Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
4 |
-
from peft import PeftModel
|
5 |
|
6 |
class ModelInput(BaseModel):
|
7 |
prompt: str
|
@@ -9,33 +8,34 @@ class ModelInput(BaseModel):
|
|
9 |
|
10 |
app = FastAPI()
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
adapter_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs"
|
15 |
|
16 |
-
|
17 |
-
tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
device_map="auto",
|
23 |
-
trust_remote_code=True
|
24 |
-
)
|
25 |
-
|
26 |
-
# Load and merge adapter weights
|
27 |
-
model = PeftModel.from_pretrained(base_model, adapter_path)
|
28 |
-
model = model.merge_and_unload()
|
29 |
-
|
30 |
-
# Initialize pipeline
|
31 |
-
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
32 |
|
33 |
def generate_response(model, tokenizer, instruction, max_new_tokens=128):
|
|
|
34 |
try:
|
|
|
35 |
messages = [{"role": "user", "content": instruction}]
|
36 |
input_text = tokenizer.apply_chat_template(
|
37 |
messages, tokenize=False, add_generation_prompt=True
|
38 |
)
|
|
|
|
|
39 |
inputs = tokenizer.encode(input_text, return_tensors="pt").to(model.device)
|
40 |
outputs = model.generate(
|
41 |
inputs,
|
@@ -44,13 +44,17 @@ def generate_response(model, tokenizer, instruction, max_new_tokens=128):
|
|
44 |
top_p=0.9,
|
45 |
do_sample=True,
|
46 |
)
|
|
|
|
|
47 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
48 |
return response
|
|
|
49 |
except Exception as e:
|
50 |
raise ValueError(f"Error generating response: {e}")
|
51 |
|
52 |
@app.post("/generate")
|
53 |
-
def generate_text(input: ModelInput):
|
|
|
54 |
try:
|
55 |
response = generate_response(
|
56 |
model=model,
|
@@ -59,9 +63,10 @@ def generate_text(input: ModelInput):
|
|
59 |
max_new_tokens=input.max_new_tokens
|
60 |
)
|
61 |
return {"generated_text": response}
|
|
|
62 |
except Exception as e:
|
63 |
raise HTTPException(status_code=500, detail=str(e))
|
64 |
|
65 |
@app.get("/")
|
66 |
-
def root():
|
67 |
-
return {"message": "Welcome to the
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
|
|
4 |
|
5 |
class ModelInput(BaseModel):
|
6 |
prompt: str
|
|
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
11 |
+
# Since we're getting config errors with PEFT, let's load the fine-tuned model directly
|
12 |
+
model_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs"
|
|
|
13 |
|
14 |
+
try:
|
15 |
+
# Load the model and tokenizer directly from your fine-tuned version
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(
|
17 |
+
model_path,
|
18 |
+
trust_remote_code=True,
|
19 |
+
device_map="auto"
|
20 |
+
)
|
21 |
+
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
23 |
+
print("Model loaded successfully!")
|
24 |
|
25 |
+
except Exception as e:
|
26 |
+
print(f"Error loading model: {e}")
|
27 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def generate_response(model, tokenizer, instruction, max_new_tokens=128):
|
30 |
+
"""Generate a response from the model based on an instruction."""
|
31 |
try:
|
32 |
+
# Format the input
|
33 |
messages = [{"role": "user", "content": instruction}]
|
34 |
input_text = tokenizer.apply_chat_template(
|
35 |
messages, tokenize=False, add_generation_prompt=True
|
36 |
)
|
37 |
+
|
38 |
+
# Generate
|
39 |
inputs = tokenizer.encode(input_text, return_tensors="pt").to(model.device)
|
40 |
outputs = model.generate(
|
41 |
inputs,
|
|
|
44 |
top_p=0.9,
|
45 |
do_sample=True,
|
46 |
)
|
47 |
+
|
48 |
+
# Decode
|
49 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
50 |
return response
|
51 |
+
|
52 |
except Exception as e:
|
53 |
raise ValueError(f"Error generating response: {e}")
|
54 |
|
55 |
@app.post("/generate")
|
56 |
+
async def generate_text(input: ModelInput):
|
57 |
+
"""API endpoint to generate text."""
|
58 |
try:
|
59 |
response = generate_response(
|
60 |
model=model,
|
|
|
63 |
max_new_tokens=input.max_new_tokens
|
64 |
)
|
65 |
return {"generated_text": response}
|
66 |
+
|
67 |
except Exception as e:
|
68 |
raise HTTPException(status_code=500, detail=str(e))
|
69 |
|
70 |
@app.get("/")
|
71 |
+
async def root():
|
72 |
+
return {"message": "Welcome to the Model API!"}
|