Spaces:
Paused
Paused
auth update
Browse files
app.py
CHANGED
@@ -1,15 +1,4 @@
|
|
1 |
import subprocess
|
2 |
-
|
3 |
-
script_path = './setup.sh' # Adjust the path if needed
|
4 |
-
|
5 |
-
# Run the script
|
6 |
-
exit_code = subprocess.call(['bash', script_path])
|
7 |
-
|
8 |
-
if exit_code == 0:
|
9 |
-
print("Script executed successfully.")
|
10 |
-
else:
|
11 |
-
print(f"Script failed with exit code {exit_code}.")
|
12 |
-
|
13 |
import gradio as gr
|
14 |
from langchain.embeddings import HuggingFaceEmbeddings
|
15 |
from langchain.vectorstores import Chroma
|
@@ -19,11 +8,20 @@ from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausal
|
|
19 |
from langchain_community.document_loaders import DirectoryLoader
|
20 |
import torch
|
21 |
import re
|
22 |
-
import transformers
|
23 |
-
import spaces
|
24 |
import requests
|
25 |
from urllib.parse import urlencode, urlparse, parse_qs
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
# Initialize embeddings and ChromaDB
|
28 |
model_name = "sentence-transformers/all-mpnet-base-v2"
|
29 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -38,9 +36,8 @@ books_db_client = books_db.as_retriever()
|
|
38 |
|
39 |
# Initialize the model and tokenizer
|
40 |
model_name = "stabilityai/stablelm-zephyr-3b"
|
41 |
-
|
42 |
-
|
43 |
-
model = transformers.AutoModelForCausalLM.from_pretrained(
|
44 |
model_name,
|
45 |
trust_remote_code=True,
|
46 |
config=model_config,
|
@@ -49,7 +46,7 @@ model = transformers.AutoModelForCausalLM.from_pretrained(
|
|
49 |
|
50 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
51 |
|
52 |
-
query_pipeline =
|
53 |
"text-generation",
|
54 |
model=model,
|
55 |
tokenizer=tokenizer,
|
@@ -77,8 +74,8 @@ TENANT_ID = '2b093ced-2571-463f-bc3e-b4f8bcb427ee'
|
|
77 |
CLIENT_ID = '2a7c884c-942d-49e2-9e5d-7a29d8a0d3e5'
|
78 |
CLIENT_SECRET = 'EOF8Q~kKHCRgx8tnlLM-H8e93ifetxI6x7sU6bGW'
|
79 |
REDIRECT_URI = 'https://sanjeevbora-chatbot.hf.space/'
|
80 |
-
AUTH_URL = f"https://login.microsoftonline.com/
|
81 |
-
TOKEN_URL = f"https://login.microsoftonline.com/
|
82 |
|
83 |
params = {
|
84 |
'client_id': CLIENT_ID,
|
@@ -93,7 +90,7 @@ params = {
|
|
93 |
login_url = f"{AUTH_URL}?{urlencode(params)}"
|
94 |
|
95 |
def show_login_button():
|
96 |
-
return f'<a href="{login_url}" class
|
97 |
|
98 |
def exchange_code_for_token(auth_code):
|
99 |
data = {
|
@@ -120,11 +117,10 @@ def handle_redirect(url):
|
|
120 |
|
121 |
if auth_code:
|
122 |
token = exchange_code_for_token(auth_code[0])
|
123 |
-
return token #
|
124 |
return None
|
125 |
|
126 |
-
# Function to retrieve
|
127 |
-
@spaces.GPU(duration=60)
|
128 |
def test_rag(query):
|
129 |
books_retriever = books_db_client_retriever.run(query)
|
130 |
|
@@ -146,26 +142,38 @@ def chat(query, history=None):
|
|
146 |
history.append((query, answer))
|
147 |
return history, "" # Clear input after submission
|
148 |
|
|
|
149 |
with gr.Blocks() as interface:
|
150 |
-
gr.
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import subprocess
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
from langchain.vectorstores import Chroma
|
|
|
8 |
from langchain_community.document_loaders import DirectoryLoader
|
9 |
import torch
|
10 |
import re
|
|
|
|
|
11 |
import requests
|
12 |
from urllib.parse import urlencode, urlparse, parse_qs
|
13 |
|
14 |
+
# Step 1: Run the setup script
|
15 |
+
script_path = './setup.sh' # Adjust the path if needed
|
16 |
+
|
17 |
+
# Run the script
|
18 |
+
exit_code = subprocess.call(['bash', script_path])
|
19 |
+
|
20 |
+
if exit_code == 0:
|
21 |
+
print("Script executed successfully.")
|
22 |
+
else:
|
23 |
+
print(f"Script failed with exit code {exit_code}.")
|
24 |
+
|
25 |
# Initialize embeddings and ChromaDB
|
26 |
model_name = "sentence-transformers/all-mpnet-base-v2"
|
27 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
36 |
|
37 |
# Initialize the model and tokenizer
|
38 |
model_name = "stabilityai/stablelm-zephyr-3b"
|
39 |
+
model_config = AutoConfig.from_pretrained(model_name, max_new_tokens=1024)
|
40 |
+
model = AutoModelForCausalLM.from_pretrained(
|
|
|
41 |
model_name,
|
42 |
trust_remote_code=True,
|
43 |
config=model_config,
|
|
|
46 |
|
47 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
48 |
|
49 |
+
query_pipeline = pipeline(
|
50 |
"text-generation",
|
51 |
model=model,
|
52 |
tokenizer=tokenizer,
|
|
|
74 |
CLIENT_ID = '2a7c884c-942d-49e2-9e5d-7a29d8a0d3e5'
|
75 |
CLIENT_SECRET = 'EOF8Q~kKHCRgx8tnlLM-H8e93ifetxI6x7sU6bGW'
|
76 |
REDIRECT_URI = 'https://sanjeevbora-chatbot.hf.space/'
|
77 |
+
AUTH_URL = f"https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/authorize"
|
78 |
+
TOKEN_URL = f"https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/token"
|
79 |
|
80 |
params = {
|
81 |
'client_id': CLIENT_ID,
|
|
|
90 |
login_url = f"{AUTH_URL}?{urlencode(params)}"
|
91 |
|
92 |
def show_login_button():
|
93 |
+
return f'<a href="{login_url}" class="GFG"> Click here to login with Microsoft </a>'
|
94 |
|
95 |
def exchange_code_for_token(auth_code):
|
96 |
data = {
|
|
|
117 |
|
118 |
if auth_code:
|
119 |
token = exchange_code_for_token(auth_code[0])
|
120 |
+
return token # Return the token or handle accordingly
|
121 |
return None
|
122 |
|
123 |
+
# Function to retrieve answers using the RAG system
|
|
|
124 |
def test_rag(query):
|
125 |
books_retriever = books_db_client_retriever.run(query)
|
126 |
|
|
|
142 |
history.append((query, answer))
|
143 |
return history, "" # Clear input after submission
|
144 |
|
145 |
+
# Gradio interface
|
146 |
with gr.Blocks() as interface:
|
147 |
+
with gr.Tab("Login"):
|
148 |
+
gr.Markdown("## Login Page")
|
149 |
+
login_link = gr.HTML(show_login_button())
|
150 |
+
|
151 |
+
# Hidden textbox for redirect URL
|
152 |
+
redirect_url_input = gr.Textbox(label="Redirect URL", visible=False)
|
153 |
+
|
154 |
+
# Handle redirect
|
155 |
+
redirect_url_input.change(
|
156 |
+
handle_redirect,
|
157 |
+
inputs=[redirect_url_input],
|
158 |
+
outputs=[redirect_url_input],
|
159 |
+
show_progress=True
|
160 |
+
)
|
161 |
+
|
162 |
+
with gr.Tab("Chatbot"):
|
163 |
+
gr.Markdown("## Chatbot Page")
|
164 |
+
|
165 |
+
# Components for chat (initially hidden)
|
166 |
+
input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...", visible=False)
|
167 |
+
submit_btn = gr.Button("Submit", visible=False)
|
168 |
+
chat_history = gr.Chatbot(label="Chat History", visible=False)
|
169 |
+
|
170 |
+
redirect_url_input.change(
|
171 |
+
handle_redirect,
|
172 |
+
inputs=[redirect_url_input],
|
173 |
+
outputs=[input_box, submit_btn, chat_history], # Update visibility based on login
|
174 |
+
show_progress=True
|
175 |
+
)
|
176 |
+
|
177 |
+
submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box])
|
178 |
+
|
179 |
+
interface.launch()
|