sanjeevbora commited on
Commit
4164239
·
verified ·
1 Parent(s): 52c2580

auth update

Browse files
Files changed (1) hide show
  1. app.py +53 -45
app.py CHANGED
@@ -1,15 +1,4 @@
1
  import subprocess
2
-
3
- script_path = './setup.sh' # Adjust the path if needed
4
-
5
- # Run the script
6
- exit_code = subprocess.call(['bash', script_path])
7
-
8
- if exit_code == 0:
9
- print("Script executed successfully.")
10
- else:
11
- print(f"Script failed with exit code {exit_code}.")
12
-
13
  import gradio as gr
14
  from langchain.embeddings import HuggingFaceEmbeddings
15
  from langchain.vectorstores import Chroma
@@ -19,11 +8,20 @@ from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausal
19
  from langchain_community.document_loaders import DirectoryLoader
20
  import torch
21
  import re
22
- import transformers
23
- import spaces
24
  import requests
25
  from urllib.parse import urlencode, urlparse, parse_qs
26
 
 
 
 
 
 
 
 
 
 
 
 
27
  # Initialize embeddings and ChromaDB
28
  model_name = "sentence-transformers/all-mpnet-base-v2"
29
  device = "cuda" if torch.cuda.is_available() else "cpu"
@@ -38,9 +36,8 @@ books_db_client = books_db.as_retriever()
38
 
39
  # Initialize the model and tokenizer
40
  model_name = "stabilityai/stablelm-zephyr-3b"
41
-
42
- model_config = transformers.AutoConfig.from_pretrained(model_name, max_new_tokens=1024)
43
- model = transformers.AutoModelForCausalLM.from_pretrained(
44
  model_name,
45
  trust_remote_code=True,
46
  config=model_config,
@@ -49,7 +46,7 @@ model = transformers.AutoModelForCausalLM.from_pretrained(
49
 
50
  tokenizer = AutoTokenizer.from_pretrained(model_name)
51
 
52
- query_pipeline = transformers.pipeline(
53
  "text-generation",
54
  model=model,
55
  tokenizer=tokenizer,
@@ -77,8 +74,8 @@ TENANT_ID = '2b093ced-2571-463f-bc3e-b4f8bcb427ee'
77
  CLIENT_ID = '2a7c884c-942d-49e2-9e5d-7a29d8a0d3e5'
78
  CLIENT_SECRET = 'EOF8Q~kKHCRgx8tnlLM-H8e93ifetxI6x7sU6bGW'
79
  REDIRECT_URI = 'https://sanjeevbora-chatbot.hf.space/'
80
- AUTH_URL = f"https://login.microsoftonline.com/2b093ced-2571-463f-bc3e-b4f8bcb427ee/oauth2/v2.0/authorize"
81
- TOKEN_URL = f"https://login.microsoftonline.com/2b093ced-2571-463f-bc3e-b4f8bcb427ee/oauth2/v2.0/token"
82
 
83
  params = {
84
  'client_id': CLIENT_ID,
@@ -93,7 +90,7 @@ params = {
93
  login_url = f"{AUTH_URL}?{urlencode(params)}"
94
 
95
  def show_login_button():
96
- return f'<a href="{login_url}" class = "GFG"> Click here to login with Microsoft </a>'
97
 
98
  def exchange_code_for_token(auth_code):
99
  data = {
@@ -120,11 +117,10 @@ def handle_redirect(url):
120
 
121
  if auth_code:
122
  token = exchange_code_for_token(auth_code[0])
123
- return token # return the token or handle accordingly
124
  return None
125
 
126
- # Function to retrieve answer using the RAG system
127
- @spaces.GPU(duration=60)
128
  def test_rag(query):
129
  books_retriever = books_db_client_retriever.run(query)
130
 
@@ -146,26 +142,38 @@ def chat(query, history=None):
146
  history.append((query, answer))
147
  return history, "" # Clear input after submission
148
 
 
149
  with gr.Blocks() as interface:
150
- gr.Markdown("## RAG Chatbot")
151
- gr.Markdown("Please log in to continue.")
152
-
153
- login_link = gr.HTML(show_login_button())
154
-
155
- # Components for chat (initially hidden)
156
- input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...", visible=False)
157
- submit_btn = gr.Button("Submit", visible=False)
158
- chat_history = gr.Chatbot(label="Chat History", visible=False)
159
-
160
- # Add a function to handle the redirect from Microsoft
161
- redirect_url_input = gr.Textbox(label="Redirect URL", visible=False)
162
-
163
- redirect_url_input.change(
164
- handle_redirect,
165
- inputs=[redirect_url_input],
166
- outputs=[input_box, submit_btn] # Update visibility based on login
167
- )
168
-
169
- submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box])
170
-
171
- interface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
1
  import subprocess
 
 
 
 
 
 
 
 
 
 
 
2
  import gradio as gr
3
  from langchain.embeddings import HuggingFaceEmbeddings
4
  from langchain.vectorstores import Chroma
 
8
  from langchain_community.document_loaders import DirectoryLoader
9
  import torch
10
  import re
 
 
11
  import requests
12
  from urllib.parse import urlencode, urlparse, parse_qs
13
 
14
+ # Step 1: Run the setup script
15
+ script_path = './setup.sh' # Adjust the path if needed
16
+
17
+ # Run the script
18
+ exit_code = subprocess.call(['bash', script_path])
19
+
20
+ if exit_code == 0:
21
+ print("Script executed successfully.")
22
+ else:
23
+ print(f"Script failed with exit code {exit_code}.")
24
+
25
  # Initialize embeddings and ChromaDB
26
  model_name = "sentence-transformers/all-mpnet-base-v2"
27
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
36
 
37
  # Initialize the model and tokenizer
38
  model_name = "stabilityai/stablelm-zephyr-3b"
39
+ model_config = AutoConfig.from_pretrained(model_name, max_new_tokens=1024)
40
+ model = AutoModelForCausalLM.from_pretrained(
 
41
  model_name,
42
  trust_remote_code=True,
43
  config=model_config,
 
46
 
47
  tokenizer = AutoTokenizer.from_pretrained(model_name)
48
 
49
+ query_pipeline = pipeline(
50
  "text-generation",
51
  model=model,
52
  tokenizer=tokenizer,
 
74
  CLIENT_ID = '2a7c884c-942d-49e2-9e5d-7a29d8a0d3e5'
75
  CLIENT_SECRET = 'EOF8Q~kKHCRgx8tnlLM-H8e93ifetxI6x7sU6bGW'
76
  REDIRECT_URI = 'https://sanjeevbora-chatbot.hf.space/'
77
+ AUTH_URL = f"https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/authorize"
78
+ TOKEN_URL = f"https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/token"
79
 
80
  params = {
81
  'client_id': CLIENT_ID,
 
90
  login_url = f"{AUTH_URL}?{urlencode(params)}"
91
 
92
  def show_login_button():
93
+ return f'<a href="{login_url}" class="GFG"> Click here to login with Microsoft </a>'
94
 
95
  def exchange_code_for_token(auth_code):
96
  data = {
 
117
 
118
  if auth_code:
119
  token = exchange_code_for_token(auth_code[0])
120
+ return token # Return the token or handle accordingly
121
  return None
122
 
123
+ # Function to retrieve answers using the RAG system
 
124
  def test_rag(query):
125
  books_retriever = books_db_client_retriever.run(query)
126
 
 
142
  history.append((query, answer))
143
  return history, "" # Clear input after submission
144
 
145
+ # Gradio interface
146
  with gr.Blocks() as interface:
147
+ with gr.Tab("Login"):
148
+ gr.Markdown("## Login Page")
149
+ login_link = gr.HTML(show_login_button())
150
+
151
+ # Hidden textbox for redirect URL
152
+ redirect_url_input = gr.Textbox(label="Redirect URL", visible=False)
153
+
154
+ # Handle redirect
155
+ redirect_url_input.change(
156
+ handle_redirect,
157
+ inputs=[redirect_url_input],
158
+ outputs=[redirect_url_input],
159
+ show_progress=True
160
+ )
161
+
162
+ with gr.Tab("Chatbot"):
163
+ gr.Markdown("## Chatbot Page")
164
+
165
+ # Components for chat (initially hidden)
166
+ input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...", visible=False)
167
+ submit_btn = gr.Button("Submit", visible=False)
168
+ chat_history = gr.Chatbot(label="Chat History", visible=False)
169
+
170
+ redirect_url_input.change(
171
+ handle_redirect,
172
+ inputs=[redirect_url_input],
173
+ outputs=[input_box, submit_btn, chat_history], # Update visibility based on login
174
+ show_progress=True
175
+ )
176
+
177
+ submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box])
178
+
179
+ interface.launch()