Spaces:
Sleeping
Sleeping
feat: agentic approach
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import logging
|
3 |
+
from services.model_handler import ModelHandler
|
4 |
+
|
5 |
+
# Configure logging
|
6 |
+
logging.basicConfig(
|
7 |
+
level=logging.INFO,
|
8 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
9 |
+
)
|
10 |
+
|
11 |
+
class AutismResearchApp:
|
12 |
+
def __init__(self):
|
13 |
+
"""Initialize the application components"""
|
14 |
+
self.model_handler = ModelHandler()
|
15 |
+
|
16 |
+
def _setup_streamlit(self):
|
17 |
+
"""Setup Streamlit UI components"""
|
18 |
+
st.image("https://images.unsplash.com/photo-1642370324000-f204b23aafe0?q=80&w=4072&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D")
|
19 |
+
st.title("🧩 Além do Espectro 🧠✨")
|
20 |
+
st.subheader("Tudo o que você precisa saber além dos rotulos e explorando a riqueza das neurodivergências")
|
21 |
+
st.markdown("""
|
22 |
+
Pergunte o que quiser e eu vou analisar os últimos artigos científicos e fornecer uma resposta baseada em evidências.
|
23 |
+
""")
|
24 |
+
|
25 |
+
def run(self):
|
26 |
+
"""Run the main application loop"""
|
27 |
+
self._setup_streamlit()
|
28 |
+
|
29 |
+
# Initialize session state for papers
|
30 |
+
if 'papers' not in st.session_state:
|
31 |
+
st.session_state.papers = []
|
32 |
+
|
33 |
+
# Get user query
|
34 |
+
col1, col2 = st.columns(2, vertical_alignment="bottom", gap="small")
|
35 |
+
|
36 |
+
query = col1.text_input("O que você precisa saber?")
|
37 |
+
if col2.button("Enviar"):
|
38 |
+
# Show status while processing
|
39 |
+
with st.status("Processando sua Pergunta...") as status:
|
40 |
+
status.write("🔍 Buscando papers de pesquisa relevantes...")
|
41 |
+
status.write("📚 Analisando papers de pesquisa...")
|
42 |
+
status.write("✍️ Gerando resposta...")
|
43 |
+
answer = self.model_handler.generate_answer(query)
|
44 |
+
|
45 |
+
status.write("✨ Resposta gerada! Exibindo resultados...")
|
46 |
+
|
47 |
+
st.success("✅ Resposta gerada com base nos artigos de pesquisa encontrados.")
|
48 |
+
|
49 |
+
|
50 |
+
st.markdown("### Resposta")
|
51 |
+
st.markdown(answer)
|
52 |
+
|
53 |
+
def main():
|
54 |
+
app = AutismResearchApp()
|
55 |
+
app.run()
|
56 |
+
|
57 |
+
if __name__ == "__main__":
|
58 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers>=4.36.2
|
2 |
+
streamlit>=1.29.0
|
3 |
+
--extra-index-url https://download.pytorch.org/whl/cpu
|
4 |
+
accelerate>=0.26.0
|
5 |
+
arxiv>=1.4.7
|
6 |
+
python-dotenv>=1.0.0
|
7 |
+
agno==1.0.6
|
8 |
+
ollama>=0.4.7
|
9 |
+
pypdf>=3.11.1
|
10 |
+
watchdog>=2.3.1
|
services/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
services/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (179 Bytes). View file
|
|
services/__pycache__/model_handler.cpython-311.pyc
ADDED
Binary file (6.53 kB). View file
|
|
services/__pycache__/research_fetcher.cpython-311.pyc
ADDED
Binary file (17.9 kB). View file
|
|
services/model_handler.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import streamlit as st
|
4 |
+
from agno.agent import Agent
|
5 |
+
from agno.models.ollama import Ollama
|
6 |
+
from agno.tools.arxiv import ArxivTools
|
7 |
+
from agno.tools.pubmed import PubmedTools
|
8 |
+
|
9 |
+
MODEL_PATH = "meta-llama/Llama-3.2-1B"
|
10 |
+
|
11 |
+
class ModelHandler:
|
12 |
+
def __init__(self):
|
13 |
+
"""Initialize the model handler"""
|
14 |
+
self.model = None
|
15 |
+
self.tokenizer = None
|
16 |
+
self.translator = None
|
17 |
+
self.researcher = None
|
18 |
+
self.summarizer = None
|
19 |
+
self.presenter = None
|
20 |
+
self._initialize_model()
|
21 |
+
|
22 |
+
def _initialize_model(self):
|
23 |
+
"""Initialize model and tokenizer"""
|
24 |
+
self.model, self.tokenizer = self._load_model()
|
25 |
+
self.translator = Agent(
|
26 |
+
name="Translator",
|
27 |
+
role="You will translate the query to English",
|
28 |
+
model=Ollama(id="llama3.2:1b"),
|
29 |
+
goal="Translate to English",
|
30 |
+
instructions=[
|
31 |
+
"Translate the query to English"
|
32 |
+
]
|
33 |
+
)
|
34 |
+
|
35 |
+
self.researcher = Agent(
|
36 |
+
name="Researcher",
|
37 |
+
role="You are a research scholar who specializes in autism research.",
|
38 |
+
model=Ollama(id="llama3.2:1b"),
|
39 |
+
tools=[ArxivTools(), PubmedTools()],
|
40 |
+
instructions=[
|
41 |
+
"You need to understand the context of the question to provide the best answer based on your tools."
|
42 |
+
"Be precise and provide just enough information to be useful",
|
43 |
+
"You must cite the sources used in your answer."
|
44 |
+
"You must create an accessible summary.",
|
45 |
+
"The content must be for people without autism knowledge.",
|
46 |
+
"Focus in the main findings of the paper taking in consideration the question.",
|
47 |
+
"The answer must be brief."
|
48 |
+
],
|
49 |
+
show_tool_calls=True,
|
50 |
+
)
|
51 |
+
self.summarizer = Agent(
|
52 |
+
name="Summarizer",
|
53 |
+
role="You are a specialist in summarizing research papers for people without autism knowledge.",
|
54 |
+
model=Ollama(id="llama3.2:1b"),
|
55 |
+
instructions=[
|
56 |
+
"You must provide just enough information to be useful",
|
57 |
+
"You must cite the sources used in your answer.",
|
58 |
+
"You must be clear and concise.",
|
59 |
+
"You must create an accessible summary.",
|
60 |
+
"The content must be for people without autism knowledge.",
|
61 |
+
"Focus in the main findings of the paper taking in consideration the question.",
|
62 |
+
"The answer must be brief."
|
63 |
+
"Remove everything related to the run itself like: 'Running: transfer_', just use plain text",
|
64 |
+
"You must use the language provided by the user to present the results.",
|
65 |
+
"Add references to the sources used in the answer.",
|
66 |
+
"Add emojis to make the presentation more interactive."
|
67 |
+
"Translaste the answer to Portuguese."
|
68 |
+
],
|
69 |
+
show_tool_calls=True,
|
70 |
+
markdown=True,
|
71 |
+
add_references=True,
|
72 |
+
)
|
73 |
+
|
74 |
+
self.presenter = Agent(
|
75 |
+
name="Presenter",
|
76 |
+
role="You are a professional researcher who presents the results of the research.",
|
77 |
+
model=Ollama(id="llama3.2:1b"),
|
78 |
+
instructions=[
|
79 |
+
"You are multilingual",
|
80 |
+
"You must present the results in a clear and concise manner.",
|
81 |
+
"Clenaup the presentation to make it more readable.",
|
82 |
+
"Remove unnecessary information.",
|
83 |
+
"Remove everything related to the run itself like: 'Running: transfer_', just use plain text",
|
84 |
+
"You must use the language provided by the user to present the results.",
|
85 |
+
"Add references to the sources used in the answer.",
|
86 |
+
"Add emojis to make the presentation more interactive."
|
87 |
+
"Translaste the answer to Portuguese."
|
88 |
+
],
|
89 |
+
add_references=True,
|
90 |
+
)
|
91 |
+
|
92 |
+
|
93 |
+
@staticmethod
|
94 |
+
@st.cache_resource
|
95 |
+
@st.cache_data
|
96 |
+
def _load_model():
|
97 |
+
try:
|
98 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
99 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH)
|
100 |
+
return model, tokenizer
|
101 |
+
except Exception as e:
|
102 |
+
logging.error(f"Error loading model: {str(e)}")
|
103 |
+
return None, None
|
104 |
+
|
105 |
+
def generate_answer(self, query: str) -> str:
|
106 |
+
try:
|
107 |
+
translator = self.translator.run(query, stream=False)
|
108 |
+
logging.info(f"Translated query")
|
109 |
+
research = self.researcher.run(translator.content, stream=False)
|
110 |
+
logging.info(f"Generated research")
|
111 |
+
summary = self.summarizer.run(research.content, stream=False)
|
112 |
+
logging.info(f"Generated summary")
|
113 |
+
presentation = self.presenter.run(summary.content, stream=False)
|
114 |
+
logging.info(f"Generated presentation")
|
115 |
+
|
116 |
+
if not presentation.content:
|
117 |
+
return self._get_fallback_response()
|
118 |
+
return presentation.content
|
119 |
+
except Exception as e:
|
120 |
+
logging.error(f"Error generating answer: {str(e)}")
|
121 |
+
return self._get_fallback_response()
|
122 |
+
|
123 |
+
@staticmethod
|
124 |
+
def _get_fallback_response() -> str:
|
125 |
+
"""Provide a friendly, helpful fallback response"""
|
126 |
+
return """
|
127 |
+
Peço descula, mas encontrei um erro ao gerar a resposta. Tente novamente ou refaça a sua pergunta.
|
128 |
+
"""
|