File size: 2,591 Bytes
b405fea
 
57efdb3
 
 
b405fea
 
 
8dc137a
b405fea
 
 
57efdb3
 
 
83f8a3e
9196e30
57efdb3
 
9196e30
57efdb3
 
9196e30
 
 
 
57efdb3
 
 
 
 
 
 
 
 
 
 
 
 
9e09549
9196e30
57efdb3
9196e30
b405fea
1749217
9196e30
1749217
8dc137a
 
 
 
9196e30
8dc137a
1749217
8dc137a
1749217
8dc137a
1749217
 
 
9196e30
1749217
 
9196e30
1749217
 
5eb8313
1749217
9196e30
b405fea
1749217
8dc137a
 
 
 
1749217
 
9196e30
b405fea
 
 
 
9196e30
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from huggingface_hub import snapshot_download

class ModelInput(BaseModel):
    prompt: str
    max_new_tokens: int = 50

app = FastAPI()

# Define model paths
base_model_path = "HuggingFaceTB/SmolLM2-135M-Instruct"
adapter_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs"

try:
    # First load the base model
    print("Loading base model...")
    model = AutoModelForCausalLM.from_pretrained(
        base_model_path,
        torch_dtype=torch.float16,
        trust_remote_code=True,
        device_map="auto"
    )
    
    # Load tokenizer from base model
    print("Loading tokenizer...")
    tokenizer = AutoTokenizer.from_pretrained(base_model_path)
    
    # Download and load adapter weights
    print("Loading adapter weights...")
    adapter_path_local = snapshot_download(adapter_path)
    
    # Load the adapter weights
    state_dict = torch.load(f"{adapter_path_local}/adapter_model.safetensors")
    model.load_state_dict(state_dict, strict=False)
    
    print("Model and adapter loaded successfully!")

except Exception as e:
    print(f"Error during model loading: {e}")
    raise

def generate_response(model, tokenizer, instruction, max_new_tokens=128):
    """Generate a response from the model based on an instruction."""
    try:
        messages = [{"role": "user", "content": instruction}]
        input_text = tokenizer.apply_chat_template(
            messages, tokenize=False, add_generation_prompt=True
        )
        
        inputs = tokenizer.encode(input_text, return_tensors="pt").to(model.device)
        outputs = model.generate(
            inputs,
            max_new_tokens=max_new_tokens,
            temperature=0.2,
            top_p=0.9,
            do_sample=True,
        )
        
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        return response
    
    except Exception as e:
        raise ValueError(f"Error generating response: {e}")

@app.post("/generate")
async def generate_text(input: ModelInput):
    try:
        response = generate_response(
            model=model,
            tokenizer=tokenizer,
            instruction=input.prompt,
            max_new_tokens=input.max_new_tokens
        )
        return {"generated_text": response}
    
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/")
async def root():
    return {"message": "Welcome to the Model API!"}