File size: 10,906 Bytes
fa19523
 
 
 
373d8e0
fa19523
005f7bb
fa19523
373d8e0
fa19523
 
 
 
 
7163430
 
c1e180a
fa19523
7163430
 
fa19523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7163430
50a6090
 
 
 
7163430
50a6090
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7163430
50a6090
 
 
 
 
 
 
 
 
 
373d8e0
7163430
2e1efa3
fa19523
 
 
 
 
 
cc07737
7163430
2e1efa3
fa19523
 
 
 
 
 
7163430
 
fa19523
7163430
 
 
fa19523
7163430
fa19523
 
 
 
 
 
 
 
 
069a909
7163430
373d8e0
7163430
fa19523
 
7163430
fa19523
 
7163430
 
 
fa19523
 
 
 
 
 
 
 
 
7163430
 
fa19523
 
 
 
 
 
 
 
 
 
 
 
7163430
fa19523
 
 
 
 
 
 
 
 
 
 
 
 
 
7163430
fa19523
 
7163430
fa19523
 
 
 
 
7163430
 
 
fa19523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7163430
fa19523
 
 
 
 
 
 
 
 
7163430
 
 
50a6090
7163430
fa19523
 
 
 
 
7163430
fa19523
 
 
 
 
 
 
 
 
 
 
 
7163430
fa19523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7163430
fa19523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373d8e0
7163430
fa19523
7163430
fa19523
 
 
 
 
 
7163430
 
fa19523
 
 
7163430
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import io
import os
import shutil
import uuid
import torch
import random
import spaces
import gradio as gr
import numpy as np
from PIL import Image, ImageCms
import torch
from diffusers import FluxTransformer2DModel
from diffusers.utils import load_image
from pipeline_flux_control_removal import FluxControlRemovalPipeline

# 初始化模型部分
pipe = None
torch.set_grad_enabled(False)

# 示例数据
image_examples = [
    [
        "example/image/3c43156c-2b44-4ebf-9c47-7707ec60b166.png",
        "example/mask/3c43156c-2b44-4ebf-9c47-7707ec60b166.png"
    ],
    [
        "example/image/0e5124d8-fe43-4b5c-819f-7212f23a6d2a.png",
        "example/mask/0e5124d8-fe43-4b5c-819f-7212f23a6d2a.png"
    ],
    [
        "example/image/0f900fe8-6eab-4f85-8121-29cac9509b94.png",
        "example/mask/0f900fe8-6eab-4f85-8121-29cac9509b94.png"
    ],
    [
        "example/image/3ed1ee18-33b0-4964-b679-0e214a0d8848.png",
        "example/mask/3ed1ee18-33b0-4964-b679-0e214a0d8848.png"
    ],
    [
        "example/image/9a3b6af9-c733-46a4-88d4-d77604194102.png",
        "example/mask/9a3b6af9-c733-46a4-88d4-d77604194102.png"
    ],
    [
        "example/image/87cdf3e2-0fa1-4d80-a228-cbb4aba3f44f.png",
        "example/mask/87cdf3e2-0fa1-4d80-a228-cbb4aba3f44f.png"
    ],
    [
        "example/image/55dd199b-d99b-47a2-a691-edfd92233a6b.png",
        "example/mask/55dd199b-d99b-47a2-a691-edfd92233a6b.png"
    ]
    
]

# 模型加载代码(保持不变)
base_model_path = 'black-forest-labs/FLUX.1-dev'
lora_path = 'theSure/Omnieraser'  
transformer = FluxTransformer2DModel.from_pretrained(base_model_path, subfolder='transformer', torch_dtype=torch.bfloat16)
gr.Info(str(f"Model loading: {int((40 / 100) * 100)}%"))

with torch.no_grad():
    initial_input_channels = transformer.config.in_channels
    new_linear = torch.nn.Linear(
        transformer.x_embedder.in_features*4,
        transformer.x_embedder.out_features,
        bias=transformer.x_embedder.bias is not None,
        dtype=transformer.dtype,
        device=transformer.device,
    )
    new_linear.weight.zero_()
    new_linear.weight[:, :initial_input_channels].copy_(transformer.x_embedder.weight)
    if transformer.x_embedder.bias is not None:
        new_linear.bias.copy_(transformer.x_embedder.bias)
    transformer.x_embedder = new_linear
    transformer.register_to_config(in_channels=initial_input_channels*4)

pipe = FluxControlRemovalPipeline.from_pretrained(
    base_model_path,
    transformer=transformer,
    torch_dtype=torch.bfloat16
).to("cuda")
pipe.transformer.to(torch.bfloat16)
gr.Info(str(f"Model loading: {int((80 / 100) * 100)}%"))
gr.Info(str(f"Inject LoRA: {lora_path}"))
pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors")
gr.Info(str(f"Model loading: {int((100 / 100) * 100)}%"))

# 辅助函数
@spaces.GPU
def set_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)

# 主要处理函数
@spaces.GPU 
def predict(
    input_image,
    prompt,
    ddim_steps,
    seed,
    scale,
    image_state,  # 使用State替代全局变量
    mask_state    # 使用State替代全局变量
):
    if image_state is not None and mask_state is not None:
        input_image["background"] = load_image(image_state).convert("RGB")
        input_image["layers"][0] = load_image(mask_state).convert("RGB")
        
    # 保持原有图像处理逻辑不变
    size1, size2 = input_image["background"].convert("RGB").size
    icc_profile = input_image["background"].info.get('icc_profile')
    if icc_profile:
        gr.Info(str(f"Image detected to contain ICC profile, converting color space to sRGB..."))
        srgb_profile = ImageCms.createProfile("sRGB")
        io_handle = io.BytesIO(icc_profile)   
        src_profile = ImageCms.ImageCmsProfile(io_handle)  
        input_image["background"] = ImageCms.profileToProfile(input_image["background"], src_profile, srgb_profile)
        input_image["background"].info.pop('icc_profile', None)

    # ... 保持原有图像尺寸调整逻辑不变

    # 保持原有seed处理逻辑
    if seed == -1:
        seed = random.randint(1, 2147483647)
        set_seed(seed)
    else:
        set_seed(seed)

    # 保持原有mask处理逻辑
    if image_state is None:
        img=input_image["layers"][0]
        img_data = np.array(img)
        alpha_channel = img_data[:, :, 3]
        white_background = np.ones_like(alpha_channel) * 255
        gray_image = white_background.copy()
        gray_image[alpha_channel == 0] = 0
        gray_image_pil = Image.fromarray(gray_image).convert('L')
    else:
        gray_image_pil = input_image["layers"][0]

    # 保持原有生成逻辑
    result = pipe(
        prompt=prompt,
        control_image=input_image["background"].convert("RGB"),
        control_mask=gray_image_pil.convert("RGB"),
        width=H,
        height=W,
        num_inference_steps=ddim_steps,
        generator=torch.Generator("cuda").manual_seed(seed),
        guidance_scale=scale,
        max_sequence_length=512,
    ).images[0]

    # 保持原有后处理逻辑
    mask_np = np.array(input_image["layers"][0].convert("RGB"))
    red = np.array(input_image["background"]).astype("float") * 1
    red[:, :, 0] = 180.0
    red[:, :, 2] = 0
    red[:, :, 1] = 0
    result_m = np.array(input_image["background"])
    result_m = Image.fromarray(
        (
            result_m.astype("float") * (1 - mask_np.astype("float") / 512.0) + mask_np.astype("float") / 512.0 * red
        ).astype("uint8")
    )

    dict_res = [input_image["background"], input_image["layers"][0], result_m, result]
    dict_out = [result]
    
    return dict_out, dict_res

# 示例处理函数
def process_example(image_paths, mask_paths):
    image = Image.open(image_paths).convert("RGB")
    mask = Image.open(mask_paths).convert("L") 
    black_background = Image.new("RGB", image.size, (0, 0, 0))
    masked_image = Image.composite(black_background, image, mask)
    return masked_image, image_paths, mask_paths  # 返回路径到State

# 界面布局(保持原有CSS和布局逻辑)
custom_css = """

.contain { max-width: 1200px !important; }

.custom-image {
    border: 2px dashed #7e22ce !important;
    border-radius: 12px !important;
    transition: all 0.3s ease !important;
}
.custom-image:hover {
    border-color: #9333ea !important;
    box-shadow: 0 4px 15px rgba(158, 109, 202, 0.2) !important;
}

.btn-primary {
    background: linear-gradient(45deg, #7e22ce, #9333ea) !important;
    border: none !important;
    color: white !important;
    border-radius: 8px !important;
}
#inline-examples {
    border: 1px solid #e2e8f0 !important;
    border-radius: 12px !important;
    padding: 16px !important;
    margin-top: 8px !important;
}

#inline-examples .thumbnail {
    border-radius: 8px !important;
    transition: transform 0.2s ease !important;
}

#inline-examples .thumbnail:hover {
    transform: scale(1.05);
    box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
}

.example-title h3 {
    margin: 0 0 12px 0 !important;
    color: #475569 !important;
    font-size: 1.1em !important;
    display: flex !important;
    align-items: center !important;
}

.example-title h3::before {
    content: "📚";
    margin-right: 8px;
    font-size: 1.2em;
}

.row { align-items: stretch !important; }

.panel { height: 100%; }
"""


with gr.Blocks(
    css=custom_css,
    theme=gr.themes.Soft(
        primary_hue="purple",
        secondary_hue="purple",
        font=[gr.themes.GoogleFont('Inter'), 'sans-serif']
    ),
    title="Omnieraser"
) as demo:
    # 添加状态存储
    image_state = gr.State()
    mask_state = gr.State()

    # 保持原有组件声明
    ddim_steps = gr.Slider(visible=False, value=28)
    scale = gr.Slider(visible=False, value=3.5)
    seed = gr.Slider(visible=False, value=-1)
    removal_prompt = gr.Textbox(visible=False, value="There is nothing here.")

    # 保持原有界面布局
    with gr.Row(equal_height=False):
        with gr.Column(scale=1, variant="panel"):
            gr.Markdown("## 📥 Input Panel")
            with gr.Group():
                input_image = gr.Sketchpad(
                    sources=["upload"],
                    type="pil",
                    label="Upload & Annotate",
                    elem_id="custom-image",
                    interactive=True
                )
            with gr.Row(variant="compact"):
                run_button = gr.Button("🚀 Start Processing", variant="primary", size="lg")
            with gr.Group():
                gr.Markdown("### ⚙️ Control Parameters")
                seed = gr.Slider(
                    label="Random Seed",
                    minimum=-1,
                    maximum=2147483647,
                    value=1234,
                    step=1,
                    info="-1 for random generation"
                )
            with gr.Column(variant="panel"):
                gr.Markdown("### 🖼️ Example Gallery", elem_classes=["example-title"])
                example = gr.Examples(
                    examples=image_examples,
                    inputs=[
                        gr.Image(label="Image", type="filepath",visible=False),
                        gr.Image(label="Mask", type="filepath",visible=False)
                    ],
                    outputs=[input_image, image_state, mask_state],  # 更新状态输出
                    fn=process_example,
                    run_on_click=True,
                    examples_per_page=10,
                    label="Click any example to load",
                    elem_id="inline-examples"
                )

        with gr.Column(scale=1, variant="panel"):
            gr.Markdown("## 📤 Output Panel")
            with gr.Tabs():
                with gr.Tab("Final Result"):
                    inpaint_result = gr.Gallery(
                        label="Generated Image",
                        columns=2,
                        height=450,
                        preview=True,
                        object_fit="contain"
                    )
                with gr.Tab("Visualization Steps"):
                    gallery = gr.Gallery(
                        label="Workflow Steps",
                        columns=2,
                        height=450,
                        object_fit="contain"
                    )

    # 更新按钮点击事件
    run_button.click(
        fn=lambda i, d, s, sc, rp, img, msk: predict(i, rp, d, s, sc, img, msk),
        inputs=[
            input_image,
            ddim_steps,
            seed,
            scale,
            removal_prompt,
            image_state,  # 添加状态输入
            mask_state    # 添加状态输入
        ],
        outputs=[inpaint_result, gallery]
    )

demo.launch()