Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -50,7 +50,7 @@ image_examples = [
|
|
50 |
|
51 |
]
|
52 |
|
53 |
-
@spaces.GPU
|
54 |
def load_model(base_model_path, lora_path):
|
55 |
global pipe
|
56 |
transformer = FluxTransformer2DModel.from_pretrained(base_model_path, subfolder='transformer', torch_dtype=torch.bfloat16)
|
@@ -84,7 +84,7 @@ def load_model(base_model_path, lora_path):
|
|
84 |
gr.Info(str(f"Inject LoRA: {lora_path}"))
|
85 |
pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors")
|
86 |
gr.Info(str(f"Model loading: {int((100 / 100) * 100)}%"))
|
87 |
-
@spaces.GPU
|
88 |
def set_seed(seed):
|
89 |
torch.manual_seed(seed)
|
90 |
torch.cuda.manual_seed(seed)
|
@@ -92,7 +92,7 @@ def set_seed(seed):
|
|
92 |
np.random.seed(seed)
|
93 |
random.seed(seed)
|
94 |
|
95 |
-
@spaces.GPU
|
96 |
def predict(
|
97 |
input_image,
|
98 |
prompt,
|
|
|
50 |
|
51 |
]
|
52 |
|
53 |
+
@spaces.GPU
|
54 |
def load_model(base_model_path, lora_path):
|
55 |
global pipe
|
56 |
transformer = FluxTransformer2DModel.from_pretrained(base_model_path, subfolder='transformer', torch_dtype=torch.bfloat16)
|
|
|
84 |
gr.Info(str(f"Inject LoRA: {lora_path}"))
|
85 |
pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors")
|
86 |
gr.Info(str(f"Model loading: {int((100 / 100) * 100)}%"))
|
87 |
+
@spaces.GPU
|
88 |
def set_seed(seed):
|
89 |
torch.manual_seed(seed)
|
90 |
torch.cuda.manual_seed(seed)
|
|
|
92 |
np.random.seed(seed)
|
93 |
random.seed(seed)
|
94 |
|
95 |
+
@spaces.GPU
|
96 |
def predict(
|
97 |
input_image,
|
98 |
prompt,
|