File size: 26,649 Bytes
24405fe
cf78fb9
24405fe
 
 
 
0943c16
91d27ff
9b85f94
 
24405fe
fc4ef0e
91d27ff
2e9d088
 
 
11fa286
 
 
 
 
 
 
2e9d088
11fa286
 
 
 
 
 
 
 
 
 
 
9b85f94
 
 
11fa286
9b85f94
 
 
 
 
 
 
 
 
 
 
 
 
2e9d088
 
11fa286
 
 
 
2e9d088
3475cd4
0943c16
3475cd4
7addc00
3475cd4
 
 
 
743463b
beba082
ed14957
beba082
 
 
ed14957
743463b
beba082
743463b
beba082
ed14957
2dd9d2c
11fa286
2dd9d2c
 
 
 
 
 
11fa286
2dd9d2c
11fa286
ed14957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11fa286
 
 
2dd9d2c
11fa286
 
2dd9d2c
ed14957
 
11fa286
 
 
 
2dd9d2c
beba082
 
 
ed14957
743463b
beba082
 
 
 
 
 
 
 
 
2e9d088
b9e2e13
83f9bd2
 
2e9d088
 
b9e2e13
83f9bd2
b9e2e13
83f9bd2
 
b9e2e13
2e9d088
b9e2e13
2e9d088
b9e2e13
83f9bd2
 
2e9d088
 
b9e2e13
83f9bd2
b9e2e13
83f9bd2
 
b9e2e13
2e9d088
b9e2e13
743463b
3475cd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11fa286
 
 
 
 
3475cd4
46f7de3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24405fe
 
 
 
 
 
 
 
 
 
 
 
 
 
91d27ff
3475cd4
 
9b12849
24405fe
 
 
3f98997
24405fe
 
 
 
 
 
 
 
 
3f98997
24405fe
 
3475cd4
24405fe
91d27ff
24405fe
 
 
 
 
 
 
9b12849
24405fe
 
 
3f98997
24405fe
 
 
 
 
 
 
3475cd4
24405fe
 
 
3475cd4
 
24405fe
 
 
 
 
 
 
 
 
3f98997
24405fe
 
 
3475cd4
24405fe
 
 
 
3475cd4
 
24405fe
 
 
391b991
067323d
 
2dd9d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
067323d
 
 
 
 
 
 
2dd9d2c
 
 
 
 
 
 
 
24405fe
 
 
46f7de3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24405fe
46f7de3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24405fe
91d27ff
 
3475cd4
 
46f7de3
3475cd4
46f7de3
 
 
3475cd4
 
 
91d27ff
24405fe
 
4e1a5f0
2dd9d2c
 
 
 
 
 
46f7de3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
067323d
 
 
 
 
 
4e1a5f0
24405fe
2dd9d2c
 
 
 
 
067323d
b9e2e13
11fa286
 
 
067323d
 
 
11fa286
 
 
 
 
 
 
067323d
2dd9d2c
 
 
 
4e1a5f0
067323d
 
 
 
11fa286
067323d
4e1a5f0
067323d
2dd9d2c
 
 
 
 
067323d
b9e2e13
11fa286
 
 
067323d
 
 
 
11fa286
 
 
 
 
 
 
2dd9d2c
 
 
 
 
4e1a5f0
 
 
 
 
 
11fa286
4e1a5f0
 
 
2dd9d2c
 
 
 
 
4e1a5f0
 
11fa286
 
 
4e1a5f0
 
 
 
11fa286
 
 
 
 
 
 
2dd9d2c
 
 
 
 
4e1a5f0
 
 
 
 
 
11fa286
4e1a5f0
 
 
2dd9d2c
 
 
 
 
4e1a5f0
 
11fa286
 
 
4e1a5f0
 
 
 
11fa286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e1a5f0
24405fe
 
11fa286
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
import logging
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import streamlit as st
from agno.agent import Agent
from agno.tools.arxiv import ArxivTools
from agno.tools.pubmed import PubmedTools
from agno.models.base import Model
from tenacity import retry, stop_after_attempt, wait_exponential
import time
import datetime

MODEL_PATH = "google/flan-t5-small"

# Simple Response class to wrap the model output
class Response:
    def __init__(self, content):
        # Ensure content is a string and not empty
        if content is None:
            content = ""
        if not isinstance(content, str):
            content = str(content)
        
        # Store the content
        self.content = content
        
        # Add tool_calls attribute with default empty list
        self.tool_calls = []
        
        # Add other attributes that might be needed
        self.audio = None
        self.images = []
        self.citations = []
        self.metadata = {}
        self.finish_reason = "stop"
        self.usage = {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}
        
        # Add timestamp attributes
        current_time = time.time()
        self.created_at = int(current_time)  # Convert to integer
        self.created = int(current_time)
        self.timestamp = datetime.datetime.now().isoformat()
        
        # Add model info attributes
        self.id = "local-model-response"
        self.model = "local-huggingface"
        self.object = "chat.completion"
        self.choices = [{"index": 0, "message": {"role": "assistant", "content": content}, "finish_reason": "stop"}]
        
        # Add additional attributes that might be needed
        self.system_fingerprint = ""
        self.is_truncated = False
        self.role = "assistant"
    
    def __str__(self):
        return self.content if self.content else ""
    
    def __repr__(self):
        return f"Response(content='{self.content[:50]}{'...' if len(self.content) > 50 else ''}')"

# Personnalized class for local models
class LocalHuggingFaceModel(Model):
    def __init__(self, model, tokenizer, max_length=512):
        super().__init__(id="local-huggingface")
        self.model = model
        self.tokenizer = tokenizer
        self.max_length = max_length
        
    async def ainvoke(self, prompt: str, **kwargs) -> str:
        """Async invoke method"""
        return await self.invoke(prompt=prompt, **kwargs)
    
    async def ainvoke_stream(self, prompt: str, **kwargs):
        """Async streaming invoke method"""
        result = await self.invoke(prompt=prompt, **kwargs)
        yield result
    
    def invoke(self, prompt: str, **kwargs) -> str:
        """Synchronous invoke method"""
        try:
            logging.info(f"Invoking model with prompt: {prompt[:100] if prompt else 'None'}...")
            
            # Check if prompt is None or empty
            if prompt is None:
                logging.warning("None prompt provided to invoke method")
                return Response("No input provided. Please provide a valid prompt.")
                
            if not prompt.strip():
                logging.warning("Empty prompt provided to invoke method")
                return Response("No input provided. Please provide a non-empty prompt.")
                
            inputs = self.tokenizer(prompt, return_tensors="pt", padding=True)
            
            #  Configure generation parameters
            generation_config = {
                "max_length": self.max_length,
                "num_return_sequences": 1,
                "do_sample": kwargs.get("do_sample", False),
                "temperature": kwargs.get("temperature", 1.0),
                "top_p": kwargs.get("top_p", 1.0),
            }
            
            # Generate the answer
            outputs = self.model.generate(**inputs, **generation_config)
            decoded_output = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
            
            # Check if output is empty
            if not decoded_output or not decoded_output.strip():
                logging.warning("Model generated empty output")
                return Response("The model did not generate any output. Please try with a different prompt.")
                
            logging.info(f"Model generated output: {decoded_output[:100]}...")
            return Response(decoded_output)
        except Exception as e:
            logging.error(f"Error in local model generation: {str(e)}")
            if hasattr(e, 'args') and len(e.args) > 0:
                error_message = e.args[0]
            else:
                error_message = str(e)
            return Response(f"Error during generation: {error_message}")
    
    def invoke_stream(self, prompt: str, **kwargs):
        """Synchronous streaming invoke method"""
        result = self.invoke(prompt=prompt, **kwargs)
        yield result
    
    def parse_provider_response(self, response: str) -> str:
        """Parse the provider response"""
        return response
    
    def parse_provider_response_delta(self, delta: str) -> str:
        """Parse the provider response delta for streaming"""
        return delta
        
    async def aresponse(self, prompt=None, **kwargs):
        """Async response method - required abstract method"""
        if prompt is None:
            prompt = kwargs.get('input', '')
        content = await self.ainvoke(prompt=prompt, **kwargs)
        return Response(content)
    
    async def aresponse_stream(self, prompt=None, **kwargs):
        """Async streaming response method - required abstract method"""
        if prompt is None:
            prompt = kwargs.get('input', '')
        async for chunk in self.ainvoke_stream(prompt=prompt, **kwargs):
            yield Response(chunk)
    
    def response(self, prompt=None, **kwargs):
        """Synchronous response method - required abstract method"""
        if prompt is None:
            prompt = kwargs.get('input', '')
        content = self.invoke(prompt=prompt, **kwargs)
        return Response(content)
    
    def response_stream(self, prompt=None, **kwargs):
        """Synchronous streaming response method - required abstract method"""
        if prompt is None:
            prompt = kwargs.get('input', '')
        for chunk in self.invoke_stream(prompt=prompt, **kwargs):
            yield Response(chunk)
        
    def generate(self, prompt: str, **kwargs):
        try:
            inputs = self.tokenizer(prompt, return_tensors="pt", padding=True)
            
            #  Configure generation parameters
            generation_config = {
                "max_length": self.max_length,
                "num_return_sequences": 1,
                "do_sample": kwargs.get("do_sample", False),
                "temperature": kwargs.get("temperature", 1.0),
                "top_p": kwargs.get("top_p", 1.0),
            }
            
            # Generate the answer
            outputs = self.model.generate(**inputs, **generation_config)
            decoded_output = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
            
            return decoded_output
        except Exception as e:
            logging.error(f"Error in local model generation: {str(e)}")
            if hasattr(e, 'args') and len(e.args) > 0:
                error_message = e.args[0]
            else:
                error_message = str(e)
            return f"Error during generation: {error_message}"

class DummyModel(Model):
    def __init__(self):
        super().__init__(id="dummy-model")
        
    async def ainvoke(self, prompt: str, **kwargs) -> str:
        """Async invoke method"""
        return await self.invoke(prompt=prompt, **kwargs)
    
    async def ainvoke_stream(self, prompt: str, **kwargs):
        """Async streaming invoke method"""
        result = await self.invoke(prompt=prompt, **kwargs)
        yield result
    
    def invoke(self, prompt: str, **kwargs) -> str:
        """Synchronous invoke method"""
        return Response("Sorry, the model is not available. Please try again later.")
    
    def invoke_stream(self, prompt: str, **kwargs):
        """Synchronous streaming invoke method"""
        result = self.invoke(prompt=prompt, **kwargs)
        yield result
    
    def parse_provider_response(self, response: str) -> str:
        """Parse the provider response"""
        return response
    
    def parse_provider_response_delta(self, delta: str) -> str:
        """Parse the provider response delta for streaming"""
        return delta
        
    async def aresponse(self, prompt=None, **kwargs):
        """Async response method - required abstract method"""
        if prompt is None:
            prompt = kwargs.get('input', '')
        content = await self.ainvoke(prompt=prompt, **kwargs)
        return Response(content)
    
    async def aresponse_stream(self, prompt=None, **kwargs):
        """Async streaming response method - required abstract method"""
        if prompt is None:
            prompt = kwargs.get('input', '')
        async for chunk in self.ainvoke_stream(prompt=prompt, **kwargs):
            yield Response(chunk)
    
    def response(self, prompt=None, **kwargs):
        """Synchronous response method - required abstract method"""
        if prompt is None:
            prompt = kwargs.get('input', '')
        content = self.invoke(prompt=prompt, **kwargs)
        return Response(content)
    
    def response_stream(self, prompt=None, **kwargs):
        """Synchronous streaming response method - required abstract method"""
        if prompt is None:
            prompt = kwargs.get('input', '')
        for chunk in self.invoke_stream(prompt=prompt, **kwargs):
            yield Response(chunk)

class ModelHandler:
    def __init__(self):
        """Initialize the model handler"""
        self.model = None
        self.tokenizer = None
        self.translator = None
        self.researcher = None
        self.summarizer = None
        self.presenter = None
        self._initialize_model()
    
    def _initialize_model(self):
        """Initialize model and tokenizer"""
        self.model, self.tokenizer = self._load_model()
        
        # Using local model as fallback
        base_model = self._initialize_local_model()
        
        self.translator = Agent(
            name="Translator",
            role="You will translate the query to English",
            model=base_model,
            goal="Translate to English",
            instructions=[
                "Translate the query to English"
            ]
        ) 
        
        self.researcher = Agent(
            name="Researcher",
            role="You are a research scholar who specializes in autism research.",
            model=base_model,
            tools=[ArxivTools(), PubmedTools()],
            instructions=[
                "You need to understand the context of the question to provide the best answer based on your tools.",
                "Be precise and provide just enough information to be useful",
                "You must cite the sources used in your answer.",
                "You must create an accessible summary.",
                "The content must be for people without autism knowledge.",
                "Focus in the main findings of the paper taking in consideration the question.",
                "The answer must be brief."
            ],
            show_tool_calls=True,
        )
        
        self.summarizer = Agent(
            name="Summarizer",
            role="You are a specialist in summarizing research papers for people without autism knowledge.",
            model=base_model,
            instructions=[
                "You must provide just enough information to be useful",
                "You must cite the sources used in your answer.",
                "You must be clear and concise.",
                "You must create an accessible summary.",
                "The content must be for people without autism knowledge.",
                "Focus in the main findings of the paper taking in consideration the question.",
                "The answer must be brief.",
                "Remove everything related to the run itself like: 'Running: transfer_', just use plain text",
                "You must use the language provided by the user to present the results.",
                "Add references to the sources used in the answer.",
                "Add emojis to make the presentation more interactive.",
                "Translate the answer to Portuguese."
            ],
            show_tool_calls=True,
            markdown=True,
            add_references=True,
        )
        
        self.presenter = Agent(
            name="Presenter",
            role="You are a professional researcher who presents the results of the research.",
            model=base_model,
            instructions=[
                "You are multilingual",
                "You must present the results in a clear and concise manner.",
                "Cleanup the presentation to make it more readable.",
                "Remove unnecessary information.",
                "Remove everything related to the run itself like: 'Running: transfer_', just use plain text",
                "You must use the language provided by the user to present the results.",
                "Add references to the sources used in the answer.",
                "Add emojis to make the presentation more interactive.",
                "Translate the answer to Portuguese."
            ],
            add_references=True,
        )
    
    def _format_prompt(self, role, instructions, query):
        """Format the prompt for the model"""
        # Validate inputs
        if not role or not role.strip():
            role = "Assistant"
            logging.warning("Empty role provided to _format_prompt, using default: 'Assistant'")
        
        if not instructions or not instructions.strip():
            instructions = "Please process the following input."
            logging.warning("Empty instructions provided to _format_prompt, using default instructions")
        
        if not query or not query.strip():
            query = "No input provided."
            logging.warning("Empty query provided to _format_prompt, using placeholder text")
        
        # Format the prompt
        formatted_prompt = f"""Task: {role}

Instructions:
{instructions}

Input: {query}

Output:"""
        
        # Ensure the prompt is not empty
        if not formatted_prompt or not formatted_prompt.strip():
            logging.error("Generated an empty prompt despite validation")
            formatted_prompt = "Please provide a response."
        
        return formatted_prompt
    
    @staticmethod
    @st.cache_resource
    def _load_model():
        """Load the model and tokenizer with retry logic"""
        # Define retry decorator for model loading
        @retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
        def load_with_retry(model_path):
            try:
                logging.info(f"Attempting to load model from {model_path}")
                tokenizer = AutoTokenizer.from_pretrained(model_path, cache_dir="./model_cache")
                model = AutoModelForSeq2SeqLM.from_pretrained(
                    model_path, 
                    device_map="cpu", 
                    low_cpu_mem_usage=True,
                    cache_dir="./model_cache"
                )
                logging.info(f"Successfully loaded model from {model_path}")
                return model, tokenizer
            except Exception as e:
                logging.error(f"Error loading model from {model_path}: {str(e)}")
                raise e
        
        # Try primary model first
        try:
            return load_with_retry(MODEL_PATH)
        except Exception as primary_error:
            logging.error(f"Failed to load primary model ({MODEL_PATH}): {str(primary_error)}")
            
            # Try fallback models
            fallback_models = [
                "google/flan-t5-base",
                "google/flan-t5-small",
                "facebook/bart-base",
                "t5-small"
            ]
            
            for fallback_model in fallback_models:
                if fallback_model != MODEL_PATH:  # Skip if it's the same as the primary model
                    try:
                        logging.info(f"Trying fallback model: {fallback_model}")
                        return load_with_retry(fallback_model)
                    except Exception as fallback_error:
                        logging.error(f"Failed to load fallback model ({fallback_model}): {str(fallback_error)}")
            
            # If all models fail, try a final tiny model
            try:
                logging.info("Trying final fallback to t5-small")
                return load_with_retry("t5-small")
            except Exception as final_error:
                logging.error(f"All model loading attempts failed. Final error: {str(final_error)}")
                st.error("Failed to load any model. Please check your internet connection and try again.")
                return None, None
    
    def _initialize_local_model(self):
        """Initialize local model as fallback"""
        if self.model is None or self.tokenizer is None:
            self.model, self.tokenizer = self._load_model()
        
        if self.model is None or self.tokenizer is None:
            # Create a dummy model that returns a helpful message
            logging.error("Failed to load any model. Creating a dummy model.")
            return DummyModel()
            
        # Create a LocalHuggingFaceModel instance compatible with Agno
        return LocalHuggingFaceModel(self.model, self.tokenizer, max_length=512)
    
    def generate_answer(self, query: str) -> str:
        try:
            logging.info(f"Generating answer for query: {query}")
            
            # Validate input query
            if not query or not query.strip():
                logging.error("Empty query provided")
                return "Error: Please provide a non-empty query"
                
            # Check if models are available
            if isinstance(self.translator, DummyModel) or isinstance(self.researcher, DummyModel) or \
               isinstance(self.summarizer, DummyModel) or isinstance(self.presenter, DummyModel):
                logging.error("One or more models are not available")
                return """
                # 🚨 Serviço Temporariamente Indisponível 🚨
                
                Desculpe, estamos enfrentando problemas de conexão com nossos serviços de modelo de linguagem.
                
                ## Possíveis causas:
                - Problemas de conexão com a internet
                - Servidores do Hugging Face podem estar sobrecarregados ou temporariamente indisponíveis
                - Limitações de recursos do sistema
                
                ## O que você pode fazer:
                - Tente novamente mais tarde
                - Verifique sua conexão com a internet
                - Entre em contato com o suporte se o problema persistir
                
                Agradecemos sua compreensão!
                """
                
            # Format translation prompt
            translation_prompt = self._format_prompt(
                role="Translate the following text to English",
                instructions="Provide a direct English translation of the input text.",
                query=query
            )
            logging.info(f"Translation prompt: {translation_prompt}")
            
            # Validate translation prompt
            if not translation_prompt or not translation_prompt.strip():
                logging.error("Empty translation prompt generated")
                return "Error: Unable to generate translation prompt"
            
            # Get English translation
            translation = self.translator.run(prompt=translation_prompt, stream=False)
            logging.info(f"Translation result type: {type(translation)}")
            logging.info(f"Translation result: {translation}")
            
            if not translation:
                logging.error("Translation failed")
                return "Error: Unable to translate the query"
            
            if hasattr(translation, 'content'):
                translation_content = translation.content
                logging.info(f"Translation content: {translation_content}")
            else:
                translation_content = str(translation)
                logging.info(f"Translation as string: {translation_content}")

            # Validate translation content
            if not translation_content or not translation_content.strip():
                logging.error("Empty translation content")
                return "Error: Empty translation result"
            
            # Format research prompt
            research_prompt = self._format_prompt(
                role="Research Assistant",
                instructions="Provide a clear and concise answer based on scientific sources.",
                query=translation_content
            )
            logging.info(f"Research prompt: {research_prompt}")
            
            # Validate research prompt
            if not research_prompt or not research_prompt.strip():
                logging.error("Empty research prompt generated")
                return "Error: Unable to generate research prompt"
            
            # Get research results
            research_results = self.researcher.run(prompt=research_prompt, stream=False)
            logging.info(f"Research results type: {type(research_results)}")
            logging.info(f"Research results: {research_results}")
            
            if not research_results:
                logging.error("Research failed")
                return "Error: Unable to perform research"

            if hasattr(research_results, 'content'):
                research_content = research_results.content
                logging.info(f"Research content: {research_content}")
            else:
                research_content = str(research_results)
                logging.info(f"Research as string: {research_content}")

            # Validate research content
            if not research_content or not research_content.strip():
                logging.error("Empty research content")
                return "Error: Empty research result"
                
            logging.info(f"Research results: {research_results}")
            
            # Format summary prompt
            summary_prompt = self._format_prompt(
                role="Summary Assistant",
                instructions="Provide a clear and concise summary of the research results.",
                query=research_content
            )
            logging.info(f"Summary prompt: {summary_prompt}")
            
            # Validate summary prompt
            if not summary_prompt or not summary_prompt.strip():
                logging.error("Empty summary prompt generated")
                return "Error: Unable to generate summary prompt"
            
            # Get summary
            summary = self.summarizer.run(prompt=summary_prompt, stream=False)
            logging.info(f"Summary type: {type(summary)}")
            logging.info(f"Summary: {summary}")
            
            if not summary:
                logging.error("Summary failed")
                return "Error: Unable to generate summary"

            if hasattr(summary, 'content'):
                summary_content = summary.content
                logging.info(f"Summary content: {summary_content}")
            else:
                summary_content = str(summary)
                logging.info(f"Summary as string: {summary_content}")

            # Validate summary content
            if not summary_content or not summary_content.strip():
                logging.error("Empty summary content")
                return "Error: Empty summary result"
                
            logging.info(f"Summary: {summary}")
            
            # Format presentation prompt
            presentation_prompt = self._format_prompt(
                role="Presentation Assistant",
                instructions="Provide a clear and concise presentation of the research results.",
                query=summary_content
            )
            logging.info(f"Presentation prompt: {presentation_prompt}")
            
            # Validate presentation prompt
            if not presentation_prompt or not presentation_prompt.strip():
                logging.error("Empty presentation prompt generated")
                return "Error: Unable to generate presentation prompt"
            
            # Get presentation
            presentation = self.presenter.run(prompt=presentation_prompt, stream=False)
            logging.info(f"Presentation type: {type(presentation)}")
            logging.info(f"Presentation: {presentation}")
            
            if not presentation:
                logging.error("Presentation failed")
                return "Error: Unable to generate presentation"

            if hasattr(presentation, 'content'):
                presentation_content = presentation.content
                logging.info(f"Presentation content: {presentation_content}")
                
                # Check if content is empty or just whitespace
                if not presentation_content.strip():
                    logging.error("Presentation content is empty or whitespace")
                    return "Error: Empty presentation content"
                
                return presentation_content
            else:
                presentation_str = str(presentation)
                logging.info(f"Presentation as string: {presentation_str}")
                
                # Check if content is empty or just whitespace
                if not presentation_str.strip():
                    logging.error("Presentation string is empty or whitespace")
                    return "Error: Empty presentation string"
                
                return presentation_str

        except Exception as e:
            logging.error(f"Error generating answer: {str(e)}")
            if hasattr(e, 'args') and len(e.args) > 0:
                error_message = e.args[0]
            else:
                error_message = str(e)
            return f"Error: {error_message}"