Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,56 +1,48 @@
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
-
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
4 |
-
from safetensors.torch import load_file
|
5 |
-
import torch
|
6 |
|
7 |
-
# Define the input schema
|
8 |
class ModelInput(BaseModel):
|
9 |
prompt: str
|
10 |
-
max_new_tokens: int = 50
|
11 |
|
12 |
-
# Initialize FastAPI app
|
13 |
app = FastAPI()
|
14 |
|
15 |
-
# Load
|
16 |
-
base_model_path = "HuggingFaceTB/SmolLM2-135M-Instruct"
|
17 |
-
|
18 |
-
|
19 |
-
# Path to the adapter weights
|
20 |
|
|
|
21 |
tokenizer = AutoTokenizer.from_pretrained(base_model_path)
|
22 |
-
model = AutoModelForCausalLM.from_pretrained(base_model_path)
|
23 |
-
|
24 |
-
# Load the adapter weights
|
25 |
-
def load_adapter_weights(model, adapter_weights_path):
|
26 |
-
adapter_weights = load_file(adapter_weights_path)
|
27 |
-
model.load_state_dict(adapter_weights, strict=False) # Apply the weights
|
28 |
-
return model
|
29 |
|
30 |
-
#
|
31 |
-
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
#
|
34 |
-
model.
|
|
|
35 |
|
36 |
-
# Initialize
|
37 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
38 |
|
39 |
-
# Helper function to generate a response
|
40 |
def generate_response(model, tokenizer, instruction, max_new_tokens=128):
|
41 |
-
"""Generate a response from the model based on an instruction."""
|
42 |
try:
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
46 |
outputs = model.generate(
|
47 |
-
|
48 |
max_new_tokens=max_new_tokens,
|
49 |
-
temperature=0.
|
50 |
top_p=0.9,
|
51 |
do_sample=True,
|
52 |
)
|
53 |
-
# Decode the output
|
54 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
55 |
return response
|
56 |
except Exception as e:
|
@@ -58,11 +50,12 @@ def generate_response(model, tokenizer, instruction, max_new_tokens=128):
|
|
58 |
|
59 |
@app.post("/generate")
|
60 |
def generate_text(input: ModelInput):
|
61 |
-
"""API endpoint to generate text."""
|
62 |
try:
|
63 |
-
# Call the helper function
|
64 |
response = generate_response(
|
65 |
-
model=model,
|
|
|
|
|
|
|
66 |
)
|
67 |
return {"generated_text": response}
|
68 |
except Exception as e:
|
@@ -70,4 +63,4 @@ def generate_text(input: ModelInput):
|
|
70 |
|
71 |
@app.get("/")
|
72 |
def root():
|
73 |
-
return {"message": "Welcome to the Hugging Face Model API
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, PeftModel
|
|
|
|
|
4 |
|
|
|
5 |
class ModelInput(BaseModel):
|
6 |
prompt: str
|
7 |
+
max_new_tokens: int = 50
|
8 |
|
|
|
9 |
app = FastAPI()
|
10 |
|
11 |
+
# Load base model and tokenizer
|
12 |
+
base_model_path = "HuggingFaceTB/SmolLM2-135M-Instruct"
|
13 |
+
adapter_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs"
|
|
|
|
|
14 |
|
15 |
+
# Initialize tokenizer from base model
|
16 |
tokenizer = AutoTokenizer.from_pretrained(base_model_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# Load base model
|
19 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
20 |
+
base_model_path,
|
21 |
+
device_map="auto",
|
22 |
+
trust_remote_code=True
|
23 |
+
)
|
24 |
|
25 |
+
# Load and merge adapter weights
|
26 |
+
model = PeftModel.from_pretrained(base_model, adapter_path)
|
27 |
+
model = model.merge_and_unload()
|
28 |
|
29 |
+
# Initialize pipeline
|
30 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
31 |
|
|
|
32 |
def generate_response(model, tokenizer, instruction, max_new_tokens=128):
|
|
|
33 |
try:
|
34 |
+
messages = [{"role": "user", "content": instruction}]
|
35 |
+
input_text = tokenizer.apply_chat_template(
|
36 |
+
messages, tokenize=False, add_generation_prompt=True
|
37 |
+
)
|
38 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt").to(model.device)
|
39 |
outputs = model.generate(
|
40 |
+
inputs,
|
41 |
max_new_tokens=max_new_tokens,
|
42 |
+
temperature=0.2,
|
43 |
top_p=0.9,
|
44 |
do_sample=True,
|
45 |
)
|
|
|
46 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
47 |
return response
|
48 |
except Exception as e:
|
|
|
50 |
|
51 |
@app.post("/generate")
|
52 |
def generate_text(input: ModelInput):
|
|
|
53 |
try:
|
|
|
54 |
response = generate_response(
|
55 |
+
model=model,
|
56 |
+
tokenizer=tokenizer,
|
57 |
+
instruction=input.prompt,
|
58 |
+
max_new_tokens=input.max_new_tokens
|
59 |
)
|
60 |
return {"generated_text": response}
|
61 |
except Exception as e:
|
|
|
63 |
|
64 |
@app.get("/")
|
65 |
def root():
|
66 |
+
return {"message": "Welcome to the Hugging Face Model API!"}
|