Spaces:
Paused
Paused
File size: 6,606 Bytes
2426d62 53a5038 41b8230 5cf3079 41b8230 33a3ad3 a6c549e 46486f5 41b8230 4164239 41b8230 05bf013 41b8230 125b60f 3d03f6e 41b8230 4164239 41b8230 4164239 41b8230 43c1570 41b8230 53a5038 ba9e337 824b61b 4164239 ba9e337 33a3ad3 74cbdcf 33a3ad3 97d3ce4 9911861 33a3ad3 ba9e337 9911861 74cbdcf 9911861 74cbdcf ba9e337 ebc3d73 9911861 ebc3d73 8996b37 74cbdcf a6c549e 74cbdcf a6c549e 74cbdcf ba9e337 74cbdcf 46486f5 fe10fad 33a3ad3 74cbdcf 33a3ad3 74cbdcf 33a3ad3 4164239 74cbdcf 4164239 74cbdcf 4164239 74cbdcf 4164239 74cbdcf 4164239 74cbdcf 4164239 74cbdcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import subprocess
import gradio as gr
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from langchain.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausalLM
from langchain_community.document_loaders import DirectoryLoader
import torch
import re
import requests
from urllib.parse import urlencode, urlparse, parse_qs
import spaces
# Step 1: Run the setup script
script_path = './setup.sh' # Adjust the path if needed
# Run the script
exit_code = subprocess.call(['bash', script_path])
if exit_code == 0:
print("Script executed successfully.")
else:
print(f"Script failed with exit code {exit_code}.")
# Initialize embeddings and ChromaDB
model_name = "sentence-transformers/all-mpnet-base-v2"
device = "cuda" if torch.cuda.is_available() else "cpu"
model_kwargs = {"device": device}
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
loader = DirectoryLoader('./example', glob="**/*.pdf", recursive=True, use_multithreading=True)
docs = loader.load()
vectordb = Chroma.from_documents(documents=docs, embedding=embeddings, persist_directory="companies_db")
books_db = Chroma(persist_directory="./companies_db", embedding_function=embeddings)
books_db_client = books_db.as_retriever()
# Initialize the model and tokenizer
model_name = "stabilityai/stablelm-zephyr-3b"
model_config = AutoConfig.from_pretrained(model_name, max_new_tokens=1024)
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
config=model_config,
device_map=device,
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
query_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
return_full_text=True,
torch_dtype=torch.float16,
device_map=device,
do_sample=True,
temperature=0.7,
top_p=0.9,
top_k=50,
max_new_tokens=256
)
llm = HuggingFacePipeline(pipeline=query_pipeline)
books_db_client_retriever = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=books_db_client,
verbose=True
)
# OAuth Configuration
TENANT_ID = '2b093ced-2571-463f-bc3e-b4f8bcb427ee'
CLIENT_ID = '2a7c884c-942d-49e2-9e5d-7a29d8a0d3e5'
CLIENT_SECRET = 'EOF8Q~kKHCRgx8tnlLM-H8e93ifetxI6x7sU6bGW'
REDIRECT_URI = 'https://sanjeevbora-chatbot.hf.space/'
AUTH_URL = f"https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/authorize"
TOKEN_URL = f"https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/token"
params = {
'client_id': CLIENT_ID,
'response_type': 'code',
'redirect_uri': REDIRECT_URI,
'response_mode': 'query',
'scope': 'User.Read',
'state': '12345',
'prompt': 'login' # This ensures the login prompt appears even if already logged in
}
# Construct the login URL
login_url = f"{AUTH_URL}?{urlencode(params)}"
def show_login_button():
return f'<a href="{login_url}" class="GFG">Click here to login with Microsoft</a>'
# Function to exchange auth code for token
def exchange_code_for_token(auth_code):
data = {
'grant_type': 'authorization_code',
'client_id': CLIENT_ID,
'client_secret': CLIENT_SECRET,
'code': auth_code,
'redirect_uri': REDIRECT_URI
}
response = requests.post(TOKEN_URL, data=data)
if response.status_code == 200:
token_data = response.json()
access_token = token_data.get('access_token')
return access_token
else:
return None
# Function to handle redirect URL and extract the auth code
def handle_redirect(url):
parsed_url = urlparse(url)
query_params = parse_qs(parsed_url.query)
auth_code = query_params.get('code')
if auth_code:
token = exchange_code_for_token(auth_code[0])
if token:
return "Logged in", True # Successfully logged in
return "Login failed", False
# Function to retrieve answer using the RAG system
@spaces.GPU(duration=60)
def test_rag(query):
books_retriever = books_db_client_retriever.run(query)
# Extract the relevant answer using regex
corrected_text_match = re.search(r"Helpful Answer:(.*)", books_retriever, re.DOTALL)
if corrected_text_match:
corrected_text_books = corrected_text_match.group(1).strip()
else:
corrected_text_books = "No helpful answer found."
return corrected_text_books
# Define the Gradio interface
def chat(query, history=None):
if history is None:
history = []
if query:
answer = test_rag(query)
history.append((query, answer))
return history, "" # Clear input after submission
# Function to clear input text
def clear_input():
return "", # Return empty string to clear input field
# Gradio Interface
with gr.Blocks() as interface:
with gr.Tab("Login"):
gr.Markdown("## Login Page")
login_link = gr.HTML(show_login_button())
# Hidden textbox for redirect URL
redirect_url_input = gr.Textbox(label="Redirect URL", visible=True) # URL from the Microsoft redirect
status_label = gr.Label(value="Not logged in") # Label to show login status
def on_redirect(redirect_url):
# Extract and exchange token
status, logged_in = handle_redirect(redirect_url)
if logged_in:
return gr.update(visible=False), status, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
else:
return gr.update(visible=True), status, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
# Handle redirect and switch to chatbot page upon login
redirect_url_input.change(
on_redirect,
inputs=[redirect_url_input],
outputs=[redirect_url_input, status_label, gr.Textbox.update(visible=True), gr.Button.update(visible=True), gr.Chatbot.update(visible=True)],
show_progress=True
)
with gr.Tab("Chatbot"):
gr.Markdown("## Chatbot Page")
# Components for chat (initially hidden)
input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...", visible=False)
submit_btn = gr.Button("Submit", visible=False)
chat_history = gr.Chatbot(label="Chat History", visible=False)
# Chat submission
submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box])
interface.launch() |