Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,93 +1,373 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
2 |
import torch
|
3 |
-
|
4 |
import spaces
|
5 |
-
|
6 |
import numpy as np
|
7 |
-
import random
|
8 |
-
import os
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
torch_dtype=torch.
|
19 |
-
variant="fp16"
|
20 |
).to("cuda")
|
21 |
-
pipe.
|
|
|
|
|
|
|
|
|
22 |
return pipe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
image = Image.open(image_path).convert("RGB")
|
35 |
-
mask = Image.open(mask_path).convert("RGB")
|
36 |
-
return inference(pipe, image, mask)
|
37 |
-
|
38 |
-
def get_random_examples(dataset_dir="examples"):
|
39 |
-
image_dir = os.path.join(dataset_dir, "images")
|
40 |
-
mask_dir = os.path.join(dataset_dir, "masks")
|
41 |
-
files = os.listdir(image_dir)
|
42 |
-
random.shuffle(files)
|
43 |
-
examples = [
|
44 |
-
[os.path.join(image_dir, f), os.path.join(mask_dir, f)] for f in files if os.path.exists(os.path.join(mask_dir, f))
|
45 |
-
]
|
46 |
-
return examples[:30]
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
submit = gr.Button("Run", elem_id="submit-button")
|
59 |
|
60 |
-
|
61 |
-
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
inputs=[input_image, mask_image],
|
66 |
-
outputs=result_image
|
67 |
-
)
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
if __name__ == "__main__":
|
91 |
-
pipe = load_pipeline()
|
92 |
-
demo = build_ui(pipe)
|
93 |
-
demo.launch()
|
|
|
1 |
+
import io
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import uuid
|
5 |
import torch
|
6 |
+
import random
|
7 |
import spaces
|
8 |
+
import gradio as gr
|
9 |
import numpy as np
|
|
|
|
|
10 |
|
11 |
+
from PIL import Image, ImageCms
|
12 |
+
import torch
|
13 |
+
from diffusers import FluxTransformer2DModel
|
14 |
+
from diffusers.utils import load_image
|
15 |
+
from pipeline_flux_control_removal import FluxControlRemovalPipeline
|
16 |
+
|
17 |
+
torch.set_grad_enabled(False)
|
18 |
+
image_path = mask_path = None
|
19 |
+
image_examples = [...]
|
20 |
+
image_path = mask_path =None
|
21 |
+
image_examples = [
|
22 |
+
[
|
23 |
+
"example/image/3c43156c-2b44-4ebf-9c47-7707ec60b166.png",
|
24 |
+
"example/mask/3c43156c-2b44-4ebf-9c47-7707ec60b166.png"
|
25 |
+
],
|
26 |
+
[
|
27 |
+
"example/image/0e5124d8-fe43-4b5c-819f-7212f23a6d2a.png",
|
28 |
+
"example/mask/0e5124d8-fe43-4b5c-819f-7212f23a6d2a.png"
|
29 |
+
],
|
30 |
+
[
|
31 |
+
"example/image/0f900fe8-6eab-4f85-8121-29cac9509b94.png",
|
32 |
+
"example/mask/0f900fe8-6eab-4f85-8121-29cac9509b94.png"
|
33 |
+
],
|
34 |
+
[
|
35 |
+
"example/image/3ed1ee18-33b0-4964-b679-0e214a0d8848.png",
|
36 |
+
"example/mask/3ed1ee18-33b0-4964-b679-0e214a0d8848.png"
|
37 |
+
],
|
38 |
+
[
|
39 |
+
"example/image/9a3b6af9-c733-46a4-88d4-d77604194102.png",
|
40 |
+
"example/mask/9a3b6af9-c733-46a4-88d4-d77604194102.png"
|
41 |
+
],
|
42 |
+
[
|
43 |
+
"example/image/87cdf3e2-0fa1-4d80-a228-cbb4aba3f44f.png",
|
44 |
+
"example/mask/87cdf3e2-0fa1-4d80-a228-cbb4aba3f44f.png"
|
45 |
+
],
|
46 |
+
[
|
47 |
+
"example/image/55dd199b-d99b-47a2-a691-edfd92233a6b.png",
|
48 |
+
"example/mask/55dd199b-d99b-47a2-a691-edfd92233a6b.png"
|
49 |
+
]
|
50 |
+
|
51 |
+
]
|
52 |
+
|
53 |
+
@spaces.GPU(enable_queue=True)
|
54 |
+
def load_model(base_model_path, lora_path):
|
55 |
+
transformer = FluxTransformer2DModel.from_pretrained(base_model_path, subfolder='transformer', torch_dtype=torch.bfloat16)
|
56 |
+
gr.Info(str(f"Model loading: {int((40 / 100) * 100)}%"))
|
57 |
+
# enable image inputs
|
58 |
+
with torch.no_grad():
|
59 |
+
initial_input_channels = transformer.config.in_channels
|
60 |
+
new_linear = torch.nn.Linear(
|
61 |
+
transformer.x_embedder.in_features*4,
|
62 |
+
transformer.x_embedder.out_features,
|
63 |
+
bias=transformer.x_embedder.bias is not None,
|
64 |
+
dtype=transformer.dtype,
|
65 |
+
device=transformer.device,
|
66 |
+
)
|
67 |
+
new_linear.weight.zero_()
|
68 |
+
new_linear.weight[:, :initial_input_channels].copy_(transformer.x_embedder.weight)
|
69 |
+
|
70 |
+
if transformer.x_embedder.bias is not None:
|
71 |
+
new_linear.bias.copy_(transformer.x_embedder.bias)
|
72 |
|
73 |
+
transformer.x_embedder = new_linear
|
74 |
+
transformer.register_to_config(in_channels=initial_input_channels*4)
|
75 |
|
76 |
+
pipe = FluxControlRemovalPipeline.from_pretrained(
|
77 |
+
base_model_path,
|
78 |
+
transformer=transformer,
|
79 |
+
torch_dtype=torch.bfloat16
|
|
|
80 |
).to("cuda")
|
81 |
+
pipe.transformer.to(torch.bfloat16)
|
82 |
+
gr.Info(str(f"Model loading: {int((80 / 100) * 100)}%"))
|
83 |
+
gr.Info(str(f"Inject LoRA: {lora_path}"))
|
84 |
+
pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors")
|
85 |
+
gr.Info(str(f"Model loading: {int((100 / 100) * 100)}%"))
|
86 |
return pipe
|
87 |
+
@spaces.GPU(enable_queue=True)
|
88 |
+
def set_seed(seed):
|
89 |
+
torch.manual_seed(seed)
|
90 |
+
torch.cuda.manual_seed(seed)
|
91 |
+
torch.cuda.manual_seed_all(seed)
|
92 |
+
np.random.seed(seed)
|
93 |
+
random.seed(seed)
|
94 |
|
95 |
+
@spaces.GPU(enable_queue=True)
|
96 |
+
def predict(
|
97 |
+
pipe
|
98 |
+
input_image,
|
99 |
+
prompt,
|
100 |
+
ddim_steps,
|
101 |
+
seed,
|
102 |
+
scale,
|
103 |
+
image_paths,
|
104 |
+
mask_paths
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
):
|
107 |
+
global image_path, mask_path
|
108 |
+
gr.Info(str(f"Set seed = {seed}"))
|
109 |
+
if image_paths is not None:
|
110 |
+
input_image["background"] = load_image(image_paths).convert("RGB")
|
111 |
+
input_image["layers"][0] = load_image(mask_paths).convert("RGB")
|
112 |
+
|
113 |
+
size1, size2 = input_image["background"].convert("RGB").size
|
114 |
+
icc_profile = input_image["background"].info.get('icc_profile')
|
115 |
+
if icc_profile:
|
116 |
+
gr.Info(str(f"Image detected to contain ICC profile, converting color space to sRGB..."))
|
117 |
+
srgb_profile = ImageCms.createProfile("sRGB")
|
118 |
+
io_handle = io.BytesIO(icc_profile)
|
119 |
+
src_profile = ImageCms.ImageCmsProfile(io_handle)
|
120 |
+
input_image["background"] = ImageCms.profileToProfile(input_image["background"], src_profile, srgb_profile)
|
121 |
+
input_image["background"].info.pop('icc_profile', None)
|
122 |
|
123 |
+
if size1 < size2:
|
124 |
+
input_image["background"] = input_image["background"].convert("RGB").resize((1024, int(size2 / size1 * 1024)))
|
125 |
+
else:
|
126 |
+
input_image["background"] = input_image["background"].convert("RGB").resize((int(size1 / size2 * 1024), 1024))
|
127 |
|
128 |
+
img = np.array(input_image["background"].convert("RGB"))
|
|
|
129 |
|
130 |
+
W = int(np.shape(img)[0] - np.shape(img)[0] % 8)
|
131 |
+
H = int(np.shape(img)[1] - np.shape(img)[1] % 8)
|
132 |
|
133 |
+
input_image["background"] = input_image["background"].resize((H, W))
|
134 |
+
input_image["layers"][0] = input_image["layers"][0].resize((H, W))
|
|
|
|
|
|
|
135 |
|
136 |
+
if seed == -1:
|
137 |
+
seed = random.randint(1, 2147483647)
|
138 |
+
set_seed(random.randint(1, 2147483647))
|
139 |
+
else:
|
140 |
+
set_seed(seed)
|
141 |
+
if image_paths is None:
|
142 |
+
img=input_image["layers"][0]
|
143 |
+
img_data = np.array(img)
|
144 |
+
alpha_channel = img_data[:, :, 3]
|
145 |
+
white_background = np.ones_like(alpha_channel) * 255
|
146 |
+
gray_image = white_background.copy()
|
147 |
+
gray_image[alpha_channel == 0] = 0
|
148 |
+
gray_image_pil = Image.fromarray(gray_image).convert('L')
|
149 |
+
else:
|
150 |
+
gray_image_pil = input_image["layers"][0]
|
151 |
+
result = pipe(
|
152 |
+
prompt=prompt,
|
153 |
+
control_image=input_image["background"].convert("RGB"),
|
154 |
+
control_mask=gray_image_pil.convert("RGB"),
|
155 |
+
width=H,
|
156 |
+
height=W,
|
157 |
+
num_inference_steps=ddim_steps,
|
158 |
+
generator=torch.Generator("cuda").manual_seed(seed),
|
159 |
+
guidance_scale=scale,
|
160 |
+
max_sequence_length=512,
|
161 |
+
).images[0]
|
162 |
+
|
163 |
+
mask_np = np.array(input_image["layers"][0].convert("RGB"))
|
164 |
+
red = np.array(input_image["background"]).astype("float") * 1
|
165 |
+
red[:, :, 0] = 180.0
|
166 |
+
red[:, :, 2] = 0
|
167 |
+
red[:, :, 1] = 0
|
168 |
+
result_m = np.array(input_image["background"])
|
169 |
+
result_m = Image.fromarray(
|
170 |
+
(
|
171 |
+
result_m.astype("float") * (1 - mask_np.astype("float") / 512.0) + mask_np.astype("float") / 512.0 * red
|
172 |
+
).astype("uint8")
|
173 |
+
)
|
174 |
+
|
175 |
+
dict_res = [input_image["background"], input_image["layers"][0], result_m, result]
|
176 |
+
|
177 |
+
dict_out = [result]
|
178 |
+
image_path = None
|
179 |
+
mask_path = None
|
180 |
+
return dict_out, dict_res
|
181 |
+
|
182 |
+
|
183 |
+
def infer(
|
184 |
+
pipe,
|
185 |
+
input_image,
|
186 |
+
ddim_steps,
|
187 |
+
seed,
|
188 |
+
scale,
|
189 |
+
removal_prompt,
|
190 |
+
|
191 |
+
):
|
192 |
+
img_path = image_path
|
193 |
+
msk_path = mask_path
|
194 |
+
return predict(pipe,
|
195 |
+
input_image,
|
196 |
+
removal_prompt,
|
197 |
+
ddim_steps,
|
198 |
+
seed,
|
199 |
+
scale,
|
200 |
+
img_path,
|
201 |
+
msk_path
|
202 |
+
)
|
203 |
+
|
204 |
+
def process_example(image_paths, mask_paths):
|
205 |
+
global image_path, mask_path
|
206 |
+
image = Image.open(image_paths).convert("RGB")
|
207 |
+
mask = Image.open(mask_paths).convert("L")
|
208 |
+
black_background = Image.new("RGB", image.size, (0, 0, 0))
|
209 |
+
masked_image = Image.composite(black_background, image, mask)
|
210 |
+
|
211 |
+
image_path = image_paths
|
212 |
+
mask_path = mask_paths
|
213 |
+
return masked_image
|
214 |
+
custom_css = """
|
215 |
+
|
216 |
+
.contain { max-width: 1200px !important; }
|
217 |
+
|
218 |
+
.custom-image {
|
219 |
+
border: 2px dashed #7e22ce !important;
|
220 |
+
border-radius: 12px !important;
|
221 |
+
transition: all 0.3s ease !important;
|
222 |
+
}
|
223 |
+
.custom-image:hover {
|
224 |
+
border-color: #9333ea !important;
|
225 |
+
box-shadow: 0 4px 15px rgba(158, 109, 202, 0.2) !important;
|
226 |
+
}
|
227 |
+
|
228 |
+
.btn-primary {
|
229 |
+
background: linear-gradient(45deg, #7e22ce, #9333ea) !important;
|
230 |
+
border: none !important;
|
231 |
+
color: white !important;
|
232 |
+
border-radius: 8px !important;
|
233 |
+
}
|
234 |
+
#inline-examples {
|
235 |
+
border: 1px solid #e2e8f0 !important;
|
236 |
+
border-radius: 12px !important;
|
237 |
+
padding: 16px !important;
|
238 |
+
margin-top: 8px !important;
|
239 |
+
}
|
240 |
+
|
241 |
+
#inline-examples .thumbnail {
|
242 |
+
border-radius: 8px !important;
|
243 |
+
transition: transform 0.2s ease !important;
|
244 |
+
}
|
245 |
+
|
246 |
+
#inline-examples .thumbnail:hover {
|
247 |
+
transform: scale(1.05);
|
248 |
+
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
|
249 |
+
}
|
250 |
+
|
251 |
+
.example-title h3 {
|
252 |
+
margin: 0 0 12px 0 !important;
|
253 |
+
color: #475569 !important;
|
254 |
+
font-size: 1.1em !important;
|
255 |
+
display: flex !important;
|
256 |
+
align-items: center !important;
|
257 |
+
}
|
258 |
+
|
259 |
+
.example-title h3::before {
|
260 |
+
content: "π";
|
261 |
+
margin-right: 8px;
|
262 |
+
font-size: 1.2em;
|
263 |
+
}
|
264 |
+
|
265 |
+
.row { align-items: stretch !important; }
|
266 |
+
|
267 |
+
.panel { height: 100%; }
|
268 |
+
"""
|
269 |
+
|
270 |
+
with gr.Blocks(
|
271 |
+
css=custom_css,
|
272 |
+
theme=gr.themes.Soft(
|
273 |
+
primary_hue="purple",
|
274 |
+
secondary_hue="purple",
|
275 |
+
font=[gr.themes.GoogleFont('Inter'), 'sans-serif']
|
276 |
+
),
|
277 |
+
title="Omnieraser"
|
278 |
+
) as demo:
|
279 |
+
base_model_path = 'black-forest-labs/FLUX.1-dev'
|
280 |
+
lora_path = 'theSure/Omnieraser'
|
281 |
+
pipe = None
|
282 |
+
pipe = load_model(base_model_path=base_model_path, lora_path=lora_path)
|
283 |
+
|
284 |
+
ddim_steps = gr.Slider(visible=False, value=28)
|
285 |
+
scale = gr.Slider(visible=False, value=3.5)
|
286 |
+
seed = gr.Slider(visible=False, value=-1)
|
287 |
+
removal_prompt = gr.Textbox(visible=False, value="There is nothing here.")
|
288 |
+
|
289 |
+
gr.Markdown("""
|
290 |
+
<div align="center">
|
291 |
+
<h1 style="font-size: 2.5em; margin-bottom: 0.5em;">πͺ Omnieraser</h1>
|
292 |
+
</div>
|
293 |
+
""")
|
294 |
+
|
295 |
+
with gr.Row(equal_height=False):
|
296 |
+
with gr.Column(scale=1, variant="panel"):
|
297 |
+
gr.Markdown("## π₯ Input Panel")
|
298 |
+
|
299 |
+
with gr.Group():
|
300 |
+
input_image = gr.Sketchpad(
|
301 |
+
sources=["upload"],
|
302 |
+
type="pil",
|
303 |
+
label="Upload & Annotate",
|
304 |
+
elem_id="custom-image",
|
305 |
+
interactive=True
|
306 |
+
)
|
307 |
+
with gr.Row(variant="compact"):
|
308 |
+
run_button = gr.Button(
|
309 |
+
"π Start Processing",
|
310 |
+
variant="primary",
|
311 |
+
size="lg"
|
312 |
+
)
|
313 |
+
with gr.Group():
|
314 |
+
gr.Markdown("### βοΈ Control Parameters")
|
315 |
+
seed = gr.Slider(
|
316 |
+
label="Random Seed",
|
317 |
+
minimum=-1,
|
318 |
+
maximum=2147483647,
|
319 |
+
value=1234,
|
320 |
+
step=1,
|
321 |
+
info="-1 for random generation"
|
322 |
+
)
|
323 |
+
with gr.Column(variant="panel"):
|
324 |
+
gr.Markdown("### πΌοΈ Example Gallery", elem_classes=["example-title"])
|
325 |
+
example = gr.Examples(
|
326 |
+
examples=image_examples,
|
327 |
+
inputs=[
|
328 |
+
gr.Image(label="Image", type="filepath",visible=False),
|
329 |
+
gr.Image(label="Mask", type="filepath",visible=False)
|
330 |
+
],
|
331 |
+
outputs=[input_image],
|
332 |
+
fn=process_example,
|
333 |
+
run_on_click=True,
|
334 |
+
examples_per_page=10,
|
335 |
+
label="Click any example to load",
|
336 |
+
elem_id="inline-examples"
|
337 |
+
)
|
338 |
+
|
339 |
+
with gr.Column(scale=1, variant="panel"):
|
340 |
+
gr.Markdown("## π€ Output Panel")
|
341 |
+
with gr.Tabs():
|
342 |
+
with gr.Tab("Final Result"):
|
343 |
+
inpaint_result = gr.Gallery(
|
344 |
+
label="Generated Image",
|
345 |
+
columns=2,
|
346 |
+
height=450,
|
347 |
+
preview=True,
|
348 |
+
object_fit="contain"
|
349 |
+
)
|
350 |
|
351 |
+
with gr.Tab("Visualization Steps"):
|
352 |
+
gallery = gr.Gallery(
|
353 |
+
label="Workflow Steps",
|
354 |
+
columns=2,
|
355 |
+
height=450,
|
356 |
+
object_fit="contain"
|
357 |
+
)
|
358 |
|
359 |
+
run_button.click(
|
360 |
+
fn=infer,
|
361 |
+
inputs=[
|
362 |
+
pipe,
|
363 |
+
input_image,
|
364 |
+
ddim_steps,
|
365 |
+
seed,
|
366 |
+
scale,
|
367 |
+
removal_prompt,
|
368 |
+
],
|
369 |
+
outputs=[inpaint_result, gallery]
|
370 |
+
)
|
371 |
+
|
372 |
|
373 |
+
demo.launch()
|
|
|
|
|
|
|
|