Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,34 +11,46 @@ class ModelInput(BaseModel):
|
|
11 |
app = FastAPI()
|
12 |
|
13 |
# Load your model and tokenizer
|
14 |
-
model_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs"
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
16 |
model = AutoModelForCausalLM.from_pretrained(model_path)
|
17 |
|
18 |
# Initialize the pipeline
|
19 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
def generate_response(model, tokenizer, instruction):
|
24 |
"""Generate a response from the model based on an instruction."""
|
25 |
-
|
26 |
-
|
27 |
-
messages
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
|
|
38 |
def generate_text(input: ModelInput):
|
|
|
39 |
try:
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
42 |
except Exception as e:
|
43 |
raise HTTPException(status_code=500, detail=str(e))
|
44 |
|
|
|
11 |
app = FastAPI()
|
12 |
|
13 |
# Load your model and tokenizer
|
14 |
+
model_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs"
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
16 |
model = AutoModelForCausalLM.from_pretrained(model_path)
|
17 |
|
18 |
# Initialize the pipeline
|
19 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
20 |
|
21 |
+
# Helper function to generate a response
|
22 |
+
def generate_response(model, tokenizer, instruction, max_new_tokens=128):
|
|
|
23 |
"""Generate a response from the model based on an instruction."""
|
24 |
+
try:
|
25 |
+
# Format the input as chat messages if necessary
|
26 |
+
messages = [{"role": "user", "content": instruction}]
|
27 |
+
input_text = tokenizer.apply_chat_template(
|
28 |
+
messages, tokenize=False, add_generation_prompt=True
|
29 |
+
)
|
30 |
+
# Tokenize and generate the output
|
31 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt")
|
32 |
+
outputs = model.generate(
|
33 |
+
inputs,
|
34 |
+
max_new_tokens=max_new_tokens,
|
35 |
+
temperature=0.2,
|
36 |
+
top_p=0.9,
|
37 |
+
do_sample=True,
|
38 |
+
)
|
39 |
+
# Decode the output
|
40 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
41 |
+
return response
|
42 |
+
except Exception as e:
|
43 |
+
raise ValueError(f"Error generating response: {e}")
|
44 |
|
45 |
+
@app.post("/generate")
|
46 |
def generate_text(input: ModelInput):
|
47 |
+
"""API endpoint to generate text."""
|
48 |
try:
|
49 |
+
# Call the helper function
|
50 |
+
response = generate_response(
|
51 |
+
model=model, tokenizer=tokenizer, instruction=input.prompt, max_new_tokens=input.max_new_tokens
|
52 |
+
)
|
53 |
+
return {"generated_text": response}
|
54 |
except Exception as e:
|
55 |
raise HTTPException(status_code=500, detail=str(e))
|
56 |
|