Spaces:
Paused
Paused
authentication
Browse files
app.py
CHANGED
@@ -7,6 +7,8 @@ from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausal
|
|
7 |
from langchain_community.document_loaders import DirectoryLoader
|
8 |
import torch
|
9 |
import re
|
|
|
|
|
10 |
import transformers
|
11 |
import spaces
|
12 |
|
@@ -24,20 +26,11 @@ books_db_client = books_db.as_retriever()
|
|
24 |
|
25 |
# Initialize the model and tokenizer
|
26 |
model_name = "stabilityai/stablelm-zephyr-3b"
|
27 |
-
|
28 |
-
# bnb_config = transformers.BitsAndBytesConfig(
|
29 |
-
# load_in_4bit=True,
|
30 |
-
# bnb_4bit_quant_type='nf4',
|
31 |
-
# bnb_4bit_use_double_quant=True,
|
32 |
-
# bnb_4bit_compute_dtype=torch.bfloat16
|
33 |
-
# )
|
34 |
-
|
35 |
model_config = transformers.AutoConfig.from_pretrained(model_name, max_new_tokens=1024)
|
36 |
model = transformers.AutoModelForCausalLM.from_pretrained(
|
37 |
model_name,
|
38 |
trust_remote_code=True,
|
39 |
config=model_config,
|
40 |
-
# quantization_config=bnb_config,
|
41 |
device_map=device,
|
42 |
)
|
43 |
|
@@ -66,6 +59,62 @@ books_db_client_retriever = RetrievalQA.from_chain_type(
|
|
66 |
verbose=True
|
67 |
)
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
# Function to retrieve answer using the RAG system
|
70 |
@spaces.GPU(duration=60)
|
71 |
def test_rag(query):
|
@@ -81,7 +130,7 @@ def test_rag(query):
|
|
81 |
|
82 |
return corrected_text_books
|
83 |
|
84 |
-
#
|
85 |
def chat(query, history=None):
|
86 |
if history is None:
|
87 |
history = []
|
@@ -90,10 +139,6 @@ def chat(query, history=None):
|
|
90 |
history.append((query, answer))
|
91 |
return history, "" # Clear input after submission
|
92 |
|
93 |
-
# Function to clear input text
|
94 |
-
def clear_input():
|
95 |
-
return "", # Return empty string to clear input field
|
96 |
-
|
97 |
# Gradio interface
|
98 |
with gr.Blocks() as interface:
|
99 |
gr.Markdown("## RAG Chatbot")
|
@@ -101,10 +146,33 @@ with gr.Blocks() as interface:
|
|
101 |
|
102 |
input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...")
|
103 |
submit_btn = gr.Button("Submit")
|
104 |
-
# clear_btn = gr.Button("Clear")
|
105 |
chat_history = gr.Chatbot(label="Chat History")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
|
|
107 |
submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box])
|
108 |
-
# clear_btn.click(clear_input, outputs=input_box)
|
109 |
|
110 |
interface.launch()
|
|
|
7 |
from langchain_community.document_loaders import DirectoryLoader
|
8 |
import torch
|
9 |
import re
|
10 |
+
import requests
|
11 |
+
from urllib.parse import urlencode, parse_qs, urlparse
|
12 |
import transformers
|
13 |
import spaces
|
14 |
|
|
|
26 |
|
27 |
# Initialize the model and tokenizer
|
28 |
model_name = "stabilityai/stablelm-zephyr-3b"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
model_config = transformers.AutoConfig.from_pretrained(model_name, max_new_tokens=1024)
|
30 |
model = transformers.AutoModelForCausalLM.from_pretrained(
|
31 |
model_name,
|
32 |
trust_remote_code=True,
|
33 |
config=model_config,
|
|
|
34 |
device_map=device,
|
35 |
)
|
36 |
|
|
|
59 |
verbose=True
|
60 |
)
|
61 |
|
62 |
+
# OAuth Configuration
|
63 |
+
TENANT_ID = '2b093ced-2571-463f-bc3e-b4f8bcb427ee'
|
64 |
+
CLIENT_ID = '2a7c884c-942d-49e2-9e5d-7a29d8a0d3e5'
|
65 |
+
CLIENT_SECRET = 'EOF8Q~kKHCRgx8tnlLM-H8e93ifetxI6x7sU6bGW'
|
66 |
+
REDIRECT_URI = 'https://sanjeevbora-chatbot.hf.space/'
|
67 |
+
AUTH_URL = f"https://login.microsoftonline.com/2b093ced-2571-463f-bc3e-b4f8bcb427ee/oauth2/v2.0/authorize"
|
68 |
+
TOKEN_URL = f"https://login.microsoftonline.com/2b093ced-2571-463f-bc3e-b4f8bcb427ee/oauth2/v2.0/token"
|
69 |
+
GRAPH_API_URL = "https://graph.microsoft.com/v1.0/me"
|
70 |
+
|
71 |
+
# Function to redirect to Microsoft login
|
72 |
+
def get_login_url():
|
73 |
+
params = {
|
74 |
+
'client_id': CLIENT_ID,
|
75 |
+
'response_type': 'code',
|
76 |
+
'redirect_uri': REDIRECT_URI,
|
77 |
+
'response_mode': 'query',
|
78 |
+
'scope': 'User.Read',
|
79 |
+
'state': '12345' # Optional state parameter for CSRF protection
|
80 |
+
}
|
81 |
+
login_url = f"{AUTH_URL}?{urlencode(params)}"
|
82 |
+
return login_url
|
83 |
+
|
84 |
+
# Function to exchange auth code for an access token
|
85 |
+
def exchange_code_for_token(auth_code):
|
86 |
+
data = {
|
87 |
+
'grant_type': 'authorization_code',
|
88 |
+
'client_id': CLIENT_ID,
|
89 |
+
'client_secret': CLIENT_SECRET,
|
90 |
+
'code': auth_code,
|
91 |
+
'redirect_uri': REDIRECT_URI
|
92 |
+
}
|
93 |
+
response = requests.post(TOKEN_URL, data=data)
|
94 |
+
token_data = response.json()
|
95 |
+
return token_data.get('access_token')
|
96 |
+
|
97 |
+
# Step 3: Function to get user profile
|
98 |
+
def get_user_profile(access_token):
|
99 |
+
headers = {
|
100 |
+
'Authorization': f'Bearer {access_token}'
|
101 |
+
}
|
102 |
+
response = requests.get(GRAPH_API_URL, headers=headers)
|
103 |
+
return response.json()
|
104 |
+
|
105 |
+
# Function to handle OAuth callback
|
106 |
+
def handle_oauth_callback(url):
|
107 |
+
parsed_url = urlparse(url)
|
108 |
+
query_params = parse_qs(parsed_url.query)
|
109 |
+
auth_code = query_params.get('code', [None])[0]
|
110 |
+
|
111 |
+
if auth_code:
|
112 |
+
access_token = exchange_code_for_token(auth_code)
|
113 |
+
user_profile = get_user_profile(access_token)
|
114 |
+
return user_profile
|
115 |
+
else:
|
116 |
+
return "Authorization failed."
|
117 |
+
|
118 |
# Function to retrieve answer using the RAG system
|
119 |
@spaces.GPU(duration=60)
|
120 |
def test_rag(query):
|
|
|
130 |
|
131 |
return corrected_text_books
|
132 |
|
133 |
+
# Function for RAG Chat
|
134 |
def chat(query, history=None):
|
135 |
if history is None:
|
136 |
history = []
|
|
|
139 |
history.append((query, answer))
|
140 |
return history, "" # Clear input after submission
|
141 |
|
|
|
|
|
|
|
|
|
142 |
# Gradio interface
|
143 |
with gr.Blocks() as interface:
|
144 |
gr.Markdown("## RAG Chatbot")
|
|
|
146 |
|
147 |
input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...")
|
148 |
submit_btn = gr.Button("Submit")
|
|
|
149 |
chat_history = gr.Chatbot(label="Chat History")
|
150 |
+
|
151 |
+
# Add Microsoft OAuth Login
|
152 |
+
auth_btn = gr.Button("Login with Microsoft")
|
153 |
+
|
154 |
+
# OAuth callback URL input (for demonstration, replace with actual callback handler)
|
155 |
+
callback_url = gr.Textbox(label="OAuth Callback URL", placeholder="Paste the callback URL here...")
|
156 |
+
|
157 |
+
# Display user profile after login
|
158 |
+
profile_output = gr.JSON(label="User Profile")
|
159 |
+
|
160 |
+
# Action for OAuth login
|
161 |
+
def login_action():
|
162 |
+
return gr.redirect(get_login_url())
|
163 |
+
|
164 |
+
# Action for handling OAuth callback and displaying the user profile
|
165 |
+
def handle_callback_action(url):
|
166 |
+
user_profile = handle_oauth_callback(url)
|
167 |
+
return user_profile
|
168 |
+
|
169 |
+
# Bind login action to button
|
170 |
+
auth_btn.click(login_action)
|
171 |
+
|
172 |
+
# Bind OAuth callback handler to the callback input
|
173 |
+
callback_url.change(handle_callback_action, inputs=[callback_url], outputs=[profile_output])
|
174 |
|
175 |
+
# Submit action for chat
|
176 |
submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box])
|
|
|
177 |
|
178 |
interface.launch()
|