Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,10 @@ import os
|
|
2 |
import requests
|
3 |
import gradio as gr
|
4 |
from openai import OpenAI
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Fetch API keys from environment variables
|
7 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
@@ -14,12 +18,16 @@ def fetch_linkedin_data(linkedin_url):
|
|
14 |
headers = {'Authorization': f'Bearer {api_key}'}
|
15 |
api_endpoint = 'https://nubela.co/proxycurl/api/v2/linkedin'
|
16 |
|
|
|
17 |
response = requests.get(api_endpoint,
|
18 |
params={'url': linkedin_url},
|
19 |
-
headers=headers
|
|
|
20 |
if response.status_code == 200:
|
|
|
21 |
return response.json()
|
22 |
else:
|
|
|
23 |
return {"error": f"Error fetching LinkedIn data: {response.text}"}
|
24 |
|
25 |
# Function to fetch company information using Firecrawl API
|
@@ -39,10 +47,13 @@ def fetch_company_info(company_url):
|
|
39 |
}
|
40 |
}
|
41 |
|
42 |
-
|
|
|
43 |
if response.status_code == 200:
|
|
|
44 |
return response.json()
|
45 |
else:
|
|
|
46 |
return {"error": f"Error fetching company information: {response.text}"}
|
47 |
|
48 |
# Function to structure the email using the "Start with Why" model
|
@@ -53,31 +64,31 @@ def structure_email(user_data, linkedin_info, company_info):
|
|
53 |
structured_input = f"{why}\n\n{how}\n\n{what}"
|
54 |
return structured_input
|
55 |
|
56 |
-
# Function to generate email content using Nvidia Nemotron LLM
|
57 |
def generate_email_content(api_key, prompt):
|
58 |
client = OpenAI(
|
59 |
base_url="https://integrate.api.nvidia.com/v1",
|
60 |
api_key=api_key
|
61 |
)
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
|
82 |
# Function to validate the generated email for professional tone and completeness
|
83 |
def validate_email(email_content):
|
|
|
2 |
import requests
|
3 |
import gradio as gr
|
4 |
from openai import OpenAI
|
5 |
+
import logging
|
6 |
+
|
7 |
+
# Configure logging
|
8 |
+
logging.basicConfig(level=logging.INFO)
|
9 |
|
10 |
# Fetch API keys from environment variables
|
11 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
|
|
18 |
headers = {'Authorization': f'Bearer {api_key}'}
|
19 |
api_endpoint = 'https://nubela.co/proxycurl/api/v2/linkedin'
|
20 |
|
21 |
+
logging.info("Fetching LinkedIn data...")
|
22 |
response = requests.get(api_endpoint,
|
23 |
params={'url': linkedin_url},
|
24 |
+
headers=headers,
|
25 |
+
timeout=10) # Adding a timeout for safety
|
26 |
if response.status_code == 200:
|
27 |
+
logging.info("LinkedIn data fetched successfully.")
|
28 |
return response.json()
|
29 |
else:
|
30 |
+
logging.error(f"Error fetching LinkedIn data: {response.text}")
|
31 |
return {"error": f"Error fetching LinkedIn data: {response.text}"}
|
32 |
|
33 |
# Function to fetch company information using Firecrawl API
|
|
|
47 |
}
|
48 |
}
|
49 |
|
50 |
+
logging.info("Fetching company information...")
|
51 |
+
response = requests.post(api_endpoint, json=data, headers=headers, timeout=15) # Adding a timeout for safety
|
52 |
if response.status_code == 200:
|
53 |
+
logging.info("Company information fetched successfully.")
|
54 |
return response.json()
|
55 |
else:
|
56 |
+
logging.error(f"Error fetching company information: {response.text}")
|
57 |
return {"error": f"Error fetching company information: {response.text}"}
|
58 |
|
59 |
# Function to structure the email using the "Start with Why" model
|
|
|
64 |
structured_input = f"{why}\n\n{how}\n\n{what}"
|
65 |
return structured_input
|
66 |
|
67 |
+
# Function to generate email content using Nvidia Nemotron LLM (non-streaming for simplicity)
|
68 |
def generate_email_content(api_key, prompt):
|
69 |
client = OpenAI(
|
70 |
base_url="https://integrate.api.nvidia.com/v1",
|
71 |
api_key=api_key
|
72 |
)
|
73 |
|
74 |
+
logging.info("Generating email content...")
|
75 |
+
try:
|
76 |
+
response = client.chat.completions.create(
|
77 |
+
model="nvidia/llama-3.1-nemotron-70b-instruct",
|
78 |
+
messages=[
|
79 |
+
{"role": "user", "content": prompt}
|
80 |
+
],
|
81 |
+
temperature=0.5,
|
82 |
+
top_p=1,
|
83 |
+
max_tokens=1024,
|
84 |
+
stream=False # Disable streaming for simplicity
|
85 |
+
)
|
86 |
+
email_content = response['choices'][0]['message']['content']
|
87 |
+
logging.info("Email content generated successfully.")
|
88 |
+
return email_content
|
89 |
+
except Exception as e:
|
90 |
+
logging.error(f"Error generating email content: {e}")
|
91 |
+
return "Error generating email content."
|
92 |
|
93 |
# Function to validate the generated email for professional tone and completeness
|
94 |
def validate_email(email_content):
|