Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,7 @@ OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
|
12 |
PROXYCURL_API_KEY = os.getenv("PROXYCURL_API_KEY")
|
13 |
FIRECRAWL_API_KEY = os.getenv("FIRECRAWL_API_KEY")
|
14 |
|
15 |
-
# Function to sanitize
|
16 |
def sanitize_data(data, default_value=""):
|
17 |
return data.strip() if isinstance(data, str) and data.strip() else default_value
|
18 |
|
@@ -33,10 +33,10 @@ def fetch_linkedin_data(linkedin_url):
|
|
33 |
return response.json()
|
34 |
else:
|
35 |
logging.error(f"Error fetching LinkedIn data: {response.text}")
|
36 |
-
return
|
37 |
except Exception as e:
|
38 |
logging.error(f"Exception during LinkedIn data fetch: {e}")
|
39 |
-
return
|
40 |
|
41 |
# Function to fetch company information using Firecrawl API
|
42 |
def fetch_company_info(company_url):
|
@@ -63,74 +63,52 @@ def fetch_company_info(company_url):
|
|
63 |
return response.json()
|
64 |
else:
|
65 |
logging.error(f"Error fetching company information: {response.text}")
|
66 |
-
return
|
67 |
except Exception as e:
|
68 |
logging.error(f"Exception during company info fetch: {e}")
|
69 |
-
return
|
70 |
|
71 |
# Function to structure the email dynamically based on inputs and fetched data
|
72 |
def structure_email(user_data, linkedin_info, company_info):
|
73 |
-
# Sanitize and extract the required information
|
74 |
linkedin_role = sanitize_data(linkedin_info.get('current_role', user_data['role']))
|
75 |
-
linkedin_skills = sanitize_data(linkedin_info.get('skills', '
|
76 |
linkedin_industry = sanitize_data(linkedin_info.get('industry', 'the industry'))
|
77 |
company_name = sanitize_data(user_data['company_url'] or company_info.get('company_name', 'the company'))
|
78 |
company_mission = sanitize_data(company_info.get('mission', f"{company_name}'s mission"))
|
79 |
company_goal = sanitize_data(company_info.get('goal', 'achieving excellence'))
|
80 |
|
81 |
-
#
|
82 |
-
email_body =
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
92 |
return email_body
|
93 |
|
94 |
-
# Function to validate the generated email
|
95 |
-
def validate_email(email_content):
|
96 |
logging.info("Validating email content...")
|
97 |
-
logging.info(f"Email Content for Validation: {email_content}")
|
98 |
|
99 |
-
#
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
def generate_email_content(api_key, prompt):
|
104 |
-
client = OpenAI(
|
105 |
-
base_url="https://integrate.api.nvidia.com/v1",
|
106 |
-
api_key=api_key
|
107 |
-
)
|
108 |
-
|
109 |
-
logging.info("Generating email content...")
|
110 |
-
try:
|
111 |
-
response = client.chat.completions.create(
|
112 |
-
model="nvidia/llama-3.1-nemotron-70b-instruct",
|
113 |
-
messages=[
|
114 |
-
{"role": "user", "content": prompt}
|
115 |
-
],
|
116 |
-
temperature=0.5,
|
117 |
-
top_p=1,
|
118 |
-
max_tokens=1024,
|
119 |
-
stream=False
|
120 |
-
)
|
121 |
-
|
122 |
-
if hasattr(response, 'choices') and len(response.choices) > 0:
|
123 |
-
email_content = response.choices[0].message.content
|
124 |
-
logging.info("Email content generated successfully.")
|
125 |
-
return email_content
|
126 |
-
else:
|
127 |
-
logging.error("Error: No choices found in the response.")
|
128 |
-
return "Error generating email content: No valid choices."
|
129 |
-
except Exception as e:
|
130 |
-
logging.error(f"Error generating email content: {e}")
|
131 |
-
return "Error generating email content."
|
132 |
|
133 |
-
# Custom Agent class
|
134 |
class Agent:
|
135 |
def __init__(self, name, instructions, user_data):
|
136 |
self.name = name
|
@@ -141,15 +119,17 @@ class Agent:
|
|
141 |
if self.name == "Data Collection Agent":
|
142 |
linkedin_info = fetch_linkedin_data(self.user_data['linkedin_url'])
|
143 |
company_info = fetch_company_info(self.user_data['company_url'])
|
144 |
-
|
|
|
|
|
|
|
145 |
elif self.name == "Email Generation Agent":
|
146 |
-
user_data = self.user_data['user_data']
|
147 |
linkedin_info = self.user_data['linkedin_info']
|
148 |
company_info = self.user_data['company_info']
|
149 |
-
|
150 |
-
return
|
151 |
|
152 |
-
# Simulated Swarm class to manage agents
|
153 |
class Swarm:
|
154 |
def __init__(self):
|
155 |
self.agents = []
|
@@ -158,14 +138,13 @@ class Swarm:
|
|
158 |
self.agents.append(agent)
|
159 |
|
160 |
def run(self):
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
return linkedin_info, company_info
|
167 |
|
168 |
-
# Function
|
169 |
def run_agent(name, email, phone, linkedin_url, company_url, role):
|
170 |
user_data = {
|
171 |
"name": name,
|
@@ -176,6 +155,7 @@ def run_agent(name, email, phone, linkedin_url, company_url, role):
|
|
176 |
"role": role
|
177 |
}
|
178 |
|
|
|
179 |
email_swarm = Swarm()
|
180 |
data_collection_agent = Agent("Data Collection Agent", "Collect user inputs and relevant data", user_data)
|
181 |
email_swarm.add_agent(data_collection_agent)
|
@@ -193,12 +173,14 @@ def run_agent(name, email, phone, linkedin_url, company_url, role):
|
|
193 |
email_agent = Agent("Email Generation Agent", "Generate the email content", agent_data)
|
194 |
email_content = email_agent.act()
|
195 |
|
196 |
-
|
197 |
-
|
|
|
|
|
198 |
return email_content
|
199 |
else:
|
200 |
-
|
201 |
-
email_content =
|
202 |
|
203 |
return "Unable to generate a valid email after 3 attempts."
|
204 |
|
|
|
12 |
PROXYCURL_API_KEY = os.getenv("PROXYCURL_API_KEY")
|
13 |
FIRECRAWL_API_KEY = os.getenv("FIRECRAWL_API_KEY")
|
14 |
|
15 |
+
# Function to sanitize and validate data
|
16 |
def sanitize_data(data, default_value=""):
|
17 |
return data.strip() if isinstance(data, str) and data.strip() else default_value
|
18 |
|
|
|
33 |
return response.json()
|
34 |
else:
|
35 |
logging.error(f"Error fetching LinkedIn data: {response.text}")
|
36 |
+
return None
|
37 |
except Exception as e:
|
38 |
logging.error(f"Exception during LinkedIn data fetch: {e}")
|
39 |
+
return None
|
40 |
|
41 |
# Function to fetch company information using Firecrawl API
|
42 |
def fetch_company_info(company_url):
|
|
|
63 |
return response.json()
|
64 |
else:
|
65 |
logging.error(f"Error fetching company information: {response.text}")
|
66 |
+
return None
|
67 |
except Exception as e:
|
68 |
logging.error(f"Exception during company info fetch: {e}")
|
69 |
+
return None
|
70 |
|
71 |
# Function to structure the email dynamically based on inputs and fetched data
|
72 |
def structure_email(user_data, linkedin_info, company_info):
|
|
|
73 |
linkedin_role = sanitize_data(linkedin_info.get('current_role', user_data['role']))
|
74 |
+
linkedin_skills = sanitize_data(linkedin_info.get('skills', 'relevant skills'))
|
75 |
linkedin_industry = sanitize_data(linkedin_info.get('industry', 'the industry'))
|
76 |
company_name = sanitize_data(user_data['company_url'] or company_info.get('company_name', 'the company'))
|
77 |
company_mission = sanitize_data(company_info.get('mission', f"{company_name}'s mission"))
|
78 |
company_goal = sanitize_data(company_info.get('goal', 'achieving excellence'))
|
79 |
|
80 |
+
# Construct the email with fully sanitized and available data
|
81 |
+
email_body = (
|
82 |
+
f"Dear Hiring Manager,\n\n"
|
83 |
+
f"I am writing to express my interest in the {sanitize_data(user_data['role'])} position at {company_name}. "
|
84 |
+
f"{company_mission} aligns closely with my professional experience in {linkedin_industry}. "
|
85 |
+
f"As a {linkedin_role}, I have developed expertise in {linkedin_skills}, which are highly relevant to this role.\n\n"
|
86 |
+
f"My background in {linkedin_skills} will contribute significantly to {company_goal}. "
|
87 |
+
f"I am eager to bring my expertise to {company_name} and collaborate with your team.\n\n"
|
88 |
+
f"I would appreciate the opportunity to discuss how my background aligns with the needs of your organization. "
|
89 |
+
f"Thank you for your time and consideration. I look forward to the possibility of contributing to your team.\n\n"
|
90 |
+
f"Best regards,\n{sanitize_data(user_data['name'])}"
|
91 |
+
)
|
92 |
+
|
93 |
return email_body
|
94 |
|
95 |
+
# Function to validate the generated email based on critical components
|
96 |
+
def validate_email(email_content, user_data):
|
97 |
logging.info("Validating email content...")
|
|
|
98 |
|
99 |
+
# Validate the presence of essential details in the email
|
100 |
+
required_keywords = [
|
101 |
+
user_data['name'],
|
102 |
+
user_data['role'],
|
103 |
+
"skills",
|
104 |
+
"experience",
|
105 |
+
"contribute",
|
106 |
+
"Best regards"
|
107 |
+
]
|
108 |
|
109 |
+
return all(keyword in email_content for keyword in required_keywords)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
+
# Custom Agent class following ReAct pattern
|
112 |
class Agent:
|
113 |
def __init__(self, name, instructions, user_data):
|
114 |
self.name = name
|
|
|
119 |
if self.name == "Data Collection Agent":
|
120 |
linkedin_info = fetch_linkedin_data(self.user_data['linkedin_url'])
|
121 |
company_info = fetch_company_info(self.user_data['company_url'])
|
122 |
+
if linkedin_info and company_info:
|
123 |
+
return linkedin_info, company_info
|
124 |
+
else:
|
125 |
+
return None, None
|
126 |
elif self.name == "Email Generation Agent":
|
|
|
127 |
linkedin_info = self.user_data['linkedin_info']
|
128 |
company_info = self.user_data['company_info']
|
129 |
+
prompt = structure_email(self.user_data['user_data'], linkedin_info, company_info)
|
130 |
+
return prompt
|
131 |
|
132 |
+
# Simulated Swarm class to manage multiple agents
|
133 |
class Swarm:
|
134 |
def __init__(self):
|
135 |
self.agents = []
|
|
|
138 |
self.agents.append(agent)
|
139 |
|
140 |
def run(self):
|
141 |
+
# The data collection agent acts first
|
142 |
+
linkedin_info, company_info = self.agents[0].act()
|
143 |
+
if not linkedin_info or not company_info:
|
144 |
+
return "Error: Could not retrieve data for LinkedIn or company information."
|
145 |
+
return linkedin_info, company_info
|
|
|
146 |
|
147 |
+
# Function to run the agent, using Swarm and ReAct
|
148 |
def run_agent(name, email, phone, linkedin_url, company_url, role):
|
149 |
user_data = {
|
150 |
"name": name,
|
|
|
155 |
"role": role
|
156 |
}
|
157 |
|
158 |
+
# Initialize Swarm and add the Data Collection Agent
|
159 |
email_swarm = Swarm()
|
160 |
data_collection_agent = Agent("Data Collection Agent", "Collect user inputs and relevant data", user_data)
|
161 |
email_swarm.add_agent(data_collection_agent)
|
|
|
173 |
email_agent = Agent("Email Generation Agent", "Generate the email content", agent_data)
|
174 |
email_content = email_agent.act()
|
175 |
|
176 |
+
# Iterative refinement using ReAct pattern
|
177 |
+
max_iterations = 3
|
178 |
+
for i in range(max_iterations):
|
179 |
+
if validate_email(email_content, user_data):
|
180 |
return email_content
|
181 |
else:
|
182 |
+
logging.info(f"Iteration {i+1}: Refining email...")
|
183 |
+
email_content = structure_email(user_data, linkedin_info, company_info)
|
184 |
|
185 |
return "Unable to generate a valid email after 3 attempts."
|
186 |
|