Spaces:
Paused
Paused
auth
Browse files
app.py
CHANGED
@@ -7,10 +7,10 @@ from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausal
|
|
7 |
from langchain_community.document_loaders import DirectoryLoader
|
8 |
import torch
|
9 |
import re
|
10 |
-
import requests
|
11 |
-
from urllib.parse import urlencode
|
12 |
import transformers
|
13 |
import spaces
|
|
|
|
|
14 |
|
15 |
# Initialize embeddings and ChromaDB
|
16 |
model_name = "sentence-transformers/all-mpnet-base-v2"
|
@@ -26,6 +26,7 @@ books_db_client = books_db.as_retriever()
|
|
26 |
|
27 |
# Initialize the model and tokenizer
|
28 |
model_name = "stabilityai/stablelm-zephyr-3b"
|
|
|
29 |
model_config = transformers.AutoConfig.from_pretrained(model_name, max_new_tokens=1024)
|
30 |
model = transformers.AutoModelForCausalLM.from_pretrained(
|
31 |
model_name,
|
@@ -67,22 +68,19 @@ REDIRECT_URI = 'https://sanjeevbora-chatbot.hf.space/'
|
|
67 |
AUTH_URL = f"https://login.microsoftonline.com/2b093ced-2571-463f-bc3e-b4f8bcb427ee/oauth2/v2.0/authorize"
|
68 |
TOKEN_URL = f"https://login.microsoftonline.com/2b093ced-2571-463f-bc3e-b4f8bcb427ee/oauth2/v2.0/token"
|
69 |
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
#
|
74 |
-
|
75 |
-
|
76 |
-
'client_id': CLIENT_ID,
|
77 |
-
'response_type': 'code',
|
78 |
-
'redirect_uri': REDIRECT_URI,
|
79 |
-
'response_mode': 'query',
|
80 |
-
'scope': 'User.Read',
|
81 |
-
'state': '12345' # Optional state parameter
|
82 |
-
}
|
83 |
-
return f"{AUTH_URL}?{urlencode(params)}"
|
84 |
|
85 |
-
# Exchange authorization code for an access token
|
86 |
def exchange_code_for_token(auth_code):
|
87 |
data = {
|
88 |
'grant_type': 'authorization_code',
|
@@ -91,22 +89,12 @@ def exchange_code_for_token(auth_code):
|
|
91 |
'code': auth_code,
|
92 |
'redirect_uri': REDIRECT_URI
|
93 |
}
|
|
|
94 |
response = requests.post(TOKEN_URL, data=data)
|
95 |
token_data = response.json()
|
|
|
96 |
return token_data.get('access_token')
|
97 |
|
98 |
-
# Function to fetch user profile from Microsoft Graph
|
99 |
-
def get_user_profile(token):
|
100 |
-
headers = {
|
101 |
-
'Authorization': f'Bearer {token}'
|
102 |
-
}
|
103 |
-
response = requests.get(GRAPH_API_URL, headers=headers)
|
104 |
-
return response.json()
|
105 |
-
|
106 |
-
# Function to check if the user is authenticated
|
107 |
-
def is_authenticated():
|
108 |
-
return access_token is not None
|
109 |
-
|
110 |
# Function to retrieve answer using the RAG system
|
111 |
@spaces.GPU(duration=60)
|
112 |
def test_rag(query):
|
@@ -121,60 +109,31 @@ def test_rag(query):
|
|
121 |
corrected_text_books = "No helpful answer found."
|
122 |
|
123 |
return corrected_text_books
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
# If the user is not authenticated, redirect to Microsoft login
|
130 |
-
if not is_authenticated():
|
131 |
-
auth_url = get_auth_url()
|
132 |
-
return gr.Markdown(f"Please [log in]({auth_url}) to use the chatbot.")
|
133 |
-
|
134 |
-
# Gradio chatbot interface
|
135 |
-
def chat(query, history=None):
|
136 |
-
if history is None:
|
137 |
-
history = []
|
138 |
-
if query:
|
139 |
-
# Chatbot logic here
|
140 |
-
answer = test_rag(query)
|
141 |
-
history.append((query, answer))
|
142 |
-
return history, "" # Clear input after submission
|
143 |
-
|
144 |
-
with gr.Blocks() as interface:
|
145 |
-
gr.Markdown("## RAG Chatbot")
|
146 |
-
gr.Markdown("Ask a question and get answers based on retrieved documents.")
|
147 |
-
|
148 |
-
input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...")
|
149 |
-
submit_btn = gr.Button("Submit")
|
150 |
-
chat_history = gr.Chatbot(label="Chat History")
|
151 |
-
|
152 |
-
submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box])
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
# Function to handle OAuth callback
|
157 |
-
def handle_auth_callback(auth_code):
|
158 |
-
global access_token
|
159 |
-
|
160 |
-
# Exchange authorization code for access token
|
161 |
-
access_token = exchange_code_for_token(auth_code)
|
162 |
-
return "Authentication successful. You can now use the chatbot."
|
163 |
-
|
164 |
-
# Gradio app launch
|
165 |
-
with gr.Blocks() as app:
|
166 |
-
gr.Markdown("## OAuth2.0 Chatbot")
|
167 |
-
|
168 |
-
# Add an input field to manually input the authorization code for testing
|
169 |
-
auth_code_input = gr.Textbox(label="Enter the OAuth Authorization Code")
|
170 |
-
|
171 |
-
# Button to handle authentication and exchange the code for the access token
|
172 |
-
auth_button = gr.Button("Authenticate")
|
173 |
-
|
174 |
-
# Callback for authentication
|
175 |
-
auth_button.click(fn=handle_auth_callback, inputs=auth_code_input, outputs="text")
|
176 |
-
|
177 |
-
# Display the chat interface or authentication prompt
|
178 |
-
chat_interface()
|
179 |
|
180 |
-
|
|
|
7 |
from langchain_community.document_loaders import DirectoryLoader
|
8 |
import torch
|
9 |
import re
|
|
|
|
|
10 |
import transformers
|
11 |
import spaces
|
12 |
+
import requests
|
13 |
+
from urllib.parse import urlencode
|
14 |
|
15 |
# Initialize embeddings and ChromaDB
|
16 |
model_name = "sentence-transformers/all-mpnet-base-v2"
|
|
|
26 |
|
27 |
# Initialize the model and tokenizer
|
28 |
model_name = "stabilityai/stablelm-zephyr-3b"
|
29 |
+
|
30 |
model_config = transformers.AutoConfig.from_pretrained(model_name, max_new_tokens=1024)
|
31 |
model = transformers.AutoModelForCausalLM.from_pretrained(
|
32 |
model_name,
|
|
|
68 |
AUTH_URL = f"https://login.microsoftonline.com/2b093ced-2571-463f-bc3e-b4f8bcb427ee/oauth2/v2.0/authorize"
|
69 |
TOKEN_URL = f"https://login.microsoftonline.com/2b093ced-2571-463f-bc3e-b4f8bcb427ee/oauth2/v2.0/token"
|
70 |
|
71 |
+
params = {
|
72 |
+
'client_id': CLIENT_ID,
|
73 |
+
'response_type': 'code',
|
74 |
+
'redirect_uri': REDIRECT_URI,
|
75 |
+
'response_mode': 'query',
|
76 |
+
'scope': 'User.Read',
|
77 |
+
'state': '12345' # Optional state parameter
|
78 |
+
}
|
79 |
|
80 |
+
# Redirect the user to Microsoft's OAuth endpoint
|
81 |
+
login_url = f"{AUTH_URL}?{urlencode(params)}"
|
82 |
+
print("Redirect to:", login_url)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
|
|
84 |
def exchange_code_for_token(auth_code):
|
85 |
data = {
|
86 |
'grant_type': 'authorization_code',
|
|
|
89 |
'code': auth_code,
|
90 |
'redirect_uri': REDIRECT_URI
|
91 |
}
|
92 |
+
|
93 |
response = requests.post(TOKEN_URL, data=data)
|
94 |
token_data = response.json()
|
95 |
+
|
96 |
return token_data.get('access_token')
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
# Function to retrieve answer using the RAG system
|
99 |
@spaces.GPU(duration=60)
|
100 |
def test_rag(query):
|
|
|
109 |
corrected_text_books = "No helpful answer found."
|
110 |
|
111 |
return corrected_text_books
|
112 |
+
|
113 |
+
# Define the Gradio interface
|
114 |
+
def chat(query, history=None):
|
115 |
+
if history is None:
|
116 |
+
history = []
|
117 |
+
if query:
|
118 |
+
answer = test_rag(query)
|
119 |
+
history.append((query, answer))
|
120 |
+
return history, "" # Clear input after submission
|
121 |
+
|
122 |
+
# Function to clear input text
|
123 |
+
def clear_input():
|
124 |
+
return "", # Return empty string to clear input field
|
125 |
+
|
126 |
+
# Gradio interface
|
127 |
+
with gr.Blocks() as interface:
|
128 |
+
gr.Markdown("## RAG Chatbot")
|
129 |
+
gr.Markdown("Ask a question and get answers based on retrieved documents.")
|
130 |
|
131 |
+
input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...")
|
132 |
+
submit_btn = gr.Button("Submit")
|
133 |
+
# clear_btn = gr.Button("Clear")
|
134 |
+
chat_history = gr.Chatbot(label="Chat History")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
+
submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box])
|
137 |
+
# clear_btn.click(clear_input, outputs=input_box)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
+
interface.launch()
|