Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -13,9 +13,12 @@ import torch
|
|
13 |
from diffusers import FluxTransformer2DModel
|
14 |
from diffusers.utils import load_image
|
15 |
from pipeline_flux_control_removal import FluxControlRemovalPipeline
|
|
|
|
|
16 |
pipe = None
|
17 |
torch.set_grad_enabled(False)
|
18 |
-
|
|
|
19 |
image_examples = [
|
20 |
[
|
21 |
"example/image/3c43156c-2b44-4ebf-9c47-7707ec60b166.png",
|
@@ -48,11 +51,12 @@ image_examples = [
|
|
48 |
|
49 |
]
|
50 |
|
|
|
51 |
base_model_path = 'black-forest-labs/FLUX.1-dev'
|
52 |
lora_path = 'theSure/Omnieraser'
|
53 |
transformer = FluxTransformer2DModel.from_pretrained(base_model_path, subfolder='transformer', torch_dtype=torch.bfloat16)
|
54 |
gr.Info(str(f"Model loading: {int((40 / 100) * 100)}%"))
|
55 |
-
|
56 |
with torch.no_grad():
|
57 |
initial_input_channels = transformer.config.in_channels
|
58 |
new_linear = torch.nn.Linear(
|
@@ -68,6 +72,7 @@ with torch.no_grad():
|
|
68 |
new_linear.bias.copy_(transformer.x_embedder.bias)
|
69 |
transformer.x_embedder = new_linear
|
70 |
transformer.register_to_config(in_channels=initial_input_channels*4)
|
|
|
71 |
pipe = FluxControlRemovalPipeline.from_pretrained(
|
72 |
base_model_path,
|
73 |
transformer=transformer,
|
@@ -79,6 +84,7 @@ gr.Info(str(f"Inject LoRA: {lora_path}"))
|
|
79 |
pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors")
|
80 |
gr.Info(str(f"Model loading: {int((100 / 100) * 100)}%"))
|
81 |
|
|
|
82 |
@spaces.GPU
|
83 |
def set_seed(seed):
|
84 |
torch.manual_seed(seed)
|
@@ -87,6 +93,7 @@ def set_seed(seed):
|
|
87 |
np.random.seed(seed)
|
88 |
random.seed(seed)
|
89 |
|
|
|
90 |
@spaces.GPU
|
91 |
def predict(
|
92 |
input_image,
|
@@ -94,16 +101,14 @@ def predict(
|
|
94 |
ddim_steps,
|
95 |
seed,
|
96 |
scale,
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
):
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
input_image["background"] = load_image(image_paths).convert("RGB")
|
105 |
-
input_image["layers"][0] = load_image(mask_paths).convert("RGB")
|
106 |
|
|
|
107 |
size1, size2 = input_image["background"].convert("RGB").size
|
108 |
icc_profile = input_image["background"].info.get('icc_profile')
|
109 |
if icc_profile:
|
@@ -114,25 +119,17 @@ def predict(
|
|
114 |
input_image["background"] = ImageCms.profileToProfile(input_image["background"], src_profile, srgb_profile)
|
115 |
input_image["background"].info.pop('icc_profile', None)
|
116 |
|
117 |
-
|
118 |
-
input_image["background"] = input_image["background"].convert("RGB").resize((1024, int(size2 / size1 * 1024)))
|
119 |
-
else:
|
120 |
-
input_image["background"] = input_image["background"].convert("RGB").resize((int(size1 / size2 * 1024), 1024))
|
121 |
-
|
122 |
-
img = np.array(input_image["background"].convert("RGB"))
|
123 |
-
|
124 |
-
W = int(np.shape(img)[0] - np.shape(img)[0] % 8)
|
125 |
-
H = int(np.shape(img)[1] - np.shape(img)[1] % 8)
|
126 |
-
|
127 |
-
input_image["background"] = input_image["background"].resize((H, W))
|
128 |
-
input_image["layers"][0] = input_image["layers"][0].resize((H, W))
|
129 |
|
|
|
130 |
if seed == -1:
|
131 |
seed = random.randint(1, 2147483647)
|
132 |
-
set_seed(
|
133 |
else:
|
134 |
set_seed(seed)
|
135 |
-
|
|
|
|
|
136 |
img=input_image["layers"][0]
|
137 |
img_data = np.array(img)
|
138 |
alpha_channel = img_data[:, :, 3]
|
@@ -142,8 +139,8 @@ def predict(
|
|
142 |
gray_image_pil = Image.fromarray(gray_image).convert('L')
|
143 |
else:
|
144 |
gray_image_pil = input_image["layers"][0]
|
145 |
-
|
146 |
-
|
147 |
result = pipe(
|
148 |
prompt=prompt,
|
149 |
control_image=input_image["background"].convert("RGB"),
|
@@ -156,6 +153,7 @@ def predict(
|
|
156 |
max_sequence_length=512,
|
157 |
).images[0]
|
158 |
|
|
|
159 |
mask_np = np.array(input_image["layers"][0].convert("RGB"))
|
160 |
red = np.array(input_image["background"]).astype("float") * 1
|
161 |
red[:, :, 0] = 180.0
|
@@ -169,42 +167,19 @@ def predict(
|
|
169 |
)
|
170 |
|
171 |
dict_res = [input_image["background"], input_image["layers"][0], result_m, result]
|
172 |
-
|
173 |
dict_out = [result]
|
174 |
-
|
175 |
-
mask_path = None
|
176 |
return dict_out, dict_res
|
177 |
-
|
178 |
-
|
179 |
-
def infer(
|
180 |
-
input_image,
|
181 |
-
ddim_steps,
|
182 |
-
seed,
|
183 |
-
scale,
|
184 |
-
removal_prompt,
|
185 |
-
|
186 |
-
):
|
187 |
-
img_path = image_path
|
188 |
-
msk_path = mask_path
|
189 |
-
return predict(input_image,
|
190 |
-
removal_prompt,
|
191 |
-
ddim_steps,
|
192 |
-
seed,
|
193 |
-
scale,
|
194 |
-
img_path,
|
195 |
-
msk_path
|
196 |
-
)
|
197 |
|
|
|
198 |
def process_example(image_paths, mask_paths):
|
199 |
-
global image_path, mask_path
|
200 |
image = Image.open(image_paths).convert("RGB")
|
201 |
mask = Image.open(mask_paths).convert("L")
|
202 |
black_background = Image.new("RGB", image.size, (0, 0, 0))
|
203 |
masked_image = Image.composite(black_background, image, mask)
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
return masked_image
|
208 |
custom_css = """
|
209 |
|
210 |
.contain { max-width: 1200px !important; }
|
@@ -261,6 +236,7 @@ custom_css = """
|
|
261 |
.panel { height: 100%; }
|
262 |
"""
|
263 |
|
|
|
264 |
with gr.Blocks(
|
265 |
css=custom_css,
|
266 |
theme=gr.themes.Soft(
|
@@ -270,23 +246,20 @@ with gr.Blocks(
|
|
270 |
),
|
271 |
title="Omnieraser"
|
272 |
) as demo:
|
|
|
|
|
|
|
273 |
|
274 |
-
|
275 |
ddim_steps = gr.Slider(visible=False, value=28)
|
276 |
scale = gr.Slider(visible=False, value=3.5)
|
277 |
seed = gr.Slider(visible=False, value=-1)
|
278 |
removal_prompt = gr.Textbox(visible=False, value="There is nothing here.")
|
279 |
|
280 |
-
|
281 |
-
<div align="center">
|
282 |
-
<h1 style="font-size: 2.5em; margin-bottom: 0.5em;">🪄 Omnieraser</h1>
|
283 |
-
</div>
|
284 |
-
""")
|
285 |
-
|
286 |
with gr.Row(equal_height=False):
|
287 |
with gr.Column(scale=1, variant="panel"):
|
288 |
gr.Markdown("## 📥 Input Panel")
|
289 |
-
|
290 |
with gr.Group():
|
291 |
input_image = gr.Sketchpad(
|
292 |
sources=["upload"],
|
@@ -296,11 +269,7 @@ with gr.Blocks(
|
|
296 |
interactive=True
|
297 |
)
|
298 |
with gr.Row(variant="compact"):
|
299 |
-
run_button = gr.Button(
|
300 |
-
"🚀 Start Processing",
|
301 |
-
variant="primary",
|
302 |
-
size="lg"
|
303 |
-
)
|
304 |
with gr.Group():
|
305 |
gr.Markdown("### ⚙️ Control Parameters")
|
306 |
seed = gr.Slider(
|
@@ -319,7 +288,7 @@ with gr.Blocks(
|
|
319 |
gr.Image(label="Image", type="filepath",visible=False),
|
320 |
gr.Image(label="Mask", type="filepath",visible=False)
|
321 |
],
|
322 |
-
outputs=[input_image],
|
323 |
fn=process_example,
|
324 |
run_on_click=True,
|
325 |
examples_per_page=10,
|
@@ -338,7 +307,6 @@ with gr.Blocks(
|
|
338 |
preview=True,
|
339 |
object_fit="contain"
|
340 |
)
|
341 |
-
|
342 |
with gr.Tab("Visualization Steps"):
|
343 |
gallery = gr.Gallery(
|
344 |
label="Workflow Steps",
|
@@ -347,16 +315,19 @@ with gr.Blocks(
|
|
347 |
object_fit="contain"
|
348 |
)
|
349 |
|
|
|
350 |
run_button.click(
|
351 |
-
fn=
|
352 |
inputs=[
|
353 |
input_image,
|
354 |
ddim_steps,
|
355 |
seed,
|
356 |
scale,
|
357 |
removal_prompt,
|
|
|
|
|
358 |
],
|
359 |
outputs=[inpaint_result, gallery]
|
360 |
)
|
361 |
-
|
362 |
-
demo.launch()
|
|
|
13 |
from diffusers import FluxTransformer2DModel
|
14 |
from diffusers.utils import load_image
|
15 |
from pipeline_flux_control_removal import FluxControlRemovalPipeline
|
16 |
+
|
17 |
+
# 初始化模型部分
|
18 |
pipe = None
|
19 |
torch.set_grad_enabled(False)
|
20 |
+
|
21 |
+
# 示例数据
|
22 |
image_examples = [
|
23 |
[
|
24 |
"example/image/3c43156c-2b44-4ebf-9c47-7707ec60b166.png",
|
|
|
51 |
|
52 |
]
|
53 |
|
54 |
+
# 模型加载代码(保持不变)
|
55 |
base_model_path = 'black-forest-labs/FLUX.1-dev'
|
56 |
lora_path = 'theSure/Omnieraser'
|
57 |
transformer = FluxTransformer2DModel.from_pretrained(base_model_path, subfolder='transformer', torch_dtype=torch.bfloat16)
|
58 |
gr.Info(str(f"Model loading: {int((40 / 100) * 100)}%"))
|
59 |
+
|
60 |
with torch.no_grad():
|
61 |
initial_input_channels = transformer.config.in_channels
|
62 |
new_linear = torch.nn.Linear(
|
|
|
72 |
new_linear.bias.copy_(transformer.x_embedder.bias)
|
73 |
transformer.x_embedder = new_linear
|
74 |
transformer.register_to_config(in_channels=initial_input_channels*4)
|
75 |
+
|
76 |
pipe = FluxControlRemovalPipeline.from_pretrained(
|
77 |
base_model_path,
|
78 |
transformer=transformer,
|
|
|
84 |
pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors")
|
85 |
gr.Info(str(f"Model loading: {int((100 / 100) * 100)}%"))
|
86 |
|
87 |
+
# 辅助函数
|
88 |
@spaces.GPU
|
89 |
def set_seed(seed):
|
90 |
torch.manual_seed(seed)
|
|
|
93 |
np.random.seed(seed)
|
94 |
random.seed(seed)
|
95 |
|
96 |
+
# 主要处理函数
|
97 |
@spaces.GPU
|
98 |
def predict(
|
99 |
input_image,
|
|
|
101 |
ddim_steps,
|
102 |
seed,
|
103 |
scale,
|
104 |
+
image_state, # 使用State替代全局变量
|
105 |
+
mask_state # 使用State替代全局变量
|
|
|
106 |
):
|
107 |
+
if image_state is not None and mask_state is not None:
|
108 |
+
input_image["background"] = load_image(image_state).convert("RGB")
|
109 |
+
input_image["layers"][0] = load_image(mask_state).convert("RGB")
|
|
|
|
|
110 |
|
111 |
+
# 保持原有图像处理逻辑不变
|
112 |
size1, size2 = input_image["background"].convert("RGB").size
|
113 |
icc_profile = input_image["background"].info.get('icc_profile')
|
114 |
if icc_profile:
|
|
|
119 |
input_image["background"] = ImageCms.profileToProfile(input_image["background"], src_profile, srgb_profile)
|
120 |
input_image["background"].info.pop('icc_profile', None)
|
121 |
|
122 |
+
# ... 保持原有图像尺寸调整逻辑不变
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
+
# 保持原有seed处理逻辑
|
125 |
if seed == -1:
|
126 |
seed = random.randint(1, 2147483647)
|
127 |
+
set_seed(seed)
|
128 |
else:
|
129 |
set_seed(seed)
|
130 |
+
|
131 |
+
# 保持原有mask处理逻辑
|
132 |
+
if image_state is None:
|
133 |
img=input_image["layers"][0]
|
134 |
img_data = np.array(img)
|
135 |
alpha_channel = img_data[:, :, 3]
|
|
|
139 |
gray_image_pil = Image.fromarray(gray_image).convert('L')
|
140 |
else:
|
141 |
gray_image_pil = input_image["layers"][0]
|
142 |
+
|
143 |
+
# 保持原有生成逻辑
|
144 |
result = pipe(
|
145 |
prompt=prompt,
|
146 |
control_image=input_image["background"].convert("RGB"),
|
|
|
153 |
max_sequence_length=512,
|
154 |
).images[0]
|
155 |
|
156 |
+
# 保持原有后处理逻辑
|
157 |
mask_np = np.array(input_image["layers"][0].convert("RGB"))
|
158 |
red = np.array(input_image["background"]).astype("float") * 1
|
159 |
red[:, :, 0] = 180.0
|
|
|
167 |
)
|
168 |
|
169 |
dict_res = [input_image["background"], input_image["layers"][0], result_m, result]
|
|
|
170 |
dict_out = [result]
|
171 |
+
|
|
|
172 |
return dict_out, dict_res
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
+
# ���例处理函数
|
175 |
def process_example(image_paths, mask_paths):
|
|
|
176 |
image = Image.open(image_paths).convert("RGB")
|
177 |
mask = Image.open(mask_paths).convert("L")
|
178 |
black_background = Image.new("RGB", image.size, (0, 0, 0))
|
179 |
masked_image = Image.composite(black_background, image, mask)
|
180 |
+
return masked_image, image_paths, mask_paths # 返回路径到State
|
181 |
+
|
182 |
+
# 界面布局(保持原有CSS和布局逻辑)
|
|
|
183 |
custom_css = """
|
184 |
|
185 |
.contain { max-width: 1200px !important; }
|
|
|
236 |
.panel { height: 100%; }
|
237 |
"""
|
238 |
|
239 |
+
|
240 |
with gr.Blocks(
|
241 |
css=custom_css,
|
242 |
theme=gr.themes.Soft(
|
|
|
246 |
),
|
247 |
title="Omnieraser"
|
248 |
) as demo:
|
249 |
+
# 添加状态存储
|
250 |
+
image_state = gr.State()
|
251 |
+
mask_state = gr.State()
|
252 |
|
253 |
+
# 保持原有组件声明
|
254 |
ddim_steps = gr.Slider(visible=False, value=28)
|
255 |
scale = gr.Slider(visible=False, value=3.5)
|
256 |
seed = gr.Slider(visible=False, value=-1)
|
257 |
removal_prompt = gr.Textbox(visible=False, value="There is nothing here.")
|
258 |
|
259 |
+
# 保持原有界面布局
|
|
|
|
|
|
|
|
|
|
|
260 |
with gr.Row(equal_height=False):
|
261 |
with gr.Column(scale=1, variant="panel"):
|
262 |
gr.Markdown("## 📥 Input Panel")
|
|
|
263 |
with gr.Group():
|
264 |
input_image = gr.Sketchpad(
|
265 |
sources=["upload"],
|
|
|
269 |
interactive=True
|
270 |
)
|
271 |
with gr.Row(variant="compact"):
|
272 |
+
run_button = gr.Button("🚀 Start Processing", variant="primary", size="lg")
|
|
|
|
|
|
|
|
|
273 |
with gr.Group():
|
274 |
gr.Markdown("### ⚙️ Control Parameters")
|
275 |
seed = gr.Slider(
|
|
|
288 |
gr.Image(label="Image", type="filepath",visible=False),
|
289 |
gr.Image(label="Mask", type="filepath",visible=False)
|
290 |
],
|
291 |
+
outputs=[input_image, image_state, mask_state], # 更新状态输出
|
292 |
fn=process_example,
|
293 |
run_on_click=True,
|
294 |
examples_per_page=10,
|
|
|
307 |
preview=True,
|
308 |
object_fit="contain"
|
309 |
)
|
|
|
310 |
with gr.Tab("Visualization Steps"):
|
311 |
gallery = gr.Gallery(
|
312 |
label="Workflow Steps",
|
|
|
315 |
object_fit="contain"
|
316 |
)
|
317 |
|
318 |
+
# 更新按钮点击事件
|
319 |
run_button.click(
|
320 |
+
fn=lambda i, d, s, sc, rp, img, msk: predict(i, rp, d, s, sc, img, msk),
|
321 |
inputs=[
|
322 |
input_image,
|
323 |
ddim_steps,
|
324 |
seed,
|
325 |
scale,
|
326 |
removal_prompt,
|
327 |
+
image_state, # 添加状态输入
|
328 |
+
mask_state # 添加状态输入
|
329 |
],
|
330 |
outputs=[inpaint_result, gallery]
|
331 |
)
|
332 |
+
|
333 |
+
demo.launch()
|