Spaces:
Sleeping
Sleeping
refactor: light model
Browse files- requirements.txt +4 -2
- services/model_handler.py +13 -8
requirements.txt
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
transformers>=4.36.2
|
2 |
streamlit>=1.29.0
|
3 |
--extra-index-url https://download.pytorch.org/whl/cpu
|
|
|
4 |
accelerate>=0.26.0
|
5 |
arxiv>=1.4.7
|
6 |
python-dotenv>=1.0.0
|
7 |
agno==1.0.6
|
8 |
-
ollama>=0.4.7
|
9 |
pypdf>=3.11.1
|
10 |
-
watchdog>=2.3.1
|
|
|
|
|
|
1 |
transformers>=4.36.2
|
2 |
streamlit>=1.29.0
|
3 |
--extra-index-url https://download.pytorch.org/whl/cpu
|
4 |
+
torch>=2.1.0
|
5 |
accelerate>=0.26.0
|
6 |
arxiv>=1.4.7
|
7 |
python-dotenv>=1.0.0
|
8 |
agno==1.0.6
|
|
|
9 |
pypdf>=3.11.1
|
10 |
+
watchdog>=2.3.1
|
11 |
+
bitsandbytes>=0.41.0
|
12 |
+
sentencepiece>=0.1.99
|
services/model_handler.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import logging
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import streamlit as st
|
4 |
from agno.agent import Agent
|
@@ -6,7 +7,7 @@ from agno.models.ollama import Ollama
|
|
6 |
from agno.tools.arxiv import ArxivTools
|
7 |
from agno.tools.pubmed import PubmedTools
|
8 |
|
9 |
-
MODEL_PATH = "
|
10 |
|
11 |
class ModelHandler:
|
12 |
def __init__(self):
|
@@ -22,10 +23,14 @@ class ModelHandler:
|
|
22 |
def _initialize_model(self):
|
23 |
"""Initialize model and tokenizer"""
|
24 |
self.model, self.tokenizer = self._load_model()
|
|
|
|
|
|
|
|
|
25 |
self.translator = Agent(
|
26 |
name="Translator",
|
27 |
role="You will translate the query to English",
|
28 |
-
model=
|
29 |
goal="Translate to English",
|
30 |
instructions=[
|
31 |
"Translate the query to English"
|
@@ -35,7 +40,7 @@ class ModelHandler:
|
|
35 |
self.researcher = Agent(
|
36 |
name="Researcher",
|
37 |
role="You are a research scholar who specializes in autism research.",
|
38 |
-
model=
|
39 |
tools=[ArxivTools(), PubmedTools()],
|
40 |
instructions=[
|
41 |
"You need to understand the context of the question to provide the best answer based on your tools."
|
@@ -48,10 +53,11 @@ class ModelHandler:
|
|
48 |
],
|
49 |
show_tool_calls=True,
|
50 |
)
|
|
|
51 |
self.summarizer = Agent(
|
52 |
name="Summarizer",
|
53 |
role="You are a specialist in summarizing research papers for people without autism knowledge.",
|
54 |
-
model=
|
55 |
instructions=[
|
56 |
"You must provide just enough information to be useful",
|
57 |
"You must cite the sources used in your answer.",
|
@@ -74,7 +80,7 @@ class ModelHandler:
|
|
74 |
self.presenter = Agent(
|
75 |
name="Presenter",
|
76 |
role="You are a professional researcher who presents the results of the research.",
|
77 |
-
model=
|
78 |
instructions=[
|
79 |
"You are multilingual",
|
80 |
"You must present the results in a clear and concise manner.",
|
@@ -89,16 +95,15 @@ class ModelHandler:
|
|
89 |
add_references=True,
|
90 |
)
|
91 |
|
92 |
-
|
93 |
@staticmethod
|
94 |
@st.cache_resource
|
95 |
-
@st.cache_data
|
96 |
def _load_model():
|
97 |
try:
|
98 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
99 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH)
|
100 |
return model, tokenizer
|
101 |
except Exception as e:
|
|
|
102 |
logging.error(f"Error loading model: {str(e)}")
|
103 |
return None, None
|
104 |
|
|
|
1 |
import logging
|
2 |
+
from transformers import pipeline
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import streamlit as st
|
5 |
from agno.agent import Agent
|
|
|
7 |
from agno.tools.arxiv import ArxivTools
|
8 |
from agno.tools.pubmed import PubmedTools
|
9 |
|
10 |
+
MODEL_PATH = "facebook/opt-125m" # Modelo muito mais leve
|
11 |
|
12 |
class ModelHandler:
|
13 |
def __init__(self):
|
|
|
23 |
def _initialize_model(self):
|
24 |
"""Initialize model and tokenizer"""
|
25 |
self.model, self.tokenizer = self._load_model()
|
26 |
+
|
27 |
+
# Usando pipeline para text-generation em vez do Ollama
|
28 |
+
text_generation = pipeline("text-generation", model=MODEL_PATH, device="cpu")
|
29 |
+
|
30 |
self.translator = Agent(
|
31 |
name="Translator",
|
32 |
role="You will translate the query to English",
|
33 |
+
model=text_generation,
|
34 |
goal="Translate to English",
|
35 |
instructions=[
|
36 |
"Translate the query to English"
|
|
|
40 |
self.researcher = Agent(
|
41 |
name="Researcher",
|
42 |
role="You are a research scholar who specializes in autism research.",
|
43 |
+
model=text_generation,
|
44 |
tools=[ArxivTools(), PubmedTools()],
|
45 |
instructions=[
|
46 |
"You need to understand the context of the question to provide the best answer based on your tools."
|
|
|
53 |
],
|
54 |
show_tool_calls=True,
|
55 |
)
|
56 |
+
|
57 |
self.summarizer = Agent(
|
58 |
name="Summarizer",
|
59 |
role="You are a specialist in summarizing research papers for people without autism knowledge.",
|
60 |
+
model=text_generation,
|
61 |
instructions=[
|
62 |
"You must provide just enough information to be useful",
|
63 |
"You must cite the sources used in your answer.",
|
|
|
80 |
self.presenter = Agent(
|
81 |
name="Presenter",
|
82 |
role="You are a professional researcher who presents the results of the research.",
|
83 |
+
model=text_generation,
|
84 |
instructions=[
|
85 |
"You are multilingual",
|
86 |
"You must present the results in a clear and concise manner.",
|
|
|
95 |
add_references=True,
|
96 |
)
|
97 |
|
|
|
98 |
@staticmethod
|
99 |
@st.cache_resource
|
|
|
100 |
def _load_model():
|
101 |
try:
|
102 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
103 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", load_in_8bit=True)
|
104 |
return model, tokenizer
|
105 |
except Exception as e:
|
106 |
+
st.error(f"Error loading model: {str(e)}")
|
107 |
logging.error(f"Error loading model: {str(e)}")
|
108 |
return None, None
|
109 |
|