siddhartharya commited on
Commit
18ff80a
·
verified ·
1 Parent(s): 43b3e45

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -31
app.py CHANGED
@@ -2,7 +2,6 @@ import os
2
  import requests
3
  import openai
4
  import gradio as gr
5
- from swarm import Swarm, Agent
6
 
7
  # Fetch API keys from environment variables
8
  OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
@@ -49,27 +48,42 @@ def generate_email_content(api_key, prompt):
49
  def validate_email(email_content):
50
  return "Why" in email_content and "How" in email_content and "What" in email_content
51
 
52
- # Define Agent B - The agent responsible for processing and refining the email
53
- def transfer_to_email_generation():
54
- return email_agent_b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
- # Define Agent A - The primary agent to initiate data collection and hand over to Agent B
57
- email_agent_a = Agent(
58
- name="Data Collection Agent",
59
- instructions="Collect user inputs and relevant data (LinkedIn and company details).",
60
- functions=[transfer_to_email_generation]
61
- )
62
 
63
- # Define Agent B - The agent that structures and generates the email
64
- email_agent_b = Agent(
65
- name="Email Generation Agent",
66
- instructions="Structure the email using the 'Start with Why' model and generate professional content.",
67
- )
68
 
69
- # Set up the Swarm client
70
- client = Swarm()
 
 
 
 
 
71
 
72
- # Main function that interacts with the agents using the Swarm framework
73
  def run_agent(name, email, phone, linkedin_url, company_url, role):
74
  user_data = {
75
  "name": name,
@@ -80,27 +94,27 @@ def run_agent(name, email, phone, linkedin_url, company_url, role):
80
  "role": role
81
  }
82
 
83
- # Step 1: Fetch LinkedIn and Company Data
84
- linkedin_info = fetch_linkedin_data(linkedin_url)
85
- company_info = fetch_company_info(company_url)
86
- if "error" in linkedin_info or "error" in company_info:
87
- return "Error fetching data. Please check the LinkedIn and company URLs."
88
 
89
- # Step 2: Use the Swarm framework to structure and generate the email
90
- messages = [{"role": "user", "content": "Initiate email generation."}]
91
- response = client.run(agent=email_agent_a, messages=messages)
 
92
 
93
- # Step 3: Agent B structures and refines the email using the provided data
94
- prompt = structure_email(user_data, linkedin_info, company_info)
95
- email_content = generate_email_content(OPENAI_API_KEY, prompt)
96
 
97
- # Validate the generated email content using the ReAct pattern (with a max of 3 iterations)
98
  for i in range(3):
99
  if validate_email(email_content):
100
  return email_content
101
  else:
102
  # Refine the prompt based on the feedback or iteration logic
103
- refined_prompt = f"Refine: {prompt}"
104
  email_content = generate_email_content(OPENAI_API_KEY, refined_prompt)
105
 
106
  return "Unable to generate a valid email after 3 attempts."
 
2
  import requests
3
  import openai
4
  import gradio as gr
 
5
 
6
  # Fetch API keys from environment variables
7
  OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
 
48
  def validate_email(email_content):
49
  return "Why" in email_content and "How" in email_content and "What" in email_content
50
 
51
+ # Custom Agent class to simulate behavior similar to OpenAI's Swarm framework
52
+ class Agent:
53
+ def __init__(self, name, instructions, user_data):
54
+ self.name = name
55
+ self.instructions = instructions
56
+ self.user_data = user_data
57
+
58
+ def act(self):
59
+ # Agent performs its task based on instructions
60
+ if self.name == "Data Collection Agent":
61
+ linkedin_info = fetch_linkedin_data(self.user_data['linkedin_url'])
62
+ company_info = fetch_company_info(self.user_data['company_url'])
63
+ return linkedin_info, company_info
64
+ elif self.name == "Email Generation Agent":
65
+ linkedin_info, company_info = self.user_data
66
+ prompt = structure_email(self.user_data[0], linkedin_info, company_info)
67
+ email_content = generate_email_content(OPENAI_API_KEY, prompt)
68
+ return email_content
69
 
70
+ # Simulated Swarm class to manage agents
71
+ class Swarm:
72
+ def __init__(self):
73
+ self.agents = []
 
 
74
 
75
+ def add_agent(self, agent):
76
+ self.agents.append(agent)
 
 
 
77
 
78
+ def run(self):
79
+ for agent in self.agents:
80
+ if agent.name == "Data Collection Agent":
81
+ linkedin_info, company_info = agent.act()
82
+ if "error" in linkedin_info or "error" in company_info:
83
+ return "Error fetching data. Please check the LinkedIn and company URLs."
84
+ return linkedin_info, company_info
85
 
86
+ # Function that integrates the agents and manages iterations
87
  def run_agent(name, email, phone, linkedin_url, company_url, role):
88
  user_data = {
89
  "name": name,
 
94
  "role": role
95
  }
96
 
97
+ # Create a Swarm and add the Data Collection Agent
98
+ email_swarm = Swarm()
99
+ data_collection_agent = Agent("Data Collection Agent", "Collect user inputs and relevant data", user_data)
100
+ email_swarm.add_agent(data_collection_agent)
 
101
 
102
+ # Get data from the Data Collection Agent
103
+ linkedin_info, company_info = email_swarm.run()
104
+ if isinstance(linkedin_info, str): # If an error message is returned
105
+ return linkedin_info
106
 
107
+ # Pass the collected data to the Email Generation Agent
108
+ email_agent = Agent("Email Generation Agent", "Generate the email content", (user_data, linkedin_info, company_info))
109
+ email_content = email_agent.act()
110
 
111
+ # Validate and refine the email using a ReAct pattern with a maximum of 3 iterations
112
  for i in range(3):
113
  if validate_email(email_content):
114
  return email_content
115
  else:
116
  # Refine the prompt based on the feedback or iteration logic
117
+ refined_prompt = f"Refine: {structure_email(user_data, linkedin_info, company_info)}"
118
  email_content = generate_email_content(OPENAI_API_KEY, refined_prompt)
119
 
120
  return "Unable to generate a valid email after 3 attempts."