Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -19,14 +19,26 @@ model = AutoModelForCausalLM.from_pretrained(model_path)
|
|
19 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
20 |
|
21 |
@app.post("/generate")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def generate_text(input: ModelInput):
|
23 |
try:
|
24 |
-
|
25 |
-
|
26 |
-
max_new_tokens=input.max_new_tokens,
|
27 |
-
return_full_text=False,
|
28 |
-
)
|
29 |
-
return {"generated_text": result[0]["generated_text"]}
|
30 |
except Exception as e:
|
31 |
raise HTTPException(status_code=500, detail=str(e))
|
32 |
|
|
|
19 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
20 |
|
21 |
@app.post("/generate")
|
22 |
+
|
23 |
+
def generate_response(model, tokenizer, instruction):
|
24 |
+
"""Generate a response from the model based on an instruction."""
|
25 |
+
messages = [{"role": "user", "content": instruction}]
|
26 |
+
input_text = tokenizer.apply_chat_template(
|
27 |
+
messages, tokenize=False, add_generation_prompt=True
|
28 |
+
)
|
29 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt")
|
30 |
+
outputs = model.generate(
|
31 |
+
inputs, max_new_tokens=128, temperature=0.2, top_p=0.9, do_sample=True
|
32 |
+
)
|
33 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
34 |
+
return response
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
def generate_text(input: ModelInput):
|
39 |
try:
|
40 |
+
response = generate_response(model, tokenizer, ModelInput)
|
41 |
+
return response}
|
|
|
|
|
|
|
|
|
42 |
except Exception as e:
|
43 |
raise HTTPException(status_code=500, detail=str(e))
|
44 |
|