Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,368 +1,93 @@
|
|
1 |
-
import
|
2 |
-
import os
|
3 |
-
import shutil
|
4 |
-
import uuid
|
5 |
import torch
|
6 |
-
import
|
7 |
import spaces
|
8 |
-
|
9 |
import numpy as np
|
|
|
|
|
10 |
|
11 |
-
from
|
12 |
-
import torch
|
13 |
-
from diffusers import FluxTransformer2DModel
|
14 |
-
from diffusers.utils import load_image
|
15 |
-
from pipeline_flux_control_removal import FluxControlRemovalPipeline
|
16 |
-
|
17 |
-
torch.set_grad_enabled(False)
|
18 |
-
image_path = mask_path = None
|
19 |
-
image_examples = [...]
|
20 |
-
image_path = mask_path =None
|
21 |
-
image_examples = [
|
22 |
-
[
|
23 |
-
"example/image/3c43156c-2b44-4ebf-9c47-7707ec60b166.png",
|
24 |
-
"example/mask/3c43156c-2b44-4ebf-9c47-7707ec60b166.png"
|
25 |
-
],
|
26 |
-
[
|
27 |
-
"example/image/0e5124d8-fe43-4b5c-819f-7212f23a6d2a.png",
|
28 |
-
"example/mask/0e5124d8-fe43-4b5c-819f-7212f23a6d2a.png"
|
29 |
-
],
|
30 |
-
[
|
31 |
-
"example/image/0f900fe8-6eab-4f85-8121-29cac9509b94.png",
|
32 |
-
"example/mask/0f900fe8-6eab-4f85-8121-29cac9509b94.png"
|
33 |
-
],
|
34 |
-
[
|
35 |
-
"example/image/3ed1ee18-33b0-4964-b679-0e214a0d8848.png",
|
36 |
-
"example/mask/3ed1ee18-33b0-4964-b679-0e214a0d8848.png"
|
37 |
-
],
|
38 |
-
[
|
39 |
-
"example/image/9a3b6af9-c733-46a4-88d4-d77604194102.png",
|
40 |
-
"example/mask/9a3b6af9-c733-46a4-88d4-d77604194102.png"
|
41 |
-
],
|
42 |
-
[
|
43 |
-
"example/image/87cdf3e2-0fa1-4d80-a228-cbb4aba3f44f.png",
|
44 |
-
"example/mask/87cdf3e2-0fa1-4d80-a228-cbb4aba3f44f.png"
|
45 |
-
],
|
46 |
-
[
|
47 |
-
"example/image/55dd199b-d99b-47a2-a691-edfd92233a6b.png",
|
48 |
-
"example/mask/55dd199b-d99b-47a2-a691-edfd92233a6b.png"
|
49 |
-
]
|
50 |
-
|
51 |
-
]
|
52 |
-
|
53 |
-
@spaces.GPU(enable_queue=True)
|
54 |
-
def load_model(base_model_path, lora_path):
|
55 |
-
global pipe
|
56 |
-
transformer = FluxTransformer2DModel.from_pretrained(base_model_path, subfolder='transformer', torch_dtype=torch.bfloat16)
|
57 |
-
gr.Info(str(f"Model loading: {int((40 / 100) * 100)}%"))
|
58 |
-
# enable image inputs
|
59 |
-
with torch.no_grad():
|
60 |
-
initial_input_channels = transformer.config.in_channels
|
61 |
-
new_linear = torch.nn.Linear(
|
62 |
-
transformer.x_embedder.in_features*4,
|
63 |
-
transformer.x_embedder.out_features,
|
64 |
-
bias=transformer.x_embedder.bias is not None,
|
65 |
-
dtype=transformer.dtype,
|
66 |
-
device=transformer.device,
|
67 |
-
)
|
68 |
-
new_linear.weight.zero_()
|
69 |
-
new_linear.weight[:, :initial_input_channels].copy_(transformer.x_embedder.weight)
|
70 |
-
|
71 |
-
if transformer.x_embedder.bias is not None:
|
72 |
-
new_linear.bias.copy_(transformer.x_embedder.bias)
|
73 |
|
74 |
-
|
75 |
-
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
torch_dtype=torch.
|
|
|
81 |
).to("cuda")
|
82 |
-
pipe.
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
torch.manual_seed(
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
)
|
106 |
-
|
107 |
-
|
108 |
-
if image_paths is not None:
|
109 |
-
input_image["background"] = load_image(image_paths).convert("RGB")
|
110 |
-
input_image["layers"][0] = load_image(mask_paths).convert("RGB")
|
111 |
-
|
112 |
-
size1, size2 = input_image["background"].convert("RGB").size
|
113 |
-
icc_profile = input_image["background"].info.get('icc_profile')
|
114 |
-
if icc_profile:
|
115 |
-
gr.Info(str(f"Image detected to contain ICC profile, converting color space to sRGB..."))
|
116 |
-
srgb_profile = ImageCms.createProfile("sRGB")
|
117 |
-
io_handle = io.BytesIO(icc_profile)
|
118 |
-
src_profile = ImageCms.ImageCmsProfile(io_handle)
|
119 |
-
input_image["background"] = ImageCms.profileToProfile(input_image["background"], src_profile, srgb_profile)
|
120 |
-
input_image["background"].info.pop('icc_profile', None)
|
121 |
-
|
122 |
-
if size1 < size2:
|
123 |
-
input_image["background"] = input_image["background"].convert("RGB").resize((1024, int(size2 / size1 * 1024)))
|
124 |
-
else:
|
125 |
-
input_image["background"] = input_image["background"].convert("RGB").resize((int(size1 / size2 * 1024), 1024))
|
126 |
-
|
127 |
-
img = np.array(input_image["background"].convert("RGB"))
|
128 |
-
|
129 |
-
W = int(np.shape(img)[0] - np.shape(img)[0] % 8)
|
130 |
-
H = int(np.shape(img)[1] - np.shape(img)[1] % 8)
|
131 |
-
|
132 |
-
input_image["background"] = input_image["background"].resize((H, W))
|
133 |
-
input_image["layers"][0] = input_image["layers"][0].resize((H, W))
|
134 |
-
|
135 |
-
if seed == -1:
|
136 |
-
seed = random.randint(1, 2147483647)
|
137 |
-
set_seed(random.randint(1, 2147483647))
|
138 |
-
else:
|
139 |
-
set_seed(seed)
|
140 |
-
if image_paths is None:
|
141 |
-
img=input_image["layers"][0]
|
142 |
-
img_data = np.array(img)
|
143 |
-
alpha_channel = img_data[:, :, 3]
|
144 |
-
white_background = np.ones_like(alpha_channel) * 255
|
145 |
-
gray_image = white_background.copy()
|
146 |
-
gray_image[alpha_channel == 0] = 0
|
147 |
-
gray_image_pil = Image.fromarray(gray_image).convert('L')
|
148 |
-
else:
|
149 |
-
gray_image_pil = input_image["layers"][0]
|
150 |
-
result = pipe(
|
151 |
-
prompt=prompt,
|
152 |
-
control_image=input_image["background"].convert("RGB"),
|
153 |
-
control_mask=gray_image_pil.convert("RGB"),
|
154 |
-
width=H,
|
155 |
-
height=W,
|
156 |
-
num_inference_steps=ddim_steps,
|
157 |
-
generator=torch.Generator("cuda").manual_seed(seed),
|
158 |
-
guidance_scale=scale,
|
159 |
-
max_sequence_length=512,
|
160 |
-
).images[0]
|
161 |
-
|
162 |
-
mask_np = np.array(input_image["layers"][0].convert("RGB"))
|
163 |
-
red = np.array(input_image["background"]).astype("float") * 1
|
164 |
-
red[:, :, 0] = 180.0
|
165 |
-
red[:, :, 2] = 0
|
166 |
-
red[:, :, 1] = 0
|
167 |
-
result_m = np.array(input_image["background"])
|
168 |
-
result_m = Image.fromarray(
|
169 |
-
(
|
170 |
-
result_m.astype("float") * (1 - mask_np.astype("float") / 512.0) + mask_np.astype("float") / 512.0 * red
|
171 |
-
).astype("uint8")
|
172 |
-
)
|
173 |
-
|
174 |
-
dict_res = [input_image["background"], input_image["layers"][0], result_m, result]
|
175 |
-
|
176 |
-
dict_out = [result]
|
177 |
-
image_path = None
|
178 |
-
mask_path = None
|
179 |
-
return dict_out, dict_res
|
180 |
-
|
181 |
-
|
182 |
-
def infer(
|
183 |
-
input_image,
|
184 |
-
ddim_steps,
|
185 |
-
seed,
|
186 |
-
scale,
|
187 |
-
removal_prompt,
|
188 |
-
|
189 |
-
):
|
190 |
-
img_path = image_path
|
191 |
-
msk_path = mask_path
|
192 |
-
return predict(input_image,
|
193 |
-
removal_prompt,
|
194 |
-
ddim_steps,
|
195 |
-
seed,
|
196 |
-
scale,
|
197 |
-
img_path,
|
198 |
-
msk_path
|
199 |
-
)
|
200 |
-
|
201 |
-
def process_example(image_paths, mask_paths):
|
202 |
-
global image_path, mask_path
|
203 |
-
image = Image.open(image_paths).convert("RGB")
|
204 |
-
mask = Image.open(mask_paths).convert("L")
|
205 |
-
black_background = Image.new("RGB", image.size, (0, 0, 0))
|
206 |
-
masked_image = Image.composite(black_background, image, mask)
|
207 |
-
|
208 |
-
image_path = image_paths
|
209 |
-
mask_path = mask_paths
|
210 |
-
return masked_image
|
211 |
-
custom_css = """
|
212 |
-
|
213 |
-
.contain { max-width: 1200px !important; }
|
214 |
-
|
215 |
-
.custom-image {
|
216 |
-
border: 2px dashed #7e22ce !important;
|
217 |
-
border-radius: 12px !important;
|
218 |
-
transition: all 0.3s ease !important;
|
219 |
-
}
|
220 |
-
.custom-image:hover {
|
221 |
-
border-color: #9333ea !important;
|
222 |
-
box-shadow: 0 4px 15px rgba(158, 109, 202, 0.2) !important;
|
223 |
-
}
|
224 |
-
|
225 |
-
.btn-primary {
|
226 |
-
background: linear-gradient(45deg, #7e22ce, #9333ea) !important;
|
227 |
-
border: none !important;
|
228 |
-
color: white !important;
|
229 |
-
border-radius: 8px !important;
|
230 |
-
}
|
231 |
-
#inline-examples {
|
232 |
-
border: 1px solid #e2e8f0 !important;
|
233 |
-
border-radius: 12px !important;
|
234 |
-
padding: 16px !important;
|
235 |
-
margin-top: 8px !important;
|
236 |
-
}
|
237 |
-
|
238 |
-
#inline-examples .thumbnail {
|
239 |
-
border-radius: 8px !important;
|
240 |
-
transition: transform 0.2s ease !important;
|
241 |
-
}
|
242 |
-
|
243 |
-
#inline-examples .thumbnail:hover {
|
244 |
-
transform: scale(1.05);
|
245 |
-
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
|
246 |
-
}
|
247 |
-
|
248 |
-
.example-title h3 {
|
249 |
-
margin: 0 0 12px 0 !important;
|
250 |
-
color: #475569 !important;
|
251 |
-
font-size: 1.1em !important;
|
252 |
-
display: flex !important;
|
253 |
-
align-items: center !important;
|
254 |
-
}
|
255 |
-
|
256 |
-
.example-title h3::before {
|
257 |
-
content: "📚";
|
258 |
-
margin-right: 8px;
|
259 |
-
font-size: 1.2em;
|
260 |
-
}
|
261 |
|
262 |
-
|
|
|
|
|
263 |
|
264 |
-
.
|
265 |
-
|
|
|
|
|
266 |
|
267 |
-
with gr.
|
268 |
-
|
269 |
-
theme=gr.themes.Soft(
|
270 |
-
primary_hue="purple",
|
271 |
-
secondary_hue="purple",
|
272 |
-
font=[gr.themes.GoogleFont('Inter'), 'sans-serif']
|
273 |
-
),
|
274 |
-
title="Omnieraser"
|
275 |
-
) as demo:
|
276 |
-
base_model_path = 'black-forest-labs/FLUX.1-dev'
|
277 |
-
lora_path = 'theSure/Omnieraser'
|
278 |
-
load_model(base_model_path=base_model_path, lora_path=lora_path)
|
279 |
|
280 |
-
|
281 |
-
|
282 |
-
seed = gr.Slider(visible=False, value=-1)
|
283 |
-
removal_prompt = gr.Textbox(visible=False, value="There is nothing here.")
|
284 |
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
variant="primary",
|
307 |
-
size="lg"
|
308 |
-
)
|
309 |
-
with gr.Group():
|
310 |
-
gr.Markdown("### ⚙️ Control Parameters")
|
311 |
-
seed = gr.Slider(
|
312 |
-
label="Random Seed",
|
313 |
-
minimum=-1,
|
314 |
-
maximum=2147483647,
|
315 |
-
value=1234,
|
316 |
-
step=1,
|
317 |
-
info="-1 for random generation"
|
318 |
-
)
|
319 |
-
with gr.Column(variant="panel"):
|
320 |
-
gr.Markdown("### 🖼️ Example Gallery", elem_classes=["example-title"])
|
321 |
-
example = gr.Examples(
|
322 |
-
examples=image_examples,
|
323 |
-
inputs=[
|
324 |
-
gr.Image(label="Image", type="filepath",visible=False),
|
325 |
-
gr.Image(label="Mask", type="filepath",visible=False)
|
326 |
-
],
|
327 |
-
outputs=[input_image],
|
328 |
-
fn=process_example,
|
329 |
-
run_on_click=True,
|
330 |
-
examples_per_page=10,
|
331 |
-
label="Click any example to load",
|
332 |
-
elem_id="inline-examples"
|
333 |
-
)
|
334 |
|
335 |
-
|
336 |
-
gr.Markdown("## 📤 Output Panel")
|
337 |
-
with gr.Tabs():
|
338 |
-
with gr.Tab("Final Result"):
|
339 |
-
inpaint_result = gr.Gallery(
|
340 |
-
label="Generated Image",
|
341 |
-
columns=2,
|
342 |
-
height=450,
|
343 |
-
preview=True,
|
344 |
-
object_fit="contain"
|
345 |
-
)
|
346 |
|
347 |
-
|
348 |
-
gallery = gr.Gallery(
|
349 |
-
label="Workflow Steps",
|
350 |
-
columns=2,
|
351 |
-
height=450,
|
352 |
-
object_fit="contain"
|
353 |
-
)
|
354 |
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
seed,
|
361 |
-
scale,
|
362 |
-
removal_prompt,
|
363 |
-
],
|
364 |
-
outputs=[inpaint_result, gallery]
|
365 |
-
)
|
366 |
-
|
367 |
-
if __name__ == '__main__':
|
368 |
-
demo.launch()
|
|
|
1 |
+
import gradio as gr
|
|
|
|
|
|
|
2 |
import torch
|
3 |
+
from diffusers import StableDiffusionInpaintPipeline
|
4 |
import spaces
|
5 |
+
from PIL import Image
|
6 |
import numpy as np
|
7 |
+
import random
|
8 |
+
import os
|
9 |
|
10 |
+
DESCRIPTION = "# Omnieraser\nRemove anything from any image using the [FLUX](https://huggingface.co/lllyasviel/flux) model."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
model_id = "lllyasviel/flux"
|
13 |
+
lora_weights = "lllyasviel/flux-inpainting-internal"
|
14 |
|
15 |
+
def load_pipeline():
|
16 |
+
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
17 |
+
model_id,
|
18 |
+
torch_dtype=torch.float16,
|
19 |
+
variant="fp16"
|
20 |
).to("cuda")
|
21 |
+
pipe.load_lora_weights(lora_weights)
|
22 |
+
return pipe
|
23 |
+
|
24 |
+
def inference(pipe, image, mask):
|
25 |
+
image = image.convert("RGB").resize((512, 512))
|
26 |
+
mask = mask.convert("RGB").resize((512, 512))
|
27 |
+
|
28 |
+
generator = torch.Generator("cuda").manual_seed(random.randint(0, 999999))
|
29 |
+
image = pipe(prompt="", image=image, mask_image=mask, guidance_scale=7.5, generator=generator).images[0]
|
30 |
+
return image
|
31 |
+
|
32 |
+
def process_example(example, pipe):
|
33 |
+
image_path, mask_path = example
|
34 |
+
image = Image.open(image_path).convert("RGB")
|
35 |
+
mask = Image.open(mask_path).convert("RGB")
|
36 |
+
return inference(pipe, image, mask)
|
37 |
+
|
38 |
+
def get_random_examples(dataset_dir="examples"):
|
39 |
+
image_dir = os.path.join(dataset_dir, "images")
|
40 |
+
mask_dir = os.path.join(dataset_dir, "masks")
|
41 |
+
files = os.listdir(image_dir)
|
42 |
+
random.shuffle(files)
|
43 |
+
examples = [
|
44 |
+
[os.path.join(image_dir, f), os.path.join(mask_dir, f)] for f in files if os.path.exists(os.path.join(mask_dir, f))
|
45 |
+
]
|
46 |
+
return examples[:30]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
def build_ui(pipe):
|
49 |
+
with gr.Blocks(css="style.css") as demo:
|
50 |
+
gr.Markdown(DESCRIPTION)
|
51 |
|
52 |
+
with gr.Row():
|
53 |
+
with gr.Column():
|
54 |
+
input_image = gr.Image(label="Input", type="pil")
|
55 |
+
mask_image = gr.Image(label="Mask", type="pil")
|
56 |
|
57 |
+
with gr.Row():
|
58 |
+
submit = gr.Button("Run", elem_id="submit-button")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
with gr.Column():
|
61 |
+
result_image = gr.Image(label="Output")
|
|
|
|
|
62 |
|
63 |
+
submit.click(
|
64 |
+
fn=lambda img, msk: inference(pipe, img, msk),
|
65 |
+
inputs=[input_image, mask_image],
|
66 |
+
outputs=result_image
|
67 |
+
)
|
68 |
|
69 |
+
gr.Markdown("## Examples")
|
70 |
+
|
71 |
+
image_examples = get_random_examples()
|
72 |
+
example = gr.Examples(
|
73 |
+
examples=image_examples,
|
74 |
+
inputs=[
|
75 |
+
gr.Image(label="Image", type="filepath", visible=False),
|
76 |
+
gr.Image(label="Mask", type="filepath", visible=False)
|
77 |
+
],
|
78 |
+
outputs=[input_image],
|
79 |
+
fn=lambda example: process_example(example, pipe),
|
80 |
+
run_on_click=True,
|
81 |
+
label="Click any example to load",
|
82 |
+
elem_id="inline-examples"
|
83 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
gr.Markdown("Try drawing over objects you want to remove.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
# 加载 pipe 并运行 UI
|
90 |
+
if __name__ == "__main__":
|
91 |
+
pipe = load_pipeline()
|
92 |
+
demo = build_ui(pipe)
|
93 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|