File size: 12,100 Bytes
2a8c9b4 b68fd83 f746629 be5a54d c28a65c 618ed9d 85a4100 618ed9d d4ba9d9 f746629 22e4d02 b6e8fb0 22e4d02 be5a54d c28a65c f746629 cc16819 618ed9d a799801 f746629 791ecfc f746629 78b30fe f746629 78b30fe d233af8 f746629 78b30fe f746629 d233af8 f746629 78b30fe f746629 b68fd83 740f397 b68fd83 a6c6700 b68fd83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import gradio as gr
from gradio_multimodalchatbot import MultimodalChatbot
from gradio.data_classes import FileData
import os
import pandas as pd
import requests
from PIL import Image, UnidentifiedImageError
from io import BytesIO
import matplotlib.pyplot as plt
import urllib3
from transformers import pipeline
from transformers import BitsAndBytesConfig
import torch
import textwrap
import pandas as pd
import numpy as np
from haversine import haversine # Install haversine library: pip install haversine
from transformers import AutoProcessor, LlavaForConditionalGeneration
from transformers import BitsAndBytesConfig
import torch
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer
from transformers import AutoImageProcessor
from datasets import load_dataset
from geopy.geocoders import Nominatim
import pyarrow
import spaces
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
IS_SPACE = os.environ.get("SPACE_ID", None) is not None
# Constants
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
MODEL_ID = "llava-hf/llava-1.5-7b-hf"
TEXT_MODEL_ID = "mistralai/Mistral-7B-Instruct-v0.2"
# Print device and memory info
print(f"Using device: {DEVICE}")
print(f"Low memory: {LOW_MEMORY}")
# Quantization configuration for efficient model loading
# Define BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
# Load the tokenizer associated with your 'MODEL_ID'
tokenizer_image_to_text = AutoTokenizer.from_pretrained(MODEL_ID)
# Load the image processor associated with your 'MODEL_ID'
image_processor = AutoImageProcessor.from_pretrained(MODEL_ID)
# Load models only once
processor = AutoProcessor.from_pretrained(MODEL_ID)
model = LlavaForConditionalGeneration.from_pretrained(MODEL_ID, quantization_config=quantization_config, device_map="auto")
# Pass the tokenizer, image processor explicitly to the pipeline
pipe_image_to_text = pipeline("image-to-text", model=model, tokenizer=tokenizer_image_to_text, image_processor=image_processor, model_kwargs={"quantization_config": quantization_config})
# Initialize the text generation pipeline
pipe_text = pipeline(
"text-generation",
model=TEXT_MODEL_ID,
model_kwargs={
"quantization_config": quantization_config,
"use_auth_token": True # This will use the environment variable
}
)
# Ensure data files are available
current_directory = os.getcwd()
geocoded_hotels_path = os.path.join(current_directory, 'geocoded_hotels.csv')
csv_file_path = os.path.join(current_directory, 'hotel_multimodal.csv')
# Load geocoded hotels data
if not os.path.isfile(geocoded_hotels_path):
url = 'https://github.com/ruslanmv/watsonx-with-multimodal-llava/raw/master/geocoded_hotels.csv'
response = requests.get(url)
if response.status_code == 200:
with open(geocoded_hotels_path, 'wb') as f:
f.write(response.content)
print(f"File {geocoded_hotels_path} downloaded successfully!")
else:
print(f"Error downloading file. Status code: {response.status_code}")
else:
print(f"File {geocoded_hotels_path} already exists.")
geocoded_hotels = pd.read_csv(geocoded_hotels_path)
# Load hotel dataset
if not os.path.exists(csv_file_path):
dataset = load_dataset("ruslanmv/hotel-multimodal")
df_hotels = dataset['train'].to_pandas()
df_hotels.to_csv(csv_file_path, index=False)
print("Dataset downloaded and saved as CSV.")
else:
df_hotels = pd.read_csv(csv_file_path)
def get_current_location():
try:
response = requests.get('https://ipinfo.io/json')
data = response.json()
location = data.get('loc', '')
if location:
return map(float, location.split(','))
else:
return None, None
except Exception as e:
print(f"An error occurred: {e}")
return None, None
def get_coordinates(location_name):
geolocator = Nominatim(user_agent="coordinate_finder")
location = geolocator.geocode(location_name)
if location:
return location.latitude, location.longitude
else:
return None
def find_nearby(place=None):
if place:
coordinates = get_coordinates(place)
if coordinates:
latitude, longitude = coordinates
print(f"The coordinates of {place} are: Latitude: {latitude}, Longitude: {longitude}")
else:
print(f"Location not found: {place}")
return None
else:
latitude, longitude = get_current_location()
if not latitude or not longitude:
print("Could not retrieve the current location.")
return None
geocoded_hotels['distance_km'] = geocoded_hotels.apply(
lambda row: haversine((latitude, longitude), (row['latitude'], row['longitude'])),
axis=1
)
closest_hotels = geocoded_hotels.sort_values(by='distance_km').head(5)
print("The 5 closest locations are:\n")
print(closest_hotels)
return closest_hotels
# Suppress InsecureRequestWarning
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
@spaces.GPU
# Define the respond function
def search_hotel(place=None):
df_found = find_nearby(place)
if df_found is None:
return pd.DataFrame()
df_found = df_found.head(1) # Only last 1 hotels, to save runtime of Hugging Face ZERO GPU
hotel_ids = df_found["hotel_id"].values.tolist()
filtered_df = df_hotels[df_hotels['hotel_id'].isin(hotel_ids)]
# Use .loc[] to avoid SettingWithCopyWarning
filtered_df.loc[:, 'hotel_id'] = pd.Categorical(filtered_df['hotel_id'], categories=hotel_ids, ordered=True)
filtered_df = filtered_df.sort_values('hotel_id').reset_index(drop=True)
grouped_df = filtered_df.groupby('hotel_id', observed=True).head(1)
description_data = []
for index, row in grouped_df.iterrows():
hotel_id = row['hotel_id']
hotel_name = row['hotel_name']
image_url = row['image_url']
try:
response = requests.get(image_url, verify=False)
response.raise_for_status()
img = Image.open(BytesIO(response.content))
prompt = "USER: <image>\nAnalyze this image. Give me feedback on whether this hotel is worth visiting based on the picture. Provide a summary review.\nASSISTANT:"
outputs = pipe_image_to_text(img, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
description = outputs[0]["generated_text"].split("\nASSISTANT:")[-1].strip()
description_data.append({'hotel_name': hotel_name, 'hotel_id': hotel_id, 'image': img, 'description': description})
except (requests.RequestException, UnidentifiedImageError):
print(f"Skipping image at URL: {image_url}")
return pd.DataFrame(description_data)
def show_hotels(place=None):
description_df = search_hotel(place)
if description_df.empty:
print("No hotels found.")
return
num_images = len(description_df)
num_rows = (num_images + 1) // 2
fig, axs = plt.subplots(num_rows * 2, 2, figsize=(20, 10 * num_rows))
current_index = 0
for _, row in description_df.iterrows():
img = row['image']
description = row['description']
if img is None:
continue
row_idx = (current_index // 2) * 2
col_idx = current_index % 2
axs[row_idx, col_idx].imshow(img)
axs[row_idx, col_idx].axis('off')
axs[row_idx, col_idx].set_title(f"{row['hotel_name']}\nHotel ID: {row['hotel_id']} Image {current_index + 1}", fontsize=16)
wrapped_description = "\n".join(textwrap.wrap(description, width=50))
axs[row_idx + 1, col_idx].text(0.5, 0.5, wrapped_description, ha='center', va='center', wrap=True, fontsize=14)
axs[row_idx + 1, col_idx].axis('off')
current_index += 1
plt.tight_layout()
plt.show()
def grouped_description(description_df):
grouped_descriptions = description_df.groupby('hotel_id')['description'].apply(lambda x: ' '.join(x.astype(str))).reset_index()
result_df = pd.merge(grouped_descriptions, description_df[['hotel_id', 'hotel_name']], on='hotel_id', how='left')
result_df = result_df.drop_duplicates(subset='hotel_id', keep='first')
result_df = result_df[['hotel_name', 'hotel_id', 'description']]
return result_df
def create_prompt_result(result_df):
prompt = ""
for _, row in result_df.iterrows():
hotel_name = row['hotel_name']
hotel_id = row['hotel_id']
description = row['description']
prompt += f"Hotel Name: {hotel_name}\nHotel ID: {hotel_id}\nDescription: {description}\n\n"
return prompt
def build_prompt(context_result):
hotel_recommendation_template = """
<s>[INST] <<SYS>>
You are a helpful and informative chatbot assistant.
<</SYS>>
Based on the following hotel descriptions, recommend the best hotel:
{context_result}
[/INST]
"""
return hotel_recommendation_template.format(context_result=context_result)
@spaces.GPU
# Define the respond function
def generate_text_response(prompt):
outputs = pipe_text(prompt, max_new_tokens=500)
response = outputs[0]['generated_text'].split("[/INST]")[-1].strip()
return response
def multimodal_results(description_df):
conversation = []
for _, row in description_df.iterrows():
hotel_name = row['hotel_name']
description = row['description']
img = row['image']
img_path = f"{hotel_name}.png"
img.save(img_path)
bot_msg = {
"text": f"Here is {hotel_name}. {description}",
"files": [{"file": FileData(path=img_path)}]
}
conversation.append([{"text": "", "files": []}, bot_msg])
return conversation
def llm_results(description_df):
result_df = grouped_description(description_df)
context_result = create_prompt_result(result_df)
recommendation_prompt = build_prompt(context_result)
result = generate_text_response(recommendation_prompt)
conversation = [[{"text": "Based on your search...", "files": []}, {"text": f"**My recommendation:** {result}", "files": []}]]
return conversation
def chatbot_response(user_input, conversation):
bot_initial_message = {
"text": f"Looking for hotels in {user_input}...",
"files": []
}
conversation.append([{"text": user_input, "files": []}, bot_initial_message])
yield conversation
description_df = search_hotel(user_input)
if description_df is None or description_df.empty:
error_message = {"text": f"Sorry, I couldn't find any hotels for {user_input}. Please try another location.", "files": []}
conversation.append([{"text": user_input, "files": []}, error_message])
yield conversation
return # Exit the function early
hotel_conversation = multimodal_results(description_df)
for message_pair in hotel_conversation:
conversation.append(message_pair)
yield conversation
final_recommendation = llm_results(description_df)
for message_pair in final_recommendation:
conversation.append(message_pair)
yield conversation
def initial_conversation():
return [[
{"text": "**Welcome to Hotel Recommendation!**", "files": []},
{"text": "Please enter the place you're interested in visiting.", "files": []}
]]
with gr.Blocks() as demo:
gr.Markdown("# 🏨 Hotel Recommendation Chatbot")
gr.Markdown("**Provide the location to discover hotels and receive personalized recommendations!**")
initial_conv = initial_conversation()
chatbot = MultimodalChatbot(value=initial_conv, height=500)
with gr.Row():
place_input = gr.Textbox(label="Enter a place", placeholder="E.g., Paris France, Tokyo Japan, Genova Italy")
send_btn = gr.Button("Search Hotels")
send_btn.click(chatbot_response, inputs=[place_input, chatbot], outputs=chatbot)
demo.launch(debug=True)
|