File size: 8,662 Bytes
9ada6bf
 
 
b6846ae
37e6cfd
 
 
 
9ada6bf
 
 
 
 
 
3ccc51f
bff2e53
 
 
bfda8f6
9ada6bf
bfda8f6
 
 
 
37e6cfd
bff2e53
 
 
 
 
 
 
 
 
 
3ccc51f
bff2e53
 
3ccc51f
9ada6bf
 
 
b63d371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37e6cfd
bff2e53
 
 
 
 
 
 
3ccc51f
bff2e53
 
3ccc51f
9ada6bf
7a5f3e6
9ada6bf
bff2e53
3ccc51f
bff2e53
 
 
 
5e249c4
7a5f3e6
 
 
 
 
 
 
 
 
 
 
 
3ccc51f
 
 
 
 
 
 
 
 
 
 
 
 
bff2e53
5e249c4
7a5f3e6
3ccc51f
5e249c4
 
7a5f3e6
3ccc51f
 
 
 
 
 
 
 
7a5f3e6
 
 
9ada6bf
7a5f3e6
 
 
 
 
 
9ada6bf
3ccc51f
18ff80a
 
 
 
 
 
 
 
 
 
3ccc51f
 
 
 
18ff80a
92a84ee
 
3ccc51f
 
b8778bd
3ccc51f
18ff80a
 
 
b8778bd
18ff80a
 
b8778bd
18ff80a
3ccc51f
 
 
 
 
b8778bd
3ccc51f
9ada6bf
 
 
 
 
 
 
 
 
b8778bd
3ccc51f
18ff80a
 
 
b8778bd
18ff80a
5e249c4
18ff80a
b8778bd
92a84ee
 
 
 
 
 
 
18ff80a
b8778bd
3ccc51f
 
 
 
b8778bd
 
3ccc51f
 
b8778bd
 
9ada6bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
import requests
import gradio as gr
from openai import OpenAI
import logging

# Configure logging
logging.basicConfig(level=logging.INFO)

# Fetch API keys from environment variables
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
PROXYCURL_API_KEY = os.getenv("PROXYCURL_API_KEY")
FIRECRAWL_API_KEY = os.getenv("FIRECRAWL_API_KEY")

# Function to sanitize and validate data
def sanitize_data(data, default_value=""):
    return data.strip() if isinstance(data, str) and data.strip() else default_value

# Function to fetch LinkedIn data using the Proxycurl API
def fetch_linkedin_data(linkedin_url):
    api_key = os.getenv("PROXYCURL_API_KEY")
    headers = {'Authorization': f'Bearer {api_key}'}
    api_endpoint = 'https://nubela.co/proxycurl/api/v2/linkedin'
    
    logging.info("Fetching LinkedIn data...")
    try:
        response = requests.get(api_endpoint,
                                params={'url': linkedin_url},
                                headers=headers,
                                timeout=10)
        if response.status_code == 200:
            logging.info("LinkedIn data fetched successfully.")
            return response.json()
        else:
            logging.error(f"Error fetching LinkedIn data: {response.text}")
            return None
    except Exception as e:
        logging.error(f"Exception during LinkedIn data fetch: {e}")
        return None

# Function to fetch company information using Firecrawl API
def fetch_company_info(company_url):
    api_key = os.getenv("FIRECRAWL_API_KEY")
    headers = {
        'Authorization': f'Bearer {api_key}',
        'Content-Type': 'application/json'
    }
    api_endpoint = 'https://api.firecrawl.dev/v1/crawl'
    
    data = {
        "url": company_url,
        "limit": 100,
        "scrapeOptions": {
            "formats": ["markdown", "html"]
        }
    }
    
    logging.info("Fetching company information...")
    try:
        response = requests.post(api_endpoint, json=data, headers=headers, timeout=15)
        if response.status_code == 200:
            logging.info("Company information fetched successfully.")
            return response.json()
        else:
            logging.error(f"Error fetching company information: {response.text}")
            return None
    except Exception as e:
        logging.error(f"Exception during company info fetch: {e}")
        return None

# Function to structure the email dynamically with fallback for missing data
def structure_email(user_data, linkedin_info, company_info):
    linkedin_role = sanitize_data(linkedin_info.get('current_role', user_data['role']))
    linkedin_skills = sanitize_data(linkedin_info.get('skills', 'relevant skills'))
    linkedin_industry = sanitize_data(linkedin_info.get('industry', 'the industry'))
    company_name = sanitize_data(user_data['company_url'] or company_info.get('company_name', 'the company'))
    company_mission = sanitize_data(company_info.get('mission', f"{company_name}'s mission"))
    company_goal = sanitize_data(company_info.get('goal', 'achieving excellence'))

    # If essential data is missing, fill with defaults to ensure email has some content
    if not linkedin_role:
        linkedin_role = user_data['role']
    if not linkedin_skills:
        linkedin_skills = "skills relevant to this position"
    if not linkedin_industry:
        linkedin_industry = "the industry"
    if not company_mission:
        company_mission = f"{company_name}'s mission"
    if not company_goal:
        company_goal = "the company's goals"

    # Construct the email with fully sanitized and available data
    email_body = (
        f"Dear Hiring Manager,\n\n"
        f"I am writing to express my interest in the {sanitize_data(user_data['role'])} position at {company_name}. "
        f"{company_mission} aligns closely with my professional experience in {linkedin_industry}. "
        f"As a {linkedin_role}, I have developed expertise in {linkedin_skills}, which are highly relevant to this role.\n\n"
        f"My background in {linkedin_skills} will contribute significantly to {company_goal}. "
        f"I am eager to bring my expertise to {company_name} and collaborate with your team.\n\n"
        f"I would appreciate the opportunity to discuss how my background aligns with the needs of your organization. "
        f"Thank you for your time and consideration. I look forward to the possibility of contributing to your team.\n\n"
        f"Best regards,\n{sanitize_data(user_data['name'])}"
    )

    return email_body

# Function to validate the generated email based on critical components with improved flexibility
def validate_email(email_content, user_data):
    logging.info("Validating email content...")

    # Basic components we want to check in the email
    required_keywords = [
        user_data['name'],
        user_data['role'],
        "skills",
        "experience",
        "contribute",
        "Best regards"
    ]
    
    # Check if the email contains all the required elements, allow some flexibility
    missing_elements = [keyword for keyword in required_keywords if keyword.lower() not in email_content.lower()]

    if missing_elements:
        logging.info(f"Missing elements: {missing_elements}")
        return False
    else:
        logging.info("Email content validation passed.")
        return True

# Custom Agent class following ReAct pattern
class Agent:
    def __init__(self, name, instructions, user_data):
        self.name = name
        self.instructions = instructions
        self.user_data = user_data

    def act(self):
        if self.name == "Data Collection Agent":
            linkedin_info = fetch_linkedin_data(self.user_data['linkedin_url'])
            company_info = fetch_company_info(self.user_data['company_url'])
            if linkedin_info and company_info:
                return linkedin_info, company_info
            else:
                return None, None
        elif self.name == "Email Generation Agent":
            linkedin_info = self.user_data['linkedin_info']
            company_info = self.user_data['company_info']
            prompt = structure_email(self.user_data['user_data'], linkedin_info, company_info)
            return prompt

# Simulated Swarm class to manage multiple agents
class Swarm:
    def __init__(self):
        self.agents = []

    def add_agent(self, agent):
        self.agents.append(agent)

    def run(self):
        # The data collection agent acts first
        linkedin_info, company_info = self.agents[0].act()
        if not linkedin_info or not company_info:
            return "Error: Could not retrieve data for LinkedIn or company information."
        return linkedin_info, company_info

# Function to run the agent, using Swarm and ReAct
def run_agent(name, email, phone, linkedin_url, company_url, role):
    user_data = {
        "name": name,
        "email": email,
        "phone": phone,
        "linkedin_url": linkedin_url,
        "company_url": company_url,
        "role": role
    }

    # Initialize Swarm and add the Data Collection Agent
    email_swarm = Swarm()
    data_collection_agent = Agent("Data Collection Agent", "Collect user inputs and relevant data", user_data)
    email_swarm.add_agent(data_collection_agent)

    linkedin_info, company_info = email_swarm.run()
    if isinstance(linkedin_info, str):
        return linkedin_info

    agent_data = {
        "user_data": user_data,
        "linkedin_info": linkedin_info,
        "company_info": company_info
    }

    email_agent = Agent("Email Generation Agent", "Generate the email content", agent_data)
    email_content = email_agent.act()

    # Iterative refinement using ReAct pattern
    max_iterations = 3
    for i in range(max_iterations):
        if validate_email(email_content, user_data):
            return email_content
        else:
            logging.info(f"Iteration {i+1}: Refining email...")
            email_content = structure_email(user_data, linkedin_info, company_info)

    return "Unable to generate a valid email after 3 attempts."

# Set up the Gradio interface
final_interface = gr.Interface(
    fn=run_agent,
    inputs=[
        gr.Textbox(label="Name"),
        gr.Textbox(label="Email"),
        gr.Textbox(label="Phone Number"),
        gr.Textbox(label="LinkedIn Profile URL"),
        gr.Textbox(label="Company URL or Name"),
        gr.Textbox(label="Role Being Applied For")
    ],
    outputs="text",
    title="Email Writing AI Agent",
    description="Autonomously generate a professional email tailored to the job application."
)

if __name__ == "__main__":
    final_interface.launch()