONFIG_MMU_PAGE; constant CFG_DSU : integer := CONFIG_DSU_ENABLE; constant CFG_ITBSZ : integer := CFG_DSU_ITB; constant CFG_ATBSZ : integer := CFG_DSU_ATB; constant CFG_LEON3FT_EN : integer := CONFIG_LEON3FT_EN; constant CFG_IUFT_EN : integer := CONFIG_IUFT_EN; constant CFG_FPUFT_EN : integer := CONFIG_FPUFT; constant CFG_RF_ERRINJ : integer := CONFIG_RF_ERRINJ; constant CFG_CACHE_FT_EN : integer := CONFIG_CACHE_FT_EN; constant CFG_CACHE_ERRINJ : integer := CONFIG_CACHE_ERRINJ; constant CFG_LEON3_NETLIST: integer := CONFIG_LEON3_NETLIST; constant CFG_DISAS : integer := CONFIG_IU_DISAS + CONFIG_IU_DISAS_NET; constant CFG_PCLOW : integer := CFG_DEBUG_PC32;
gpl-2.0
schmr/grlib
grlib-gpl-1.3.7-b4144/designs/leon3-digilent-atlys/ahbrom.vhd
3
13745
---------------------------------------------------------------------------- -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2010 Aeroflex Gaisler ---------------------------------------------------------------------------- -- Entity: ahbrom -- File: ahbrom.vhd -- Author: Jiri Gaisler - Gaisler Research -- Description: AHB rom. 0/1-waitstate read ---------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; library grlib; use grlib.amba.all; use grlib.stdlib.all; use grlib.devices.all; entity ahbrom is generic ( hindex : integer := 0; haddr : integer := 0; hmask : integer := 16#fff#; pipe : integer := 0; tech : integer := 0; kbytes : integer := 1); port ( rst : in std_ulogic; clk : in std_ulogic; ahbsi : in ahb_slv_in_type; ahbso : out ahb_slv_out_type ); end; architecture rtl of ahbrom is constant abits : integer := 10; constant bytes : integer := 976; constant hconfig : ahb_config_type := ( 0 => ahb_device_reg ( VENDOR_GAISLER, GAISLER_AHBROM, 0, 0, 0), 4 => ahb_membar(haddr, '1', '1', hmask), others => zero32); signal romdata : std_logic_vector(31 downto 0); signal addr : std_logic_vector(abits-1 downto 2); signal hsel, hready : std_ulogic; begin ahbso.hresp <= "00"; ahbso.hsplit <= (others => '0'); ahbso.hirq <= (others => '0'); ahbso.hconfig <= hconfig; ahbso.hindex <= hindex; reg : process (clk) begin if rising_edge(clk) then addr <= ahbsi.haddr(abits-1 downto 2); end if; end process; p0 : if pipe = 0 generate ahbso.hrdata <= ahbdrivedata(romdata); ahbso.hready <= '1'; end generate; p1 : if pipe = 1 generate reg2 : process (clk) begin if rising_edge(clk) then hsel <= ahbsi.hsel(hindex) and ahbsi.htrans(1); hready <= ahbsi.hready; ahbso.hready <= (not rst) or (hsel and hready) or (ahbsi.hsel(hindex) and not ahbsi.htrans(1) and ahbsi.hready); ahbso.hrdata <= ahbdrivedata(romdata); end if; end process; end generate; comb : process (addr) begin case conv_integer(addr) is when 16#00000# => romdata <= X"821020C0"; when 16#00001# => romdata <= X"81884000"; when 16#00002# => romdata <= X"01000000"; when 16#00003# => romdata <= X"01000000"; when 16#00004# => romdata <= X"81900000"; when 16#00005# => romdata <= X"01000000"; when 16#00006# => romdata <= X"01000000"; when 16#00007# => romdata <= X"81980000"; when 16#00008# => romdata <= X"01000000"; when 16#00009# => romdata <= X"01000000"; when 16#0000A# => romdata <= X"C0A00040"; when 16#0000B# => romdata <= X"01000000"; when 16#0000C# => romdata <= X"01000000"; when 16#0000D# => romdata <= X"11200000"; when 16#0000E# => romdata <= X"90122100"; when 16#0000F# => romdata <= X"821020A2"; when 16#00010# => romdata <= X"C222200C"; when 16#00011# => romdata <= X"82102003"; when 16#00012# => romdata <= X"C2222008"; when 16#00013# => romdata <= X"11000000"; when 16#00014# => romdata <= X"90122344"; when 16#00015# => romdata <= X"40000091"; when 16#00016# => romdata <= X"01000000"; when 16#00017# => romdata <= X"113FFC00"; when 16#00018# => romdata <= X"90122200"; when 16#00019# => romdata <= X"82102018"; when 16#0001A# => romdata <= X"C2222004"; when 16#0001B# => romdata <= X"9010202E"; when 16#0001C# => romdata <= X"40000080"; when 16#0001D# => romdata <= X"01000000"; when 16#0001E# => romdata <= X"113FFC00"; when 16#0001F# => romdata <= X"90122200"; when 16#00020# => romdata <= X"C2022008"; when 16#00021# => romdata <= X"80886004"; when 16#00022# => romdata <= X"02BFFFFC"; when 16#00023# => romdata <= X"01000000"; when 16#00024# => romdata <= X"9010202E"; when 16#00025# => romdata <= X"40000077"; when 16#00026# => romdata <= X"01000000"; when 16#00027# => romdata <= X"113FFC00"; when 16#00028# => romdata <= X"90122100"; when 16#00029# => romdata <= X"13208821"; when 16#0002A# => romdata <= X"92126091"; when 16#0002B# => romdata <= X"D2220000"; when 16#0002C# => romdata <= X"1300B140"; when 16#0002D# => romdata <= X"D2222008"; when 16#0002E# => romdata <= X"92102100"; when 16#0002F# => romdata <= X"D222200C"; when 16#00030# => romdata <= X"130011C0"; when 16#00031# => romdata <= X"92126004"; when 16#00032# => romdata <= X"D2222010"; when 16#00033# => romdata <= X"13208821"; when 16#00034# => romdata <= X"92126091"; when 16#00035# => romdata <= X"03000040"; when 16#00036# => romdata <= X"92124001"; when 16#00037# => romdata <= X"D2220000"; when 16#00038# => romdata <= X"9010202E"; when 16#00039# => romdata <= X"40000063"; when 16#0003A# => romdata <= X"01000000"; when 16#0003B# => romdata <= X"40000051"; when 16#0003C# => romdata <= X"01000000"; when 16#0003D# => romdata <= X"40000081"; when 16#0003E# => romdata <= X"01000000"; when 16#0003F# => romdata <= X"9010202E"; when 16#00040# => romdata <= X"4000005C"; when 16#00041# => romdata <= X"01000000"; when 16#00042# => romdata <= X"40000070"; when 16#00043# => romdata <= X"01000000"; when 16#00044# => romdata <= X"9010202E"; when 16#00045# => romdata <= X"40000057"; when 16#00046# => romdata <= X"01000000"; when 16#00047# => romdata <= X"A2100000"; when 16#00048# => romdata <= X"A4100000"; when 16#00049# => romdata <= X"A6103FFF"; when 16#0004A# => romdata <= X"40000074"; when 16#0004B# => romdata <= X"01000000"; when 16#0004C# => romdata <= X"80A460A0"; when 16#0004D# => romdata <= X"22800002"; when 16#0004E# => romdata <= X"90100000"; when 16#0004F# => romdata <= X"80A22000"; when 16#00050# => romdata <= X"1280000B"; when 16#00051# => romdata <= X"A404A001"; when 16#00052# => romdata <= X"80A4A010"; when 16#00053# => romdata <= X"24800008"; when 16#00054# => romdata <= X"A4100000"; when 16#00055# => romdata <= X"80A4FFFF"; when 16#00056# => romdata <= X"32800005"; when 16#00057# => romdata <= X"A4100000"; when 16#00058# => romdata <= X"A534A001"; when 16#00059# => romdata <= X"A6244012"; when 16#0005A# => romdata <= X"A4100000"; when 16#0005B# => romdata <= X"4000003D"; when 16#0005C# => romdata <= X"01000000"; when 16#0005D# => romdata <= X"80A460A0"; when 16#0005E# => romdata <= X"A2046001"; when 16#0005F# => romdata <= X"12BFFFEB"; when 16#00060# => romdata <= X"01000000"; when 16#00061# => romdata <= X"80A4FFFF"; when 16#00062# => romdata <= X"02800022"; when 16#00063# => romdata <= X"01000000"; when 16#00064# => romdata <= X"11000000"; when 16#00065# => romdata <= X"9012234F"; when 16#00066# => romdata <= X"40000040"; when 16#00067# => romdata <= X"01000000"; when 16#00068# => romdata <= X"9134E004"; when 16#00069# => romdata <= X"40000033"; when 16#0006A# => romdata <= X"90022030"; when 16#0006B# => romdata <= X"900CE00F"; when 16#0006C# => romdata <= X"80A2200A"; when 16#0006D# => romdata <= X"90022030"; when 16#0006E# => romdata <= X"36800002"; when 16#0006F# => romdata <= X"90022027"; when 16#00070# => romdata <= X"4000002C"; when 16#00071# => romdata <= X"01000000"; when 16#00072# => romdata <= X"4000001A"; when 16#00073# => romdata <= X"01000000"; when 16#00074# => romdata <= X"4000004A"; when 16#00075# => romdata <= X"01000000"; when 16#00076# => romdata <= X"80A4E000"; when 16#00077# => romdata <= X"02800006"; when 16#00078# => romdata <= X"01000000"; when 16#00079# => romdata <= X"4000001F"; when 16#0007A# => romdata <= X"01000000"; when 16#0007B# => romdata <= X"10BFFFF9"; when 16#0007C# => romdata <= X"A624E001"; when 16#0007D# => romdata <= X"11000000"; when 16#0007E# => romdata <= X"90122360"; when 16#0007F# => romdata <= X"40000027"; when 16#00080# => romdata <= X"01000000"; when 16#00081# => romdata <= X"03380800"; when 16#00082# => romdata <= X"81C04000"; when 16#00083# => romdata <= X"01000000"; when 16#00084# => romdata <= X"11000000"; when 16#00085# => romdata <= X"90122368"; when 16#00086# => romdata <= X"40000020"; when 16#00087# => romdata <= X"01000000"; when 16#00088# => romdata <= X"40000004"; when 16#00089# => romdata <= X"01000000"; when 16#0008A# => romdata <= X"10BFFFF7"; when 16#0008B# => romdata <= X"01000000"; when 16#0008C# => romdata <= X"03200000"; when 16#0008D# => romdata <= X"113FFC00"; when 16#0008E# => romdata <= X"90122100"; when 16#0008F# => romdata <= X"1300B140"; when 16#00090# => romdata <= X"92124001"; when 16#00091# => romdata <= X"D2222008"; when 16#00092# => romdata <= X"82102014"; when 16#00093# => romdata <= X"82A06001"; when 16#00094# => romdata <= X"12BFFFFF"; when 16#00095# => romdata <= X"01000000"; when 16#00096# => romdata <= X"81C3E008"; when 16#00097# => romdata <= X"01000000"; when 16#00098# => romdata <= X"0300003F"; when 16#00099# => romdata <= X"821063FF"; when 16#0009A# => romdata <= X"10BFFFF3"; when 16#0009B# => romdata <= X"01000000"; when 16#0009C# => romdata <= X"03200000"; when 16#0009D# => romdata <= X"82106100"; when 16#0009E# => romdata <= X"C2006004"; when 16#0009F# => romdata <= X"80886004"; when 16#000A0# => romdata <= X"02BFFFFC"; when 16#000A1# => romdata <= X"03200000"; when 16#000A2# => romdata <= X"82106100"; when 16#000A3# => romdata <= X"D0204000"; when 16#000A4# => romdata <= X"81C3E008"; when 16#000A5# => romdata <= X"01000000"; when 16#000A6# => romdata <= X"9A10000F"; when 16#000A7# => romdata <= X"92100008"; when 16#000A8# => romdata <= X"D00A4000"; when 16#000A9# => romdata <= X"80A20000"; when 16#000AA# => romdata <= X"02800006"; when 16#000AB# => romdata <= X"92026001"; when 16#000AC# => romdata <= X"7FFFFFF0"; when 16#000AD# => romdata <= X"01000000"; when 16#000AE# => romdata <= X"10BFFFFA"; when 16#000AF# => romdata <= X"01000000"; when 16#000B0# => romdata <= X"81C36008"; when 16#000B1# => romdata <= X"01000000"; when 16#000B2# => romdata <= X"11100000"; when 16#000B3# => romdata <= X"13000000"; when 16#000B4# => romdata <= X"92126374"; when 16#000B5# => romdata <= X"94102010"; when 16#000B6# => romdata <= X"C2024000"; when 16#000B7# => romdata <= X"92026004"; when 16#000B8# => romdata <= X"C2220000"; when 16#000B9# => romdata <= X"94A2A001"; when 16#000BA# => romdata <= X"12BFFFFC"; when 16#000BB# => romdata <= X"90022004"; when 16#000BC# => romdata <= X"81C3E008"; when 16#000BD# => romdata <= X"01000000"; when 16#000BE# => romdata <= X"11100000"; when 16#000BF# => romdata <= X"13000000"; when 16#000C0# => romdata <= X"92126374"; when 16#000C1# => romdata <= X"D41A0000"; when 16#000C2# => romdata <= X"90022008"; when 16#000C3# => romdata <= X"C2024000"; when 16#000C4# => romdata <= X"80A0400A"; when 16#000C5# => romdata <= X"1280000A"; when 16#000C6# => romdata <= X"C2026004"; when 16#000C7# => romdata <= X"80A0400B"; when 16#000C8# => romdata <= X"12800007"; when 16#000C9# => romdata <= X"92026008"; when 16#000CA# => romdata <= X"808A2040"; when 16#000CB# => romdata <= X"02BFFFF6"; when 16#000CC# => romdata <= X"01000000"; when 16#000CD# => romdata <= X"81C3E008"; when 16#000CE# => romdata <= X"90102001"; when 16#000CF# => romdata <= X"81C3E008"; when 16#000D0# => romdata <= X"90102000"; when 16#000D1# => romdata <= X"0D0A4148"; when 16#000D2# => romdata <= X"42524F4D"; when 16#000D3# => romdata <= X"3A200020"; when 16#000D4# => romdata <= X"64647232"; when 16#000D5# => romdata <= X"5F64656C"; when 16#000D6# => romdata <= X"6179203D"; when 16#000D7# => romdata <= X"20307800"; when 16#000D8# => romdata <= X"2C204F4B"; when 16#000D9# => romdata <= X"2E0D0A00"; when 16#000DA# => romdata <= X"4641494C"; when 16#000DB# => romdata <= X"45440D0A"; when 16#000DC# => romdata <= X"00000000"; when 16#000DD# => romdata <= X"12345678"; when 16#000DE# => romdata <= X"F0C3A596"; when 16#000DF# => romdata <= X"6789ABCD"; when 16#000E0# => romdata <= X"A6F1590E"; when 16#000E1# => romdata <= X"EDCBA987"; when 16#000E2# => romdata <= X"0F3C5A69"; when 16#000E3# => romdata <= X"98765432"; when 16#000E4# => romdata <= X"590EA6F1"; when 16#000E5# => romdata <= X"FFFF0000"; when 16#000E6# => romdata <= X"0000FFFF"; when 16#000E7# => romdata <= X"5AC3FFFF"; when 16#000E8# => romdata <= X"0000A53C"; when 16#000E9# => romdata <= X"01510882"; when 16#000EA# => romdata <= X"F4D908FD"; when 16#000EB# => romdata <= X"9B6F7A46"; when 16#000EC# => romdata <= X"C721271D"; when 16#000ED# => romdata <= X"00000000"; when 16#000EE# => romdata <= X"00000000"; when 16#000EF# => romdata <= X"00000000"; when 16#000F0# => romdata <= X"00000000"; when 16#000F1# => romdata <= X"00000000"; when 16#000F2# => romdata <= X"00000000"; when 16#000F3# => romdata <= X"00000000"; when 16#000F4# => romdata <= X"00000000"; when others => romdata <= (others => '-'); end case; end process; -- pragma translate_off bootmsg : report_version generic map ("ahbrom" & tost(hindex) & ": 32-bit AHB ROM Module, " & tost(bytes/4) & " words, " & tost(abits-2) & " address bits" ); -- pragma translate_on end;
gpl-2.0