siddhartharya commited on
Commit
3ccc51f
·
verified ·
1 Parent(s): be28632

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -70
app.py CHANGED
@@ -12,7 +12,7 @@ OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
12
  PROXYCURL_API_KEY = os.getenv("PROXYCURL_API_KEY")
13
  FIRECRAWL_API_KEY = os.getenv("FIRECRAWL_API_KEY")
14
 
15
- # Function to sanitize data by ensuring it's safe and clean for use
16
  def sanitize_data(data, default_value=""):
17
  return data.strip() if isinstance(data, str) and data.strip() else default_value
18
 
@@ -33,10 +33,10 @@ def fetch_linkedin_data(linkedin_url):
33
  return response.json()
34
  else:
35
  logging.error(f"Error fetching LinkedIn data: {response.text}")
36
- return {"error": f"Error fetching LinkedIn data: {response.text}"}
37
  except Exception as e:
38
  logging.error(f"Exception during LinkedIn data fetch: {e}")
39
- return {"error": f"Exception during LinkedIn data fetch: {e}"}
40
 
41
  # Function to fetch company information using Firecrawl API
42
  def fetch_company_info(company_url):
@@ -63,74 +63,52 @@ def fetch_company_info(company_url):
63
  return response.json()
64
  else:
65
  logging.error(f"Error fetching company information: {response.text}")
66
- return {"error": f"Error fetching company information: {response.text}"}
67
  except Exception as e:
68
  logging.error(f"Exception during company info fetch: {e}")
69
- return {"error": f"Exception during company info fetch: {e}"}
70
 
71
  # Function to structure the email dynamically based on inputs and fetched data
72
  def structure_email(user_data, linkedin_info, company_info):
73
- # Sanitize and extract the required information
74
  linkedin_role = sanitize_data(linkedin_info.get('current_role', user_data['role']))
75
- linkedin_skills = sanitize_data(linkedin_info.get('skills', 'various relevant skills'))
76
  linkedin_industry = sanitize_data(linkedin_info.get('industry', 'the industry'))
77
  company_name = sanitize_data(user_data['company_url'] or company_info.get('company_name', 'the company'))
78
  company_mission = sanitize_data(company_info.get('mission', f"{company_name}'s mission"))
79
  company_goal = sanitize_data(company_info.get('goal', 'achieving excellence'))
80
 
81
- # Build the email directly with the available and sanitized information
82
- email_body = f"Dear Hiring Manager,\n\n"
83
- email_body += f"I am writing to express my interest in the {sanitize_data(user_data['role'])} position at {company_name}. "
84
- email_body += f"I am particularly drawn to {company_name}'s mission to {company_mission}, which aligns with my passion and expertise in {linkedin_industry}. "
85
- email_body += f"As a {linkedin_role}, I have developed skills in {linkedin_skills}, which I believe are highly relevant to the requirements of this role.\n\n"
86
- email_body += f"I am confident that my background and expertise in {linkedin_skills} can contribute to achieving {company_goal}. "
87
- email_body += f"My experience in similar roles has prepared me to make an immediate and meaningful impact on your team, and I am excited about the opportunity to bring my expertise to {company_name}.\n\n"
88
- email_body += f"I would appreciate the opportunity to discuss how my background and skills align with the needs of your organization. "
89
- email_body += "Thank you for your time and consideration. I look forward to the possibility of contributing to your team.\n\n"
90
- email_body += f"Best regards,\n{sanitize_data(user_data['name'])}"
91
-
 
 
92
  return email_body
93
 
94
- # Function to validate the generated email for completeness and professionalism
95
- def validate_email(email_content):
96
  logging.info("Validating email content...")
97
- logging.info(f"Email Content for Validation: {email_content}")
98
 
99
- # Check if essential elements exist in the email content
100
- return all(keyword in email_content for keyword in ["interest", "skills", "experience", "contribute", "Best regards"])
 
 
 
 
 
 
 
101
 
102
- # Function to generate email content using Nvidia Nemotron LLM (non-streaming for simplicity)
103
- def generate_email_content(api_key, prompt):
104
- client = OpenAI(
105
- base_url="https://integrate.api.nvidia.com/v1",
106
- api_key=api_key
107
- )
108
-
109
- logging.info("Generating email content...")
110
- try:
111
- response = client.chat.completions.create(
112
- model="nvidia/llama-3.1-nemotron-70b-instruct",
113
- messages=[
114
- {"role": "user", "content": prompt}
115
- ],
116
- temperature=0.5,
117
- top_p=1,
118
- max_tokens=1024,
119
- stream=False
120
- )
121
-
122
- if hasattr(response, 'choices') and len(response.choices) > 0:
123
- email_content = response.choices[0].message.content
124
- logging.info("Email content generated successfully.")
125
- return email_content
126
- else:
127
- logging.error("Error: No choices found in the response.")
128
- return "Error generating email content: No valid choices."
129
- except Exception as e:
130
- logging.error(f"Error generating email content: {e}")
131
- return "Error generating email content."
132
 
133
- # Custom Agent class to simulate behavior similar to OpenAI's Swarm framework
134
  class Agent:
135
  def __init__(self, name, instructions, user_data):
136
  self.name = name
@@ -141,15 +119,17 @@ class Agent:
141
  if self.name == "Data Collection Agent":
142
  linkedin_info = fetch_linkedin_data(self.user_data['linkedin_url'])
143
  company_info = fetch_company_info(self.user_data['company_url'])
144
- return linkedin_info, company_info
 
 
 
145
  elif self.name == "Email Generation Agent":
146
- user_data = self.user_data['user_data']
147
  linkedin_info = self.user_data['linkedin_info']
148
  company_info = self.user_data['company_info']
149
- email_content = structure_email(user_data, linkedin_info, company_info)
150
- return email_content
151
 
152
- # Simulated Swarm class to manage agents
153
  class Swarm:
154
  def __init__(self):
155
  self.agents = []
@@ -158,14 +138,13 @@ class Swarm:
158
  self.agents.append(agent)
159
 
160
  def run(self):
161
- for agent in self.agents:
162
- if agent.name == "Data Collection Agent":
163
- linkedin_info, company_info = agent.act()
164
- if "error" in linkedin_info or "error" in company_info:
165
- return "Error fetching data. Please check the LinkedIn and company URLs."
166
- return linkedin_info, company_info
167
 
168
- # Function that integrates the agents and manages iterations
169
  def run_agent(name, email, phone, linkedin_url, company_url, role):
170
  user_data = {
171
  "name": name,
@@ -176,6 +155,7 @@ def run_agent(name, email, phone, linkedin_url, company_url, role):
176
  "role": role
177
  }
178
 
 
179
  email_swarm = Swarm()
180
  data_collection_agent = Agent("Data Collection Agent", "Collect user inputs and relevant data", user_data)
181
  email_swarm.add_agent(data_collection_agent)
@@ -193,12 +173,14 @@ def run_agent(name, email, phone, linkedin_url, company_url, role):
193
  email_agent = Agent("Email Generation Agent", "Generate the email content", agent_data)
194
  email_content = email_agent.act()
195
 
196
- for i in range(3):
197
- if validate_email(email_content):
 
 
198
  return email_content
199
  else:
200
- refined_prompt = f"Refine: {structure_email(user_data, linkedin_info, company_info)}"
201
- email_content = generate_email_content(OPENAI_API_KEY, refined_prompt)
202
 
203
  return "Unable to generate a valid email after 3 attempts."
204
 
 
12
  PROXYCURL_API_KEY = os.getenv("PROXYCURL_API_KEY")
13
  FIRECRAWL_API_KEY = os.getenv("FIRECRAWL_API_KEY")
14
 
15
+ # Function to sanitize and validate data
16
  def sanitize_data(data, default_value=""):
17
  return data.strip() if isinstance(data, str) and data.strip() else default_value
18
 
 
33
  return response.json()
34
  else:
35
  logging.error(f"Error fetching LinkedIn data: {response.text}")
36
+ return None
37
  except Exception as e:
38
  logging.error(f"Exception during LinkedIn data fetch: {e}")
39
+ return None
40
 
41
  # Function to fetch company information using Firecrawl API
42
  def fetch_company_info(company_url):
 
63
  return response.json()
64
  else:
65
  logging.error(f"Error fetching company information: {response.text}")
66
+ return None
67
  except Exception as e:
68
  logging.error(f"Exception during company info fetch: {e}")
69
+ return None
70
 
71
  # Function to structure the email dynamically based on inputs and fetched data
72
  def structure_email(user_data, linkedin_info, company_info):
 
73
  linkedin_role = sanitize_data(linkedin_info.get('current_role', user_data['role']))
74
+ linkedin_skills = sanitize_data(linkedin_info.get('skills', 'relevant skills'))
75
  linkedin_industry = sanitize_data(linkedin_info.get('industry', 'the industry'))
76
  company_name = sanitize_data(user_data['company_url'] or company_info.get('company_name', 'the company'))
77
  company_mission = sanitize_data(company_info.get('mission', f"{company_name}'s mission"))
78
  company_goal = sanitize_data(company_info.get('goal', 'achieving excellence'))
79
 
80
+ # Construct the email with fully sanitized and available data
81
+ email_body = (
82
+ f"Dear Hiring Manager,\n\n"
83
+ f"I am writing to express my interest in the {sanitize_data(user_data['role'])} position at {company_name}. "
84
+ f"{company_mission} aligns closely with my professional experience in {linkedin_industry}. "
85
+ f"As a {linkedin_role}, I have developed expertise in {linkedin_skills}, which are highly relevant to this role.\n\n"
86
+ f"My background in {linkedin_skills} will contribute significantly to {company_goal}. "
87
+ f"I am eager to bring my expertise to {company_name} and collaborate with your team.\n\n"
88
+ f"I would appreciate the opportunity to discuss how my background aligns with the needs of your organization. "
89
+ f"Thank you for your time and consideration. I look forward to the possibility of contributing to your team.\n\n"
90
+ f"Best regards,\n{sanitize_data(user_data['name'])}"
91
+ )
92
+
93
  return email_body
94
 
95
+ # Function to validate the generated email based on critical components
96
+ def validate_email(email_content, user_data):
97
  logging.info("Validating email content...")
 
98
 
99
+ # Validate the presence of essential details in the email
100
+ required_keywords = [
101
+ user_data['name'],
102
+ user_data['role'],
103
+ "skills",
104
+ "experience",
105
+ "contribute",
106
+ "Best regards"
107
+ ]
108
 
109
+ return all(keyword in email_content for keyword in required_keywords)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
 
111
+ # Custom Agent class following ReAct pattern
112
  class Agent:
113
  def __init__(self, name, instructions, user_data):
114
  self.name = name
 
119
  if self.name == "Data Collection Agent":
120
  linkedin_info = fetch_linkedin_data(self.user_data['linkedin_url'])
121
  company_info = fetch_company_info(self.user_data['company_url'])
122
+ if linkedin_info and company_info:
123
+ return linkedin_info, company_info
124
+ else:
125
+ return None, None
126
  elif self.name == "Email Generation Agent":
 
127
  linkedin_info = self.user_data['linkedin_info']
128
  company_info = self.user_data['company_info']
129
+ prompt = structure_email(self.user_data['user_data'], linkedin_info, company_info)
130
+ return prompt
131
 
132
+ # Simulated Swarm class to manage multiple agents
133
  class Swarm:
134
  def __init__(self):
135
  self.agents = []
 
138
  self.agents.append(agent)
139
 
140
  def run(self):
141
+ # The data collection agent acts first
142
+ linkedin_info, company_info = self.agents[0].act()
143
+ if not linkedin_info or not company_info:
144
+ return "Error: Could not retrieve data for LinkedIn or company information."
145
+ return linkedin_info, company_info
 
146
 
147
+ # Function to run the agent, using Swarm and ReAct
148
  def run_agent(name, email, phone, linkedin_url, company_url, role):
149
  user_data = {
150
  "name": name,
 
155
  "role": role
156
  }
157
 
158
+ # Initialize Swarm and add the Data Collection Agent
159
  email_swarm = Swarm()
160
  data_collection_agent = Agent("Data Collection Agent", "Collect user inputs and relevant data", user_data)
161
  email_swarm.add_agent(data_collection_agent)
 
173
  email_agent = Agent("Email Generation Agent", "Generate the email content", agent_data)
174
  email_content = email_agent.act()
175
 
176
+ # Iterative refinement using ReAct pattern
177
+ max_iterations = 3
178
+ for i in range(max_iterations):
179
+ if validate_email(email_content, user_data):
180
  return email_content
181
  else:
182
+ logging.info(f"Iteration {i+1}: Refining email...")
183
+ email_content = structure_email(user_data, linkedin_info, company_info)
184
 
185
  return "Unable to generate a valid email after 3 attempts."
186