Spaces:
Sleeping
Sleeping
fix: tenacity
Browse files- requirements.txt +2 -1
- services/model_handler.py +26 -2
requirements.txt
CHANGED
@@ -8,4 +8,5 @@ python-dotenv>=1.0.0
|
|
8 |
agno==1.1.0
|
9 |
pypdf>=3.11.1
|
10 |
watchdog>=2.3.1
|
11 |
-
sentencepiece>=0.1.99
|
|
|
|
8 |
agno==1.1.0
|
9 |
pypdf>=3.11.1
|
10 |
watchdog>=2.3.1
|
11 |
+
sentencepiece>=0.1.99
|
12 |
+
tenacity>=8.2.2
|
services/model_handler.py
CHANGED
@@ -6,8 +6,11 @@ from agno.tools.arxiv import ArxivTools
|
|
6 |
from agno.tools.pubmed import PubmedTools
|
7 |
from agno.models.huggingface import HuggingFace
|
8 |
import os
|
|
|
|
|
9 |
|
10 |
MODEL_PATH = "google/flan-t5-small"
|
|
|
11 |
class ModelHandler:
|
12 |
def __init__(self):
|
13 |
"""Initialize the model handler"""
|
@@ -22,7 +25,13 @@ class ModelHandler:
|
|
22 |
def _initialize_model(self):
|
23 |
"""Initialize model and tokenizer"""
|
24 |
self.model, self.tokenizer = self._load_model()
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
self.translator = Agent(
|
28 |
name="Translator",
|
@@ -42,7 +51,7 @@ class ModelHandler:
|
|
42 |
instructions=[
|
43 |
"You need to understand the context of the question to provide the best answer based on your tools."
|
44 |
"Be precise and provide just enough information to be useful",
|
45 |
-
"You must cite the sources used in your answer."
|
46 |
"You must create an accessible summary.",
|
47 |
"The content must be for people without autism knowledge.",
|
48 |
"Focus in the main findings of the paper taking in consideration the question.",
|
@@ -104,6 +113,21 @@ class ModelHandler:
|
|
104 |
logging.error(f"Error loading model: {str(e)}")
|
105 |
return None, None
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
def generate_answer(self, query: str) -> str:
|
108 |
try:
|
109 |
translator = self.translator.run(query, stream=False)
|
|
|
6 |
from agno.tools.pubmed import PubmedTools
|
7 |
from agno.models.huggingface import HuggingFace
|
8 |
import os
|
9 |
+
import time
|
10 |
+
from tenacity import retry, stop_after_attempt, wait_exponential
|
11 |
|
12 |
MODEL_PATH = "google/flan-t5-small"
|
13 |
+
|
14 |
class ModelHandler:
|
15 |
def __init__(self):
|
16 |
"""Initialize the model handler"""
|
|
|
25 |
def _initialize_model(self):
|
26 |
"""Initialize model and tokenizer"""
|
27 |
self.model, self.tokenizer = self._load_model()
|
28 |
+
|
29 |
+
try:
|
30 |
+
base_model = self._initialize_hf_model_with_retry()
|
31 |
+
except Exception as e:
|
32 |
+
logging.warning(f"Failed to initialize HuggingFace API model, falling back to local model: {str(e)}")
|
33 |
+
# Fallback to local model
|
34 |
+
base_model = self._initialize_local_model()
|
35 |
|
36 |
self.translator = Agent(
|
37 |
name="Translator",
|
|
|
51 |
instructions=[
|
52 |
"You need to understand the context of the question to provide the best answer based on your tools."
|
53 |
"Be precise and provide just enough information to be useful",
|
54 |
+
"You must cite the sources used in your answer.",
|
55 |
"You must create an accessible summary.",
|
56 |
"The content must be for people without autism knowledge.",
|
57 |
"Focus in the main findings of the paper taking in consideration the question.",
|
|
|
113 |
logging.error(f"Error loading model: {str(e)}")
|
114 |
return None, None
|
115 |
|
116 |
+
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
|
117 |
+
def _initialize_hf_model_with_retry(self):
|
118 |
+
"""Initialize HuggingFace model with retry logic"""
|
119 |
+
api_key = os.getenv("hfToken")
|
120 |
+
if not api_key:
|
121 |
+
raise ValueError("HuggingFace API key not found in environment variables")
|
122 |
+
|
123 |
+
return HuggingFace(id=MODEL_PATH, api_key=api_key)
|
124 |
+
|
125 |
+
def _initialize_local_model(self):
|
126 |
+
"""Initialize local model as fallback"""
|
127 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_PATH)
|
128 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
129 |
+
return {"model": model, "tokenizer": tokenizer}
|
130 |
+
|
131 |
def generate_answer(self, query: str) -> str:
|
132 |
try:
|
133 |
translator = self.translator.run(query, stream=False)
|