Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,368 +1,93 @@
|
|
| 1 |
-
import
|
| 2 |
-
import os
|
| 3 |
-
import shutil
|
| 4 |
-
import uuid
|
| 5 |
import torch
|
| 6 |
-
import
|
| 7 |
import spaces
|
| 8 |
-
|
| 9 |
import numpy as np
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
from
|
| 12 |
-
import torch
|
| 13 |
-
from diffusers import FluxTransformer2DModel
|
| 14 |
-
from diffusers.utils import load_image
|
| 15 |
-
from pipeline_flux_control_removal import FluxControlRemovalPipeline
|
| 16 |
-
|
| 17 |
-
torch.set_grad_enabled(False)
|
| 18 |
-
image_path = mask_path = None
|
| 19 |
-
image_examples = [...]
|
| 20 |
-
image_path = mask_path =None
|
| 21 |
-
image_examples = [
|
| 22 |
-
[
|
| 23 |
-
"example/image/3c43156c-2b44-4ebf-9c47-7707ec60b166.png",
|
| 24 |
-
"example/mask/3c43156c-2b44-4ebf-9c47-7707ec60b166.png"
|
| 25 |
-
],
|
| 26 |
-
[
|
| 27 |
-
"example/image/0e5124d8-fe43-4b5c-819f-7212f23a6d2a.png",
|
| 28 |
-
"example/mask/0e5124d8-fe43-4b5c-819f-7212f23a6d2a.png"
|
| 29 |
-
],
|
| 30 |
-
[
|
| 31 |
-
"example/image/0f900fe8-6eab-4f85-8121-29cac9509b94.png",
|
| 32 |
-
"example/mask/0f900fe8-6eab-4f85-8121-29cac9509b94.png"
|
| 33 |
-
],
|
| 34 |
-
[
|
| 35 |
-
"example/image/3ed1ee18-33b0-4964-b679-0e214a0d8848.png",
|
| 36 |
-
"example/mask/3ed1ee18-33b0-4964-b679-0e214a0d8848.png"
|
| 37 |
-
],
|
| 38 |
-
[
|
| 39 |
-
"example/image/9a3b6af9-c733-46a4-88d4-d77604194102.png",
|
| 40 |
-
"example/mask/9a3b6af9-c733-46a4-88d4-d77604194102.png"
|
| 41 |
-
],
|
| 42 |
-
[
|
| 43 |
-
"example/image/87cdf3e2-0fa1-4d80-a228-cbb4aba3f44f.png",
|
| 44 |
-
"example/mask/87cdf3e2-0fa1-4d80-a228-cbb4aba3f44f.png"
|
| 45 |
-
],
|
| 46 |
-
[
|
| 47 |
-
"example/image/55dd199b-d99b-47a2-a691-edfd92233a6b.png",
|
| 48 |
-
"example/mask/55dd199b-d99b-47a2-a691-edfd92233a6b.png"
|
| 49 |
-
]
|
| 50 |
-
|
| 51 |
-
]
|
| 52 |
-
|
| 53 |
-
@spaces.GPU(enable_queue=True)
|
| 54 |
-
def load_model(base_model_path, lora_path):
|
| 55 |
-
global pipe
|
| 56 |
-
transformer = FluxTransformer2DModel.from_pretrained(base_model_path, subfolder='transformer', torch_dtype=torch.bfloat16)
|
| 57 |
-
gr.Info(str(f"Model loading: {int((40 / 100) * 100)}%"))
|
| 58 |
-
# enable image inputs
|
| 59 |
-
with torch.no_grad():
|
| 60 |
-
initial_input_channels = transformer.config.in_channels
|
| 61 |
-
new_linear = torch.nn.Linear(
|
| 62 |
-
transformer.x_embedder.in_features*4,
|
| 63 |
-
transformer.x_embedder.out_features,
|
| 64 |
-
bias=transformer.x_embedder.bias is not None,
|
| 65 |
-
dtype=transformer.dtype,
|
| 66 |
-
device=transformer.device,
|
| 67 |
-
)
|
| 68 |
-
new_linear.weight.zero_()
|
| 69 |
-
new_linear.weight[:, :initial_input_channels].copy_(transformer.x_embedder.weight)
|
| 70 |
-
|
| 71 |
-
if transformer.x_embedder.bias is not None:
|
| 72 |
-
new_linear.bias.copy_(transformer.x_embedder.bias)
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
torch_dtype=torch.
|
|
|
|
| 81 |
).to("cuda")
|
| 82 |
-
pipe.
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
torch.manual_seed(
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
)
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
if image_paths is not None:
|
| 109 |
-
input_image["background"] = load_image(image_paths).convert("RGB")
|
| 110 |
-
input_image["layers"][0] = load_image(mask_paths).convert("RGB")
|
| 111 |
-
|
| 112 |
-
size1, size2 = input_image["background"].convert("RGB").size
|
| 113 |
-
icc_profile = input_image["background"].info.get('icc_profile')
|
| 114 |
-
if icc_profile:
|
| 115 |
-
gr.Info(str(f"Image detected to contain ICC profile, converting color space to sRGB..."))
|
| 116 |
-
srgb_profile = ImageCms.createProfile("sRGB")
|
| 117 |
-
io_handle = io.BytesIO(icc_profile)
|
| 118 |
-
src_profile = ImageCms.ImageCmsProfile(io_handle)
|
| 119 |
-
input_image["background"] = ImageCms.profileToProfile(input_image["background"], src_profile, srgb_profile)
|
| 120 |
-
input_image["background"].info.pop('icc_profile', None)
|
| 121 |
-
|
| 122 |
-
if size1 < size2:
|
| 123 |
-
input_image["background"] = input_image["background"].convert("RGB").resize((1024, int(size2 / size1 * 1024)))
|
| 124 |
-
else:
|
| 125 |
-
input_image["background"] = input_image["background"].convert("RGB").resize((int(size1 / size2 * 1024), 1024))
|
| 126 |
-
|
| 127 |
-
img = np.array(input_image["background"].convert("RGB"))
|
| 128 |
-
|
| 129 |
-
W = int(np.shape(img)[0] - np.shape(img)[0] % 8)
|
| 130 |
-
H = int(np.shape(img)[1] - np.shape(img)[1] % 8)
|
| 131 |
-
|
| 132 |
-
input_image["background"] = input_image["background"].resize((H, W))
|
| 133 |
-
input_image["layers"][0] = input_image["layers"][0].resize((H, W))
|
| 134 |
-
|
| 135 |
-
if seed == -1:
|
| 136 |
-
seed = random.randint(1, 2147483647)
|
| 137 |
-
set_seed(random.randint(1, 2147483647))
|
| 138 |
-
else:
|
| 139 |
-
set_seed(seed)
|
| 140 |
-
if image_paths is None:
|
| 141 |
-
img=input_image["layers"][0]
|
| 142 |
-
img_data = np.array(img)
|
| 143 |
-
alpha_channel = img_data[:, :, 3]
|
| 144 |
-
white_background = np.ones_like(alpha_channel) * 255
|
| 145 |
-
gray_image = white_background.copy()
|
| 146 |
-
gray_image[alpha_channel == 0] = 0
|
| 147 |
-
gray_image_pil = Image.fromarray(gray_image).convert('L')
|
| 148 |
-
else:
|
| 149 |
-
gray_image_pil = input_image["layers"][0]
|
| 150 |
-
result = pipe(
|
| 151 |
-
prompt=prompt,
|
| 152 |
-
control_image=input_image["background"].convert("RGB"),
|
| 153 |
-
control_mask=gray_image_pil.convert("RGB"),
|
| 154 |
-
width=H,
|
| 155 |
-
height=W,
|
| 156 |
-
num_inference_steps=ddim_steps,
|
| 157 |
-
generator=torch.Generator("cuda").manual_seed(seed),
|
| 158 |
-
guidance_scale=scale,
|
| 159 |
-
max_sequence_length=512,
|
| 160 |
-
).images[0]
|
| 161 |
-
|
| 162 |
-
mask_np = np.array(input_image["layers"][0].convert("RGB"))
|
| 163 |
-
red = np.array(input_image["background"]).astype("float") * 1
|
| 164 |
-
red[:, :, 0] = 180.0
|
| 165 |
-
red[:, :, 2] = 0
|
| 166 |
-
red[:, :, 1] = 0
|
| 167 |
-
result_m = np.array(input_image["background"])
|
| 168 |
-
result_m = Image.fromarray(
|
| 169 |
-
(
|
| 170 |
-
result_m.astype("float") * (1 - mask_np.astype("float") / 512.0) + mask_np.astype("float") / 512.0 * red
|
| 171 |
-
).astype("uint8")
|
| 172 |
-
)
|
| 173 |
-
|
| 174 |
-
dict_res = [input_image["background"], input_image["layers"][0], result_m, result]
|
| 175 |
-
|
| 176 |
-
dict_out = [result]
|
| 177 |
-
image_path = None
|
| 178 |
-
mask_path = None
|
| 179 |
-
return dict_out, dict_res
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
def infer(
|
| 183 |
-
input_image,
|
| 184 |
-
ddim_steps,
|
| 185 |
-
seed,
|
| 186 |
-
scale,
|
| 187 |
-
removal_prompt,
|
| 188 |
-
|
| 189 |
-
):
|
| 190 |
-
img_path = image_path
|
| 191 |
-
msk_path = mask_path
|
| 192 |
-
return predict(input_image,
|
| 193 |
-
removal_prompt,
|
| 194 |
-
ddim_steps,
|
| 195 |
-
seed,
|
| 196 |
-
scale,
|
| 197 |
-
img_path,
|
| 198 |
-
msk_path
|
| 199 |
-
)
|
| 200 |
-
|
| 201 |
-
def process_example(image_paths, mask_paths):
|
| 202 |
-
global image_path, mask_path
|
| 203 |
-
image = Image.open(image_paths).convert("RGB")
|
| 204 |
-
mask = Image.open(mask_paths).convert("L")
|
| 205 |
-
black_background = Image.new("RGB", image.size, (0, 0, 0))
|
| 206 |
-
masked_image = Image.composite(black_background, image, mask)
|
| 207 |
-
|
| 208 |
-
image_path = image_paths
|
| 209 |
-
mask_path = mask_paths
|
| 210 |
-
return masked_image
|
| 211 |
-
custom_css = """
|
| 212 |
-
|
| 213 |
-
.contain { max-width: 1200px !important; }
|
| 214 |
-
|
| 215 |
-
.custom-image {
|
| 216 |
-
border: 2px dashed #7e22ce !important;
|
| 217 |
-
border-radius: 12px !important;
|
| 218 |
-
transition: all 0.3s ease !important;
|
| 219 |
-
}
|
| 220 |
-
.custom-image:hover {
|
| 221 |
-
border-color: #9333ea !important;
|
| 222 |
-
box-shadow: 0 4px 15px rgba(158, 109, 202, 0.2) !important;
|
| 223 |
-
}
|
| 224 |
-
|
| 225 |
-
.btn-primary {
|
| 226 |
-
background: linear-gradient(45deg, #7e22ce, #9333ea) !important;
|
| 227 |
-
border: none !important;
|
| 228 |
-
color: white !important;
|
| 229 |
-
border-radius: 8px !important;
|
| 230 |
-
}
|
| 231 |
-
#inline-examples {
|
| 232 |
-
border: 1px solid #e2e8f0 !important;
|
| 233 |
-
border-radius: 12px !important;
|
| 234 |
-
padding: 16px !important;
|
| 235 |
-
margin-top: 8px !important;
|
| 236 |
-
}
|
| 237 |
-
|
| 238 |
-
#inline-examples .thumbnail {
|
| 239 |
-
border-radius: 8px !important;
|
| 240 |
-
transition: transform 0.2s ease !important;
|
| 241 |
-
}
|
| 242 |
-
|
| 243 |
-
#inline-examples .thumbnail:hover {
|
| 244 |
-
transform: scale(1.05);
|
| 245 |
-
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
|
| 246 |
-
}
|
| 247 |
-
|
| 248 |
-
.example-title h3 {
|
| 249 |
-
margin: 0 0 12px 0 !important;
|
| 250 |
-
color: #475569 !important;
|
| 251 |
-
font-size: 1.1em !important;
|
| 252 |
-
display: flex !important;
|
| 253 |
-
align-items: center !important;
|
| 254 |
-
}
|
| 255 |
-
|
| 256 |
-
.example-title h3::before {
|
| 257 |
-
content: "📚";
|
| 258 |
-
margin-right: 8px;
|
| 259 |
-
font-size: 1.2em;
|
| 260 |
-
}
|
| 261 |
|
| 262 |
-
|
|
|
|
|
|
|
| 263 |
|
| 264 |
-
.
|
| 265 |
-
|
|
|
|
|
|
|
| 266 |
|
| 267 |
-
with gr.
|
| 268 |
-
|
| 269 |
-
theme=gr.themes.Soft(
|
| 270 |
-
primary_hue="purple",
|
| 271 |
-
secondary_hue="purple",
|
| 272 |
-
font=[gr.themes.GoogleFont('Inter'), 'sans-serif']
|
| 273 |
-
),
|
| 274 |
-
title="Omnieraser"
|
| 275 |
-
) as demo:
|
| 276 |
-
base_model_path = 'black-forest-labs/FLUX.1-dev'
|
| 277 |
-
lora_path = 'theSure/Omnieraser'
|
| 278 |
-
load_model(base_model_path=base_model_path, lora_path=lora_path)
|
| 279 |
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
seed = gr.Slider(visible=False, value=-1)
|
| 283 |
-
removal_prompt = gr.Textbox(visible=False, value="There is nothing here.")
|
| 284 |
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
variant="primary",
|
| 307 |
-
size="lg"
|
| 308 |
-
)
|
| 309 |
-
with gr.Group():
|
| 310 |
-
gr.Markdown("### ⚙️ Control Parameters")
|
| 311 |
-
seed = gr.Slider(
|
| 312 |
-
label="Random Seed",
|
| 313 |
-
minimum=-1,
|
| 314 |
-
maximum=2147483647,
|
| 315 |
-
value=1234,
|
| 316 |
-
step=1,
|
| 317 |
-
info="-1 for random generation"
|
| 318 |
-
)
|
| 319 |
-
with gr.Column(variant="panel"):
|
| 320 |
-
gr.Markdown("### 🖼️ Example Gallery", elem_classes=["example-title"])
|
| 321 |
-
example = gr.Examples(
|
| 322 |
-
examples=image_examples,
|
| 323 |
-
inputs=[
|
| 324 |
-
gr.Image(label="Image", type="filepath",visible=False),
|
| 325 |
-
gr.Image(label="Mask", type="filepath",visible=False)
|
| 326 |
-
],
|
| 327 |
-
outputs=[input_image],
|
| 328 |
-
fn=process_example,
|
| 329 |
-
run_on_click=True,
|
| 330 |
-
examples_per_page=10,
|
| 331 |
-
label="Click any example to load",
|
| 332 |
-
elem_id="inline-examples"
|
| 333 |
-
)
|
| 334 |
|
| 335 |
-
|
| 336 |
-
gr.Markdown("## 📤 Output Panel")
|
| 337 |
-
with gr.Tabs():
|
| 338 |
-
with gr.Tab("Final Result"):
|
| 339 |
-
inpaint_result = gr.Gallery(
|
| 340 |
-
label="Generated Image",
|
| 341 |
-
columns=2,
|
| 342 |
-
height=450,
|
| 343 |
-
preview=True,
|
| 344 |
-
object_fit="contain"
|
| 345 |
-
)
|
| 346 |
|
| 347 |
-
|
| 348 |
-
gallery = gr.Gallery(
|
| 349 |
-
label="Workflow Steps",
|
| 350 |
-
columns=2,
|
| 351 |
-
height=450,
|
| 352 |
-
object_fit="contain"
|
| 353 |
-
)
|
| 354 |
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
seed,
|
| 361 |
-
scale,
|
| 362 |
-
removal_prompt,
|
| 363 |
-
],
|
| 364 |
-
outputs=[inpaint_result, gallery]
|
| 365 |
-
)
|
| 366 |
-
|
| 367 |
-
if __name__ == '__main__':
|
| 368 |
-
demo.launch()
|
|
|
|
| 1 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
+
from diffusers import StableDiffusionInpaintPipeline
|
| 4 |
import spaces
|
| 5 |
+
from PIL import Image
|
| 6 |
import numpy as np
|
| 7 |
+
import random
|
| 8 |
+
import os
|
| 9 |
|
| 10 |
+
DESCRIPTION = "# Omnieraser\nRemove anything from any image using the [FLUX](https://huggingface.co/lllyasviel/flux) model."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
model_id = "lllyasviel/flux"
|
| 13 |
+
lora_weights = "lllyasviel/flux-inpainting-internal"
|
| 14 |
|
| 15 |
+
def load_pipeline():
|
| 16 |
+
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
| 17 |
+
model_id,
|
| 18 |
+
torch_dtype=torch.float16,
|
| 19 |
+
variant="fp16"
|
| 20 |
).to("cuda")
|
| 21 |
+
pipe.load_lora_weights(lora_weights)
|
| 22 |
+
return pipe
|
| 23 |
+
|
| 24 |
+
def inference(pipe, image, mask):
|
| 25 |
+
image = image.convert("RGB").resize((512, 512))
|
| 26 |
+
mask = mask.convert("RGB").resize((512, 512))
|
| 27 |
+
|
| 28 |
+
generator = torch.Generator("cuda").manual_seed(random.randint(0, 999999))
|
| 29 |
+
image = pipe(prompt="", image=image, mask_image=mask, guidance_scale=7.5, generator=generator).images[0]
|
| 30 |
+
return image
|
| 31 |
+
|
| 32 |
+
def process_example(example, pipe):
|
| 33 |
+
image_path, mask_path = example
|
| 34 |
+
image = Image.open(image_path).convert("RGB")
|
| 35 |
+
mask = Image.open(mask_path).convert("RGB")
|
| 36 |
+
return inference(pipe, image, mask)
|
| 37 |
+
|
| 38 |
+
def get_random_examples(dataset_dir="examples"):
|
| 39 |
+
image_dir = os.path.join(dataset_dir, "images")
|
| 40 |
+
mask_dir = os.path.join(dataset_dir, "masks")
|
| 41 |
+
files = os.listdir(image_dir)
|
| 42 |
+
random.shuffle(files)
|
| 43 |
+
examples = [
|
| 44 |
+
[os.path.join(image_dir, f), os.path.join(mask_dir, f)] for f in files if os.path.exists(os.path.join(mask_dir, f))
|
| 45 |
+
]
|
| 46 |
+
return examples[:30]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
def build_ui(pipe):
|
| 49 |
+
with gr.Blocks(css="style.css") as demo:
|
| 50 |
+
gr.Markdown(DESCRIPTION)
|
| 51 |
|
| 52 |
+
with gr.Row():
|
| 53 |
+
with gr.Column():
|
| 54 |
+
input_image = gr.Image(label="Input", type="pil")
|
| 55 |
+
mask_image = gr.Image(label="Mask", type="pil")
|
| 56 |
|
| 57 |
+
with gr.Row():
|
| 58 |
+
submit = gr.Button("Run", elem_id="submit-button")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
+
with gr.Column():
|
| 61 |
+
result_image = gr.Image(label="Output")
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
submit.click(
|
| 64 |
+
fn=lambda img, msk: inference(pipe, img, msk),
|
| 65 |
+
inputs=[input_image, mask_image],
|
| 66 |
+
outputs=result_image
|
| 67 |
+
)
|
| 68 |
|
| 69 |
+
gr.Markdown("## Examples")
|
| 70 |
+
|
| 71 |
+
image_examples = get_random_examples()
|
| 72 |
+
example = gr.Examples(
|
| 73 |
+
examples=image_examples,
|
| 74 |
+
inputs=[
|
| 75 |
+
gr.Image(label="Image", type="filepath", visible=False),
|
| 76 |
+
gr.Image(label="Mask", type="filepath", visible=False)
|
| 77 |
+
],
|
| 78 |
+
outputs=[input_image],
|
| 79 |
+
fn=lambda example: process_example(example, pipe),
|
| 80 |
+
run_on_click=True,
|
| 81 |
+
label="Click any example to load",
|
| 82 |
+
elem_id="inline-examples"
|
| 83 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
+
gr.Markdown("Try drawing over objects you want to remove.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
+
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
+
# 加载 pipe 并运行 UI
|
| 90 |
+
if __name__ == "__main__":
|
| 91 |
+
pipe = load_pipeline()
|
| 92 |
+
demo = build_ui(pipe)
|
| 93 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|