File size: 7,830 Bytes
b051880
 
f98a043
0707d05
b051880
f0f9dff
 
086ae8e
b051880
086ae8e
 
f8ceae5
086ae8e
8a3e216
b051880
8a3e216
 
 
36fbec5
9d79b23
086ae8e
8a3e216
 
 
b051880
086ae8e
b051880
 
 
 
086ae8e
 
ebb9e28
086ae8e
cac62cc
086ae8e
 
8a3e216
 
b051880
8a3e216
b051880
8a3e216
0707d05
086ae8e
0707d05
 
b051880
f0f9dff
086ae8e
8a3e216
b051880
 
 
 
 
 
 
 
 
 
f0f9dff
086ae8e
8a3e216
 
 
 
 
cac62cc
ebb9e28
 
 
086ae8e
ebb9e28
086ae8e
 
 
 
8a3e216
b051880
8a3e216
086ae8e
8a3e216
 
 
 
 
b051880
 
 
8a3e216
086ae8e
b051880
8a3e216
b051880
086ae8e
b051880
086ae8e
b051880
 
086ae8e
ebb9e28
b051880
086ae8e
b051880
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a3e216
b051880
086ae8e
8a3e216
 
b051880
086ae8e
 
 
 
 
 
 
 
 
ebb9e28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a3e216
b051880
086ae8e
ebb9e28
086ae8e
 
 
ebb9e28
b051880
 
 
 
 
 
 
ebb9e28
b051880
 
8a3e216
b051880
 
 
8a3e216
 
b051880
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os
import tempfile
import cv2
import streamlit as st
import PIL
from ultralytics import YOLO

# Required libraries: streamlit, opencv-python-headless, ultralytics, Pillow

# Replace with your model URL or local file path
model_path = 'https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/best.pt'

# Configure page layout for Hugging Face Spaces
st.set_page_config(
    page_title="Fire Watch using AI vision models",
    page_icon="🔥",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Sidebar: Upload file, select confidence and video shortening options.
with st.sidebar:
    st.header("IMAGE/VIDEO UPLOAD")
    source_file = st.file_uploader(
        "Choose an image or video...", type=("jpg", "jpeg", "png", "bmp", "webp", "mp4"))
    confidence = float(st.slider("Select Model Confidence", 25, 100, 40)) / 100
    video_option = st.selectbox(
        "Select Video Shortening Option", 
        ["Original FPS", "1 fps", "1 frame per 5 seconds", "1 frame per 10 seconds", "1 frame per 15 seconds"]
    )
    progress_text = st.empty()
    progress_bar = st.progress(0)
    # Container for our dynamic slider (frame viewer)
    slider_container = st.empty()

# Main page header and intro images
st.title("WildfireWatch: Detecting Wildfire using AI")
col1, col2 = st.columns(2)
with col1:
    st.image("https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_1.jpeg", use_column_width=True)
with col2:
    st.image("https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_3.png", use_column_width=True)

st.markdown("""
Fires in Colorado present a serious challenge, threatening urban communities, highways, and even remote areas. Early detection is critical. WildfireWatch leverages YOLOv8 for real‐time fire and smoke detection in images and videos.
""")
st.markdown("---")
st.header("Fire Detection:")

# Create two columns for displaying the upload and results.
col1, col2 = st.columns(2)
if source_file:
    if source_file.type.split('/')[0] == 'image':
        uploaded_image = PIL.Image.open(source_file)
        st.image(uploaded_image, caption="Uploaded Image", use_column_width=True)
    else:
        tfile = tempfile.NamedTemporaryFile(delete=False)
        tfile.write(source_file.read())
        vidcap = cv2.VideoCapture(tfile.name)
else:
    st.info("Please upload an image or video file to begin.")

# Load YOLO model
try:
    model = YOLO(model_path)
except Exception as ex:
    st.error(f"Unable to load model. Check the specified path: {model_path}")
    st.error(ex)

# We'll use a session_state variable to remember the current slider value.
if "frame_slider" not in st.session_state:
    st.session_state.frame_slider = 0

# A container to display the currently viewed frame.
viewer_slot = st.empty()

# When the user clicks the detect button...
if st.sidebar.button("Let's Detect Wildfire"):
    if not source_file:
        st.warning("No file uploaded!")
    elif source_file.type.split('/')[0] == 'image':
        # Process image input.
        res = model.predict(uploaded_image, conf=confidence)
        boxes = res[0].boxes
        res_plotted = res[0].plot()[:, :, ::-1]
        with col2:
            st.image(res_plotted, caption='Detected Image', use_column_width=True)
            with st.expander("Detection Results"):
                for box in boxes:
                    st.write(box.xywh)
    else:
        # Process video input.
        processed_frames = []
        frame_count = 0

        # Get video properties.
        orig_fps = vidcap.get(cv2.CAP_PROP_FPS)
        total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
        width  = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))

        # Determine sampling interval and output fps based on the option selected.
        if video_option == "Original FPS":
            sample_interval = 1
            output_fps = orig_fps
        elif video_option == "1 fps":
            sample_interval = int(orig_fps) if orig_fps > 0 else 1
            output_fps = 1
        elif video_option == "1 frame per 5 seconds":
            sample_interval = int(orig_fps * 5) if orig_fps > 0 else 5
            output_fps = 1
        elif video_option == "1 frame per 10 seconds":
            sample_interval = int(orig_fps * 10) if orig_fps > 0 else 10
            output_fps = 1
        elif video_option == "1 frame per 15 seconds":
            sample_interval = int(orig_fps * 15) if orig_fps > 0 else 15
            output_fps = 1
        else:
            sample_interval = 1
            output_fps = orig_fps

        success, image = vidcap.read()
        while success:
            if frame_count % sample_interval == 0:
                # Run detection on current frame.
                res = model.predict(image, conf=confidence)
                res_plotted = res[0].plot()[:, :, ::-1]
                processed_frames.append(res_plotted)

                # Update progress.
                if total_frames > 0:
                    progress_pct = int((frame_count / total_frames) * 100)
                    progress_text.text(f"Processing frame {frame_count} / {total_frames} ({progress_pct}%)")
                    progress_bar.progress(min(100, progress_pct))
                else:
                    progress_text.text(f"Processing frame {frame_count}")

                # Only update slider if we have at least one processed frame.
                if len(processed_frames) > 0:
                    # Clear the previous slider widget.
                    slider_container.empty()
                    # Determine the current slider value.
                    curr_slider_val = st.session_state.get("frame_slider", len(processed_frames)-1)
                    # Ensure the slider value is within the new bounds.
                    if curr_slider_val > len(processed_frames)-1:
                        curr_slider_val = len(processed_frames)-1
                    # Create a new slider. This slider's key is fixed because we cleared the container beforehand.
                    slider_val = slider_container.slider(
                        "Frame Viewer", 
                        min_value=0, 
                        max_value=len(processed_frames)-1, 
                        value=curr_slider_val, 
                        step=1, 
                        key="frame_slider"
                    )
                    st.session_state.frame_slider = slider_val

                    # If the user is at the most recent frame, update the viewer.
                    if slider_val == len(processed_frames)-1:
                        viewer_slot.image(processed_frames[-1], caption=f"Frame {len(processed_frames)-1}", use_column_width=True)
            frame_count += 1
            success, image = vidcap.read()

        # Finalize progress.
        progress_text.text("Video processing complete!")
        progress_bar.progress(100)

        # Create and provide the downloadable shortened video.
        if processed_frames:
            temp_video_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
            fourcc = cv2.VideoWriter_fourcc(*'mp4v')
            out = cv2.VideoWriter(temp_video_file.name, fourcc, output_fps, (width, height))
            for frame in processed_frames:
                out.write(frame)
            out.release()

            st.success("Shortened video created successfully!")
            with open(temp_video_file.name, 'rb') as video_file:
                st.download_button(
                    label="Download Shortened Video",
                    data=video_file.read(),
                    file_name="shortened_video.mp4",
                    mime="video/mp4"
                )
        else:
            st.error("No frames were processed from the video.")