Update app.py
Browse files
app.py
CHANGED
@@ -22,7 +22,7 @@ def fetch_linkedin_data(linkedin_url):
|
|
22 |
response = requests.get(api_endpoint,
|
23 |
params={'url': linkedin_url},
|
24 |
headers=headers,
|
25 |
-
timeout=10)
|
26 |
if response.status_code == 200:
|
27 |
logging.info("LinkedIn data fetched successfully.")
|
28 |
return response.json()
|
@@ -48,7 +48,7 @@ def fetch_company_info(company_url):
|
|
48 |
}
|
49 |
|
50 |
logging.info("Fetching company information...")
|
51 |
-
response = requests.post(api_endpoint, json=data, headers=headers, timeout=15)
|
52 |
if response.status_code == 200:
|
53 |
logging.info("Company information fetched successfully.")
|
54 |
return response.json()
|
@@ -56,13 +56,45 @@ def fetch_company_info(company_url):
|
|
56 |
logging.error(f"Error fetching company information: {response.text}")
|
57 |
return {"error": f"Error fetching company information: {response.text}"}
|
58 |
|
59 |
-
# Function to structure the email
|
60 |
def structure_email(user_data, linkedin_info, company_info):
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
# Function to generate email content using Nvidia Nemotron LLM (non-streaming for simplicity)
|
68 |
def generate_email_content(api_key, prompt):
|
@@ -84,7 +116,6 @@ def generate_email_content(api_key, prompt):
|
|
84 |
stream=False # Disable streaming for simplicity
|
85 |
)
|
86 |
|
87 |
-
# Access the response content correctly based on the Nvidia API structure
|
88 |
if hasattr(response, 'choices') and len(response.choices) > 0:
|
89 |
email_content = response.choices[0].message.content
|
90 |
logging.info("Email content generated successfully.")
|
@@ -97,21 +128,6 @@ def generate_email_content(api_key, prompt):
|
|
97 |
logging.error(f"Error generating email content: {e}")
|
98 |
return "Error generating email content."
|
99 |
|
100 |
-
# Function to validate the generated email for professional tone and completeness
|
101 |
-
def validate_email(email_content):
|
102 |
-
logging.info("Validating email content...")
|
103 |
-
logging.info(f"Email Content for Validation: {email_content}")
|
104 |
-
|
105 |
-
# Adjust validation to check for structure rather than exact keywords
|
106 |
-
if ("passionate" in email_content and
|
107 |
-
"skills" in email_content and
|
108 |
-
"experience" in email_content):
|
109 |
-
logging.info("Email content validation passed.")
|
110 |
-
return True
|
111 |
-
else:
|
112 |
-
logging.info("Email content validation failed.")
|
113 |
-
return False
|
114 |
-
|
115 |
# Custom Agent class to simulate behavior similar to OpenAI's Swarm framework
|
116 |
class Agent:
|
117 |
def __init__(self, name, instructions, user_data):
|
@@ -159,28 +175,23 @@ def run_agent(name, email, phone, linkedin_url, company_url, role):
|
|
159 |
"role": role
|
160 |
}
|
161 |
|
162 |
-
# Create a Swarm and add the Data Collection Agent
|
163 |
email_swarm = Swarm()
|
164 |
data_collection_agent = Agent("Data Collection Agent", "Collect user inputs and relevant data", user_data)
|
165 |
email_swarm.add_agent(data_collection_agent)
|
166 |
|
167 |
-
# Get data from the Data Collection Agent
|
168 |
linkedin_info, company_info = email_swarm.run()
|
169 |
-
if isinstance(linkedin_info, str):
|
170 |
return linkedin_info
|
171 |
|
172 |
-
# Create a structured dictionary for the Email Generation Agent
|
173 |
agent_data = {
|
174 |
"user_data": user_data,
|
175 |
"linkedin_info": linkedin_info,
|
176 |
"company_info": company_info
|
177 |
}
|
178 |
|
179 |
-
# Pass the collected data to the Email Generation Agent
|
180 |
email_agent = Agent("Email Generation Agent", "Generate the email content", agent_data)
|
181 |
email_content = email_agent.act()
|
182 |
|
183 |
-
# Validate and refine the email using a ReAct pattern with a maximum of 3 iterations
|
184 |
for i in range(3):
|
185 |
if validate_email(email_content):
|
186 |
return email_content
|
|
|
22 |
response = requests.get(api_endpoint,
|
23 |
params={'url': linkedin_url},
|
24 |
headers=headers,
|
25 |
+
timeout=10)
|
26 |
if response.status_code == 200:
|
27 |
logging.info("LinkedIn data fetched successfully.")
|
28 |
return response.json()
|
|
|
48 |
}
|
49 |
|
50 |
logging.info("Fetching company information...")
|
51 |
+
response = requests.post(api_endpoint, json=data, headers=headers, timeout=15)
|
52 |
if response.status_code == 200:
|
53 |
logging.info("Company information fetched successfully.")
|
54 |
return response.json()
|
|
|
56 |
logging.error(f"Error fetching company information: {response.text}")
|
57 |
return {"error": f"Error fetching company information: {response.text}"}
|
58 |
|
59 |
+
# Function to structure the email dynamically based on inputs and fetched data
|
60 |
def structure_email(user_data, linkedin_info, company_info):
|
61 |
+
# Fetch relevant information from the LinkedIn profile and company information
|
62 |
+
linkedin_role = linkedin_info.get('current_role', 'a professional')
|
63 |
+
linkedin_skills = linkedin_info.get('skills', 'various relevant skills')
|
64 |
+
company_mission = company_info.get('mission', 'your mission')
|
65 |
+
company_goal = company_info.get('goal', 'achieving excellence in the field')
|
66 |
+
|
67 |
+
# Construct the dynamic email content based on the provided and fetched information
|
68 |
+
email_content = (
|
69 |
+
f"Dear Hiring Manager,\n\n"
|
70 |
+
f"I am writing to express my enthusiasm for the {user_data['role']} position at {user_data['company_url']}. "
|
71 |
+
f"The mission of {company_mission} resonates deeply with me, as my professional experience aligns closely with this vision.\n\n"
|
72 |
+
f"Having worked as {linkedin_role}, I have developed skills in {linkedin_skills}. These skills match the needs of your organization, "
|
73 |
+
f"and I am confident in my ability to contribute effectively to {company_goal}.\n\n"
|
74 |
+
f"I am eager to bring my expertise in {linkedin_skills} to your team, focusing on achieving key objectives and supporting your projects. "
|
75 |
+
f"My goal is to make a meaningful impact and collaborate with like-minded professionals committed to excellence.\n\n"
|
76 |
+
f"I would appreciate the opportunity to discuss how my background and skills align with the needs of {user_data['company_url']}. "
|
77 |
+
f"Please find my resume attached for a more detailed overview of my qualifications.\n\n"
|
78 |
+
f"Thank you for your time and consideration. I look forward to the possibility of contributing to your team.\n\n"
|
79 |
+
f"Best regards,\n"
|
80 |
+
f"{user_data['name']}"
|
81 |
+
)
|
82 |
+
return email_content
|
83 |
+
|
84 |
+
# Function to validate the generated email for professional tone and completeness
|
85 |
+
def validate_email(email_content):
|
86 |
+
logging.info("Validating email content...")
|
87 |
+
logging.info(f"Email Content for Validation: {email_content}")
|
88 |
+
|
89 |
+
# Check if the generated email contains essential elements
|
90 |
+
if ("enthusiasm" in email_content and
|
91 |
+
"skills" in email_content and
|
92 |
+
"contribute" in email_content):
|
93 |
+
logging.info("Email content validation passed.")
|
94 |
+
return True
|
95 |
+
else:
|
96 |
+
logging.info("Email content validation failed.")
|
97 |
+
return False
|
98 |
|
99 |
# Function to generate email content using Nvidia Nemotron LLM (non-streaming for simplicity)
|
100 |
def generate_email_content(api_key, prompt):
|
|
|
116 |
stream=False # Disable streaming for simplicity
|
117 |
)
|
118 |
|
|
|
119 |
if hasattr(response, 'choices') and len(response.choices) > 0:
|
120 |
email_content = response.choices[0].message.content
|
121 |
logging.info("Email content generated successfully.")
|
|
|
128 |
logging.error(f"Error generating email content: {e}")
|
129 |
return "Error generating email content."
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
# Custom Agent class to simulate behavior similar to OpenAI's Swarm framework
|
132 |
class Agent:
|
133 |
def __init__(self, name, instructions, user_data):
|
|
|
175 |
"role": role
|
176 |
}
|
177 |
|
|
|
178 |
email_swarm = Swarm()
|
179 |
data_collection_agent = Agent("Data Collection Agent", "Collect user inputs and relevant data", user_data)
|
180 |
email_swarm.add_agent(data_collection_agent)
|
181 |
|
|
|
182 |
linkedin_info, company_info = email_swarm.run()
|
183 |
+
if isinstance(linkedin_info, str):
|
184 |
return linkedin_info
|
185 |
|
|
|
186 |
agent_data = {
|
187 |
"user_data": user_data,
|
188 |
"linkedin_info": linkedin_info,
|
189 |
"company_info": company_info
|
190 |
}
|
191 |
|
|
|
192 |
email_agent = Agent("Email Generation Agent", "Generate the email content", agent_data)
|
193 |
email_content = email_agent.act()
|
194 |
|
|
|
195 |
for i in range(3):
|
196 |
if validate_email(email_content):
|
197 |
return email_content
|