Spaces:
Paused
Paused
update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,102 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
)
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
# import fitz # PyMuPDF for extracting text from PDFs
|
3 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
+
from langchain.vectorstores import Chroma
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.docstore.document import Document
|
7 |
+
from langchain.llms import HuggingFacePipeline
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausalLM
|
10 |
+
import torch
|
11 |
+
import re
|
12 |
+
import transformers
|
13 |
+
from torch import bfloat16
|
14 |
+
from langchain_community.document_loaders import DirectoryLoader
|
15 |
+
|
16 |
+
# Initialize embeddings and ChromaDB
|
17 |
+
model_name = "sentence-transformers/all-mpnet-base-v2"
|
18 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
model_kwargs = {"device": device}
|
20 |
+
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
|
21 |
+
|
22 |
+
loader = DirectoryLoader('./example', glob="**/*.pdf", recursive=True, use_multithreading=True)
|
23 |
+
docs = loader.load()
|
24 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
25 |
+
all_splits = text_splitter.split_documents(docs)
|
26 |
+
vectordb = Chroma.from_documents(documents=all_splits, embedding=embeddings, persist_directory="example_chroma_companies")
|
27 |
+
books_db = Chroma(persist_directory="./example_chroma_companies", embedding_function=embeddings)
|
28 |
+
|
29 |
+
books_db_client = books_db.as_retriever()
|
30 |
+
|
31 |
+
# Initialize the model and tokenizer
|
32 |
+
model_name = "stabilityai/stablelm-zephyr-3b"
|
33 |
+
|
34 |
+
bnb_config = transformers.BitsAndBytesConfig(
|
35 |
+
load_in_4bit=True,
|
36 |
+
bnb_4bit_quant_type='nf4',
|
37 |
+
bnb_4bit_use_double_quant=True,
|
38 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
39 |
+
)
|
40 |
+
|
41 |
+
model_config = transformers.AutoConfig.from_pretrained(model_name, max_new_tokens=1024)
|
42 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
43 |
+
model_name,
|
44 |
+
trust_remote_code=True,
|
45 |
+
config=model_config,
|
46 |
+
quantization_config=bnb_config,
|
47 |
+
device_map=device,
|
48 |
+
)
|
49 |
+
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
51 |
+
|
52 |
+
query_pipeline = transformers.pipeline(
|
53 |
+
"text-generation",
|
54 |
+
model=model,
|
55 |
+
tokenizer=tokenizer,
|
56 |
+
return_full_text=True,
|
57 |
+
torch_dtype=torch.float16,
|
58 |
+
device_map=device,
|
59 |
+
temperature=0.7,
|
60 |
+
top_p=0.9,
|
61 |
+
top_k=50,
|
62 |
+
max_new_tokens=256
|
63 |
+
)
|
64 |
+
|
65 |
+
llm = HuggingFacePipeline(pipeline=query_pipeline)
|
66 |
+
|
67 |
+
books_db_client_retriever = RetrievalQA.from_chain_type(
|
68 |
+
llm=llm,
|
69 |
+
chain_type="stuff",
|
70 |
+
retriever=books_db_client,
|
71 |
+
verbose=True
|
72 |
)
|
73 |
|
74 |
+
# Function to retrieve answer using the RAG system
|
75 |
+
def test_rag(query):
|
76 |
+
books_retriever = books_db_client_retriever.run(query)
|
77 |
+
|
78 |
+
# Extract the relevant answer using regex
|
79 |
+
corrected_text_match = re.search(r"Helpful Answer:(.*)", books_retriever, re.DOTALL)
|
80 |
+
|
81 |
+
if corrected_text_match:
|
82 |
+
corrected_text_books = corrected_text_match.group(1).strip()
|
83 |
+
else:
|
84 |
+
corrected_text_books = "No helpful answer found."
|
85 |
+
|
86 |
+
return corrected_text_books
|
87 |
+
|
88 |
+
# Define the Gradio interface
|
89 |
+
def chat(query, history=[]):
|
90 |
+
answer = test_rag(query)
|
91 |
+
history.append((query, answer))
|
92 |
+
return history, history
|
93 |
+
|
94 |
+
# Gradio interface
|
95 |
+
interface = gr.Interface(
|
96 |
+
fn=chat,
|
97 |
+
inputs=[gr.Textbox(label="Enter your question"), gr.State()],
|
98 |
+
outputs=[gr.Chatbot(label="Chat History"), gr.State()],
|
99 |
+
live=True
|
100 |
+
)
|
101 |
|
102 |
+
interface.launch()
|
|