File size: 6,296 Bytes
2426d62
41b8230
4164239
 
 
 
 
 
 
 
 
 
84133c2
 
 
 
 
 
 
 
 
 
 
 
 
 
41b8230
 
05bf013
41b8230
 
 
125b60f
3d03f6e
 
 
41b8230
 
 
 
84133c2
 
 
41b8230
 
 
 
 
 
 
 
84133c2
41b8230
 
 
 
 
 
43c1570
 
41b8230
 
 
 
 
 
 
 
 
 
 
 
53a5038
 
ba9e337
824b61b
 
 
 
84133c2
 
ba9e337
33a3ad3
 
 
 
 
 
84133c2
33a3ad3
97d3ce4
9911861
33a3ad3
ba9e337
84133c2
9911861
84133c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba9e337
 
 
 
 
 
 
 
84133c2
ba9e337
ebc3d73
9911861
 
ebc3d73
 
 
 
8996b37
84133c2
 
 
74cbdcf
84133c2
 
 
 
ba9e337
74cbdcf
46486f5
fe10fad
 
 
 
 
 
 
 
 
 
 
 
33a3ad3
74cbdcf
33a3ad3
 
 
 
 
 
 
 
74cbdcf
 
 
 
33a3ad3
84133c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4164239
74cbdcf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import subprocess

script_path = './setup.sh'  # Adjust the path if needed

# Run the script
exit_code = subprocess.call(['bash', script_path])

if exit_code == 0:
    print("Script executed successfully.")
else:
    print(f"Script failed with exit code {exit_code}.")

import gradio as gr
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from langchain.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausalLM
from langchain_community.document_loaders import DirectoryLoader
import torch
import re
import transformers
import spaces
import requests
from urllib.parse import urlencode

# Initialize embeddings and ChromaDB
model_name = "sentence-transformers/all-mpnet-base-v2"
device = "cuda" if torch.cuda.is_available() else "cpu"
model_kwargs = {"device": device}
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)

loader = DirectoryLoader('./example', glob="**/*.pdf", recursive=True, use_multithreading=True)
docs = loader.load()
vectordb = Chroma.from_documents(documents=docs, embedding=embeddings, persist_directory="companies_db")
books_db = Chroma(persist_directory="./companies_db", embedding_function=embeddings)
books_db_client = books_db.as_retriever()

# Initialize the model and tokenizer
model_name = "stabilityai/stablelm-zephyr-3b"

model_config = transformers.AutoConfig.from_pretrained(model_name, max_new_tokens=1024)
model = transformers.AutoModelForCausalLM.from_pretrained(
    model_name,
    trust_remote_code=True,
    config=model_config,
    device_map=device,
)

tokenizer = AutoTokenizer.from_pretrained(model_name)

query_pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    return_full_text=True,
    torch_dtype=torch.float16,
    device_map=device,
    do_sample=True,
    temperature=0.7,
    top_p=0.9,
    top_k=50,
    max_new_tokens=256
)

llm = HuggingFacePipeline(pipeline=query_pipeline)

books_db_client_retriever = RetrievalQA.from_chain_type(
    llm=llm,
    chain_type="stuff",
    retriever=books_db_client,
    verbose=True
)

# OAuth Configuration
TENANT_ID = '2b093ced-2571-463f-bc3e-b4f8bcb427ee'
CLIENT_ID = '2a7c884c-942d-49e2-9e5d-7a29d8a0d3e5'
CLIENT_SECRET = 'EOF8Q~kKHCRgx8tnlLM-H8e93ifetxI6x7sU6bGW'
REDIRECT_URI = 'https://sanjeevbora-chatbot.hf.space/'
AUTH_URL = f"https://login.microsoftonline.com/2b093ced-2571-463f-bc3e-b4f8bcb427ee/oauth2/v2.0/authorize"
TOKEN_URL = f"https://login.microsoftonline.com/2b093ced-2571-463f-bc3e-b4f8bcb427ee/oauth2/v2.0/token"

params = {
    'client_id': CLIENT_ID,
    'response_type': 'code',
    'redirect_uri': REDIRECT_URI,
    'response_mode': 'query',
    'scope': 'User.Read',
    'state': '12345'  # Optional state parameter
}

# Construct the login URL
login_url = f"{AUTH_URL}?{urlencode(params)}"

# Gradio interface
def show_login_button():
    return f'<a href="{login_url}" target="_blank">Click here to login with Microsoft</a>'

# Dummy function to simulate token validation (you will replace this with actual validation)
def is_logged_in(token):
    # Check if the token exists (or check if it's valid)
    return token is not None

# Gradio interface
def check_login(status):
    # If logged in, show the chatbot interface, otherwise show login link
    if status:
        return gr.update(visible=True), gr.update(visible=True)
    else:
        return gr.update(visible=False), gr.update(visible=False)
    
# Function to exchange authorization code for access token
def exchange_code_for_token(auth_code):
    data = {
        'grant_type': 'authorization_code',
        'client_id': CLIENT_ID,
        'client_secret': CLIENT_SECRET,
        'code': auth_code,
        'redirect_uri': REDIRECT_URI
    }
    
    response = requests.post(TOKEN_URL, data=data)
    
    if response.status_code == 200:
        token_data = response.json()
        access_token = token_data.get('access_token')
        return access_token
    else:
        return None

def login_user(auth_code):
    # Exchange the authorization code for an access token
    token = exchange_code_for_token(auth_code)
    
    if token:
        return token
    else:
        return None

# Function to retrieve answer using the RAG system
@spaces.GPU(duration=60)
def test_rag(query):
    books_retriever = books_db_client_retriever.run(query)
    
    # Extract the relevant answer using regex
    corrected_text_match = re.search(r"Helpful Answer:(.*)", books_retriever, re.DOTALL)
    
    if corrected_text_match:
        corrected_text_books = corrected_text_match.group(1).strip()
    else:
        corrected_text_books = "No helpful answer found."
    
    return corrected_text_books

# Define the Gradio interface
def chat(query, history=None):
    if history is None:
        history = []
    if query:
        answer = test_rag(query)
        history.append((query, answer))
    return history, ""  # Clear input after submission

# Function to clear input text
def clear_input():
    return "",  # Return empty string to clear input field

with gr.Blocks() as interface:
    gr.Markdown("## RAG Chatbot")
    gr.Markdown("Please log in to continue.")
    
    # Custom HTML to show login link
    login_link = gr.HTML(f'<a href="{login_url}" target="_blank">Click here to login with Microsoft</a>')

    # Login button to simulate the login process
    login_button = gr.Button("Login")
    
    # Components for chat (initially hidden)
    input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...", visible=False)
    submit_btn = gr.Button("Submit", visible=False)
    chat_history = gr.Chatbot(label="Chat History", visible=False)

    # Handle login button click
    login_button.click(
        login_user, 
        inputs=[], 
        outputs=[login_button],  # You can also update the UI to show login status
        queue=False
    ).then(
        lambda token: check_login(is_logged_in(token)), 
        inputs=[], 
        outputs=[input_box, submit_btn]
    )

    # Input submission and chat handling
    submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box])

interface.launch()